11-28 040207

NASA Technical Memorandum 107469 AIAA-97-2976

Performance Tests of a Liquid Hydrogen Propellant Densification Ground System for the X33/RLV

Thomas M. Tomsik Lewis Research Center Cleveland, Ohio

Prepared for the 33rd Joint Propulsion Conference & Exhibit cosponsored by AIAA, ASME, SAE, and ASEE Seattle, Washington, July 6–9, 1997

National Aeronautics and Space Administration

PERFORMANCE TESTS OF A LIQUID HYDROGEN PROPELLANT DENSIFICATION GROUND SUPPORT SYSTEM FOR THE X33/RLV

Thomas M. Tomsik National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135

Abstract

A concept for improving the performance of propulsion systems in expendable and single-stage-to-orbit (SSTO) launch vehicles much like the X33/RLV has been identified. The approach is to utilize densified cryogenic liquid hydrogen (LH₂) and liquid oxygen (LOX) propellants to fuel the propulsion stage. The primary benefit for using this relatively high specific impulse densified propellant mixture is the subsequent reduction of the launch vehicle gross lift-off weight.

Production of densified propellants however requires specialized equipment to actively subcool both the liquid oxygen and liquid hydrogen to temperatures below their normal boiling point. A propellant densification unit based on an external thermodynamic vent principle which operates at subatmospheric pressure and supercold temperatures provides a means for the LH₂ and LOX densification process to occur. To demonstrate the production concept for the densification of the liquid hydrogen propellant, a system comprised of a multistage gaseous hydrogen compressor, LH₂ recirculation pumps and a cryogenic LH₂ heat exchanger was designed, built and tested at the NASA Lewis Research Center (LeRC). This paper presents the design configuration of the LH₂ propellant densification production hardware, analytical details and results of performance testing conducted with the hydrogen densifier Ground Support Equipment (GSE).

Nomenclature

C _{m2} GHP GLOW GSE h H Isp _v LeRC	meridional fluid velocity gas horsepower gross lift-off weight ground support equipment enthalpy head vacuum specific impulse Lewis Research Center
LH ₂	liquid hydrogen
LN ₂ LOX	liquid nitrogen liquid oxygen
M	mass
m m	mass flow rate
m MSFC	Marshall Space Flight Center
NBP	normal boiling point
PD	propellant densification
PLC	programmable logic controller
Q _{env}	environmental heat transfer rate
≺env RLV	reusable launch vehicle
SSTO	single-stage-to-orbit
t	time
TP	triple point
Ū	internal energy
U ₂	impeller tip speed

V volume

VJ vacuum-jacketed

Greek

- Ψ head coefficient
- Φ flow coefficient
- η efficiency
- ρ density

Subscripts

- L liquid
- R recirculating
- V vapor

Introduction

The desire to increase the payload capabilities and performance of SSTO reusable launch vehicles (RLV) is driven by constantly evolving mission requirements. Construction of the International Space Station Freedom, Mission to Planet Earth, a return to the Moon and planetary exploration of Mars and far beyond demonstrate the variety of potential future mission profiles. In support of these missions, the next generation RLV demands several technological improvements in order to achieve a lower cost and more reliable access to space. Advancements in higher performance engines, light weight composite structures, propellant tanks constructed of light-composite materials including graphite-epoxy and aluminum-lithium, durable thermal protection subsystems and electromagnetic actuators replacing hydraulics all constitute improvements to the RLV technology cache. One technology area that has not been as aggressively developed is densification of cryogenic liquid propellants, even though the performance gains in an RLV application exceed those improvements previously cited.

Propellant densification (PD) by itself is not a new technology approach considering the former development of slush hydrogen for the National Aerospace Plane¹⁻³ and other programs. The operational problems associated with the solid-liquid propellant mixture have however deterred wide-spread acceptance of the fuel. Production of densified propellant at conditions above the triple-point (TP) temperature is a much simpler process, and a less costly technique without the vehicle operational complexities of a slush mixture. A continuous process for subcooling LH_2 propellant above the TP, without the generators, mixers, two-phase pumps, etc., that are commonly associated with the large-scale slush hydrogen production facility, has significant operations and cost advantages in the RLV application. The continuous PD concept developed in this work is a ground support unit comprised of a pump, compressor, and heat exchanger for LH_2 propellant subcooling, and an integrated recirculation system for the launch vehicle propellant tank.

Cryogenic propellants at temperatures below their NBP have a higher bulk density and reduced vapor pressure. The greater density fluid permits the use of smaller sized and consequently lighter launch vehicle propellant tanks. The lower vapor pressure propellant allows the vehicle tank design and operating pressure to be reduced, permitting the use of thinner walled vessels. The combination of these effects contributes to a significant improvement in the vehicle gross lift-off weight (GLOW). Study estimates^{4,5} for RLV's using densified propellants indicate performance benefits ranging from 15 to 32 percent reduction in vehicle GLOW compared to the vehicle fueled with NBP LH₂/LOX propellants. Because of this significant RLV performance and cost advantage by vehicle weight reduction with the use of subcooled cryogens, a propellant densification technology demonstration program⁶ was conducted by the NASA LeRC and Rockwell Space Systems Division (RSSD). The PD work completed during this effort was funded by Marshall Space Flight Center (MSFC) under NASA Contract NCC8-79.

This paper describes the results of the Phase I liquid hydrogen PD experimental program conducted at the LeRC. A subscale LH_2 propellant densification system, sized for a 20 000 gal LH_2 tank, was designed, constructed, operationally checked-out with liquid nitrogen (LN_2) and functionally tested using liquid hydrogen propellant by LeRC. Performance tests were conducted at the K-Site Cryogenic Propellant Tank Facility located at the NASA LeRC Plum

Brook Station. Liquid hydrogen densification test results to be reported include data for GSE unit mass flow rates, subcooled LH_2 temperatures for the heat exchanger system and compressor operating conditions. Also presented here is background information on the thermodynamic process for subcooling the LH_2 propellant, a description of the GSE hardware configuration and K-Site test facility, details of GSE test procedures, operational problems encountered with the GSE and analytical comparisons with densification system performance models.

Background

The ideal rocket engine propellant is characterized as one with a high specific impulse (Isp_v) , high density and low vapor pressure. LH_2/LOX is one of the highest performance propellants with a nominal Isp_v of 450 sec. The problem with LH_2 stored at the NBP at standard conditions is its relatively low density and high vapor pressure. Liquid hydrogen has a density of 4.4 lb/ft³ at its NBP. Subcooling LH_2 to a temperature of 28 °R increases the density to 4.7 lb/ft³ corresponding to a 7 percent density gain. The vapor pressure of LH_2 at these conditions is reduced from 14.7 to 2.6 psia representing an 82 percent change. Figure 1 shows the LH_2 density and vapor pressure improvement as the temperature is reduced. The higher density propellant requires less tank volume, reducing tank size and mass. Due to the reduced vapor pressure, the subcooled propellant needs a lower tank operating pressure while still maintaining the net-positive suction head requirements for the pump fed engine system.

The densification of liquid hydrogen is based on the well characterized thermodynamic vent principle. The basic densification GSE unit itself, integrated with an RLV propellant tank (Fig. 2), consists of a LH₂ recirculation pump, LH₂ heat exchanger and gaseous hydrogen (gH₂) compressor. The production of supercold LH₂ temperatures is accomplished by withdrawing saturated liquid hydrogen off the top of the thermally stratified RLV tank through a collector manifold, circulating it through the heat exchanger of the ground cooling unit, and returning the subcooled propellant from the GSE to the bottom of the RLV tank. Subatmospheric pressure boiling at 1.2 psia provides the 25.4 °R thermal heat sink required to condition the propellant in the LH₂ heat exchanger.

In order to maintain the propellant tank at thermally stratified conditions, a very important aspect in the overall performance of the densification process in terms of the time required to accomplish the desired densification, warm saturated liquid is withdrawn off the top using a collector manifold and the subcooled propellant from the GSE is returned to the bottom. The tubes of the GSE heat exchanger are submerged in a low temperature LH_2 boiling bath maintained at subatmospheric pressure. To generate subcooled LH_2 at 27 °R, the heat exchanger bath operating filled with LH_2 is reduced to a pressure of 1.2 psia causing the liquid to boil at 25.4 °R. This low temperature boiling provides the thermal heat sink required to condition the propellant. The inlet LH_2 stream is gradually subcooled through the tubes of the heat exchanger ullage pressure constant at 1.2 psia and rejects the boiled-off gH_2 saturated vapor to the atmospheric pressure vent.

Test Apparatus and Procedure

K-Site Test Facility

The experimental testing for the LH_2 densification program was performed at the K-Site Cryogenic Propellant Tank Facility located at the NASA LeRC Plum Brook Station. The K-Site facility (Fig. 3) contains the main test building housing a 25 ft vacuum chamber, a remotely located control room, cryogenic liquid and gas storage areas, and equipment for slush hydrogen production. The LH_2 propellant densification GSE was installed outdoors (Fig. 4) on an existing concrete slab located near the vacuum pump building adjacent to a reinforced blast wall. The PD system components are assembled on a welded I-beam structure, 36 ft long and 8 ft 6 in. wide.

The facility liquid hydrogen equipment for the PD tests consist of two 13 000 gal roadable dewars, vacuum jacketed transfer lines and a dewar vent system. A plan schematic of the LH_2 GSE fluid handling system is shown in Fig. 5. The H24 rail station dewar supplies LH_2 to the GSE pumps and heat exchanger. Subcooled propellant from the GSE flows to the H25 receiver dewar for storage. Vent valves on both dewars are routed to the 6 in. south burn-off and flared with a natural gas pilot. The discharge line from the gH_2 compressor ties into a second 6-in. vent line which also terminates at the south burn-off flare stack. Foam insulated lines connect the facility vacuum jacketed lines leading to the GSE skid through mating bayonets with short VJ extensions. One remote operated valve (V210) is installed in the skid supply

piping to allow the back-transfer of LH_2 from the roadable H25 dewar to the rail station H24 dewar to bypass the densification test rig.

Gaseous helium (gHe) used for purging is supplied to the GSE at 45 psig from the K-Site gHe bottle farm and tuber systems. Gaseous nitrogen is provided to the skid at 90 psig for valve operator pressure. Liquid nitrogen used during cold shock and densification checkout tests was fed from a separate LN_2 dewar temporarily placed adjacent to the skid. A portable 400 KVA 7200/480 V transformer provided 480 and 208V three phase electrical power to motors on the LH_2 recirc pumps, gH₂ compressor and its cooling system pump and fan.

Propellant Densification GSE Hardware

The propellant densification GSE is designed to subcool 2.0 lb_m/sec of saturated LH₂ propellant. The heat exchanger duty rating is 60 Btu/sec with flowing LH₂ at maximum inlet conditions of 40 psia and 43 °R. The subcooled product design outlet temperature from the densifier unit exchanger is 27 °R. Table I lists the design parameters for the test bed GSE. The major hardware for producing the densified propellant (Fig. 6) consists of two LH₂ recirculation pumps mounted inside a dewar, a cryogenic LH₂ heat exchanger and a gH₂ centrifugal compressor. A GSE system flow schematic (Fig. 7) configured for the K-Site LH₂ densification tests shows the rig to be set-up for once-through flow testing where LH₂ flows from dewar H24 to H25. The primary test objective in this series was to demonstrate heat exchanger-compressor performance and the production of 27 °R subcooled propellant.

Recirculation Pumps

For K-Site densification test operations, LH_2 from the H24 rail station dewar, operating self-pressurized at 40 psia, supplies warm liquid to the GSE system. With valve V210 closed, LH_2 flows through valve PV-1 to the recirculation pump inlets. The recirculation pumps (Fig. 8) are arranged in parallel and capable of flowing 200 gpm through the 3 in. Sch 10 vacuum jacketed (VJ) piping system. They develop a 5 psid differential pressure rise at a design point speed of 7400 rpm. The submersible pumps operate in a cold-guard dewar (Fig. 9) filled with NBP LH_2 to control environmental heat leak and provide motor cooling. The dewar bath level is controlled by sensing liquid level with silicon diodes and adding make-up LH_2 through valve PV-2.

Located just upstream of the recirculation pumps is a 1 in. LH_2 VJ supply line. This makeup flow stream would maintain the X33 propellant tank level constant as fluid bulk density is reduced during a 2 hr densification process. The makeup flow rate, nominally ranging from 13 to 24 gpm, would be monitored by a venturi flow meter and controlled by valve PCV-1. The control valve would sense tank level by an input signal from a liquid-level capacitance probe mounted near the top of the X33 vehicles' propellant tank. Due to the single pass operation of the GSE for the demonstration testing at K-Site, this part of the system was not operated.

Heat Exchanger

The pump discharge stream flows through valve PV-4 and enters the LH_2 heat exchanger. Inlet conditions are 40 psia and 36 to 44 °R depending on the H24 supply dewar outlet liquid temperature. The inlet flow rate to the heat exchanger is measured with a venturi flow meter. Liquid hydrogen flows through the heat exchanger tube bundle where the fluid is progressively cooled to the 27 °R product outlet temperature. Six silicone diodes mounted on the axis of a single heat exchanger tube provide wall temperature gradient data. The subcooled fluid exits the heat exchanger, flows through valve PCV-4 and is directed to the H25 roadable dewar for storage. The heat exchanger bath level is maintained constant by sensing bath liquid level with silicon diodes mounted on a probe. Level control valve PCV-3 opens when the input signal from a low-level control diode detects the level has dropped below its fixed position.

The LH₂ heat exchanger assembly (Fig. 10) is a single-pass shell and tube design constructed of a manifolded aluminum tube bundle, a 304SS inner vessel and a carbon steel outer vessel which forms a vacuum jacket for the inner assembly. There are 150 extruded aluminum tubes with machined fins providing nearly 600 ft² of effective surface area. This particular design permits the extremely close exit-end approach temperatures necessary for subcooling the propellant to within 1 °R of the boiling LH₂ bath. Heat rejection from the exchanger produces a design boil-off rate of 0.4 lb_m/sec of saturated gH₂ vapor. Shellside ullage conditions are maintained at 1.2 psia and 26 °R.

Hydrogen Compressor

The supercold vent gas from the heat exchanger flows through isolation valve BV-1 to the inlet of the hydrogen compressor system. The four-stage centrifugal compressor (Fig. 11) is designed to compress the cold inlet gas from 26 °R and 1.2 psia to a discharge pressure of 15.6 psia. To maintain the heat exchanger bath pressure constant at 1.2 psia, compressor speed is either manually or automatically adjusted by a single 200 hp variable frequency drive controller (VFD). Compressor speed compensation with the VFD provides a method to control the heat exchanger bath pressure constant at off-design vent gas flow rates resulting from changes in heat exchanger inlet LH₂ temperature and mass flow rate.

Each compressor stage operates at the same rotational design point speed of 22 000 rpm with the common VFD. The compressor stages are driven by individual high-speed AC induction motors each rated at 460 V, 3 phase, 60 Hz and 40 hp. The drive motors housings are cooled with a recirculating propylene-glycol coolant loop. The fourth compressor stage discharges 1180 ACFM of gH_2 at 15.6 psia and 128 °R into a 4 in. vent line. From stage four, the gH_2 vent flows through shut-off valve BV-3 and discharges into the facility vent system where the gas is flared and vented to atmosphere. The total compressor surge instability. Gas-bypass valve BV-2 opens manually or automatically at the onset of surge detection. Surge is controlled by injecting recirculation gas into the heat exchanger LH_2 bath where the gas cools, vaporizes additional liquid, dissipates heat of compression and recycles to the inlet of the first stage.

Instrumentation

Temperature sensors used on the GSE system were predominantly silicone diode (SiD) type probes with an accuracy of ± 0.5 °R. A total of 43 installed SiDs provided temperature data for the LH₂ recirculation, heat exchanger and gH₂ compressor systems. Fifteen capacitive type pressure transducers installed on the GSE indicated LH₂ and gH₂ system pressures ranging from less than 2 to 50 psia. Differential pressure transducers sensing ΔP for each of the four venturi flow meters provided information for calculating GSE mass flow rates. The gH₂ compressor discharge flow rate was measured with a 2 percent accurate 6 in. turbine flow meter.

Data Acquisition

The data acquisition system (DAQ) used during PD testing at K-Site was the ESCORT D program. ESCORT D was set up to provide real-time monitoring of 70 GSE and facility data channels. Data was recorded at a nominal rate of 1 scan/sec/channel, simultaneous. The DAQ system included a variety of signal conditioners and analog filters to accommodate the different sensor types. A dedicated microVAX computer located in the K-Site control building was linked to the NASA LeRC VAX mainframe computer system. The microVAX was used for temporary data storage prior to data transmission to LeRC for post-run analysis. No averaging or smoothing of the raw data was performed with the PD data-sets reported.

Test Procedures

Hydrogen densification GSE test procedures involved several operations. Pretest activities included establishing K-Site facility systems, GSE vacuum purging, gHe inerting, system chill down of LH_2 transfer lines, and LH_2 fill of the heat exchanger bath and pump dewar. Test and post-test activities involved verification of valve settings, actual GSE unit startup of the pumps and gH₂ compressor, data recording, GSE shutdown and facility safeing and post-run cleanup. Remote operation of the test rig was conducted by personnel stationed inside the K-Site facility Control room using a control panel (Fig. 12) and a programmable logic controller (PLC) interface designed for the GSE. Remote video displays provided a visual observation of the GSE during testing.

Following completion of the pretest operations, a typical LH_2 densification test run procedure was to pressurize the H24 rail station supply dewar to 40 psia. The H25 roadable dewar would be set vented to slightly above atmospheric pressure. The heat exchanger bath (PCV-3) and pump dewar (PV-2) level control valves were placed in their automatic control modes. The desired mass flow rate through the densifier was established by opening and then adjusting the PCV-4 control valve and monitoring the heat exchanger inlet mass flow with a venturi flow meter. With the flow rate through the heat exchanger stabile, the compressor glycol coolant system pump and heat exchanger fan were started. The

compressor acceleration rate was preprogrammed for a 2 200 rpm/min ramp. The desired compressor set-point speed was initially programmed into the PLC, typically 8 000 rpm for the LN_2 tests and 22 000 rpm for the LH_2 testing. The compressor system was started in VFD manual speed control by the power-on button. The DAQ system was started and key variables including LH_2 flow rate, compressor speed, and heat exchanger bath pressure would be closely monitored. The densification system was operated until a steady-state condition was reached, the rig was manually shut-down by the operator, or until the PLC detected an abort condition and triggered a fault-shutdown of the GSE.

Results and Discussion

A series of LN_2 system cold-shock, proof-pressure tests, gHe mass-spec leak checks and component functional checkouts were initially run on the GSE. Following the subsystem checkouts, three LN_2 densification tests were conducted. Liquid hydrogen densification testing began at K-Site in mid-December 1996 with a total of four LH_2 densification tests performed. Table II provides a run summary of the experimental conditions for the seven densification tests completed during this phase of the program. A more detailed review of the densification test results including mass balances, and system temperatures and pressures is presented in the sections below.

Liquid Nitrogen Densification Results

The objectives of the LN_2 densification tests were to evaluate the performance of the GSE as a system and gain operating experience with the equipment before proceeding with the hydrogen testing. Although the densifier was designed to process LH_2 , analysis of the equipment performance specifications resulted in the following target run conditions for the LN_2 densification trials: 9.0 lb_m/sec recirc mass flow rate, 3.0 psia heat exchanger bath pressure, and 8 000 rpm compressor operating speed. The first two attempted LN_2 densification runs were affected by high frequency electrical noise problems generated by the compressor AC drive motors. The other problems encountered were maintaining a high enough LN_2 recirc flow rate through the rig due to mechanical difficulties with the LH_2 recirc pumps and an excessive back pressure caused by the K-Site facility VJ piping downstream of the GSE. Liquid nitrogen mass flow rates for these initial two tests were only 1.5 to 1.8 lb_m/sec. Each of these preliminary LN_2 runs did however yield some valuable data. The compressor was operated at 8 000 to 8 500 rpm, resulting in a final heat exchanger bath pressure of 3.0 to 3.6 psia and production of subcooled LN_2 at 120 to 121 °R (see Table II). The flow rate and noise problems noted earlier were corrected prior to proceeding with the next LN_2 test. The mechanical start-up problem with the recirc pumps could not be resolved given the schedule constraints and inclement weather conditions, therefore the flow rate through the GSE was by pressurized transfer with the pump motors deenergized and the pumps free-spinning.

The compressor startup transient for the third LN_2 densification trial given in Fig. 13 shows the compressor ramping at 2 200 rpm/min to its set point speed of 8 000 rpm. Following a slight overshoot of controller speed, a compressor surge condition occurred 100 sec following the acceleration ramp as shown by the abrupt decline in speed to 7 500 rpm. The surge instability was quickly corrected by manually opening the gas bypass valve BV-2 to re-establish the compressor mass flow rate (Fig. 14) above 1.0 lb_m/sec gN₂. At 1500 sec into the LN₂ densification run, a steady-state condition was achieved. Compressor discharge and heat exchanger ullage pressures (Fig. 15) were leveling off at 15.3 and 3.7 psia, respectively. Compressor interstage temperatures (Fig. 16) were constant as indicated by a flat 150 °R adiabatic temperature rise across all four stages of the system. The LN₂ recirc mass flow rate (Fig. 17) was averaging 8.6 lb_m/sec through the GSE heat exchanger. The heat exchanger ther-mal performance(Fig. 18) shows that it produced 123 °R subcooled LN₂ at a nominal inlet temperature of 150 °R. The exchanger bath temperature reached a low point of 121 °R during the test, indicating a 2 °R exit end approach Δ T. The heat exchanger experimental Δ P across the tube bundle and manifolds ranged from 4.0 to 5.0 psid.

Liquid Hydrogen Densification Results

For the liquid hydrogen densification testing, the following target operating conditions were specified for the initial series of runs: $1.8 \text{ to } 2.0 \text{ lb}_{m}/\text{sec} \text{ LH}_{2}$ recirc mass flow rate, $1.4 \text{ to } 1.8 \text{ psia heat exchanger bath pressure, and } 22\,000$ rpm compressor operating speed. The compressor speed profile (Fig. 19) for the first LH₂ densification test (Run H1) shows the unit ramping at a linear rate of 2 200 rpm. Between 400 and 550 sec of the startup, the mass flow rate (Fig. 20) through the compressor was averaging $1.1 \text{ lb}_{m}/\text{sec}$ of gH₂. At ~600 sec into GSE startup the compressor stopped accelerating as it approached 16 700 rpm. The compressor pressure-time data (Fig. 21) indicated a surge condition had developed 30 sec beforehand. Compressor interstage temperatures (Fig. 22) were running 30 to 40 °R below their design point predictions. Unlike the LN₂ densification test, manual operation of the gas-bypass valve BV-2 did not recover

the compressor from the flow-reversal caused by the surge. The compressor shut itself down by a VFD over-current fault, interrupting operations at 630 sec. The heat exchanger bath pressure reached a low of 3.4 psia prior to the shut-down. With the LH₂ bath temperature at 29 °R, the heat exchanger outlet temperature attained 30°R (Fig. 23), indicating a 10 °R subcooling affect of the product stream near the end the startup transient. Liquid hydrogen mass flow rates (Fig. 24) varied from 2.0 to 2.3 lb_m/sec throughout the test. Two repeat attempts (Run H2 and H3) to startup the GSE compressor using this constant linear ramp procedure resulted in similar abort shutdowns after various run lengths.

A modified startup procedure was employed for the final LH₂ densification Run H4. The compressor was ramped incrementally in 2 000 rpm steps (Fig. 25) starting with operational verification at 10 000 rpm. The GSE was then allowed to reach pseudo-steady state conditions in order to stabilize the operation before the next step change increase in compressor speed was programmed. Partial success was realized using this startup approach as the overall densification run time increased to 1110 sec in duration. With the exception of a controlled surge incident at 500 sec, the 13 psi ΔP produced by the compressor (Fig. 26) resulted in a final low point heat exchanger bath pressure of 2.9 psia. Hydrogen mass flow rate through the heat exchanger was a constant 2.0 lb_m/sec of liquid entering at 39 °R. The LH₂ temperature profile through the heat exchanger (Fig. 27) resulted in the production of a 29.3 °R LH₂ product stream at a bath temperature of 28.9 °R and minimum 0.4 °R exit end exchanger ΔT . At 1310 sec into the extended densification test, the compressor operation abruptly terminated with a similar VFD fault shutdown. Subsequent compressor restart attempts failed, resulting in an immediate stoppage. Follow-on inspection of the compressor system showed that the third stage thrust bearing had failed and the drive motor had shorted to ground, prematurely ending the testing phase of the program before completion of the entire planned densification matrix.

Analysis of GSE Performance Data

The GSE mass and energy balance around the heat exchanger are calculated by Eqs. (1) and (2) from experimental mass flow rate, temperature and pressure data.

$$\dot{m}_{L_{in}} + \dot{m}_{V_{in}} - \dot{m}_{V_{out}} = \frac{d(\rho_L \bullet V_L)_{bath}}{dt} \tag{1}$$

$$\dot{m}_{L_{in}}h_{L_{in}} + \dot{m}_{V_{in}}h_{V_{in}} + \dot{m}_{R}\left(h_{R_{in}} - h_{R_{out}}\right) + Q_{env} - \dot{m}_{V_{out}}h_{V_{out}} = \frac{d(M_{L} \bullet V_{L})_{bath}}{dt}$$
(2)

Based on the heat exchanger bath level fluctuating, results of integrated densification mass balance data is given in Fig. 28. Initial bath quantities for LH₂ and LN₂ were estimated to be 240 and 2750 lb_m, respectively. The mass sum totals for the five tests shown are 2600 lb_m of liquid in for heat exchanger level control plus bypass gas in, 3100 lb_m of vapor boil-off out to the compressor inlet, and 200 lb_m of bath density mass change (V • dp/dt). The vapor boil-off mass out is 500 lb_m (i.e. 19 percent) greater than the liquid plus gas bypass mass in. The combined experimental mass balance on the bath indicates a 700 lb_m (i.e. 23 percent) total reduction of initial bath mass. This result confirmed experimental records denoting slow response to bath level change. The heat exchanger fill and level control valve (PCV-3) sometimes had difficulty keeping up with and maintaining a constant bath liquid level. This was attributed to the common dewar feed line plumbing and equivalent H-24 dewar pressure supplying liquid to the GSE. During portions of the densification tests, the heat exchanger bath level gradually dropped below the lower control point when the boil-off flow rate was high therefore requiring a greater bath level flow.

Integration of the energy Eq. (2) provides another use-ful insight into the test data. The energy balance test results for the GSE heat exchanger bath (Fig. 29) compare the energy added with the bypass gas flow, the heat transferred to the product liquid for subcooling, the energy rejected with the vent gas flow due to boil-off and other unaccounted for system energy changes. Energy totals for the five tests shown indicate 57 000 Btu in with bypass gas, 100 000 Btu of heat transferred for cryogen subcooling, 181 000 Btu of energy rejected with the vent gas and 24 000 Btu unaccounted. Based on the ratio of heat transferred to the fluid and the energy rejected with the vent gas, the thermal efficiency of the GSE start-up process was 55 percent. At design point steady-state operating conditions, the GSE thermal efficiency should increase to ~98 percent. The average and peak heat exchanger experimental subcooling duties calculated were 28 and 42 Btu/sec, respectively.

Heat exchanger inlet, outlet and axial wall temperature data (Fig. 30) is shown as a function of tube length for LH₂ run H1. Recall that a single heat exchanger tube was outfitted with five SiD's to provide wall temperature profile information as liquid flows through a tube. Experimental log-mean ΔT , heat transfer rate (Q) and overall heat transfer coefficient (U_o) values are indicated on the chart. Results of the transient wall temperature data show that the wall $\Delta T = T_w - T_{bath}$ varied from 1.8 °R at the inlet to 0.3 °R at the heat exchanger outlet. A comparison of the experimental data with the GSE heat exchanger performance model was also made. The analytical model showed good agreement of ±0.5 °R with the wall temperature data point.

A detailed performance analysis of the gN_2 and gH_2 compressor data was conducted for the following reasons: to ascertain whether the compressor performance satisfied design point and manufacturer performance specifications during GSE testing; to verify the cause and solution to the surge problems that frequently occurred during operation; and to possibly identify the source of the stage no. 3 drive failure. Review of the gN_2 test data (Fig. 31) showed that the compressor operated satisfactorily and within its design margin at the re-rated conditions established for pumping dry nitrogen gas. The nominal run point conditions matched the estimated gN_2 performance of 8000 rpm, 3.0 psia bath pressure and 1.0 lb/sec gN_2 flow. From Eqs. (3) to (5), the calculated gas horsepower (GHP) and head (Ψ) versus flow coefficient (ϕ) data estimated for the LN₂ test indicated that the experimental performance compared very favorably to the manufacturers original shop air test data. The compressor power requirements for each stage running steady at 8000 rpm showed that all the drive motors were ~90 percent power loaded during the LN₂ test.

$$GHP = \frac{H \bullet \dot{m}_V}{550 \bullet \eta} \tag{3}$$

$$\Psi = \frac{32.2 \bullet H}{U_2^2} \tag{4}$$

$$\phi = \frac{C_{in2}}{U_2} \tag{5}$$

For the LH₂ compressor test series, while assuming that only "dry" gH₂ entered the first compressor stage, the calculated head and flow coefficient data resulted in first and second stage Ψ and Φ coefficients that were extremely high in comparison to the previous gN₂ and manufacturers data (Fig. 32). The Ψ and Φ data points were 40 to 60 percent to the far right of the curve and well off the known compressor performance map. Furthermore, upon review of the hydrogen inlet temperature and corresponding saturation temperature data, obtained from known inlet pressures for stages 1 to 3, showed that the gas was saturated entering these stages (Fig 33). Additional calculations suggested that the hydrogen gas contained entrained LH₂ and was wet with a quality ranging from ~90 to 98 percent. The calculated power requirements for each stage during the hydrogen test H4 and prior to the failure indicated that the first stage motor was 88 percent loaded, the second stage 102 percent loaded, the third stage 111 percent loaded and the fourth stage was running at 107 percent of full load power. These experimental findings would imply that the third stage drive motor failure was probably induced by a sustained current overload of the stage no. 3 drive motor due to the wet saturated conditions and relatively higher density gH₂ vapor that was entering the compressor system during the run.

Conclusions

Propellant densification is a technology concept for increasing the performance of cryogenic LOX and LH_2 propulsion systems of the future. For an SSTO or RLV the use of supercooled, densified LOX/LH₂ propellants can significantly impact the vehicle design. Its been shown that densified propellants can benefit an RLV by reducing the gross lift-off weight by as much as 32 percent. For existing vehicles like the Space Shuttle, the use of densified fuels would result in a payload increase of 6 000 to 8,000 lb.

This paper described a test program conducted by the NASA LeRC to demonstrate the LH_2 propellant densification technology approach. The work was funded under NASA Contract NCC8-79 by the MSFC. A 2 lb/sec capacity,

prototype-subscale, LH_2 densification Ground Support Unit, was designed, built and tested. Densification performance tests, based on a compressor-heat exchanger unit operating on a thermodynamic vent principle, were conducted using cryogenic LN_2 and LH_2 . The initial series of experiments with the GSE occurred in December 1996 at the NASA Plum Brook, K-Site test facility, located in Sandusky OH. Three LN_2 and four LH_2 densification tests were run. The fundamental densification technology was first satisfactorily demonstrated with the safe inert working fluid LN_2 . Liquid nitrogen was sub-cooled and densified from 148 to 123 °R at a flow rate of 9 lb/sec through the heat exchanger operating at 3.7 psia. During liquid hydrogen testing, compressor start-up problems caused by surge initially plagued the experiments. A modification to the start-up procedure eventually resulted in an extended LH_2 densification test run. Two pounds per second of NBPLH₂ was subcooled and densified by a 10 °R Δ T prior to an equipment failure of the compressor stage no. 3 drive motor. The following conclusions, technical issues and lessons learned can be drawn from these preliminary experimental densification results.

• The fundamental densification technology and design concept for subcooling cryogenic fluids based on this GSE approach has been confirmed. This same system philosophy can be extended to processing other cryogens including liquid oxygen.

• The performance of the multistage centrifugal compressor during hydrogen testing was affected by wet saturated gH₂ vapor entering the inlet to the first stage. This condition contributed to the premature failure due to an overload of that drive.

• The thermal performance of the cryogenic LH_2 heat exchanger was better than expected based on the close exit end operating ΔTs of the unit processing LH_2 .

• Engineering solutions for each of the technical problems encountered with the GSE during this preliminary demonstration have been defined. For example, a piping change involving the relocation of the gH_2 bypass line from the heat exchanger LH₂ bath to the inlet of the first compressor stage is the hardware fix required to prevent the wet inlet gas condition. Corrective actions prior to further demonstration tests of the GSE densification rig are planned.

The interest in densified fuels for rocket engines has recently grown throughout the aerospace community. Because propellant densification potentially represents a major state-of-the-art advancement in cryogenic propulsion technology, it's recommended that this important work be continued. Ongoing research and testing will be necessary to bring this propellant technology to the next level leading to successful commercial development and application.

Acknowledgement

The author would like to extend his appreciation to Gordon MacKay and technical staff members of Sierra Lobo Inc. at the NASA LeRC Plum Brook Station for their enduring operations support. Special thanks are given to Doug Bewley of LeRC, Tibor Lak of Boeing North American and James Fesmire of NASA KSC for their technical contributions to the propellant densification design concept and test program. Recognition to Cryogenic Technical Services and Barber-Nichols is given for their contributions to the LH₂ GSE heat exchanger and compressor hardware designs, respectively.

Appendix A

Propellant Densification Test Data

The appendix contains three propellant densification test data sets. The results are given in a tabular format: data for LN_2 densification test number N3 is shown in Table A1; LH_2 densification test number H1 in Table A2; and LH_2 densification test number H4 in Table A3. Test data for LN_2 test numbers N1 and N2 were excluded due to problems with electrical noise on several data channels; LH_2 test numbers H2 and H3 are not reported because the data and trends are very similar to the test no. H1 data set provided in Table A2. Each table provides twenty-two different recorded measurements as a function of time on a five second scanned interval. The temperature, pressure and mass flow rate data obtained around the LH_2 heat exchanger and gH_2 compressor provides sufficient information for a complete performance assessment of the GSE unit densifier during startup, pseudo-steady state operation and shutdown.

Data Table Symbols :

<u>Col.</u>	<u>Symbol</u>	Description
1		time (sec)
2	PT 1	heat exchanger inlet pressure (psia)
3	SD1	heat exchanger inlet temperature (°R)
4	FM2	heat exchanger inlet mass flow rate (lb/s)
5	PT6	heat exchanger outlet pressure (psia)
6	SD6B	heat exchanger outlet temperature (°R)
7	PT5B	heat exchanger ullage pressure (psia)
8	SD5A	heat exchanger ullage temperature (°R)
9	SD5B	heat exchanger bath temperature (°R)
10	FM3	heat exchanger bath level control flow (lb/s)
11	VFD3C	compressor speed (rpm)
12	PT10	compressor stg. 1 inlet pressure (psia)
13	SD10	compressor stg. 1 inlet temperature (°R)
14	PT11	compressor stg. 2 inlet pressure (psia)
15	SD11	compressor stg. 2 inlet temperature (°R)
16	PT12	compressor stg. 3 inlet pressure (psia)
17	SD12	compressor stg. 3 inlet temperature (°R)
18	PT13	compressor stg. 4 inlet pressure (psia)
19	SD13	compressor stg. 4 inlet temperature (°R)
20	PT14	compressor stg. 4 discharge pressure (psia)
21	SD14	compressor stg. 4 discharge temperature (°R)
22	FM4C	compressor discharge mass flow rate (lb/s)
23	FM5	gas bypass mass flow rate for surge control (lb/s)

	15	(s)		0.000	0.000	0.00	0.000	0.00	0.000	0.000	0.00	0.00	0.000	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00	0.000	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.00	0.000
	FM4C FM5	(s/ql) (s/ql)	-+	0.000	0.000	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.00	0.00	0.00	0.000	0.483	0.775	0.826	0.881	0.933	1.002	1.064	1.125	1.192	1.324	1.405	1.484	1.571	1.654	1.727	1.814	1.885	1.966	2.038	2.107
	SD14 FI	(R) (I)		450.9	432.2	420.2	412.8	407.5	403.7	400.7	398.3	396.0	394.2	392.3	390.1	388.2	385.9	383.8	381.7	379.4	377.3	375.1	372.8	370.5	368.2	365.8	361.3	359.0	356.7	354.3	352.1	349.8	347.7	345.7	343.7	342.0	340.5
	PT14 S	(psia) (f		14.83	14.85	14.89	14.93	14.92	14.94	14.96	14.98	15.01	15.04	15.07	15.00	15.04	15.10	15.16	15.21	15.27	15.33	15.39	15.46	15.54	15.63	15.72	15.95	16.07	16.22	16.37	16.52	16.66	16.82	16.95	17.15	17.26	17.38
	SD13 P	(R)		392.2	387.8	386.5	384.3	381.4	378.0	375.5	373.1	371.0	368.7	366.8	364.5	362.0	359.2	356.7	354.1	351.4	348.8	346.3	343.6	340.7	338.0	335.3	330.4	327.7	325.3	322.9	320.5	318.2	316.1	313.9	311.7	309.7	308.1
	PT13 5	(ṗsia) (15.09	15.14	15.12	15.16	15.14	15.14	15.14	15.15	15.17	15.18	15.21	15.16	15.18	15.23	15.27	15.31	15.37	15.42	15.46	15.53	15.61	15.67	15.74	15.92	16.03	16.13	16.24	16.35	16.45	16.53	16.60	16.65	16.70	16.72
	SD12 F	(R) (370.8	361.5	353.7	347.6	342.2	338.2	334.5	331.8	329.3	327.0	324.9	322.3	319.4	316.4	313.3	310.3	307.4	304.5	301.5	298.4	295.5	292.5	289.5	283.7	280.5	277.7	274.8	272.0	269.5	266.9	264.5	262.3	260.3	258.4
VTA.	PT12	(psia)		15.27	15.29	15.27	15.28	15.25	15.23	15.21	15.22	15.21	15.20	15.21	15.15	15.14	15.15	15.17	15.17	15.19	15.21	15.20	15.24	15.26	15.26	15.28	15.31	15.34	15.36	15.38	15.39	15.38	15.36	15.30	15.22	15.15	15.05
DUID NITROGEN DENSIFICATION TEST NO. N3 DATA	SD11	E)	-	345.9	328.4	314.8	304.6	296.0	289.5	285.0	281.9	279.4	277.1	275.1	272.5	269.6	266.7	263.5	260.3	257.0	253.8	250.8	247.4	244.5	241.5	238.6	233.2	230.3	227.7	225.1	222.4	220.2	218.2	215.8	214.0	212.4	210.6
I TEST N	PT11	(psia)		15.37	15.36	15.35	15.33	15.28	15.24	15.20	15.18	15.15	15.10	15.08	15.00	14.94	14.90	14.86	14.80	14.76	14.71	14.63	14.58	14.52	14.42	14.32	14.12	14.02	13.91	13.79	13.64	13.48	13.30	13.09	12.87	12.63	12.38
ICATION	SD10	(R)		390.4	342.0	301.9	270.5	246.5	228.6	216.1	206.9	200.1	195.1	191.0	188.0	185.3	183.2	181.0	179.6	178.5	177.3	176.2	174.8	173.8	172.7	171.9	169.8	168.8	167.8	166.5	165.4	164.0	163.0	161.7	160.6	159.6	158.2
DENSIF	PT10	(psia)		15.55	15.52	15.51	15.46	15.40	15.34	15.27	15.21	15.13	15.04	14.96	14.83	14.70	14.58	14.46	14.32	14.19	14.03	13.85	13.69	13.49	13.26	13.03	12.52	12.26	11.99	11.69	11.38	11.06	10.71	10.35	9.98	9.60	9.22
TROGEN	VFD3C	(mm)		0	0	06	384	483	584	781	982	1183	1387	1589	1791	1990	2187	2389	2593	2795	2999	3197	3397	3601	3799	4001	4502	4705	4906	5207	5407	5707	5904	6110	6406	6708	6914
UN DIND	FM3	(Ib/s)		0.129	0.147	0.104	0.105	0.127	0.105	0.119	0.104	0.108	0.109	0.105	0.110	0.107	0.103	0.083	0.118	0.111	0.111	0.115	0.112	0.113	0.111	0.127	0.094	0.110	0.095	0.143	0.097	0.107	0.131	660.0	0.096	0.168	0.091
TABLE A1LI	SD5B	(H)		140.9	140.7	146.3		148.2	147.7	147.4	147.1	147.3	147.4	147.4	147.1	147.3		147.0	146.9	146.6	146.9		146.9		147.1	147.0	147.6	148.0	148.2	148.6	149.0	148.9	3 149.3	149.3			
TABI	SD5A			145.8	145.8	152.2		154.8	153.9	153.6	153.2					152.9			1		152.6					153.5	154.5	155.0	155.6	156.3		157.3	157.6	4 157.9			
	PT5B	(psia)		15.59	15.55	15.53				15.30	15.24	15.16				14.74																	10.88				
	SD6B	(R)		142.2	142.1	149.2					150.3																	<u> </u>									
	PT6	(psia)		17.8	17.6	17.4					17.3																										
	FM2			10.80																																	
	SD1			150.5						ĺ																											
	PT1	6		27.7																																	
	Time			845	850	855	860	865	870	875	BBO	885	890	895		905	910	015	000	920		935		AAG AAG	0E0	OCC	965	026	976		086		995		1005	1010	1015

•.

PTI BDI Hac PTGB SDGB FIGB SD											TABLE	TABLE A1Continued	pent										
Quisity (PA) (PA) <	ime	PT1																PT13	SD13	PT14	SD14	FM4C F	FM5
265 168.4 6.15 156.0 9.11 160.0 47.3 0.006 72.4 6.02 11.7 206.1 11.77 </td <td></td> <td>(psia) (</td> <td>(R)</td> <td>(psia)</td> <td>(F)</td> <td>) (s/ql)</td> <td>(ib/s)</td>																		(psia) ((R)	(psia)	(F)) (s/ql)	(ib/s)
266 164 6.15 15.6 15.6 15.6 15.6 15.7 15.0 2004 14.36 265 168.3 6.31 15.1 156.0 14.3 16.0 14.3 16.0 14.3 265 168.3 6.30 15.1 156.0 14.3 16.0 14.3 16.0 14.3 16.0 14.3 265 169.3 6.50 15.0 16.0 16.0 16.0 16.0 16.0 14.3 16.0 14.3 266 169.3 6.50 15.0 16.0															-								
Zeis 168.8 6.34 15.1 15.6 6.30 15.1 15.6 13.7 13.6 11.1 206.1 14.5 Zeis 168.3 6.53 15.1 155.6 8.37 160.3 14.73 0.103 7719 8.05 15.2 14.30 Zeis 169.3 6.50 15.0 156.0 166.0 165.0 166.0 14.57 14.30 Zeis 199.5 6.50 15.0	1020		i			156.0		160.0	147.9	0.096	7214	8.82	157.6	12.08	209.4	14.92	257.0	16.72	306.9	17.58	339.0	2.167	0.00
26.4 66.8 6.3 15.6 6.33 16.03 16.3 16.3 16.3 16.4 20.6 16.4 20.6 16.4 20.6 16.4 20.6 16.4 20.7 16.4 20.5 16.4 20.5 16.5 <th< td=""><td>1025</td><td></td><td></td><td></td><td>15.1</td><td>156.0</td><td></td><td>160.0</td><td>147.9</td><td>0.132</td><td>7418</td><td>8.44</td><td>156.5</td><td>11.77</td><td>208.1</td><td>14.75</td><td>255.6</td><td>16.66</td><td>305.6</td><td>17.67</td><td>337.9</td><td>2.223</td><td>0.000</td></th<>	1025				15.1	156.0		160.0	147.9	0.132	7418	8.44	156.5	11.77	208.1	14.75	255.6	16.66	305.6	17.67	337.9	2.223	0.000
36.5 63.0 15.5 60.0 16.0 14.7 0.105 13.7 15.2 10.75 24.6 14.06 26.6 16.0 15.0 15.0 16.0 16.0 15.2 10.45 13.75 26.8 16.9 15.1 15.4 7.23 16.00 16.0 16.0 16.0 20.01 16.0 13.15 10.75 20.46 14.10 26.0 169.0 15.0 15.1 15.0 14.5 0.101 8227 611 13.15 10.70 20.30 13.45 26.0 169.0 15.0 15.0 14.5 0.113 8227 511 14.71 82.7 20.11 20.7 26.0 169.0 15.0 15.0 14.2 0.101 8227 511 14.71 82.7 14.17 14.17 14.17 14.17 14.17 14.17 14.16 17.2 26.0 168.0 16.0 14.10 0.105 14.12 0.105 </td <td>1030</td> <td></td> <td></td> <td></td> <td>15.1</td> <td>155.6</td> <td></td> <td>160.3</td> <td>147.3</td> <td>0.106</td> <td>7719</td> <td>8.05</td> <td>155.2</td> <td>11.44</td> <td>206.9</td> <td>14.55</td> <td>254.4</td> <td>16.60</td> <td>304.5</td> <td>17.76</td> <td>336.9</td> <td>2.265</td> <td>0.000</td>	1030				15.1	155.6		160.3	147.3	0.106	7719	8.05	155.2	11.44	206.9	14.55	254.4	16.60	304.5	17.76	336.9	2.265	0.000
26.4 66.9 5.5 15.6 15.2 15.6 15.0	1035					155.5	8.03	160.6	147.4	0.131	7917	7.68	154.0	11.11	205.7	14.33	253.4	16.49	303.9	17.85	336.3	2.306	0.000
26.3 66.6 5.1 5.4.6 7.3.3 16.00 16.2 10.33 16.35 10.34 10.34 26.6 16.3 15.1 15.4.5 7.02 160.6 145.7 0.103 8622 6.61 14.9.3 20.3 2.66 13.3 2.60 13.3 13.45 26.6 168.3 7.16 15.1 15.45 5.73 14.45 0.103 8623 6.61 14.93 2.01 13.45 26.6 168.2 7.06 15.1 15.3 6.19 15.32 14.13 0.103 8232 5.41 14.7 14.7 14.7 14.7 0.103 8232 5.11 14.3 17.7 14.8 14.8 0.103 8123 14.12 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.8 14.13 14.7 14.7 14.8 14.13 14.7 14.7 14.8 14.14 14.7 14.7 14.8	1040				15.0		7.68	160.3	146.7	0.145	8119	7.31	153.2	10.75	204.6	14.06	252.6	16.32	302.9	17.90	335.7	2.322	0.000
26.6 16.6 15.1 16.46 16.45 16.46 16.45 16.46 16.45 16.46 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.35 16	1045							160.0	146.0	0.104	8321	6.95	152.2	10.38	203.7	13.75	251.8	16.10	302.2	17.83	335.3	2.318	0.000
26.4 (66.8 (5.0 (5.4) (5.4) (5.5) (5.7) (1050							160.6	145.7	0.109	8522	6.61	151.5	10.04	203.0	13.45	251.4	15.91	302.0	17.84	335.2	2.319	0.000
26.6 16.9 7.16 15.1 15.30 6.43 15.45 14.45 0.13 6.43 14.97 0.83 14.97 0.93 2.71 12.57 26.6 169.2 7.29 15.5 15.1 15.0 15.3 15.9 14.25 0.10 82.25 5.44 14.7 8.65 196.9 17.14 26.6 161.8 15.1 15.0 15.70 15.9 15.9 14.7 0.10 82.25 5.44 14.61 7.95 195.9 10.12 26.5 168.2 7.09 15.1 1490 5.57 15.9 14.7 0.10 82.22 5.11 1461 7.95 195.9 10.72 26.5 168.7 168.7 14.8 5.53 14.9 0.53 14.7 0.10 82.25 5.41 14.61 16.7 10.72 26.5 167.7 168.7 14.0 0.10 82.25 5.41 14.61 17.6 10.72 <tr< td=""><td>1055</td><td></td><td></td><td></td><td>15.0</td><td></td><td>6.72</td><td>159.6</td><td>145.3</td><td>0.135</td><td>8520</td><td>6.34</td><td>150.3</td><td>9.66</td><td>202.3</td><td>13.03</td><td>250.9</td><td>15.52</td><td>301.4</td><td>17.59</td><td>335.1</td><td>2.247</td><td>0.000</td></tr<>	1055				15.0		6.72	159.6	145.3	0.135	8520	6.34	150.3	9.66	202.3	13.03	250.9	15.52	301.4	17.59	335.1	2.247	0.000
26.6 16.9.2 7.06 15.3 16.2.2 6.19 16.3.2 6.19 16.3.2 16.3.3 16.3.2 16.3.3 <th16.3.3< th=""> 16.3.3 16.3.3</th16.3.3<>	1060					153.0		159.7	144.5	0.137	8423	6.07	149.3	9.27	201.1	12.57	249.8	15.13	300.1	17.33	334.2	2.144	0.000
8c3 1669 7.29 15.2 15.1 56.9 14.26 0.103 63.27 14.71 84.7 14.71 84.7 14.71 84.7 14.71 84.7 14.71 84.7 14.71 84.7 14.74 14.84 14.74 14.84 14.74 14.84 14.74 14.84 14.74 14.84	1065							159.2	143.7	0.135	8422	5.84	148.7	8.95	199.9	12.17	248.4	14.77	298.7	17.05	333.0	2.038	0.000
264 168 7.37 150 1607 5.78 1583 14.30 0.165 6.47 1 8.42 1973 11.54 265 1685 6.84 151 1500 5.53 1530 1513 0.105 6225 5.29 1656 19.13 1051 1053 1053 265 1682 5.53 1483 5.53 1563 1403 5.23 1463 1573 1953 1073 1053 265 1671 6.17 5.13 1467 1551 1477 1551 1471 151 1471 151 1670 1670 1672 <	1070							158.9	142.9	0.109	8320	5.64	147.9	8.67	198.8	11.83	247.1	14.44	297.4	16.82	331.9	1.945	0.000
26.6 6.8.4 15.1 15.00 5.8.4 141.9 0.106 82.22 5.2.9 146.6 8.19 196.6 11.24 26.5 16.82 7.08 15.1 149.3 5.39 157.0 141.3 0.100 82.22 5.11 146.1 7.95 195.0 10.05 26.5 16.82 15.2 149.2 5.11 156.3 140.7 0.102 82.24 4.98 145.7 7.05 195.2 10.02 26.3 16.71 6.89 15.2 149.7 4.99 156.8 140.7 0.102 81.73 4.46 14.77 7.46 193.2 10.02 26.3 166.8 6.71 6.71 4.87 155.5 139.7 0.103 81.24 7.01 190.6 9.96 10.02 26.1 153.1 140.2 4.55 139.7 0.132 8.14.1 14.2 7.01 190.6 9.96 10.02 26.1 153.1 153.1 <td>1075</td> <td></td> <td></td> <td></td> <td>15.0</td> <td></td> <td>5.78</td> <td>158.3</td> <td>142.5</td> <td>0.113</td> <td>8320</td> <td>5.47</td> <td>147.1</td> <td>8.42</td> <td>197.9</td> <td>11.54</td> <td>245.8</td> <td>14.17</td> <td>295.9</td> <td>16.64</td> <td>330.8</td> <td>1.867</td> <td>0.000</td>	1075				15.0		5.78	158.3	142.5	0.113	8320	5.47	147.1	8.42	197.9	11.54	245.8	14.17	295.9	16.64	330.8	1.867	0.000
263 1662 7.08 151 493 539 1570 143 1461 7.95 1953 1072 265 1620 654 153 1493 515 1463 517 1961 1072 266 167.9 7.05 152 147.7 496 152 147.7 1661 17.7 1962 10.72 266 167.7 689 152 147.7 496 152 1442 124 1247 1072 265 167.7 689 152 147.7 456 132.7 1062 1262 1022 265 167.7 680 151.7 146.7 147 1487 1262 1262 1262 1262 1262 1262 1262 1262 1262 1262 1262 1262 1262 1262 1262 1262 1262 1262 1262 <t< td=""><td>1080</td><td></td><td></td><td></td><td>15.1</td><td></td><td></td><td>158.3</td><td>141.9</td><td>0.166</td><td>8222</td><td>5.29</td><td>146.6</td><td>8.19</td><td>196.8</td><td>11.24</td><td>244.6</td><td>13.93</td><td>294.5</td><td>16.48</td><td>329.8</td><td>1.786</td><td>0.000</td></t<>	1080				15.1			158.3	141.9	0.166	8222	5.29	146.6	8.19	196.8	11.24	244.6	13.93	294.5	16.48	329.8	1.786	0.000
265 1602 6.04 15.3 1603 5.25 16.05 16.05 7.75 16.51 7.05 16.21 10.72	1085							157.0	141.3	0.100	8222	5.11	146.1	7.95	195.9	10.95	243.6	13.69	293.2	16.32	328.8	1.712	0.000
264 167.9 7.05 152 148.2 5.11 156.9 140.4 0.102 8123 4.74 7.60 194.2 0.022 265.3 167.7 6.89 15.1 147.1 4.86 140.2 0.103 8123 4.74 7.46 193.6 0.037 265 167.1 6.17 15.1 146.7 7.76 193.6 10.27 265 167.1 6.71 15.1 146.7 7.56 139.7 0.128 817.7 4.86 142.2 7.30 192.6 192.7 265 153.6 139.7 0.036 8019 4.46 142.7 7.07 191.4 9.05 9.05 257 153.6 139.7 0.060 8019 4.46 142.6 7.07 191.4 9.05 9.05 9.05 9.05 9.05 9.05 9.05 9.05 9.05 9.05	1090							156.9	140.7	0.123	8224	4.98	145.3	7.77	195.1	10.72	242.5	13.50	291.8	16.20	327.7	1.645	0.000
263 167.7 6.89 15.2 147.7 4.90 156.8 140.2 0.137 0.137 0.137 0.137 0.137 0.137 0.137 0.137 0.137 0.137 0.137 0.137 0.137 0.137 0.137 0.137 0.137 0.137 0.127 0.137 0.127 0.137 0.127 0	1095							156.9	140.4	0.102	8123	4.86	145.1	7.60	194.2	10.52	241.5	13.34	290.8	16.10	326.8	1.579	0.000
265 167.4 6.87 15.1 14.7 4.55 139.7 0.122 8117 4.63 14.2 7.30 192.6 10.27 263 167.1 6.71 15.1 146.7 4.77 155.5 139.7 0.128 8020 4.46 143.8 7.01 191.4 9.95 26.1 153.8 0.39 15.4 130.2 4.65 132.7 0.128 8020 4.46 143.4 7.07 9.91 9.95 25.7 153.6 9.14 15.5 129.6 142.5 122.8 9.56 9.76 7.01 9.96 9.96 25.7 153.2 10.49 15.5 129.6 142.5 16.67 19.2 9.66 9.66 9.66 9.66 9.66 9.66 9.66 9.66 9.66 9.66 9.66 9.66 9.66 9.66 9.66 9.66 9.66 9	1100						4.99	156.8	140.2	0.103	8123	4.74	144.7	7.45	193.6	10.37	240.5	13.20	289.8	16.00	326.0	1.512	0.00
263 167.1 6.71 146.7 146.7 4.77 155.5 139.7 0.128 8020 4.54 143.8 7.07 191.4 9.95 263.1 166.8 6.70 151 146.0 4.67 154.1 130.2 4.65 134.7 7.07 191.4 9.95 26.1 153.8 10.39 15.4 130.2 4.65 142.5 126.8 0.372 8020 4.41 142.9 7.01 190.6 9.86 25.7 153.6 914 155.1 129.6 4.55 141.2 126.6 0.947 8020 4.41 142.6 7.01 190.6 9.86 25.1 153.6 914 155.1 129.6 4.55 141.2 126.6 0.660 8021 4.42 142.6 7.01 190.6 9.86 25.1 153.2 10.61 155.1 129.2 4.46 129.0 126.5 0.615 4.25 141.2 6.90 902 4.11 142.6 7.01 190.6 9.66 25.1 153.2 10.28 152.1 129.2 4.46 126.5 0.615 7.91 4.22 6.90 190.0 9.68 25.1 153.2 10.61 155.1 129.2 4.25 0.557 721 4.25 141.2 6.90 9.68 25.1 153.2 155.2 129.2 126.2 0.550 7221 4.25 141.6 6.77 9.54	1105				15.1	147.1	4.87	155.6	139.7	0.132	8117	4.63	144.2	7.30	192.6	10.22	239.7	13.05	289.1	15.91	325.5	1.454	0.000
26.3 166.8 6.70 15.1 1460 4.67 $15.4.8$ 130.7 160.4 14.6 14.7 17.07 191.4 9.95 26.1 153.8 0.39 15.4 130.2 4.65 142.5 126.6 0.347 8020 4.44 142.9 7.04 90.9 991 25.4 153.5 0.49 15.3 129.6 4.55 141.2 126.6 0.941 142.6 7.01 190.6 980 25.4 153.5 10.49 15.3 1292 4.51 141.8 126.5 0.660 8019 4.46 142.2 6.90 990.3 9.69 25.1 153.2 10.28 153.2 144.6 120.3 8020 4.28 142.2 6.90 990.3 9.69 25.1 153.2 10.28 125.2 141.2 142.2 6.90 190.3 9.69 9.69	1110				15.1		4.77	155.5	139.7	0.128	8020	4.54	143.8	7.18	192.1	10.07	239.2	12.92	288.4	15.82	325.2	1.391	0.000
26.1 15.36 10.39 15.4 130.2 4.65 142.5 126.6 0.372 8020 4.44 142.6 7.04 190.9 991 25.7 153.5 10.49 15.5 129.6 4.55 138.7 126.6 0.943 8020 4.41 142.6 7.01 190.6 9.88 25.4 153.5 10.49 15.3 129.6 4.55 141.2 126.6 0.667 8021 4.32 142.2 6.90 190.0 9.75 25.1 153.2 10.28 15.3 129.3 4.51 141.8 126.5 0.660 8021 4.32 142.2 6.90 190.0 9.75 25.1 153.2 10.25 15.2 129.2 4.46 129.0 126.5 0.615 7918 4.26 141.9 6.92 9.64 25.1 153.2 10.35 152.2 128.6 0.555 7921 4.26 141.9 6.79 9.69 24.9 150.6 10.61 15.2 128.6 0.541 126.2 0.555 7921 4.26 141.6 6.77 199.2 24.6 150.6 160.7 150.2 163.2 163.2 163.2 163.2 163.2 163.2 9.64 24.7 150.5 150.5 150.6 5.31 126.2 0.549 7522 6.07 190.2 9.64 24.7 150.5 150.5 163.2 163.2 1	1115							154.8	138.7	0.088	8019	4.46	143.4	7.07	191.4	9.95	238.5	12.79	287.9	15.73	325.1	1.331	0.000
25.7 $15.3.6$ 9.14 15.5 129.8 4.62 138.7 126.6 0.943 8020 4.41 142.6 7.01 190.6 9.88 25.4 153.5 10.49 15.3 129.6 4.55 141.2 126.6 0.660 8001 4.35 142.5 6.901 90.0 9.75 25.1 153.2 10.28 15.3 129.3 4.51 141.8 126.5 0.660 8021 4.23 142.2 6.90 190.0 9.75 25.1 153.2 10.61 15.6 1292 4.46 1290 126.5 0.650 8021 4.28 142.6 6.90 190.0 9.75 25.0 153.0 10.35 15.2 1292 4.42 129.0 126.5 0.650 8021 4.26 141.9 6.77 189.9 9.64 24.9 155.2 125.1 129.2 0.529 7921 4.26 141.6 6.77 189.9 9.64 24.9 150.5 10.13 15.2 128.8 1390 126.2 0.529 7921 4.26 141.6 6.77 199.2 9.64 24.6 150.6 150.6 150.6 150.7 722 4.26 141.6 6.77 190.2 9.64 24.7 150.5 150.6 150.6 150.7 722 126.7 729 167.7 729 210.7 921.7 24.6 150.5 150.5	1120							142.5	126.8	0.372	8020	4.44	142.9	7.04	190.9	9.91	238.3	12.75	287.1	15.69	325.2	1.283	0.000
25.4 15.35 10.49 15.3 129.6 4.55 141.8 126.5 0.667 8019 4.35 142.5 6.93 190.3 9.80 25.1 153.2 10.28 15.3 129.3 4.51 141.8 126.5 0.660 8021 4.32 142.2 6.93 190.0 9.75 25.1 153.2 10.61 15.6 129.2 4.46 129.0 126.3 0.723 8020 4.28 141.9 6.82 190.0 9.64 24.9 152.6 15.2 129.2 4.40 137.9 126.5 0.555 7918 4.26 141.9 6.82 189.9 9.64 24.9 152.6 9.56 128.6 4.39 1390.0 126.2 0.555 7921 4.26 141.6 6.93 199.9 9.64 24.7 150.5 10.13 15.2 128.6 5.32 138.4 125.0 0.529 7922 4.26 141.6 6.93 199.9 9.64 24.7 150.6 8.36 15.2 126.8 5.32 138.4 125.0 0.529 7922 4.26 71.6 7.24 210.5 9.57 24.6 150.6 8.36 152.1 126.8 5.32 138.4 125.0 0.529 7522 5.92 16.7 9.63 24.6 150.6 9.24 152.6 0.72 5.92 16.7 764 210.5 9.64 <	1125				15.5			138.7	126.6	0.943	8020	4.41	142.6	7.01	190.6	9.88	237.7	12.73	286.8	15.67	325.1	1.273	0.000
25.3 15.32 10.28 15.3 129.3 4.51 $14.1.8$ 126.5 0.660 8021 4.32 142.3 6.90 190.0 9.75 25.1 15.32 1061 15.6 129.2 4.46 1290 126.3 0.723 8020 4.28 141.9 6.84 189.9 9.68 25.0 1530 10.35 15.2 129.2 4.46 129.9 126.5 0.615 7918 4.26 141.9 6.82 189.9 9.68 24.9 152.6 10.51 15.5 128.9 4.30 137.9 126.2 0.555 7921 4.26 141.6 6.77 190.2 9.59 24.7 150.5 9.56 126.2 0.529 722 726 4.26 141.6 6.77 190.2 9.56 24.7 150.6 8.38 152 128.6 5.32 138.4 125.0 0.529 722 4.26 141.6 6.77 190.2 9.56 24.6 150.6 8.38 152.2 128.6 0.534 125.0 0.522 5.92 161.6 7.24 210.7 $9.21.7$ 24.6 150.6 8.38 152.6 152.6 125.6 0.782 5.92 6.00 186.6 7.24 210.5 9.69 24.7 150.5 10.13 15.7 157.1 6.50 125.6 0.789 7522 6.70 169.4 764 216.2 9.69	1130							141.2	126.6	0.667	8019	4.35	142.5	6.93	190.3	9.80	237.6	12.65	286.7	15.60	325.0	1.252	0000
25.1 15.32 10.61 15.6 129.2 4.46 129.0 126.3 0.723 8020 4.28 14.2 6.84 189.9 9.64 25.0 15.30 10.35 15.2 128.2 4.42 129.9 126.5 0.615 7918 4.26 141.9 6.82 189.9 9.64 24.9 152.6 9.56 128.6 4.30 137.9 126.2 0.555 7921 4.25 141.8 6.77 190.2 9.53 24.7 150.5 9.56 152.6 9.53 139.0 126.2 0.555 7921 4.25 141.6 6.77 190.2 9.54 24.7 150.5 9.56 128.8 5.32 138.4 125.0 0.534 7522 4.26 141.6 6.77 190.2 9.54 24.6 150.6 8.38 152.2 128.6 0.534 7522 5.92 167.5 7.39 201.7 9.21 24.6 150.6 9.23 143.2 125.0 0.594 7522 6.00 186.6 7.24 210.5 9.69 24.7 150.5 9.23 152.7 152.6 0.792 152.7 0.792 6.70 216.7 216.2 9.69 24.6 150.5 9.23 152.7 152.6 0.792 7522 6.70 186.6 7.64 216.2 9.69 24.6 150.5 10.13 15.7 157.9 125.1 <	1135							141.8	126.5	0.660	8021	4.32	142.3	6.90	190.0	9.75	237.2	12.60	286.7	15.55	325.2	1.222	0.000
25.0 15.3 15.2 129.2 4.42 129.3 126.5 7918 4.26 14.1.9 6.82 189.9 9.64 24.9 152.8 10.61 15.5 128.9 4.40 137.9 126.2 0.555 7921 4.25 141.8 6.77 189.9 9.59 24.9 152.5 9.56 15.2 128.6 4.30 139.0 126.2 0.555 7921 4.26 141.6 6.77 190.2 9.59 24.7 150.5 10.13 15.2 128.6 5.32 138.4 125.0 0.534 7521 5.31 141.6 6.77 190.2 9.53 24.6 150.6 8.38 135.2 128.4 125.0 0.544 7522 5.92 161.5 7.39 201.7 9.21 24.6 150.5 9.23 143.2 125.0 0.544 7522 5.92 167.5 7.39 201.7 9.21 24.6 150.5	1140				15.6			129.0	126.3	0.723	8020	4.28	142.2	6.84	189.9	9.68	237.3	12.53	286.8	15.47	325.6	1.179	0.000
24.9 152.8 10.61 15.5 128.9 4.40 137.9 126.2 0.555 7921 4.25 14.1.8 6.77 190.2 9.59 24.9 152.5 9.56 15.2 128.6 4.39 139.0 126.2 0.559 7922 4.26 141.6 6.77 190.2 9.53 24.7 150.5 10.13 15.2 126.8 5.32 138.4 125.0 0.634 7631 5.31 141.6 6.93 191.8 8.97 24.6 150.6 8.38 15.2 126.8 5.33 143.2 125.0 0.634 7522 5.92 161.6 6.93 191.8 8.97 24.6 150.5 9.23 152.5 125.0 0.792 7522 6.00 186.6 7.24 210.5 8.99 24.6 150.5 9.23 152.5 125.0 0.886 7522 6.00 186.6 7.64 216.5 8.99 24.6	1145							129.9	126.5	0.615	7918	4.26	141.9	6.82	189.9	9.64	237.5	12.48	. 287.2	15.40	326.2	1.121	0.00
24.9 152.5 9.56 12.8 4.39 139.0 126.2 0.529 7922 4.26 141.6 6.77 190.2 9.53 24.7 150.5 10.13 15.2 126.8 5.32 138.4 125.0 0.634 7631 5.31 141.6 6.93 191.8 8.97 24.6 150.6 8.38 15.2 138.4 125.0 0.634 7631 5.31 141.6 6.93 191.8 8.97 24.7 150.5 7.91 15.2 126.8 5.93 143.2 125.0 0.544 7522 6.00 186.6 7.39 201.7 9.21 24.6 150.5 9.23 152.5 125.0 0.792 7522 6.00 186.6 7.24 210.5 8.99 24.6 150.5 10.13 153 152.5 125.0 0.586 7522 6.00 7.64 216.2 8.99 24.6 150.5 125.1 155.0 <t< td=""><td>1150</td><td></td><td></td><td></td><td></td><td></td><td></td><td>137.9</td><td>126.2</td><td>0.555</td><td>7921</td><td>4.25</td><td>141.8</td><td>6.79</td><td>189.9</td><td>9.59</td><td>238.0</td><td>12.42</td><td>287.9</td><td>15.33</td><td>327.2</td><td>1.068</td><td>0.000</td></t<>	1150							137.9	126.2	0.555	7921	4.25	141.8	6.79	189.9	9.59	238.0	12.42	287.9	15.33	327.2	1.068	0.000
24.7 150.5 10.13 15.2 128.8 5.32 138.4 125.0 0.634 7631 5.31 141.6 6.93 191.8 8.97 24.6 150.6 8.38 15.2 126.8 5.93 143.2 125.0 0.544 7522 5.92 167.5 7.39 201.7 9.21 24.6 150.6 8.38 15.2 126.8 6.03 152.5 0.792 7522 6.00 186.6 7.24 210.5 8.99 24.6 150.5 9.23 152.5 125.0 0.792 7522 6.00 186.6 7.24 210.5 8.99 24.6 150.5 10.13 15.3 127.1 6.73 155.6 0.789 7522 6.70 198.4 7.64 216.2 9.69 24.6 150.5 10.13 15.1 157.1 6.15 0.589 7522 6.70 205.6 7.87 219.9 9.69 24.5 150.5 <t< td=""><td>1155</td><td></td><td></td><td></td><td></td><td></td><td></td><td>139.0</td><td>126.2</td><td>0.529</td><td>7922</td><td>4.26</td><td>141.6</td><td>6.77</td><td>190.2</td><td>9.53</td><td>238.8</td><td>12.31</td><td>288.9</td><td>15.20</td><td>328.3</td><td>0.989</td><td>0.000</td></t<>	1155							139.0	126.2	0.529	7922	4.26	141.6	6.77	190.2	9.53	238.8	12.31	288.9	15.20	328.3	0.989	0.000
24.6 15.0.6 8.38 15.2 126.3 5.93 143.2 125.0 0.544 7522 5.92 167.5 7.39 201.7 9.21 24.7 150.5 7.91 15.2 126.8 6.03 152.5 125.0 0.792 7522 6.00 186.6 7.24 210.5 8.99 24.6 150.5 9.23 15.4 126.9 6.37 152.5 125.0 0.886 7522 6.00 186.6 7.24 216.5 9.69 24.6 150.5 10.13 15.3 127.1 6.74 157.9 125.1 0.589 7522 6.70 205.6 7.87 216.2 9.69 24.6 150.5 10.13 15.1 127.1 6.74 157.9 0.713 7521 6.80 7.87 219.9 9.56 24.5 150.5 11.37 15.1 127.2 6.90 125.1 0.51 7.51 6.80 216.5 9.59 9.56 <td>1160</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>138.4</td> <td>125.0</td> <td>0.634</td> <td>7631</td> <td>5.31</td> <td>141.6</td> <td>6.93</td> <td>191.8</td> <td>8.97</td> <td>240.6</td> <td>11.27</td> <td>289.2</td> <td>13.80</td> <td>329.8</td> <td>0.695</td> <td>0.000</td>	1160							138.4	125.0	0.634	7631	5.31	141.6	6.93	191.8	8.97	240.6	11.27	289.2	13.80	329.8	0.695	0.000
24.7 150.5 7.91 15.2 126.8 6.03 152.5 125.0 0.792 7522 6.00 186.6 7.24 210.5 8.99 24.6 150.5 9.23 15.4 126.9 6.37 152.5 125.0 0.886 7522 6.27 198.4 7.64 216.2 9.69 24.6 150.5 10.13 15.3 127.1 6.74 157.9 0.589 7522 6.27 198.4 7.64 216.2 9.69 24.6 150.5 10.13 15.3 127.1 6.74 157.9 0.589 7522 6.70 205.6 7.87 219.9 9.56 24.5 150.5 11.37 15.1 127.2 6.92 160.6 125.4 0.713 7521 6.88 20.5 9.70 9.70 9.70	1165							143.2	125.0	0.544	7522	5.92	167.5	7.39	201.7	9.21	248.1	11.38	295.4	13.72	335.6	0.212	0.000
24.6 150.5 9.23 15.4 126.9 6.37 152.5 125.0 0.886 7522 6.27 198.4 7.64 216.2 9.69 24.6 150.5 10.13 15.3 127.1 6.74 157.9 125.1 0.589 7522 6.70 205.6 7.87 219.9 9.56 24.5 150.5 10.13 15.1 127.2 6.92 160.6 7522 6.70 205.6 7.87 219.9 9.56 24.5 150.5 11.37 15.1 127.2 6.92 160.6 125.4 0.713 7521 6.88 210.5 8.00 222.7 9.70	1170				15.2			152.5	125.0	0.792	7522	6.00	186.6	7.24	210.5	8.99	255.0	11.10	300.6	13.57	340.9	0.102	0.000
24.6 150.5 10.13 15.3 127.1 6.74 157.9 125.1 0.589 7522 6.70 205.6 7.87 219.9 9.56 24.5 150.5 11.37 15.1 127.2 6.92 160.6 125.4 0.713 7521 6.88 210.5 8.00 222.7 9.70	1175							152.5	125.0	0.886	7522	6.27	198.4	7.64	216.2	9.69	259.3	11.70	303.4	13.87	344.2	0.073	0.000
24.5 150.5 11.37 15.1 127.2 6.92 160.6 125.4 0.713 7521 6.88 210.5 8.00 222.7 9.70	1180						6.74	157.9	125.1	0.589	7522	6.70	205.6	7.87	219.9	9.56	262.2	11.19	306.0	13.05	346.9	0.024	0.000
	1185	24.5	150.5	11.37	15.1	127.2	6.92	160.6	125.4	0.713	7521	6.88	210.5	8.00	222.7	9.70	265.0	11.35	308.5	13.13	349.2	0.017	0.000

									TABLE	TABLE A1Continued	tinued										
	sb1	FM2	PT6	SD6B	PT5B	SD5A (SD5B	FM3	VFD3C F	PT10	SD10	PT11	SD11	PT12	SD12	PT13	SD13	PT14	SD14	FM4C	FM5
-	(R)	(Ib/s)	(psia)	(H)	(psia)	(H)	(R)	(Ib/s) (((mqn)	(psia)	(H)	(psia)	(H)	(psia)	(F)	(psia)	(F)	(psia)	(H)	(tb/s)	(s/ql)
														·							
24.3	150.5	9.42	15.1	127.5	7.13	161.7	125.6	0.616	7522	7.08	214.1	8.08	224.8	9.60	266.9	11.12	310.3	12.88	350.9	0.022	0.00
24.3	150.5	8.41	15.1.	127.8	7.19	162.2	125.7	0.683	7522	7.07	216.9	8.09	226.4	9.76	268.6	11.47	311.8	13.32	352.3	0.024	0.00
24.4	150.6	8.06	15.1	128.1	7.13	162.4	126.2	0.839	7522	7.20	219.5	8.09	227.9	9.58	270.0	11.27	313.1	13.06	353.5	0.024	0.00
24.0	150.2	8.75	15.0	128.6	7.48	163.4	126.3	0.904	7524	7.44	221.4	8.17	229.5	9.52	271.1	11.02	313.9	12.65	354.3	0.036	0.000
23.9	150.0	10.24	15.0	128.4	7.78	164.6	126.3	0.463	7524	7.75	222.8	8.53	230.6	9.97	271.9	11.57	314.4	13.34	355.1	0.048	0.000
23.8	150.0	7.93	15.0	128.9	7.81	164.7	126.6	0.723	7524	7.73	224.7	8.60	231.7	10.04	272.8	11.52	315.1	13.05	355.4	0.052	0.000
23.9	149.9	8.83	15.0	129.0	7.95	165.6	126.8	0.873	7522	7.92	226.1	8.52	232.9	9.62	273.4	10.84	315.4	12.14	356.0	0.054	0.020
23.8	149.6	9.88	15.0	129.2	8.34	164.8	126.9	0.969	7522	8.29	227.3	8.90	233.8	9.96	274.0	11.07	315.6	12.16	356.2	0.070	0.053
23.8	151.3	8.83	15.2	130.7	7.04	168.2	128.0	0.652	7518	6.85	229.3	9.35	235.1	11.72	274.6	13.55	317.2	14.47	356.2	0.128	0.119
23.7	152.2	7.52	14.8	132.0	5.93	154.6	128.7	0.884	8221	5.61	183.3	8.63	218.5	11.68	263.4	14.15	307.5	16.36	342.7	1.214	0.195
23.8	152.3	8.57	15.1	132.2	5.73	149.3	128.7	0.969	8422	5.37	149.9	8.71	202.7	12.11	252.3	14.67	298.7	16.82	333.9	1.788	0.236
23.6	152.5	9.98	14.9	132.0	5.61	149.2	129.2	0.638	8422	5.19	137.5	8.62	191.0	12.17	243.6	14.82	292.0	17.00	328.1	2.054	0.241
23.7	152.5	8.61	15.2	132.0	5.47	149.2	129.2	0.622	8520	5.04	133.5	8.39	172.4	11.95	233.2	14.67	284.2	16.98	321.9	2.222	0.243
23.6	152.5	9.22	15.0	131.9	5.36	148.3	129.2	0.888	8420	4.92	132.3	8.14	172.4	11.60	229.1	14.32	280.5	16.70	318.9	2.091	0.243
23.6	152.5	9.93	15.4	131.7	5.25	148.6	128.7	0.950	8420	4.81	131.7	8.07	170.7	11.61	225.5	14.36	277.5	16.75	316.1	2.085	0.244
23.6	152.5	6.80	15.0	131.6	5.15	149.2	128.4	0.618	8522	4.72	131.4	7.87	166.7	11.54	221.4	14.33	273.8	16.79	312.8	2.129	0.246
23.7	152.6	8.60	15.1	131.6	5.04	148.7	128.4	0.622	8522	4.57	131.3	7.73	161.3	11.36	216.7	14.21	269.9	16.78	309.5	2.153	0.247
23.6	152.6	10.20	15.1	131.3	4.94	148.0	128.3	0.926	8422	4.52	130.8	7.53	160.5	10.98	214.1	13.83	267.1	16.50	307.1	2.074	0.246
23.7	152.8	6.59	15.2	131.0	4.86	147.9	128.3	0.975	8323	4.41	130.5	7.42	161.9	10.90	213.2	13.76	265.5	16.43	305.5	1.982	0.246
23.5	152.6	8.36	15.0	131.0	4.78	147.3	127.8	0.553	8423	4.37	130.5	7.33	159.3	10.80	210.6	13.72	263.0	16.48	303.1	2.039	0.247
23.6	152.6	10.37	15.1		4.70	147.3	127.7	0.798	8420	4.27	130.2	7.19	159.0	10.68	209.3	13.63	261.2	16.41	301.2	1.970	0.247
23.6	152.5	6.93	15.3	130.5	4.61	147.4	127.4	0.964	8423	4.23	130.1	7.10	155.9	10.55	206.6	13.51	258.4	16.39	299.0	2.010	0.248
23.4	152.5	8.08	15.0	130.2	4.54	146.4	127.2	0.925	8422	4,14	129.8	7.00	154.2	10.45	204.6	13.47	256.3	16.39	296.9	1.982	0.249
23.5	152.6	10.10	14.9	129.9	4.48	146.7	127.2	0.563	8323	4.10	129.6	6.91	154.5	10.38	203.6	13.44	254.8	16.35	295.1	1.932	0.249
23.5	152.3	7.43	15.1	129.6	4.41	146.0	126.9	0.773	8323	4.00	129.2	6.70	153.5	10.02	201.9	13.09	252.6	16.14	293.1	1.908	0.248
23.4	152.3	9.12	15.0	129.5	4.38	145.0	126.8	1.077	8321	4.03	129.0	6.55	152.9	10.04	201.0	13.18	251.6	16.20	291.7	1.892	0.249
23.4	152.5	8.62	15.1	129.3	4.31	144.5	126.5	0.871	8321	3.93	129.0	6.61	148.4	10.10	198.4	13.23	. 249.0	16.29	289.3	1.902	0.251
23.4	152.3	8.98	14.9	129.2	4.28	143.9	126.3	1.091	8323	3.93	128.9	6.31	148.7	9.71	197.4	12.94	247.4	16.12	287.9	1.858	0.250
23.4	152.2	9.47	15.3	129.0	4.21	143.5	126.0	1.068	8320	3.74	128.3	6.36	147.3	9.64	195.6	12.83	245.6	16.06	286.1	1.862	0.250
23.4	152.3	7.82	15.4	128.9	4.18	143.9	126.0	1.019	8318	3.86	128.6	6.12	137.4	9.56	193.8	12.82	243.8	16.11	284.4	1.853	0.251
23.3	152.2	9.34	15.1	128.7	4.13	142.9	125.7	0.876	8320	3.75	128.3	6.27	141.3	9.51	192.1	12.70	242.0	16.00	282.5	1.836	0.251
23.3	152.2	8.11	15.0	128.4	4.10	142.2	125.6	0.974	8218	3.75	128.1	6.28	147.0	9.56	193.0	12.76	242.4	16.01	282.4	1.747	0.251
23.2	152.2	10.31	15.2	128.4	4.05	141.9	125.3	1.028	8219	3.69	127.8	6.21	149.7	9.44	193.6	12.63	242.0	15.91	281.8	1.713	0.251
23.3	152.0	7.72	15.2	128.1	4.01	141.9	125.3	1.064	8219	3.63	127.7	6.13	150.6	9.33	193.4	12.54	241.5	15.86	281.0	1.707	0.251

										1110	I ABLE A L-CUMINUED	nen										
Time	PT1	SD1	FM2	PT6	SD6B	PT58	SD5A (SD5B	FM3	VFD3C	PT10	SD10	PT11	SD11	PT12	SD12	PT13	SD13	PT14	SD14	FM4C	FM5
(sec) ((psia) ((E)	(s/qi)	(psia)	(R)	(psia) ((F)	(H)	(Ib/s) (((mqr)	(psia)	(R)	(psia)	(R)	(psia)	E)	(psia)	(R)	(psia)	(R)	(s/ql)	(Ib/s)
1360	23.4	152.0	10.17	15.3	128.1	3.96	141.0	125.1	0.569	8219	3.62	127.5	6.13	151.9	9.32	193.6	12.52	241.4	15.85	280.6	1.651	0.251
1365	23.8	152.2	7.99	15.0	128.0	3.93	140.2	125.1	0.303	8218	3.56	127.2	6.05	151.6	9.18	193.3	12.38	240.6	15.77	279.9	1.633	0.250
1370	23.9	152.2	9.55	15.2	127.7	3.89	139.3	124.8	0.403	8219	3.55	127.2	5.98	149.2	9.13	191.9	12.34	239.3	15.76	278.5	1.670	0.251
1375	23.9	152.3	9.44	15.4	127.5	3.90	139.6	124.8	0.844	8221	3.56	127.2	6.04	151.0	9.18	192.2	12.38	239.4	15.77	278.5	1.581	0.251
1380	23.6	152.5	7.54	15.1	127.7	3.88	139.9	124.8	0.889	8219	3.50	127.7	5.97	150.6	9.13	191.8	12.35	239.0	15.77	277.8	1.625	0.252
1385	23.4	152.6	8.46	14.9	127.7	3.86	139.3	124.7	0.935	8219	3.51	127.5	5.96	150.6	9.12	191.7	12.35	238.5	15.77	277.1	1.605	0.252
1390	23.3	152.5	9.32	15.0	127.5	3.81	139.4	124.5	1.025	8218	3.49	127.5	5.88	149.6	8.97	190.7	12.20	237.5	15.67	276.2	1.612	0.251
1395	23.3	152.3	9.27	15.8	127.5	3.77	139.1	124.5	1.011	8117	3.47	127.1	5.84	152.5	8.87	191.7	12.05	238.1	15.50	276.7	1.486	0.250
1400	23.1	152.9	6.59	15.4	128.4	3.77	139.6	125.0	1.062	8119	3.47	126.8	5.87	154.8	8.89	192.8	12.07	238.6	15.50	277.5	1.438	0.250
1405	23.1	153.5	10.11	14.9	128.9	3.76	139.9	125.3	1.024	8117	3.45	126.8	5.85	155.3	8.86	193.3	12.05	239.2	15.51	277.6	1.444	0.250
1410	23.2	153.6	6.49	15.1	128.7	3.74	139.7	125.3	1.011	8117	3.41	126.9	5.85	154.5	8.98	193.4	12.20	239.0	15.64	277.3	1.473	0.251
1415	23.1	153.5	9.66	15.0	128.7	3.71	139.6	125.3	0.980	8119	3.42	126.6	5.80	153.2	8.85	192.5	12.04	238.1	15.53	276.2	1.482	0.250
1420	23.2	153.5	6.79	14.9	128.7	3.70	139.3	125.1	0.906	8119	3.43	126.6	5.85	154.0	8.93	192.8	12.13	238.3	15.60	276.3	1.443	0.251
1425	23.2	153.6	9.24	14.9	128.7	3.69	138.2	125.1	1.017	8119	3.41	126.5	5.80	154.0	8.83	192.8	12.02	238.1	15.51	276.2	1.439	0.250
1430	23.2	153.6	8.08	15.3	128.7	3.68	138.7	125.1	0.985	8120	3.39	126.6	5.79	154.2	8.87	192.8	12.08	238.0	15.53	275.9	1.436	0.251
1435	23.3	153.6	8.34	14.9	128.6	3.67	138.7	125.1	1.044	8119	3.38	126.6	5.77	154.5	8.77	192.8	11.96	238.1	15.45	275.9	1.408	0.250
1440	23.2	153.5	9.45	15.3	128.4	3.66	138.5	124.8	0.923	8120	3.38	126.6	5.77	154.8	8.77	192.9	11.97	238.0	15.46	275.8	1.407	0.250
1445	23.1	153.6	8.20	15.1	128.6	3.64	138.1	125.0	1.031	8119	3.37	126.6	5.76	154.9	8.76	193.2	11.96	238.1	15.45	275.7	1.402	0.250
1450	23.1	153.6	10.03	15.1	128.3	3.65	137.9	124.8	1.105	8120	3.36	126.6	5.75	155.2	8.74	193.2	11.93	238.3	15.42	275.6	1.389	0.250
1455	23.1	153.6	7.22	14.9	128.4	3.63	137.9	124.8	1.064	8117	3.36	126.6	5.73	155.0	8.72	193.2	11.92	238.0	15.42	275.4	1.393	0.250
1460	23.0	153.8	9.55	14.7	128.6	3.63	137.8	125.0	1.125	8119	3.35	126.5	5.79	154.8	8.81	193.2	12.03	238.0	15.55	275.3	1.397	0.252
1465	23.1	153.6	7.02	15.0	128.4	3.61	137.5	124.8	1.182	8119	3.33	126.5	5.70	152.8	8.70	192.1	11.91	236.8	15.45	274.2	1.441	0.251
1470	23.2	153.5	9.77	14.9	128.3	3.61	137.4	124.5	1.206	8117	3.34	126.3	5.71	154.3	8.67	192.3	11.87	237.2	15.34	274.4	1.358	0.250
1475	23.1	153.5	7.22	15.0	128.1	3.60	136.5	124.7	1.190	8019	3.35	126.5	5.69	156.0	8.65	193.3	11.83	238.1	15.32	275.3	1.310	0.250
1480	23.2	153.3	8.48	15.2	128.0	3.59	136.8	124.7	1.164	8019	3.35	126.3	5.70	157.3	8.67	194.2	11.83	239.0	15.29	276.1	1.270	0.249
1485	23.1	153.5	8.82	15.0	128.1	3.60	136.8	124.5	1.202	8017	3.37	126.5	5.73	158.0	8.68	194.9	11.85	239.8	15.32	276.5	1.283	0.249
1490	23.1	153.5	8.39	14.9	128.1	3.61	136.8	124.5	1.186	8019	3.38	126.5	5.77	158.0	8.73	195.5	11.91	239.9	15.40	276.5	1.305	0.250
1495	23.1	153.6	9.59	15.1	128.3	3.59	136.6	124.7	1.062	8120	3.35	126.8	5.76	156.2	8.78	194.9	12.01	239.3	15.52	275.7	1.375	0.252
1500	23.1	153.6	8.61	14.8	128.1	3.59	136.5	124.5	1.149	8119	3.31	126.2	5.69	154.8	8.67	193.7	11.87	237.9	15.39	274.4	1.378	0.251
1505	23.1	153.6	6.87	15.1	128.1	3.59	136.5	124.5	1.186	8119	3.31	126.5	5.70	154.8	8.66	193.4	11.87	237.7	15.39	274.2	1.359	0.251
1510	23.0	153.5	8.51	14.9	128.1	3.58	136.3	124.5	1.191	8117	3.32	126.5	5.71	154.3	8.70	192.9	11.92	237.5	15.44	273.9	1.375	0.252
1515	23.1	153.5	8.86	15.1	128.1	3.55	135.9	124.5	1.155	8119	3.30	126.2	5.66	154.0	8.62	192.5	11.82	236.8	15.33	273.4	1.363	0.251
1520	23.0	153.3	8.99	15.0	127.8	3.56	135.4	124.4	1.202	8019	3.31	126.2	5.67	155.5	8.62	193.0	11.80	237.3	15.30	273.9	1.300	0.250
1525	23.1	153.3	7.98	15.1	128.0	3.55	135.7	124.5	1.118	8019	3.30	126.3	5.65	156.3	8.63	193.8	11.81	238.3	15.28	274.4	1.283	0.250

-

.

							Ento		- Ľ		S		PT11 5	SD11	PT12 5	SD12	PT13	SD13	PT14	SD14	FM4C	FM5
PT1 SD1 FM2 PT6 SD6B PT5B SD5A SD5B FN	I FM2 PT6 SD6B PT5B SD5A SD5B	PT6 SD6B PT5B SD5A SD5B	SD6B PT5B SD5A SD5B	PT5B SD5A SD5B	SD5A SD5B	SD5B		-1		VFD3C P	PT10 S	2	Τ		Τ	<u>v</u>		500				
(psia) (R) ((b/s) (psia) (R) (psia) (R) ((b/s)	(lb/s) (psia) (R) (psia) (R) (R)	(psia) (R) (psia) (R) (R)	(R) (psia) (R) (R)	(psia) (R) (R)	(R) (R)	(H)		lb/s)	~	(mqr)	(psia) (I	(R) (I	(psia) ((F) (F)	(psia) ((H)	(psia)	(R)	(psia)	(H)	(lb/s)	(s/ql)
				-					-													0100
15.1 127.8 3.55 134.8 124.4	153.3 8.79 15.1 127.8 3.55 134.8 124.4	8.79 15.1 127.8 3.55 134.8 124.4	15.1 127.8 3.55 134.8 124.4	127.8 3.55 134.8 124.4	3.55 134.8 124.4	124.4			1.183	8019	3.31	126.2	5.67	156.6	8.63 7.0	194.2	11.81	238.4	15.30	2/4.0	402'I	0.250
3.55 135.3 124.4	153.3 5.98 15.2 127.8 3.55 135.3 124.4	5.98 15.2 127.8 3.55 135.3 124.4	15.2 127.8 3.55 135.3 124.4	127.8 3.55 135.3 124.4	3.55 135.3 124.4	124.4			1.157	8017	3.31	120.2	8	120.9	0.0) I I I I I I I I I I I I I I I I I I I	2011	0.000		0.7.12		0.250
3.56 135.1	153.2 8.66 15.1 127.7 3.56 135.1	8.66 15.1 127.7 3.56 135.1	15.1 127.7 3.56 135.1	127.7 3.56 135.1	3.56 135.1		124.4		1.165	8016	3.30	126.0	5.68	156.8	G 04	194.7	19.11	230.0		0.412	007.1	0.500
23.2 153.3 10.26 15.5 128.0 3.56 135.1 124.2	153.3 10.26 15.5 128.0 3.56 135.1	10.26 15.5 128.0 3.56 135.1	15.5 128.0 3.56 135.1	128.0 3.56 135.1	3.56 135.1		124.2		1.159	8116	3.30	126.3	5.70	156.3	8.69	194.5	68.11	C.06.2		2/4.4	520.1	707.0
23.4 153.3 7.27 15.2 127.8 3.54 134.8 124.4	153.3 7.27 15.2 127.8 3.54 134.8	7.27 15.2 127.8 3.54 134.8	15.2 127.8 3.54 134.8	127.8 3.54 134.8	3.54 134.8		124.4		1.184	8116	3.30	126.2	5.66	155.2	8.62	193.7	11.83	237.6		273.5	1.354	0.251
23.5 152.6 10.08 15.1 126.8 3.55 131.7 123.8	152.6 10.08 15.1 126.8 3.55 131.7	10.08 15.1 126.8 3.55 131.7	15.1 126.8 3.55 131.7	126.8 3.55 131.7	3.55 131.7		123.8		1.176	8016	3.29	125.9	5.64	156.3	8.60	193.8	11.77	237.7	15.26	273.7	1.279	0.250
152.8	152.8 7.48 15.4 127.1 3.57 133.8	7.48 15.4 127.1 3.57 133.8	15.4 127.1 3.57 133.8	127.1 3.57 133.8	3.57 133.8		123.8		1.186	8017	3.32	126.2	5.67	157.0	8.63	194.7	11.81	238.5	15.31	274.3	1.267	0.251
152.8	152.8 10.33 15.3 126.9 3.57 134.1	10.33 15.3 126.9 3.57 134.1	15.3 126.9 3.57 134.1	126.9 3.57 134.1	3.57 134.1		123.6	<u> </u>	1.157	8017	3.30	126.0	5.64	157.5	8.60	194.9	11.78	238.6	15.26	274.4	1.261	0.250
152.9 8.58 15.4	152.9 8.58 15.4 126.9 3.58 134.0	8.58 15.4 126.9 3.58 134.0	15.4 126.9 3.58 134.0	126.9 3.58 134.0	3.58 134.0		123.8		1.201	8019	3.34	126.0	5.70	157.9	8.64	195.2	11.81	238.9	15.30	274.4	1.265	0.251
153.0 8.80 15.7 126.9 3.59	153.0 B.B0 15.7 126.9 3.59 133.7	B.B0 15.7 126.9 3.59 133.7	15.7 126.9 3.59 133.7	126.9 3.59 133.7	3.59 133.7		123.8	+	1.140	8017	3.35	126.2	5.70	158.3	8.63	195.6	11.79	239.0	15.29	274.4	1.263	0.251
153.3 10.40 15.0	153.3 10.40 15.0 127.1 3.60 133.8	10.40 15.0 127.1 3.60 133.8	15.0 127.1 3.60 133.8	127.1 3.60 133.8	3.60 133.8		123.9	<u> </u>	1.168	8017	3.36	126.2	5.71	158.9	8.65	196.0	11.81	239.2	15.32	274.6	1.264	0.251
153.3 8.45 15.0 127.1	153.3 8.45 15.0 127.1 3.61 134.0	8.45 15.0 127.1 3.61 134.0	15.0 127.1 3.61 134.0	127.1 3.61 134.0	3.61 134.0		123.8		1.137	8017	3.36	126.2	5.71	159.2	8.64	196.1	11.79	239.2	15.29	274.4	1.261	0.251
1536 9.92 15.0 127.1	153.6 9.92 15.0 127.1 3.63 134.0	9.92 15.0 127.1 3.63 134.0	15.0 127.1 3.63 134.0	127.1 3.63 134.0	3.63 134.0		123.9		1.086	8017	3.38	126.2	5.74	159.7	8.66	196.3	11.83	239.4	15.31	274.4	1.262	0.251
153.6 11.38 15.1	153.6 11.38 15.1 127.1 3.63 133.7	11.38 15.1 127.1 3.63 133.7	15.1 127.1 3.63 133.7	127.1 3.63 133.7	3.63 133.7	133.7	123.9		1.096	8017	3.38	126.3	5.73	159.7	8.65	196.4	11.82	239.4	15.32	274.3	1.262	0.251
153.6 9.79 15.0 127.1	153.6 9.79 15.0 127.1 3.63 133.8	9.79 15.0 127.1 3.63 133.8	15.0 127.1 3.63 133.8	127.1 3.63 133.8	3.63 133.8	133.8	123.9		1.188	8019	3.39	126.5	5.72	160.2	8.64	196.7	11.79	239.3	15.27	274.3	1.257	0.251
153 B 42 15.3 127.1	153 R 842 15.3 127.1 3.63 133.7	8.42 15.3 127.1 3.63 133.7	15.3 127.1 3.63 133.7	127.1 3.63 133.7	3.63 133.7	133.7	123.9	1 -	1.092	8017	3.39	126.3	5.73	161.0	8.64	197.1	11.79	239.8	15.27	274.6	1.255	0.251
153.6 8.82 15.6 127.2 3.65 133.7	153.6 8.82 15.6 127.2 3.65 133.7	8.82 15.6 127.2 3.65 133.7	15.6 127.2 3.65 133.7	127.2 3.65 133.7	3.65 133.7	133.7	123.9	1 -	1.072	8019	3.40	126.3	5.76	161.2	8.66	197.5	11.81	239.9	15.31	274.8	1.256	0.251
153.8 9.98 15.8	153.8 9.98 15.8 127.2 3.64 133.7	9.98 15.8 127.2 3.64 133.7	15.8 127.2 3.64 133.7	127.2 3.64 133.7	3.64 133.7	133.7	123.9		1.217	8019	3.38	126.5	5.73	161.3	8.65	197.6	11.81	239.9				0.251
	153.8 10.10 15.2 127.2 3.66 133.7	10.10 15.2 127.2 3.66 133.7	15.2 127.2 3.66 133.7	127.2 3.66 133.7	3.66 133.7	133.7	124.1		1.108	8017	3.41	126.5	5.77	161.3	8.68	197.6	11.83	240.1		274.6		0.251
24.7 153.9	153.9 10.98 15.0 127.4 3.66 133.5	10.98 15.0 127.4 3.66 133.5	15.0 127.4 3.66 133.5	127.4 3.66 133.5	3.66 133.5	133.5	124.	N	1.201	8019	3.41	126.5	5.78	160.7	8.69	197.4						0.252
24.6	153.9 10.58 15.3 127.4 3.67 133.7	10.58 15.3 127.4 3.67 133.7	15.3 127.4 3.67 133.7	127.4 3.67 133.7	3.67 133.7	133.7	124	-	1.074	8020	3.41	126.6	5.78	160.9	8.68	197.2						0.252
	153.8 7.95 15.7 127.2 3.67 133.5	7.95 15.7 127.2 3.67 133.5	15.7 127.2 3.67 133.5	127.2 3.67 133.5	3.67 133.5	133.5		-	1.119	8017	3.40	126.5	5.76	161.0		197.2						0.252
24.8 153.9 8.45 15.6 127.2 3.67 126.5	153.9 8.45 15.6 127.2 3.67 126.5	8.45 15.6 127.2 3.67 126.5	15.6 127.2 3.67 126.5	127.2 3.67 126.5	3.67 126.5	126.5		124.2	1.162	8019	3.41	126.5	5.78	161.0	8.68	197.2	11.85					0.252
153.8	153.8 8.37 15.3 127.4 3.68 126.8	8.37 15.3 127.4 3.68 126.8	15.3 127.4 3.68 126.8	127.4 3.68 126.8	3.68 126.8	126.8		Ξ	1.062	8017	3.41	126.3	5.77	160.7	8.69	197.1						0.252
24.6 153.8 8.70 15.2 127.4 3.67 126.3	153.8 8.70 15.2 127.4 3.67 126.3	8.70 15.2 127.4 3.67 126.3	15.2 127.4 3.67 126.3	127.4 3.67 126.3	3.67 126.3	126.3		124.1	1.224	8017	3.43	126.5	5.78	160.9	8.67	197.1	11.83	239.0	15.33			0.252
24.7 153.6	153.6 9.31 15.0 127.2 3.67 126.3	9.31 15.0 127.2 3.67 126.3	15.0 127.2 3.67 126.3	127.2 3.67 126.3	3.67 126.3	126.3			1.152	8017	3.43	126.6	5.78	161.5	8.67	197.2	11.82	239.4		273.5		0.252
24.5 153.6 9.82	153.6 9.82 15.0 127.4 3.68 127.2	9.82 15.0 127.41 3.68 127.2	15.0 127.4 3.68 127.2	127.4 3.68 127.2	3.68 127.2	127.2		-	1.108	8017	3.42	126.5	5.78	161.9	8.68	197.8	11.82	239.7	15.30	273.8	1.251	0.252
153.6 11.53 15.4 127.2	153.6 11.53 15.4 127.2 3.67 128.6	11.53 15.4 127.2 3.67 128.6	15.4 127.2 3.67 128.6	127.2 3.67 128.6	3.67 128.6	128.6		-	1.059	8017	3.43	126.3	5.79	161.5	8.68	197.6	11.83	239.6	15.34	273.7	1.253	0.252
24 7 153 9.31 15.5 127.2 3.67 130.1	153.6 9.31 15.5 127.2 3.67 130.1	9.31 15.5 127.2 3.67 130.1	15.5 127.2 3.67 130.1	127.2 3.67 130.1	3.67 130.1	130.1		124.1	1.224	8017	3.42	126.3	5.77	161.5	8.66	197.6	11.80	239.4	15.31	273.4	1.252	0.252
15.4 127.2 3.68 130.8	153.8 7.85 15.4 127.2 3.68 130.8	7 85 15.4 127.2 3.68 130.8	15.4 127.2 3.68 130.8	127.2 3.68 130.8	3.68 130.8	130.8		124.1	1.203	8017	3.43	126.5	5.78	161.9	8.67	197.9	11.81	239.6	5 15.29	273.7	1.248	0.251
24 E 152 152 368 131.0	15.2 127.2 3.68 131.0	R 01 15.2 127.2 3.68 131.0	15.2 127.2 3.68 131.0	127.2 3.68 131.0	3.68 131.0	131.0		124.2	1.244	8017	3.43	126.5	5.78	162.3	8.67	198.2	11.81	239.9	9 15.30	273.8	1.246	0.252
153.9 9.19 15.1 127.4 3.68 125.9	153.9 9.19 15.1 127.4 3.68 125.9	9.19 15.1 127.4 3.68 125.9	15.1 127.4 3.68 125.9	127.4 3.68 125.9	3.68 125.9	125.9		124.2		8019		126.5	5.79	162.4	8.66	198.2	11.80	240.2	2 15.30	273.9	1.245	0.252
24.5 153.8 9.60 15.4 127.2 3.68 125.9	153.8 9.60 15.4 127.2 3.68 125.9	9.60 15.4 127.2 3.68 125.9	15.4 127.2 3.68 125.9	127.2 3.68 125.9	3.68 125.9	125.9		124.1	1.217	8019	3.44	126.6	5.79	162.9	8.67	198.7	11.80	240.2	2 15.29	274.0	1.244	0.251
	100.0 0.00 10.1 10.1 10.1 10.1 10.1 10.	40.44 45.0 407.6 3.68 105.0	45.0 407.6 3.68 105.0	107 E 3 E8 125 Q	3.68 125.9	125.0		12	1 225		3.43	126.6	5.77	163.0	8.66	198.8	11.78	240.6	6 15.26	3 274.3	1.239	0.251
6.671 0000 C.171	123.6 10.41 10.61 121.21 121.21	10.41 10.0 10.121 10.01 114.01	10:071 00:0 0:171 0:01	6.071 00.0 0.721	0.021	150.0		_														

										TABLE	TABLE A1Continued	inued										
Time	PT1	SD1	FM2	PTG	SD6B	PT5B	SD5A S	SD5B F	FM3 V	VFD3C F	PT10	SD10 F	PT11 \$	SD11	PT12 (SD12	PT13	SD13	PT14	SD14	FM4C	FM5
(sec)	(psia)	(F)	(lb/s)	(psia)	(H)	(psia)	(R) ((R) ((lb/s) (() (mq1)	(psia) ((F) ((psia) ((F)	(psia) (E)	(psia)	(R)	(psia)	(R)	(s/ql)	(s/ql)
									-													
1701	24.6	153.6	10.02	15.2	127.4	3.68	128.6	124.1	1.229	8019	3.44	126.5	5.78	163.1	8.66	199.1	11.78	240.9	15.27	274.4	1.238	0.251
1706	24.5	153.5	8.35	15.3	127.2	3.68	131.0	124.2	1.217	8016	3.44	126.5	5.76	163.6	8.65	199.4	11.77	241.0	15.24	274.6	1.235	0.251
1711	24.5	153.5	8.53	14.8	127.2	3.68	131.0	124.1	1.212	8016	3.44	126.6	5.79	163.4	8.68	199.5	11.80	241.1	15.27	274.6	1.236	0.251
1716	24.5	153.5	9.11	14.6	127.4	3.68	131.3	124.1	1.245	8017	3.45	126.5	5.78	163.1	8.67	199.4	11.79	240.9	15.27	274.4	1.236	0.251
1721	24.4	153.5	9.49	15.0	127.4	3.68	131.4	124.1	1.217	8016	3.44	126.3	5.78	163.4	8.67	199.5	11.80	241.0	15.26	274.4	1.233	0.251
1726	24.4	153.5	10.21	15.1	127.4	3.68	131.4	124.2	1.241	8016	3.44	126.5	5.78	163.6	8.66	199.7	11.78	241.2	15.25	274.7	1.231	0.251
1731	24.4	153.6	10.22	15.2	127.4	3.68	131.6	124.2	1.210	8019	3.45	126.5	5.79	163.7	8.67	199.9	11.79	241.5	15.28	274.8	1.232	0.251
1736	24.2	153.5	9.59	15.5	127.4	3.69	131.4	124.2	1.217	8017	3.45	126.5	5.78	163.9	8.67	200.1	11.81	241.6	15.25	274.8	1.229	0.251
1741	24.3	153.6	8.11	15.1	127.4	3.68	131.7	124.2	1.234	8019	3.45	126.8	5.79	164.0	8.67	200.3	11.79	241.8	15.26	275.1	1.227	0.251
1746	24.2	153.5	9.26	15.0	127.4	3.69	131.6	124.4	1.230	8019	3.45	126.5	5.78	164.1	8.67	200.5	11.79	241.9	15.25	275.3	1.225	0.251
1751	24.2	153.3	10.03	15.3	127.2	3.68	131.6	124.2	1.213	8019	3.45	126.6	5.78	164.3	8.67	200.6	11.77	242.0	15.25	275.3	1.223	0.251
1756	24.2	153.3	9.43	15.4	127.2	3.69	131.6	124.2	1.249	8017	3.44	126.5	5.78	164.3	8.68	200.9	11.80	242.1	15.26	275.6	1.222	0.251
1761	24.2	153.3	8.56	15.7	127.4	3.68	131.9	124.1	1.227	8016	3.45	126.5	5.79	164.1	8.68	200.9	11.80	242.1	15.25	275.4	1.221	0.251
1766	24.4	153.2	8.90	15.4	127.4	3.69	131.7	123.9	1.240	8019	3.46	126.5	5.80	164.0	8.68	200.7	11.80	242.0	15.27	275.2	1.224	0.251
1771	24.3	153.3	9.05	15.3	127.2	3.69	131.6	123.9	1.209	8017	3.45	126.5	5.80	163.9	8.68	200.6	11.80	242.0	15.27	275.2	1.221	0.251
1776	24.1	153.3	9.75	15.1	127.4	3.69	131.9	124.1	1.207	8017	3.45	126.5	5.79	164.1	8.68	200.6	11.79	242.0	15.25	275.2	1.219	0.251
1781	23.9	153.3	10.35	14.9	127.4	3.69	132.0	124.1	1.157	8017	3.45	126.5	5.80	164.3	8.68	200.9	11.80	242.1	15.24	275.4	1.217	0.251
1786	24.1	153.5	10.58	14.6	127.4	3.69	131.9	124.1	1.142	8019	3.45	126.5	5.80	164.1	8.68	200.7	11.81	242.3	15.24	275.4	1.215	0.251
1791	24.0	153.3	7.47	14.9	127.5	3.68	132.0	124.2	1.195	8016	3.46	126.6	5.79	164.4	8.67	201.0	11.80	242.4	15.24	275.6	1.214	0.251
1796	23.9	153.5	8.88	14.6	127.4	3.69	132.2	124.2	1.150	8017	3.46	126.5	5.81	164.7	8.69	201.3	11.80	242.7	15.24	275.9	1.211	0.251
1801	24.0	153.3	10.40	14.6	127.4	3.68	132.0	124.2	1.149	8019	3.45	126.6	5.78	164.8	8.68	201.5	11.80	242.8	15.23	275.9	1.210	0.250
1806	24.0	153.3	10.78	14.9	127.5	3.68	132.0	124.2	1.261	8019	3.45	126.6	5.79	164.8	8.69	201.5	11.79	242.9	15.22	276.1	1.208	0.250
1811	23.8	153.2	6.70	15.0	127.4	3.68	131.0	124.2	1.258	8017	3.46	126.6	5.80	164.8	8.70	201.7	11.80	243.1	15.24	276.2	1.208	0.250
1816	24.0	153.3	8.96	14.8	127.4	3.68	131.9	124.2	1.228	8017	3.45	126.5	5.79	164.7	8.68	201.5	11.79	242.9	15.25	276.1	1.208	0.250
1821	24.0	153.2	9.77	14.9	127.4	3.68	131.9	124.2	1.247	8016	3.46	126.5	5.80	164.8	8.69	201.7	11.79	242.9	15.24	276.1	1.207	0.250
1826	24.0	153.2	9.89	15.1	127.2	3.70	131.9	124.2	1.225	8016	3.46	126.6	5.80	164.8	8.69	201.7	11.81	, 242.9	15.26	276.2	1.207	0.251
1830	23.9	153.2	8.26	15.0	127.4	3.69	132.0	124.2	1.247	8019	3.46	126.5	5.81	164.8	8.68	201.8	11.78	243.1	15.24	276.2	1.204	0.250
1835	23.9	153.2	9.39	15.0	127.4	3.68	131.9	124.2	1.260	8017	3.45	126.5	5.79	164.8	8.68	201.8	11.79	243.1	15.24	276.3	1.203	0.250
1840	24.1	153.2	9.97	15.0	127.4	3.69	132.0	124.2	1.253	8017	3.46	126.6	5.81	164.8	8.69	201.7	11.80	243.1	15.25	276.2	1.204	0.250
1845	23.9	153.2	7.13	15.5	127.2	3.68	131.9	124.2	1.188	8017	3.46	126.6	5.80	164.7	8.68	201.8	11.80	243.2	15.25	276.2	1.202	0.250
1850	24.1	153.2	9.04	15.7	127.2	3.68	131.9	124.1	1.269	8017	3.45	126.5	5.80	165.0	8.68	201.8	11.78	243.3	15.21	276.3	1.198	0.250
1855	24.0	153.0	10.12	15.1	127.4	3.68	132.0	124.1	1.304	8016	3.46	126.5	5.81	165.1	8.70	202.1	11.80	243.4	15.21	276.5	1.196	0.250
1860	24.0	152.9	9.49	15.1	126.9	3.68	131.9	123.9	1.200	8019	3.45	126.5	5.78	165.3	8.67	202.1	11.77	243.6	15.18	276.6	1.192	0.250
1865	24.0	153.0	8.06	14.9	127.1	3.69	131.7	123.9	1.253	8017	3.47	126.3	5.81	165.4	8.69	202.3	11.79	243.8	15.21	276.8	1.193	0.250

	4 FM4C FM5	(s/ql) (s/ql)	277.0 1.190 0.250	277.1 1.189 0.250	277.0 1.192 0.250	277.0 1.190 0.250	277.0 1.186 0.250	277.2 1.184 0.249	277.5 1.180 0.249	277.7 1.179 0.249	277.8 1.178 0.249	278.1 1.174 0.249	278.4 1.175 0.249	278.4 1.172 0.249	278.6 1.171 0.249	278.5 1.170 0.249	278.5 1.171 0.249	278.4 1.170 0.249	278.4 1.171 0.250	278.5 1.170 0.249	278.5 1.166 0.249	278.4 1.171 0.250	278.2 1.168 0.249	278.5 1.165 0.249	278.5 1.165 0.249	278.4 1.169 0.250	278.0 1.163 0.249	278.4 1.159 0.249	278.7 1.158 0.249	278.9 1.156 0.249	278.9 1.157 0.249	279.0 1.154 0.249	279.1 1.154 0.249	
	14 SD14	ia) (R)	 15.19 2	15.19 2	15.24 2	15.22 2	15.18 2	15.19 2	15.16 2	15.18	15.18	15.16	15.19	15.17	15.18	15.16	15.18	15.18	15.21	15.20	15.17	15.24	15.20	15.18	15.21	15.26	15.17	15.16	15.16	15.17	15.18	15.16	15.19	
	SD13 PT14	(psia)	243.8	244.1	244.0	244.0	244.0	244.2	244.5	244.9	245.0	245.3	245.5	245.5	245.8	245.5	245.5	245.4	245.4	245.4	245.5	245.3	245.1	245.4	245.4	245.1	244.7	245.1	245.5	245.6	245.8	245.8	245.9	
	PT13 SC	(psia) (R)	11.78	11.79	11.79	11.79	11.78	11.78	11.77	11.77	11.79	11.76	11.77	11.79	11.78	11.77	11.79	11.78	11.81	11.81	11.77	11.84	11.78	11.77	11.81	11.83	11.78	11.78	11.79	11.79	11.78	11.78	11.80	
	SD12 P	(F) (F	202.5	202.6	202.5	202.6	202.6	202.9	203.0	203.3	203.4	203.7	203.8	203.8	204.0	204.0	204.0	204.0	203.8	203.7	203.8	203.7	203.6	203.6	203.6	203.4	203.3	203.3	203.6	203.8	204.0	204.0	204.0	
	PT12	(psia)	8.68	8.69	8.70	8.68	8.67	8.69	8.68	8.69	8.70	8.68	8.69	8.70	8.70	8.70	8.71	8.70	8.72	8.71	8.68	8.73	8.70	8.70	8.72	8.72	8.68	9.70	8.70	7 8.71	9.70	8.69	8.71	
	SD11	(R)	9 165.4	165.4	1 165.1	0 165.1	9 165.1	0 165.4	9 165.4	0 165.7	1 166.0	0 166.0	1 166.3	1 166.4	1 166.4	166.3	2 166.3	1 166.3	3 166.0	2 166.0	0 166.0	3 165.7	2 165.7	1 166.0	3 166.0	3 165.6	9 165.3	1 165.4	1 165.7	1 165.7	1 165.7	0 166.0	166.0	
	PT11	(psia)	 3 5.79	5 5.80	5.81	5 5.80	5 5.79	6 5.80	8 5.79	8 5.80	6 5.81	6 5.80	6 5.81	.8 5.81	.6 5.81	6 5.81	.5 5.82	.5 5.81	.5 5.83	.8 5.82	.6 5.80	.8 5.83	.8 5.82	.8 5.81	.6 5.83	.5 5.83	.5 5.79	.6 5.81	.5 5.81	.6 5.81	.5 5.81	.8 5.80	.6 5.82	
ntinued	SD10	(H)	6 126.3	6 126.5	126.5	126.5	4 126.5	126.6	126.8	126.8	126.6	126.6	126.6	126.8	17 126.6	17 126.6	126.5	126.5	126.5	126.8	14 126.6	126.8	47 126.8	t7 126.8	46 126.6	46 126.5	126.5	45 126.6	45 126.5	44 126.6	3.46 126.5	45 126.8	3.46 126.6	
TABLE A1Continued	PT10	(psia)	 7 3.46	6 3.46	6 3.47	4 3.47	6 3.44	7 3.45	9 3.45	7 3.46	6 3.46	7 3.46	9 3.47	6 3.47	6 3.47	7 3.47	6 3.48	6 3.47	4 3.48	9 3.48	7 3.44	7 3.48	9 3.47	9 3.47	3.46	16 3.46	6 3.43	3.45	3.45	17 3.44		17 3.45		
TAB	VFD3C	(uđi)	8017	1 8016	8016	8014	9 8016	3 8017	8019	3 8017	5 8016	0 8017	6019	5 8016	8016	3 8017	1 8016	9 8016	4 8014	2 8019	0 8017	3 8017	0 8019	6 8019	6 8016	0 8016	2 8016	3 8014	2 8016	3 8017	5 8019	7 8017	8 8017	
	FM3	(s/qi)	1.278	1.294	1.268	1.246	1.239	1.203	1.268	1.203	1.245	1.230	1.216	1.265	1.288	2 1.283	1.271	1.249	1.234	1.212	1.220	5 1.223	4 1.140	1.126	4 1.276	2 1.240	2 1.282	4 1.253	4 1.212	4 1.203	2 1.225	4 1.167	5 1.178	
	SD5B	(H)	123.9	123.9	124.1	124.2	124.2	124.2	124.2	124.2	124.4	124.4	124.2	124.2	124.2	124.2	124.2	124.2	124.2	124.4	124.4	124.5	3 124.4	5 124.4	2 124.4	5 124.2	5 124.2	3 124.4	3 124.4	3 124.4	8 124.2	9 124.4	9 124.5	
	SD5A	(H)	131.9	132.2	132.2	132.3	132.2	126.0	129.3	132.2	132.3	132.5	132.5	126.6	131.9	132.0	132.5	132.3	128.6	128.3	131.0	132.0	132.3	132.5	132.2	132.5	132.5	132.8	132.6	132.8	132.8	132.9	132.9	
	PT58	(psia)	3.69	3.70	3.71	3.70	3.71	3.71	3.72	3.72	3.72	3.71	3.72	3.73	3.73	3.73	3.73	3.73	3.73	3.73	3.73	3.74	3.73		3.73	3.73	3.74	3.76	3.76	3.77	3.77	3.77	3.78	
	SD6B	(R)	127.2	127.2	127.2	127.4	127.4	127.5	127.4	127.4	127.4		127.4	127.4	127.5	127.4		127.4	127.5	127.5	127.5	127.5		ļ	127.5	127.5	127.4	127.5	127.5	127.5	127.5	127.7		
	PT6	(psia)	15.2	15.3	15.2	15.2	14.8	14.7	15.0	15.1	15.1	14.8	15.1	15.0	15.3	15.6	15.2	15.1	14.8	14.8	15.0	14.9		15.1	15.1	15.1	15.2	14.8	14.9	15.1	15.0	15.0		
	FM2	(s/ql)	10.15	10.85	8.94	8.10	9.76	9.73	10.38	6.68	9.27	10.57		9.71	10.26	7.72		9.45	10.18	9.41	7.89	9.13	-			10.18	60.6	7.55	9.89	9.87				
	SD1		153.2	153.2	153.2	153.3	153.3	153.3	153.3	153.3	153.3					153.0			153.0	153.3	153.2	153.5			153.0	153.0	153.0	153.2	153.2					
	PT1	(psia)	24.1	24.0	24.1	24.1	24.1	23.8	23.9	23.9	23.8	23.7	23.8	23.8	23.9	24.0		23.9	23.8	23.9	23.8	23.7			23.6	23.9	23.9	23.8	24.0					
	Time	(sec)	 1870	1875	1880	1885	1890	1895	1900	1905	1910	1915	1920	1925	1930	1935	1940	1945	1950	1955	1960	1965	1970	1975	1980	1985	1990	1995	2000	2005	2010	2015	2020	

-

	FM5	(ib/s)	0.248	0.248	0.248	0.248	0.248	0.248	0.248	0.248	0.248	0.248	0.248	0.248	0.248	0.181	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.00	0.00
	FM4C FN	qi) (s/qi)	1.109	1.110	1.108	1.107	1.108	1.106	1.105	1.104	1.103	1.101	1.103	1.100	1.100	0.779	0.683	0.629	0.602	0.600	0.430	0.423	0.431	0.445	0.466	0.475	0.488	0.504	0.012	0.012	0.012	0.013	0.013	0.013	0.016
-	SD14 F	(H) (I	283.0	283.0	282.8	282.6	282.5	282.4	282.4	282.4	282.4	282.5	282.5	282.5	282.8	282.3	285.2	289.5	293.7	296.0	296.9	297.0	296.1	295.2	294.3	293.7	293.5	293.3	293.5	293.7	294.5	295.2	296.1	297.0	303.9
	PT14 S	(psia) (I	15.22	15.24	15.22	15.21	15.23	15.20	15.21	15.20	15.20	15.20	15.22	15.20	15.22	10.77	9.54	8.94	8.68	8.72	8.65	9.00	9.10	9.37	9.76	9.95	10.20	10.51	10.68	11.02	11.30	11.51	11.76	12.03	13.63
	SD13	(H)	249.0	249.0	249.0	248.6	248.5	248.4	248.5	248.4	248.6	248.6	248.6	248.7	248.7	245.3	247.8	250.2	251.2	251.7	252.1	252.2	252.9	253.5	254.1	254.7	255.4	255.9	256.6	257.1	257.3	257.5	257.9	258.2	261.3
	PT13	(ṗsia) (11.85	11.89	11.89	11.87	11.86	11.85	11.88	11.85	11.85	11.84	11.86	11.84	11.85	9.26	8.53	8.57	8.12	8.24	8.26	8.66	8.88	9.17	9.51	9.76	10.03	10.32	10.54	10.90	11.19	11.42	11.68	11.96	13.60
	SD12	(H)	206.2	206.2	206.0	205.8	205.7	205.6	205.6	205.7	205.7	205.8	205.8	206.0	206.1	207.2	211.3	214.6	216.0	217.0	217.3	217.4	218.1	218.7	219.4	220.2	221.0	221.6	222.2	222.7	223.3	223.9	224.4	224.9	229.4
	PT12	(psia)	8.79	8.81	8.81	8.79	8.79	8.78	8.80	8.77	8.78	8.78	8.78	8.76	8.78	7.81	7.54	7.69	7.66	7.78	06.7	8.33	8.63	8.94	9.20	9.53	9.84	10.11	10.40	10.75	11.07	11.31	11.57	11.86	13.52
	SD11	(R)	167.0	167.0	166.8	166.7	166.5	166.5	166.5	166.7	166.8	166.8	167.0	167.1	167.2	169.8	175.2	178.5	180.4	182.1	182.6	182.9	183.5	183.6	183.7	184.6	185.1	185.8	186.9	188.0	189.2	190.2	191.5	192.3	197.5
	PT11	(psia)	5.89	5.91	5.90	5.89	5.88	5.88	5.89	5.87	5.88	5.88	5.88	5.87	5.89	6.34	6.53	6.79	6.98	7.18	7.39	7.87	8.31	8.68	8.90	9.33	9.65	9.92	10.25	10.62	10.93	11.19	11.46	11.75	13.44
inued	SD10	(H)	126.3	126.3	126.3	126.3	126.6	126.5	126.5	126.3	126.6	126.6	126.8	126.9	126.8	141.3	151.9	154.9	161.2	164.7	165.4	167.5	168.5	168.6	168.8	168.9	169.5	170.3	171.0	171.4	170.6	170.7	172.7	175.2	195.9
TABLE A1Continued	PT10	(psia)	3.51	3.51	3.50	3.50	3.50	3.50	3.50	3.50	3.50	3.50	3.50	3.49	3.51	5.13	5.67	5.99	6:39	6.68	7.05	7.60	8.15	8.56	8.75	9.24	9.59	9.85	10.21	10.58	10.91	11.18	11.45	11.75	13.46
TABLE	VFD3C	(ndı)	8016	8017	8016	8017	8016	8016	8016	8017	8017	8017	8017	8019	8019	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	FM3	(s/qi)	1.187	1.183	1.129	1.190	1.353	1.401	1.400	1.399	1.364	1.348	1.269	1.236	1.274	1.401	1.375	1.299	1.277	1.304	1.231	1.149	1.408	1.390	1.314	1.270	1.142	1.406	1.398	1.369	1.309	1.263	1.160	1.404	1.366
	SD5B	(H)	124.5	124.4	124.4	124.5	124.5	124.7	124.7	124.5	124.7	124.5	124.7	124.7	124.5	121.3			123.3	124.1			125.6	125.9	126.2	126.3	126.6	126.9	127.2	127.4	127.7	127.7			130.5
	SD5A		133.5	133.4	133.4	133.4	132.5	133.1	132.9	132.9	133.1	133.1	133.1	133.2	133.1	132.6	136.2	136.8	138.5	141.5	141.9	140.6	142.3	138.8	139.0	139.3	140.0	140.9	142.8	141.3	139.4				148.7
	PTSB		3.81	3.82	3.82	3.81	3.81	3.80	3.81	3.80	3.80	3.79		3.79							7.11				7.92	8.15	8.35	8.58	8.80	9.02					
	SD6B		127.7	127.7	127.7	127.7	127.8	128.0	127.8	127.8	127.8	127.8			127.8												128.3								
	PT6	()	15.2	15.0	15.2	15.1	15.2	15.2	15.1	15.0	15.0	15.1	14.9	14.8	15.1	15.2	15.3	15.4	15.3	15.1	15.2				15.3		15.6	15.2	14.9	16.0					
	FM2		8.36	9.87	8.66	8.71	10.27	6.62	9.98	9.79	9.35													[-			9.76			-					
	SD1		152.6	152.8	152.9	152.9	152.9	152.9	153.0	153.0	153.0																								
	PT1	() ()	23.4	23.5	23.4	23.4	23.2	23.4	23.3																										
	Time		2210	2215	2220	2225	2230	2235	2240	2245	2250	2255	2260	2265	2270	2275	2280	2285	2290	2296	2301	2306	2311	2316	2321	2326	2331	2336	2341	2346	2351	2356	2361	2366	2401

• .

IABLE A2L SD5A SD5B	ABLE AZLIQUIU HYDHOGEN DESIF SD5B FM3 VFD3C PT10		M3 VFD3C PT10 SD1	FD3C PT10 SD1	T10 SD1			PT11 S	3		12		13		7	0
(psia) (R) (R)		٦		(tb/s) (r	(mqn)	(psia) (I	(R) (I	(psia) (R)		(psia) (I	(R)	(psia)	(£)	(psia)	(R)	(s/ql) (s/ql)
			- F													
39.2 37.1	37.1			0.156	0	15.17	40.7	15.24	64.6	15.20	93.6	15.11	114.6	14.95	128.4	0.150
23.6				60 - CO	5	13.13	40.0	77.01	n d	13.18	93.7	2 :	14.1	\$5. 5. 5.	9.821	0.146
		37.1		0.204	5	15.16	40.9	15.22	65.0	15.19	94.2	15.11	115.2	14.95	128.9	0.140
39.3		37.1		0.174	0	15.14	40.8	15.21	65.0	15.18	94.2	15.11	115.2	14.95	129.0	0.140
15.37 39.3 37.1		37.1	1	0.162	0	15.18	40.9	15.25	64.9	15.21	94.2	15.14	115.2	14.98	129.0	0.140
15.36 39.2 37.1		37.1		0.212	0	15.17	40.8	15.23	65.0	15.20	94.2	15.12	115.2	14.97	128.9	0.140
15.37 39.3 37.1		37.1		0.167	0	15.18	40.8	15.25	65.0	15.21	94.2	15.13	115.2	14.97	129.0	0.141
15.40 39.3 37.1		37.1		0.127	0	15.20	40.8	15.27	65.0	15.24	94.2	15.16	115.2	15.00	129.0	0.141
15.39 39.3 37.1		37.1		0.163	384	15.20	40.9	15.27	65.0	15.25	94.1	15.17	117.5	15.01	130.1	0.144
15.38 39.4 37.1		37.1		0.160	486	15.19	40.8	15.27	63.8	15.25	92.6	15.18	116.5	15.01	129.5	0.149
15.36 39.4 37.1		37.1		0.176	586	15.16	40.7	15.26	64.3	15.24	92.3	15.18	116.0	15.02	129.0	0.152
15.31 39.3 37.1		37.1		0.112	786	15.11	40.6	15.22	64.0	15.21	91.7	15.16	115.6	15.01	128.6	0.154
15.27 39.3 37.1		37.1		0.180	987	15.08	40.6	15.20	64.3	15.20	91.3	15.16	114.9	15.02	128.0	0.158
15.22 39.3 37.1		37.1	- 1	0.192	1189	15.02	40.5	15.16	64.9	15.18	91.0	15.15	114.3	15.02	127.4	0.161
15.17 39.2 37.1		37.1		0.233	1388	14.97	40.5	15.13	65.3	15.16	91.2	15.14	114.0	15.02	126.9	0.162
15.11 39.2 37.1		37.1		0.117	1589	14.91	40.4	15.09	65.3	15.13	91.3	15.12	113.7	15.02	126.5	0.163
15.03 39.2 37.0		37.0		0.169	1790	14.84	40.3	15.04	64.7	15.09	91.0	15.10	113.1	15.00	125.9	0.165
14.96 39.2 37.0		37.0		0.184	1992	14.77	40.2	14.99	64.0	15.06	90.7	15.08	112.8	15.00	125.3	0.167
39.3		37.0	_	0.229	2194	14.77	40.1	15.01	63.5	15.10	90.1	15.12	112.2	15.04	124.7	0.175
39.3		37.0	ᆉ	0.171	2393	14.74	40.1	15.01	62.9	15.11	89.6	15.14	111.3	15.06	123.9	0.186
		37.0	_	0.088	2597	14.70	40.0	15.00	62.4	15.12	88.9	15.16	110.2	15.08	123.2	0.196
39.3		36.9	-	0.180	2715	14.66	39.9	14.99	62.1	15.13	88.3	15.18	109.3	15.10	122.6	0.206
39.2		36.		0.190	2900	14.61	39.7	14.97	61.8	15.13	87.8	15.20	108.3	15.12	121.8	0.217
39.2		36.	6	0.196	3101	14.56	39.6	14.96	61.4	15.14	87.0	15.22	107.7	15.15	121.0	0.229
39.2		36.	6	0.172	3303	14.52	39.5	14.96	60.8	15.17	86.3	15.25	106.8	15.18	120.3	0.242
		36.9	_	0.110	3504	14.49	39.4	14.97	60.4	15.19	85.7	15.30	105.7	15.23	119.4	0.254
14.63 39.2 36.9		36.9		0.178	3704	14.43	39.3	14.96	59.9	15.21	84.7	15.34	104.9	15.27	118.6	0.267
14.53 39.1 36.8		36.8		0.206	3907	14.33	39.2	14.90	59.5	15.18	84.1	15.33	104.1	15.28	117.8	0.278
14.43 39.1 36.8		36.		0.173	4106	14.22	39.1	14.84	59.1	15.15	83.3	15.32	103.4	15.26	117.2	0.290
14.34 39.1 36		Ř	36.8	0.098	4308	14.14	39.0	14.81	58.8	15.16	82.8	15.34	102.7	15.30	116.6	0.303
14.27 39.1 3		°	36.7	0.144	4509	14.06	38.9	14.78	58.5	15.16	82.3	15.37	102.1	15.33	116.2	0.313
39.2		8	7	0.406	4711	13.99	38.7	14.76	58.1	15.18	81.8	15.40	101.5	15.36	115.4	0.329
14.09 39.1 36.7		36	7	0.342	4912	13.88	38.7	14.70	57.7	15.16	81.3	15.41	100.9	15.38	115.1	0.341

	2	(8)		0.049	0.050	0.053	0.056	0.058	0.062	0.063	0.067	0.068	0.073	0.073	0.078	0.078	0.082	0.085	0.085	0.087	0.092	0.094	0.097	0.100	0.103	0.105	0.106	0.112	0.117	0.126	0.138	0.136	0.138	0.138	0.134	0.130	0.131
Γ	0	(s/qi) (s/qi)	_	0.352	0.368	0.387	0.402	0.408	0.414	0.422	0.428	0.437	0.442	0.449	0.463	0.481	0.491	0.505	0.517	0.527	0.558	0.575	0.599	0.694	0.713	0.780	0.761	0.788	0.868	1.095	1.275	1.302	1.255	1.228	1.111	1.029	1.044
Γ	4			114.5	113.7	112.8	112.2	112.0	112.0	111.9	111.9	111.7	111.6	111.3	111.1	110.6	110.3	109.9	109.4	109.1	108.0	107.2	106.8	102.7	101.0	97.5	97.1	96.0	92.6	83.6	75.4	70.4	71.8	70.7	74.6	7.77	1.17
		(H) (H)		15.41	15.47	15.50	15.52	15.52	15.53	15.54	15.55	15.57	15.58	15.59	15.62	15.63	15.64	15.69	15.70	15.69	15.79	15.82	16.14	15.85	15.80	16.09	15.88	15.98	16.35	16.87	17.81	17.16	17.61	17.21	16.81	16.05	16.38
-	3 PT14	(psia)	_	100.4	99.6	98.8	98.0	98.0	97.9	97.7	97.5	97.4	97.2	97.1	96.3	95.6	94.9	94.1	93.6	93.3	92.0	91.0	90.4	85.5	83.3	79.5	79.2	77.9	74.3	63.0	54.7	51.0	51.9	51.9	56.0	59.2	58.5
┝	3 SD13	(E)		15.43	15.49	15.51	15.52	15.49	15.48	15.47	15.45	15.45	15.42	15.41	15.42	15.42	15.39	15.43	15.38	15.36	15.46	15.47	15.96	15.69	15.47	15.82	15.38	15.49	15.83	16.18	16.86	15.84	16.07	15.71	15.24	14.48	14.83
-	PT13	(psia)	-+	80.6	80.2	79.3	78.8	78.7	78.5	78.4	78.4	78.4	78.2	9.77	77.5	76.7	76.6	75.9	75.3	75.1	73.5	72.5	71.7	66.7	64.6	60.5	60.7	59.5	55.1	43.1	36.1	36.4	36.7	35.4	38.1	41.1	40.2
ŀ	SD12	£		15.15	15.20	15.19	15.17	15.10	15.06	15.01	14.95	14.91	14.85	14.80	14.77	14.72	14.65	14.65	14.55	14.48	14.53	14.48	14.90	14.60	14.25	14.42	13.97	14.00	14.03	13.92	13.52	13.08	12.57	12.35	12.12	11.89	11.92
	PT12	(psia)		4	57.0 15	56.5 15	56.4 15	56.4 15	56.4 15		56.1 14	56.1 1/	55.9 1/	55.9 1/	55.3 1/	55.0 1	54.6 1	53.7 1	53.5 1	53.1 1	51.5 1					39.0	40.2	38.4	35.9 1	35.5	35.1	34.9	34.7	34.5	34.3	34.3	34 -
	SD11	Ê		6 57																						12.17 3	11.85 4	11.63	11.25	10.69		9.60		8.92	8.60	8.59	8.29
	PT11	(psia)		14.66	14.66	14.62	3 14.55	2 14.44					4 13.95	2 13.86	0 13.76		8 13.52	7 13.44					Ĺ							33.8 10	_	33.2 9		32.7 8	32.5 8		32.2 8
tinued.	SD10	(R)		38.5	38.4	38.4	38.3	38.2			37.8		37.4	37.2	37.0			35.7	35.6							34.5	34.4	34.2	34.0								
A2Continued	PT10	(psia)		13.77	13.72	13.61	13.47	13.31	13.15	12.99	12.84	12.67	12.51	12.36	12.16	11.96												8.68	8.38	7.92				6.40			
TABLE	VFD3C	(mqr)		5113	5314	5514	5717	5915	6117	6318	6518	6719	6822	7023	7324	7527	7726	7927	8128	8330	8531	A733	8032	0033	9434	9636	9837	10040	10340	10740	11040						
	M3 V	i) (s/q		0.316	0.521	0.521	0.521	0.521	0.521	0.521	0.521	0.521	0.521	0.521	0.521	0 521	0.520	0 520	0.520	0.520	0 500	0.520	0510	0.519	0.519	0.519	0.518	0.518	0.518	0.518	0.518	0.518	0.518	0.518	0.518	0.518	0.519
	SD5B FA	=		36.6	36.6	36.5	36.5	36.4	36.4	36.3	36.3	36.2	36.1	36.0	36.0	35.9	35.8	35.7	35.6	35.5	26.4	1.00	0.00 C 26	2 00. 20 20 20	34.8	34.6	34.5	34.3	34.1	93.9	33.6	33.4	33.1	32.9	32.6	32.5	32.3
				39.0	38.9	38.9	8.86	7.82	38.6	200	39.6	3 B B	38.4	38.3	28 5	2000	20 0	0.00	37.0	37.0	37.6	0.75	04.0	0.70	37.4	37.1	37.0	37.0	37.0	37.0	3 1	8.95	37.2	36.6	36.9	36.9	36.2
	B SD5A		Τ	13.98	13.92	13.82	13.68	12 60	10.05	10.01	12.05	10 80	10 70	10 57	0000	60.3	100	00.11	11 80	00.11	94.44		5.01	70.01	0.03	0 50	9.28	8.98	A 69	0.0	4 00	7 63	3.5	88.5	89.0	88	6.17
	B PT5B			36.9						0.00							00. I			0.00 0 ac		200	0.05 1	35.5	30.3 PE 4	- 0 10	2 2	34.6	24.5	2 6 6	2 2	2 6	2 S.	2.22		2 00	32.8
	SD6B	E	-	30.4						30.2	0.00	0.00	0.00	000		0.62	0.00	C3.0	0.62	0.00	23.6	0.62	2.82	28.7	20.4	2.02	97 B	27.6 27.6	07.0	4 F	*';z		27.1	0.00	0.02	28.6 28.6	30.8
	PT6	(nsia)	[2.189	2.204	2.236	2.251	/000 0	6.000 2.227	0000	100	020.2	2.338		2.3//	100.0	200	002.2	1.939
	FM2	(9/4))		2.109																							- 19.7 - 19.7 - 19.0										39.9 39.9
	sns			40.0																								32.1									32.8
	DT1	(neia)	(poid)	34.3																																	430
	Time	BIIII	(nge)	040	0.15		087	CRZ	290	295	800	305	310	315	320	325	330	335	340	345	350	355	360	365	370	375	380	69 S	080	395	6 1 1 1 1 1 1 1 1 1 1	405	410	415	420	425	4 4

										TABLE	TABLE A2Continued	Inued.										
Time	РТI	SD1	FM2	РТ6	SD6B	PT5B	SD5A	SD5B	FM3	VFD3C F	PT10 S	SD10 F	PT11 S	SD11 F	PT12	SD12 F	PT13	SD13	PT14	SD14	FM4C	FM5
(sec) ((psia)	Ê	(s/ql)	(psia)	(R)	(psia)	(E)	(B)) (s/ql)) (mơn)	(psia) (I	(R)	(psia) (I	(F)	(psia) ((F)	(psia) ((H)	(psia)	(F)	(lb/s)	(Ib/s)
440	33.6	40.0	1.944	30.7	32.6	5.98	36.4	32.1	0.519	12250	5.59	32.0	8.06	33.9	11.50	39.5	14.67	57.8	16.45	76.9	1.060	0.132
445	33.7	40.0	1.932	30.7	32.4	5.78	31.7	32.0	0.519	12450	5.37	31.8	7.93	33.9	11.50	40.7	14.30	58.8	16.11	77.9	1.023	0.130
450	33.7	40.0	1.937	30.7	32.3	5.61	31.5	31.8	0.519	12650	5.16	31.7	7.73	33.7	11.50	41.0	14.55	58.7	16.35	9.77	1.043	0.131
455	33.6	39.9	1.956	30.7	32.1	5.49	31.4	31.7	0.519	12850	5.03	31.5	7.49	33.5	11.18	37.7	14.77	56.6	16.93	76.1	1.114	0.134
460	33.8	39.9	1.932	30.8	32.0	5.33	31.2	31.5	0.519	13060	4.92	31.4	7.37	33.4	11.18	37.1	14.53	57.4	16.66	76.2	1.112	0.133
465	33.9	39.9	1.975	30.9	31.9	5.18	31.1	31.4	0.519	13160	4.65	31.2	7.27	33.3	11.17	39.8	14.43	59.5	16.56	6.77	1.078	0.131
470	34.0	40.0	1.985	30.9	31.8	5.10	31.1	31.3	0.519	13360	4.61	31.1	6.95	33.2	10.82	37.5	14.53	57.7	16.73	76.7	1.123	0.133
475	33.9	39.9	2.003	30.7	31.7	5.00	34.2	31.2	0.519	13560	4.51	31.0	6.75	33.0	10.58	35.5	14.37	55.3	16.82	74.8	1.158	0.135
480	33.9	40.0	1.972	30.8	31.6	4.89	34.6	31.2	0.520	13660	4.37	30.9	6.63	33.0	10.46	35.6	14.12	52.9	16.71	72.5	1.204	0.136
485	33.9	39.9	1.985	31.0	31.5	4.82	35.0	31.0	0.519	13860	4.32	30.8	6.46	32.8	10.23	35.2	14.27	54.5	17.01	74.3	1.170	0.136
490	33.9	39.9	1.968	30.8	31.3	4.66	33.9	30.9	0.520	14060	4.11	30.7	6.44	32.7	10.35	36.9	13.91	57.8	16.59	76.4	1.123	0.133
495	33.8	39.9	1.986	30.8	31.2	4.57	34.9	30.8	0.519	14160	4.11	30.6	6.55	32.7	10.45	39.5	14.54	59.4	17.08	78.0	1.119	0.134
500	33.8	39.9	1.978	30.7	31.2	4.55	34.3	30.7	0.520	14260	4.06	30.5	6.16	32.6	10.03	37.1	14.31	59.5	17.07	77.5	1.152	0.134
505	33.8	39.9	1.972	30.8	31.1	4.42	34.7	30.6	0.519	14460	3.86	30.4	6.21	32.5	10.24	38.3	14.13	58.8	16.94	6.77	1.132	0.134
510	33.7	40.0	1.985	30.6	31.1	4.37	34.7	30.6	0.519	14660	3.86	30.3	6.08	32.5	10.10	39.3	13.65	59.5	16.41	78.8	1.093	0.131
515	33.8	39.9	1.975	30.7	30.9	4.32	33.5	30.4	0.519	14770	3.76	30.2	5.92	32.3	9.73	38.0	14.16	59.9	17.19	78.4	1.153	0.134
520	33.9	39.9	1.994	30.8	30.9	4.17	34.2	30.4	0.519	14870	3.55	30.1	6.40	32.4	10.26	41.9	13.91	61.0	16.77	80.3	1.093	0.132
525	33.8	39.9	1.996	30.7	30.9	4.15	34.9	30.4	0.519	15070	3.67	30.1	5.91	32.2	10.07	39.5	14.11	60.8	16.90	80.2	1.121	0.132
530	33.9	39.9	1.992	30.8	30.8	4.08	34.8	30.3	0.519	15170	3.56	30.0	5.94	32.4	10.04	45.4	13.58	66.0	16.35	84.7	1.005	0.128
535	33.8	39.9	1.964	30.7	30.7	3.96	34.9	30.2	0.520	15370	3.42	29.9	6.08	32.7	10.15	45.5	13.64	67.1	16.38	85.4	1.036	0.127
540	33.8	39.9	1.957	30.7	30.6	3.97	33.3	30.1	0.520	15470	3.41	29.8	5.63	32.3	9.81	42.4	14.16	64.6	17.19	83.6	1.092	0.131
545	33.9	40.0	1.970	30.8	30.6	3.89	35.2	30.1	0.519	15670	3.36	29.8	5.81	32.4	9.83	47.7	13.33	68.0	16.22	87.0	0.994	0.126
550	33.8	39.9	2.004	30.7	30.5	3.89	35.1	30.0	0.519	15770	3.33	29.7	5.41	31.9	9.58	40.7	13.90	63.3	17.01	83.1	1.131	0.131
555	33.8	39.9	1.966	30.7	30.5	3.78	34.7	29.9	0.520	15970	3.23	29.6	5.38	32.3	9.68	47.3	13.70	68.3	16.73	87.5	0.991	0.104
560	33.9	39.9	1.990	30.7	30.3	3.52	35.2	29.7	0.520	15970	3.06	29.4	5.95	35.6	9.87	55.7	13.25	77.0	16.16	95.2	0.827	0.080
565	33.9	39.9	1.975	30.6	30.0	3.39	34.5	29.5	0.520	16170	2.96	29.2	6.28	38.8	9.81	61.5	13.03	. 83.6	15.88	101.6	0.731	0.075
570	34.4	39.9	1.645	32.1	30.1	5.73	41.7	29.5	0.520	16280	5.54	56.1	7.15	6.99	8.85	84.4	10.70	102.9	12.76	114.0	0.351	0.055
575	34.2	39.9	1.828	31.4	30.9	4,19	35.3	29.6	0.520	16470	3.65	33.1	7.69	51.5	11.37	81.6	14.24	100.9	16.28	117.4	0.670	0.088
580	34.2	40.0	1.948	31.2	30.9	3.92	35.6	30.1	0.520	16750	3.37	29.7	5.94	32.3	10.99	51.7	15.35	75.4	17.91	97.4	1.201	0.123
585	33.9	40.1	1.848	30.7	31.0	7.32	38.5	30.2	0.520	16570	7.12	52.7	8.38	64.4	9.67	0.77	11.01	6.99.3	12.67	110.8	0.389	0.088
590	34.0	39.9	2.588	30.9	32.3	8.33	40.1	30.5	0.520	16570	8.06	66.7	9.50	77.4	10.83	94.9	12.19	112.3	14.07	125.6	0.251	0.089
595	34.0	39.9	2.671	31.2	33.1	9.75	43.2	31.4	0.520	16570	9.53	50.7	10.40	70.6	11.27	96.0	12.24	115.2	13.97	130.8	0.238	0.082
009	34.1	39.9	2.592	31.2	33.7	9.58	41.4	32.4	0.520	16670	9.36	43.2	10.44	66.4	11.46	94.9	12.48	116.0	14.95	132.8	0.256	0.091
605	34.2	39.9	2.557	31.4	34.3	10.50	39.7	33.1	0.520	16670	10.29	40.2	10.99	65.6	11.74	94.7	12.45	115.9	15.04	134.4	0.231	0.083

-1		Т	Т	51	6	0.060	0.053	0.046	0.038	0.029
	FM5	(s/ql)		0.077	0.067					
	FM4C	(s/qi)		0.225	0.182	0.158	0.146	0.135	0.133	0.126
	SD14	(H)		131.3	132.5	135.4	135.1	133.5	129.3	128.3
	PT14 \$	(psia) (14.89	14.94	14.86	14.87	14.86	14.87	14.89
1	SD13 P			106.9	109.7	111.1	110.5	109.9	108.6	108.9
		ia) (R)	_	12.42	13.15	13.52	13.80	14.02	14.21	14.38
	2 PT13	(psia)	_	86.7	90.4	91.8	91.0	89.6	87.8	88.3
	SD12	Ê						82	10	35
	PT12	(psia)		11.97	12.82	13.23	13.56	13.82	14.10	14.35
	SD11	(R)		59.0	63.6	64.1	63.2	62.6	62.3	62.4
	PT11 \$	(psia) (11.49	12.44	12.94	13.31	13.69	14.02	14.31
uded.	SD10 P			37.3	38.4	38.8	38.9	39.1	39.2	39.5
TABLE A2Concluded		(psia) (R)		11.05	12.06	12.66	13.04	13.46	13.82	14.13
BLE A2	3C PT10			89	0	0	0	0	0	0
τA	VFD3C	(mqr)		0	5	8	8	5	52	2
	FM3	(lb/s)		0.520	0.521	0.522	0.522	0.522	0.522	0.522
	SD5B	(R)		33.6	34.1	34.4	34.8	35.2	35.4	35.6
	SD5A	(H)		39.4	39.7	39.6	39.4	39.4	39.3	39.3
	PT5B 5	(psia) (11.26	12.24	12.87	13.25	13.66	14.02	14.33
	SD6B P			34.8	35.0	35.2	35.5	35.8	36.1	36.3
		(psia) (A)		32.4	34.8	34.7	34.8	35.0	35.1	35.2
	PT6			2.607	.596	1.545	1.047	1.064	1.167	1.562
	FM2	(s/qi)		39.9					40.2	40.2
	SD1	Ē								-
	PT1	(psia)		34.2						
	Time	(sec)		610	615	620	625		635	640

TABLE A3LI SD5A SD5B	ABLE A3LIQUID HYDROGEN DESNIFICATION TEST I SD5B FM3 VFD3C PT10 SD10 PT11 (A) (th/c) (mm) (resia) (A) (resia)		UID HYDROGEN DESNIFICATION TEST NO. 43 VFD3C PT10 SD10 PT11 SD1 461 (mmn) (neia) (a) (nois) (a)	FD3C PT10 SD10 PT11 SD1 FD3C PT10 SD10 PT11 SD1 mm1 (resia) (a) (resia) (ro)	710 SD10 PT11 SD1 710 SD10 PT11 SD1 5510 JB1 Jociet Jon	ICATION TEST NO. 3D10 PT11 SD1 B1 //retia1 //D1	TTI ST NO.	olēl≈	14 14 14		12		13		14	0	FM5
(psia) (R) (R)		چ	<u>-</u>			(psia) (I		(psia) (F		(psia) ((H)	(psia) ((H)	(psia)	(E)	(Ip/s)	(lb/s)
37.1 14.96 39.1 36.9		36.9	1	0.143	0	14.97	42.4	14.87	74.9	14.88	105.7	14.90	124.2	14.86	134.8	0.054	0.00
37.1 14.96 39.1 36.9		36.9		0.121	0	14.97	42.3	14.88	74.9	14.89	105.8	14.90	124.4	14.86	135.0	0.054	0.000
37.1 14.97 39.0 36.9		36.9		0.140	0	14.98	42.5	14.88	74.8	14.89	105.8	14.91	124.4	14.86	135.1	0.053	0.000
37.1 14.98 39.0 36.9		36.9		0.090	0	14.98	42.6	14.89	74.9	14.90	106.0	14.91	124.5	14.87	135.1	0.052	0.000
37.1 14.98 39.0 36.9		36.9	_	0.145	0	14.99	42.4	14.89	74.9	14.90	105.8	14.92	124.4	14.87	135.1	0.054	0.000
37.2 14.97 39.0 36.9		36.	6	0.141	387	14.98	42.1	14.89	73.6	14.91	105.4	14.93	127.1	14.89	136.2	0.055	0.000
37.2 14.97 39.0 36.9		36	<u></u>	0.147	486	14.97	42.2	14.89	74.4	14.91	103.8	14.93	126.0	14.89	135.4	0.057	0.000
37.2 14.94 39.0 36.9		36	6	0.146	585	14.95	42.4	14.87	75.6	14.89	103.8	14.92	125.6	14.88	135.0	0.058	000.0
37.2 14.90 39.0 36.9		ŝ	6	0.139	784	14.91	42.3	14.84	76.9	14.87	104.8	14.90	125.3	14.88	134.7	0.059	0.000
37.1 14.87 39.0 36.9		36.	_	0.138	987	14.88	42.5	14.82	76.9	14.85	105.1	14.90	125.0	14.88	134.4	0.058	0.000
37.1 14.86 39.0 36.9		36.	6	0.115	1187	14.87	42.4	14.82	77.4	14.86	105.5	14.91	124.7	14.89	134.0	0.059	0.000
37.1 14.83 39.0 36.9		36.	6	0.126	1390	14.84	42.2	14.80	78.4	14.85	106.2	14.90	124.5	14.90	133.7	0.060	0.000
37.1 14.80 39.0 36.9		Э <u>6</u> .	6	0.144	1563	14.81	42.2	14.78	80.0	14.84	107.1	14.90	124.7	14.90	133.4	0.060	0.000
37.1 14.77 39.0 36.9		36.	6	0.146	1691	14.77	42.2	14.76	81.8	14.83	108.0	14.90	125.1	14.90	133.4	0.063	0.000
37.1 14.72 39.0 36.9		36.9	_	0.144	1892	14.73	42.1	14.73	83.3	14.81	108.6	14.89	125.6	14.90	133.4	0.064	0.000
37.1 14.69 39.0 36.9		36.9		0.144	2094	14.69	42.1	14.71	84.4	14.80	109.1	14.89	126.0	14.91	133.5	0.066	0.000
37.1 14.65 38.9 36.9		36.9		0.104	2295	14.66	42.1	14.69	85.5	14.79	109.9	14.89	126.6	14.92	133.4	0.067	0.000
37.1 14.61 38.9 36.9		36.9		0.113	2497	14.61	41.9	14.67	86.3	14.78	110.3	14.89	127.4	14.93	133.8	0.068	0.000
37.0 14.56 38.9 36.9		36.9		0.137	2698	14.56	41.7	14.63	87.2	14.76	111.0	14.88	128.1	14.93	134.3	0.070	0.000
37.0 14.50 38.9 36.9		36.	6	0.150	2898	14.51	41.7	14.60	87.6	14.73	111.9	14.86	128.7	14.93	134.8	0.072	0.000
14.44 38.8		36	80	0.135	3101	14.45	41.6	14.56	88.1	14.71	112.8	14.85	129.2	14.93	135.6	0.073	0.000
14.38 38.7		36.	8	0.139	3301	14.39	41.5	14.52	88.6	14.69	113.9	14.85	129.6	14.93	136.0	0.075	0.000
37.0 14.32 38.8 36		Ж	36.8	0.135	3504	14.33	41.5	14.48	89.3	14.66	114.8	14.83	130.2	14.93	136.3	0.077	0.000
36.9 14.26 38.7 36		8	36.8	0.130	3703	14.27	41.4	14.45	89.7	14.64	115.6	14.82	130.5	14.94	136.8	0.078	0.000
36.9 14.18 38.7 36.8		ဗ္ဗု	æ	0.137	3907	14.20	41.3	14.41	90.2	14.62	116.0	14.82	131.1	14.94	137.4	0.079	0.00
36.9 14.13 38.7 36		æ	36.7	0.139	4106	14.13	41.2	14.36	90.7	14.59	116.6	14.80	131.6	14.94	137.7	0.081	0.000
36.9 14.05 38.6 36.7		99	5	0.141	4307	14.05	41.2	14.31	91.0	14.56	117.1	14.79	131.9	14.94	137.9	0.083	0.000
36.8 13.97 38.6 36.6		8	<u>ب</u> و	0.140	4509	13.98	41.1	14.25	91.5	14.52	117.8	14.76	132.3	14.93	138.4	0.084	0.000
36.8 13.89 38.6 36.6		8	Ģ	0.140	4710	13.89	40.9	14.20	91.7	14.49	118.2	14.75	132.8	14.93	138.7	0.086	0.000
36.8 13.81 38.6 36.6		8	9	0.139	4893	13.81	40.9	14.16	92.0	14.47	118.6	14.74	133.2	14.94	139.1	0.088	0.000
36.7 13.73 38.5 36		ĕ	36.6	0.157	5011	13.73	40.7	14.09	92.0	14.42	118.8	14.72	133.4	14.94	139.3	0.089	0.000
36.7 13.62 38.5 3			36.5	0.082	5213	13.63	40.6	14.06	91.8	14.41	118.9	14.72	133.8	14.96	139.6	0.092	0.000
36.7 13.54 38.5 3		"	36.5	0.144	5414	13.55	40.7	13.99	92.1	14.36	119.2	14.70	134.1	14.95	139.7	0.093	0.000
36.6 13.45 38.5 36.5		8	5	0.144	5615	13.46	40.4	13.93	92.0	14.32	119.4	14.68	134.3	14.95	140.0	0.095	0.00

•.

	£	(s)	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00	0.00	0.00	0.002	0.00	0.018	0.041	0.077	0.099	0.107	0.082	0.057	0.048
	FM4C FM5	(s/qi) (s/qi)	0.097	0.099	0.101	0.103	0.103	0.105	0.107	0.109	0.111	0.124	0.243	0.210	0.195	0.161	0.134	0.119	0.131	0.161	0.150	0.161	0.162	0.162	0.171	0.167	0.183	0.201	0.237	0.398	0.802	1.638	2.105	1.669	0.988	0.323
	SD14 FN		140.2	140.4	140.6	140.7	141.3	141.5	141.8	141.9	142.1	141.9	132.9	135.7	136.9	140.2	142.3	143.8	143.8	143.8	145.1	145.0	144.8	145.5	145.4	146.1	145.3	143.9	140.9	130.4	114.3	70.1	47.5	53.5	68.0	102.6
	PT14 SI	(psia) (R)	14.94	14.94	14.94	14.95	14.97	14.97	14.94	14.94	14.94	15.19	15.05	14.75	14.81	14.71	14.76	14.94	14.89	15.39	14.60	15.07	14.31	15.01	15.42	14.74	14.95	15.09	15.08	15.81	17.00	19.30	20.41	18.81	15.92	14.33
	SD13 P		134.5	134.7	134.8	135.1	135.6	135.6	135.7	135.9	136.0	135.4	122.9	126.9	128.1	133.1	137.4	139.4	138.5	137.7	137.9	137.5	136.9	138.2	138.5	138.1	136.6	134.5	131.0	118.6	94.2	51.5	38.3	38.4	55.1	100.9
	PT13 SI	(psia) (R)	 14.64	14.62	14.61	14.59	14.59	14.57	14.51	14.50	14.48	14.79	14.53	14.17	14.21	14.14	14.15	14.30	14.27	14.73	13.88	14.30	13.52	14.22	14.65	13.94	14.15	14.26	14.31	15.22	17.33	18.61	17.79	16.75	14.56	13.38
	SD12 P		119.5	119.7	119.5	119.8	120.1	120.3	120.1	120.1	120.0	119.1	107.9	108.2	109.1	112.8	122.1	125.6	123.8	122.4	122.0	119.8	118.3	120.6	123.8	120.6	117.4	114.0	109.9	96.1	66.0	37.1	36.4	35.8	42.9	85.4
	PT12 S	(psia) (R)	14.27	14.22	14.19	14.15	14.12	14.08	14.00	13.96	13.92	14.18	13.85	13.50	13.55	13.52	13.48	13.60	13.54	13.90	13.10	13.43	12.71	13.35	13.78	13.09	13.26	13.37	13.39	14.23	15.88	15.53	14.44	13.37	12.51	12.41
	SD11 P	(R) (p	92.0	91.5	91.3	91.2	91.5	91.3	91.0	90.7	90.2	87.0	71.2	75.9	77.9	85.7	97.5	98.8	93.1	93.9	91.5	87.8	86.3	90.2	98.7	88.6	84.4	81.1	73.5	60.7	38.4	36.1	35.7	35.3	35.1	70.2
	PT11 S	(Psia) (F	 13.85	13.78	13.72	13.65	13.60	13.53	13.43	13.37	13.30	13.35	13.00	12.73	12.84	12.83	12.79	12.84	12.72	12.86	12.29	12.51	11.94	12.42	12.80	12.21	12.35	12.35	12.25	12.68	12.66	12.11	11.34	10.30	9.92	11.48
ned.	SD10 P	(R) (F	 40.5	40.3	40.2	40.2	39.8	40.1	39.9	39.8	39.6	39.3	38.1	36.1	40.8	42.5	47.0	46.0	42.7	43.7	42.0	41.1	40.9	41.2	48.0	41.0	40.3	39.6	37.2	34.9	34.6	34.4	34.1	33.6	33.3	42.2
TABLE A3Continued	PT10 S	(psia) (I	13.35	13.24	13.14	13.03	12.92	12.80	12.70	12.58	12.45	12.13	11.79	11.78	12.00	11.93	11.96	11.94	11.67	11.31	11.27	11.27	11.06	11.18	11.39	11.10	11.09	10.92	10.60	10.42	9.92	9.28	8.75	8.01	7.46	10.46
TABLE /	VFD3C P	(mqr)	5817	6019	6220	6421	6623	6824	7025	7226	7426	7629	7829	8030	8225	8333	8535	8736	8668	9137	9338	9540	9741	9741	9741	9741	9743	9741	9741	9741	10040	10540	10840	10740	10240	9741
	FM3 \	(s/q)) (0.144	0.153	0.131	0.146	0.137	0.142	0.155	0.154	0.140	0.517	0.519	0.519	0.519	0.519	0.168	0.159	0.116	0.108	0.128	0.110	0.128	0.133	0.104	0.081	0.130	0.146	0.118	0.150	0.128	0.122	0.089	0.522	0.524	0.523
	SD5B F		36.4	36.4	36.3	36.3	36.2	36.2	36.1	36.1	36.0	36.0	35.7	35.6	35.6	35.6	35.7	35.7	35.6	35.6	35.6	35.5	35.5	35.4	35.3	35.3	35.3	35.3	35.3	35.3	35.0	34.7	34.4			
	SD5A 5		38.4	38.4	38.3	38.3	38.2	38.3	38.4	38.4	38.3	38.2	38.2	38.1	38.3	38.3	39.5	40.1	40.8	41.3	44.8	56.4	57.7	50.8	40.5	54.6	51.5	58.0	49.6		38.0		36.8			38.3
	PT5B		13.35	13.23	13.13	13.03	12.92	12.81	12.70	12.58	12.45	12.14	11.79	11.80	11.96	11.93	12.01	11.94	11.68	11.24	11.44	11.15	11.19	11.17	11.20	11.10	11.05	10.96					8.98			
	SD6B		36.6	36.5	36.5	36.5	36.4	36.4	36.3	36.3	36.2	36.1	36.0	35.9	36.0	35.9	36.0	36.0	35.9			35.8	35.7				35.6	35.6								
	PT6	-	35.3	35.2	35.1	35.0	34.7	34.5	34.4	34.3	34.3	33.7	33.4	33.3														36.5								
	FM2		1.885	1.898	1.817	1.843	1.811	1.867	1.873	1.903	1.886	1.479	1.872	1.814	1.829													2.052								
	SD1		38.8	38.8	38.8	38.8	38.8								38.7																					
	PT1	a)	36.3	36.1	36.1	35.8	35.6																													
	Time		351	356	361	366	371	376	381	386	391	396	401	406	411	416	404	ACK	431	436	441	446	451	456	461	466	471	476	481	486	491	496	201	208	511	516

FM3 VFD	FM3 VFD3C	03C PT10	SD10 (R)	PT11 SD11 (nsia) (R)	P112	SD12		SU13 P114	4 SU14	FM4C
	•		(H)		-					
	51			Τ	(psia)	(H)	(psia) (H)) (psia)	(H)	(lb/s)
	6	9741 9.74	40.0	11.89 66	68.0 13.41	91.8	14.47		15.17 114.0	
	6	9741 9.31	34.5	12.01 59	59.1 13.71	89.1	14.82	109.4	15.50 119.7	.7 0.298
	ğ	10040 8.62	34.0	11.21 35	35.7 14.27	53.6	16.32	78.2 1	16.64 95.8	.8 0.854
- 1	ş	10340 8.06	33.7	10.60 35	35.3 13.57	36.1	16.07	52.6	17.11 69.9	.9 1.294
	10	10340 7.66	33.4	9.91 35	35.0 12.77	35.5	15.86	47.0 1	17.32 65.2	2 1.285
-	10	10340 7.36	33.1	9.47 34	34.7 12.09	35.3	15.07	46.7	16.66 64.6	.6 1.145
++	101	10140 7.13	32.9	9.18 34	34.6 11.99	37.9	14.55	54.1	16.06 71.5	.5 0.884
1	100	10040 7.20	33.0	9.41 34	34.7 11.98	42.9	13.93	60.8	15.35 78.4	.4 0.715
	6;	9743 10.18	40.4	11.22 62	62.0 12.24	79.7	13.21	99.8	14.13 105.8	.8 0.297
	9;	9743 10.13	35.7	11.26 59	59.5 12.20	86.2	13.11	107.4	13.98 114.5	.5 0.253
	6	9741 9.39	35.3	11.68 57	57.8 13.28	86.0	14.44	107.4	15.16 118.5	1.5 0.328
	Ď	10040 8.70	34.0	11.15 36	36.2 14.37	54.0	16.42	79.7	16.60 97.7	.7 0.842
	ģ	10440 8.17	33.7	10.44 35	35.2 13.57	35.8	16.12	44.3	18.07 64	64.0 1.499
	0	10750 7.69	33.4	9.72 39	35.0 12.52	35.4	15.36	37.3 1	18.13 46	46.8 1.739
	10	10560 7.21	33.1	9.18 34	34.6 11.77	35.0	14.68	36.9 1	17.21 48	48.2 1.468
	ĕ	10340 6.88	32.8	8.78 34	34.4 11.27	34.8	14.32	41.4 1	16.73 56	56.4 1.190
	ļ₿	10240 6.71	32.7	8.57 34	34.3 11.23	34.7	14.23	41.9 1	16.37 57	57.6 1.093
	ē	10140 6.68	32.7	8.56 34	34.3 11.31	34.8	14.22	46.2	16.19 62	62.9 0.947
	₽	10140 6.79	32.7	8.81 34	34.4 11.37	35.2	14.34	51.1	16.04 66	66.4 0.858
-	9	10140 6.70	32.7	8.72 34	34.3 11.34	34.8	14.12	44.5 1	15.94 62	62.0 0.983
-	9	10140 6.75	32.7	8.63 34	34.3 11.23	34.8	14.15	45.4 1	16.15 63	63.8 0.955
-	2	10140 6.77	32.7	8.57 34	34.3 11.22	34.8	14.14	46.9 1	16.08 64	64.9 0.930
-	9	10140 6.73	32.7	8.67 3-	34.4 11.28	34.9	14.27	49.0	16.13 66	66.4 0.894
-	2	10140 6.79	32.7	8.80 3-	34.3 11.35	35.0	14.23	50.6	15.90 67	67.2 0.851
-	Ş	10240 6.69	32.6	8.53 34	34.2 11.12	34.6	14.19	39.4	16.30 56	56.2 1.094
-	ğ	10240 6.59	32.6	8.52 34	34.2 11.04	34.6	14.01	. 42.5	16.04 59	59.0 0.985
-	2	10140 6.57	32.6	8.48 3-	34.2 11.02	34.6	13.94	45.7	15.86 61.7	.7 0.904
-	10	10240 6.58	32.5	8.46 34	34.1 11.05	34.6	13.94	43.0	15.93 59	59.4 0.954
-	õ	10240 6.54	32.6	8.47 34	34.2 10.85	34.6	13.88	42.3	15.93 58	58.4 0.964
-	₽	10140 6.56	32.5	8.47 3-	34.2 10.97	34.6	13.96	47.0 1	15.90 63	63.3 0.857
	ê	10140 6.63	32.6	8.43 3-	34.2 10.93	34.7	13.93	49.1	15.81 65	65.0 0.819
	10	10240 6.48	32.5	8.32 34	34.1 10.82	34.5	13.84	38.8	16.14 53	53.9 1.075
-	10	10240 6.50	32.5	8.26 3-	34.1 10.72	34.5	13.68	41.6 1	16.25 56	56.4 1.000
	é	10240 6.44	1 32.5	8.33 3.	34.1 10.80	34.5	13.74	43.1	15.83 59	59.0 0.913

										TABLE /	TABLE A3Continued	nued.										
Time	PT1	SD1	FM2	PT6	SD6B	PT5B S	SD5A S	SD5B F	FM3 V	VFD3C P	PT10 S		PT11 S	SD11 F	PT12 8	SD12	PT13	SD13	PT14	SD14	FM4C	FM5
	(psia)				1	(psia) ((R) (I	(Ib/s) (r	(rpm) (p	(psia) (I	(F) (F	(psia) ((R) ((psia) ((R)	(psia)	(R)	(psia)	(H)	(Ib/s)	(Ib/s)
691	34.5	38.4	2.126	33.2	32.8	6.59	36.0	32.4	0.520	10240	6.44	32.4	8.20	34.0	10.67	34.4	13.55	40.3	16.37	53.5	1.064	0.145
969		38.5		33.0	32.8	6.56	36.8	32.4	0.520	10140	6.45	32.4	8.25	34.0	10.75	34.4	13.73	43.3	15.88	58.0	0.910	0.142
701				33.4	32.8	6.56	36.2	32.4	0.519	10140	6.47	32.4	8.39	34.0	10.70	34.5	13.56	45.5	15.63	60.8	0.840	0.139
902				33.1		6.54	35.9	32.4	0.519	10140	6.42	32.4	8.21	34.0	10.77	34.6	13.75	46.2	15.86	61.8	0.816	0.138
711				32.9		6.47	36.1	32.4	0.519	10140	6.34	32.4	8.22	34.0	10.72	34.4	13.72	42.7	15.88	57.8	0.918	0.140
716				32.8			36.6	32.4	0.518	10140	6.37	32.4	8.19	34.0	10.66	34.4	13.67	44.7	15.85	60.2	0.862	0.137
721				32.8			36.4	32.4	0.518	10140	6.36	32.4	8.21	34.0	10.65	34.4	13.57	43.0	15.80	58.3	0.902	0.138
726				32.5			33.1	32.4	0.517	10240	6.27	32.3	7.94	33.9	10.48	34.3	13.43	37.6	15.85	52.1	1.016	0.143
731				32.4			36.4	32.4	0.517	10240	6.27	32.3	7.96	33.9	10.40	34.3	13.41	37.0	15.94	51.2	1.009	0.145
736							36.5	32.3	0.517	10240	6.16	32.3	7.91	33.9	10.43	34.3	13.45	39.2	15.96	52.7	0.956	0.145
741							36.7	32.3	0.516	10140	6.27	32.3	8.07	34.0	10.47	34.4	13.42	44.9	15.67	59.9	0.801	0.138
746							36.2	32.3	0.516	10140	6.35	32.4	8.09	34.0	10.55	34.4	13.57	45.5	15.77	61.0	0.799	0.137
751				31.7			36.1	32.3	0.515	10240	6.31	32.3	8.08	33.9	10.54	34.3	13.47	39.3	15.72	54.1	0.943	0.140
756							36.4	32.3	0.515	10240	6.25	32.3	7.93	33.9	10.36	34.3	13.30	41.7	16.20	55.9	0.911	0.144
761							36.2	32.3	0.514	10240	6.25	32.3	7.92	33.8	10.25	34.2	13.26	37.1	15.94	50.0	1.018	0.144
766							36.5	32.3	0.514	10240	6.20	32.3	8.01	33.9	10.33	34.2	13.25	40.3	15.94	54.3	0.905	0.143
112					32.6	6.24	34.7	32.3	0.513	10240	6.09	32.2	7.76	33.8	10.23	34.3	13.18	36.4	16.05	49.2	1.026	0.147
776						6.37	36.1	32.3	0.513	10140	6.25	32.3	8.07	33.9	10.52	34.3	13.55	45.0	15.70	59.9	0.784	0.138
781							36.7	32.3	0.513	10240	6.19	32.3	7.89	33.8	10.28	34.2	13.15	37.0	15.96	48.8	1.036	0.146
786							36.0	32.3	0.513	10240	6.13	32.3	7.91	33.8	10.26	34.2	13.30	37.3	15.87	47.4	1.040	0.149
162							36.0	32.3	0.514	10240	6.12	32.2	7.89	33.8	10.28	34.2	13.27	37.2	15.87	50.1	0.974	0.146
96/							36.4	32.2	0.514	10140	6.16	32.2	7.85	33.8	10.26	34.2	13.23	39.0	15.90	52.6	0.924	0.143
801						6.24	36.3	32.2	0.514	10240	6.09	32.2	7.86	33.8	10.27	34.2	13.27	37.7	15.77	51.1	0.946	0.145
908 800						6.23	36.4	32.2	0.515	10240	6.10	32.2	7.81	33.8	10.20	34.1	13.11	37.6	15.99	50.0	0.972	0.146
811			1.830		32.6	6.25	36.2	32.3	0.515	10140	6.15	32.2	7.96	33.9	10.37	34.3	13.26	42.2	15.53	55.7	0.818	0.144
816			1.822		32.5	6.17	36.3	32.2	0.515	10340	5.98	32.2	7.82	33.8	10.39	34.3	13.43	42.9	15.93	56.9	0.873	0.143
821						6.13		32.2	0.516	10640	5.94	32.1	7.73	33.7	10.12	34.1	13.11	36.6	16.32	46.5	1.153	0.151
826						5.93	35.8	32.2	0.517	10950	5.76	31.9	7.42	33.5	9.77	34.0	12.92	36.2	16.25	44.5	1.170	0.156
831						5.84	35.3	32.1	0.517	11250	5.67	31.8	7.44	33.5	9.75	33.9	12.74	36.1	16.45	42.1	1.201	0.166
836				32.7		5.61	35.0	31.9	0.517	11350	5.41	31.6	6.99	33.3	9.46	33.8	12.68	36.0	16.40	44.4	1.199	0.159
841				32.6	32.1	5.42	34.5	31.7	0.518	11550	5.19	31.5	6.99	33.2	9.49	33.6	3 12.62	36.0	16.40	46.6	1.165	0.154
846								31.6	0.297	11650	4.95	31.3	6.71	33.0	9.23	33.6		37.5	5 16.17	49.8	1.082	0.154
851								31.4	0.518	11850	4.98	31.2	6.61	33.0	9.02	33.5		37.5		49.0		
856						5.02			0.519	12050	4.79	31.1	6.57	32.8	9.01	33.4	12.63	36.9	9 16.12	48.9	1.135	0.153
			ł																			

.

	5	(s)		0.141	0.140	0.140	0.135	0.136	0.137	0.138	0.135	0.141	0.134	0.136	0.131	0.133	0.138	0.135	0.135	0.134	0.139	0.135	0.134	0.138	0.137	0.135	0.137	0.135	0.137	0.136	0.136	0.134	0.135	0.138	0.136	0.137	0.138
Γ	FM4C FM5	(s/q) (s/q)		0.999	1.005	0.987	0.843	0.941	0.918	0.944	0.846	0.997	0.783	0.916	0.746	0.862	0.957	0.904	0.854	0.841	0.976	0.842	0.873	0.968	0.880	0.854	0.871	0.847	0.934	0.894	0.891	0.900	0.926	0.998	0.918	0.995	0.995
	SD14 FI		_	63.0	64.3	62.9	6.9	66.4	66.6	66.3	70.4	62.3	72.0	67.2	75.3	71.0	66.1	68.3	70.2	71.5	65.8	71.2	69.6	65.3	69.6	70.2	67.5	6.69	67.5	68.2	68.0	68.6	69.4	65.8	69.69	68.0	67.5
-		ia) (R)		16.07	16.30	15.98	16.02	15.87	15.93	16.15	15.95	16.04	15.86	15.88	15.66	15.74	16.25	15.96	15.95	16.11	16.38	16.08	15.77	16.02	16.27	16.06	15.87	15.80	16.21	16.08	15.87	15.69	16.10	16.09	16.02	16.28	16.35
	13 PT14	(psia)		45.4	45.0	45.0	52.7	48.5	49.1	48.5	52.6	43.4	55.1	49.6	57.0	53.7	47.9	50.5	52.4	53.5	47.3	53.4	51.9	47.0	51.7	52.1	51.9	52.2	49.5	50.2	49.9	51.0	51.2	47.0	51.2	49.5	48.5
	13 SD13	ia) (R)		12.28	12.29	12.18	12.46	12.24	12.34	12.51	12.36	12.15	12.43	12.40	12.46	12.48	12.45	12.37	12.43	12.47	12.29	12.60	12.42	12.25	12.62	12.45	12.41	12.32	12.37	12.37	12.29	12.27	12.28	12.15	12.23	12.22	12.17
-	12 PT13	(psia)		32.8	32.7	32.8	35.2	33.1	32.9	32.9	34.7	32.7	39.1	33.9	40.7	35.8	32.8	33.3	34.9	35.3	32.8	34.8	33.9	32.8	35.0	34.5	37.3	37.0	33.0	33.1	33.0	35.5	33.0	32.6	33.7	32.7	32.5
	2 SD12	a) (R)		B.16	7.89	8.17	8.27	8.38	8.25	8.18	8.16	7.86	8.27	8.29	8.71	8.56	8.00	8.43	8.33	8.13	7.85	8.42	8.64	8.06	8.20	8.08	8.33	8.36	8.07	7.94	8.18	8.41	7.97	7.89	8.04	7.78	7.61
	1 PT12	(psia)	_	31.5	31.5	31.5	31.6	31.6	31.5	31.5	31.6	31.5	31.7	31.5	31.8	31.7	31.5	31.6	31.6	31.7	31.6	31.6	31.6	31.5	31.7	31.6	31.7	31.6	31.6	31.5	31.5	31.5	31.4	31.2	31.1	31.1	31.0
	1 SD11	(H) (E)		4.88	4.89	4.91	5.13	5.00	4.98	4.97	5.06	4.89	5.13	5.00	5.22	5.18	4.91	5.02	5.06	5.10	4.96	5.21	5.20	4.96	5.03	5.12	5.13	5.03	4.86	4.94	4.83	4.98	5.04	4.64	4.61	4.54	4.44
ð.	0 PT11	(psia)		29.5	29.5	29.5	29.5	29.5	29.5	29.5	29.5	29.5	29.5	29.5	29.5	29.5	29.5	29.5	29.5	29.5	29.5	29.5	29.5	29.5	29.5	29.5	29.5	29.5	29.5	29.4	29.4	29.3	29.3	29.2	29.1	29.1	29.0
A3Continued	SD10	E)		3.33	3.42	3.37	3.41	3.32	3.39	3.41	3.44	3.43	3.36	3.39	3.41	3.41	3.39	3.34	3.39	3.46	3.42	3.42	3.37	3.40	3.38	3.48	3.41	3.40	3.27	3.35	3.25	3.31	3.32	3.15	3.06	3.03	3.01
TABLE A3	C PT10	(psia)		14060	14060	14060		14060			13960	14060	13960	14060	13960	13960	14060	13960	13960	13960	14060	13960	14060	14060	14060	14060	14030	14060	14010	14060	14140	14260	14460	14660	14760	14970	15120
TA	VFD3C	(mdr)		0.523 14	0.523 14	0.524 14	1	0.524 14				0.525 14	0.525 13	0.525 14	0.172 13			0.523 13	0.523 13						0.522 14	0.522 14	0.522 14	0.523 1/	0.523 1	0.229 1	0.524 1	0.524 1					
	FM3	(Ib/s)		29.8 0.5	29.8 0.5	29.7 0.5										1								1		29.6 0.		29.6 0.				29.6					
	SD5B	(F)																														29.4					
	SD5A	Ê		6 33.6	5 32.7																							3.61 2									
	PT5B	(psia)		3.66	3.65																																
	SD6B	(H		30.2	30.2																																
	PT6	-		34.9																																	
	FM2	Τ		2.042	2.012	2 036	2 042	2 A48											ĺ									_									
	SD1			38.6	38.5	38.6	28.5	38.5	2.00	20.0	2.00	2.00	38.5	200	3 86	2.00	20.00	2.00																			
	PT1	a)		36.1	36.2	28.2	5 P 92	1 4 46	0.00	0.00	0.00	37.0	37.0	0.40	0.70	0.10	20.0	1.00	200	00.0 0 20 0	0.00	20.1	00.0	4-00 A 30	35.4	35.6	35.8	35.9	36.0	0.00						36.9 26.8	
	Time			1031	1036	101	5		1001	0001	1001	1000	1076			0001		0601	01	8	111	0111	1211	0711	113611	1141	1146	1151	1155	DC 1	101	1171	1111		1811	100	1106

PT5B SD5A SD5B (psia) (R) (R) 3.30 29.0 21 3.17 28.9 22 3.17 28.9 22 3.13 28.9 22 3.13 28.9 22 3.13 28.9 22 3.13 28.7 22 3.10 28.7 22 3.13 28.6 22 3.10 28.7 22 3.03 28.7 22 3.04 28.6 22 3.03 28.7 22 3.03 28.7 22 3.03 28.6 2 2.99 28.6 2 2.99 28.6 2 2.91 28.5 2 2.92 28.6 2 3.01 28.5 2	0.6	201		EM3 V													:
(Psia) (F) 35.6 29.7 35.5 29.7 35.5 29.7 35.4 29.6 35.2 29.7 35.2 29.7 35.4 29.6 35.2 29.5 34.9 29.5 34.5 29.4 34.5 29.4 34.5 29.4 34.5 29.4 34.2 29.4 34.2 29.4 34.3 29.4 34.5 29.4 34.5 29.4 34.5 29.4 34.5 29.4 34.5 29.4 34.5 29.4 34.5 29.4 34.5 29.4 34.5 29.3 34.5 29.3 34.5 29.3 34.5 29.3 34.5 29.3 34.5 29.3 34.5 29.3	(psia) 3.30 3.22					r 10	SD10 F	1114	SD11	PT12	SD12	PT13	SD13	PT14	SD14	FM4C	FM5
				i) (s/ql)	1) (uđ.)	(psia) ((H)	(psia) ((H)	(psia)	(R)	(psia)	(R)	(psia)	(F)	(Ib/s) (((Ib/s)
		29.0	29.3	0.525	15270	3.04	29.0	4.47	31.1	7.41	34.0	12.22	49.9	16.67	68.6	1.004	0.139
		28.8	29.2	0.524	15370	2.87	28.8	4.33	30.8	7.48	33.0		50.4	16.30	69.3	1.000	0.136
		28.9	29.1	0.524	15570	2.82	28.8	4.32	31.0	7.85	40.4	12.25	56.4	16.05	76.1	0.859	0.133
		28.7	29.0	0.524	15670	2.70	28.7	4.19	30.8	7.72	34.0	11.86	52.5	16.07	71.5	0.967	0.134
		28.9	29.0	0.523	15770	2.77	28.7	4.18	30.6	7.33	33.2	12.04	51.4	16.37	71.0	0.987	0.136
		28.7	29.0	0.523	15770	2.84	28.7	4.09	30.6	7.31	33.9	11.91	51.9	16.25	71.5	0.961	0.136
		28.7	29.0	0.522	15770	2.67	28.6	4.10	30.6	7.71	36.5	11.99	54.6	16.07	74.1	0.901	0.134
		28.6	28.9	0.522	15770	2.83	28.6	4.34	30.7	7.42	34.7	12.15	56.1	16.36	75.3	0.927	0.133
		28.6	28.9	0.522	15770	2.75	28.6	4.23	30.6	7.53	33.0	12.10	54.8	16.19	73.8	0.944	0.133
		28.7	28.9	0.522	15770	2.75	28.6	4.28	30.7	7.88	35.7	12.02	56.5	15.82	75.6	0.901	0.131
		28.7	28.9	0.521	15770	2.77	28.6	4.31	30.7	7.72	36.0	11.98	55.6	15.87	75.1	0.896	0.131
		28.6	28.8	0.292	15770	2.64	28.6	4.07	30.6	7.68	33.6	11.85	53.4	15.85	72.8	0.945	0.132
		28.4	28.8	0.187	15770	2.55	28.4	4.13	30.6	7.74	36.7	12.10	57.7	15.98	76.4	0.888	0.130
		28.5	28.8	0.522	15770	2.79	28.5	4.39	30.8	7.69	40.9	12.44	60.5	16.40	80.0	0.845	0.130
34.3 29.3	3.02	28.6	28.8	0.522	15770	2.76	28.6	4.23	30.7	7.29	32.9	12.19	56.0	16.61	74.4	0.965	0.134
34.3 29.3	3.02	28.6	28.8	0.523	15770	2.70	28.5	4.14	30.6	7.83	37.7	12.05	57.0	15.97	76.6	0.867	0.131
34.4 29.5	3.20	30.3	28.9	0.523	15670	3.05	29.0	5.92	32.1	10.35	43.4	11.37	55.3	15.18	7.77	0.728	0.127
34.5 29.8	5.65	41.7	29.0	0.523	15570	5.53	61.1	8.37	67.5	10.89	76.9	10.04	89.6	12.31	100.4	0.213	0.090
34.7 30.8	6.97	42.5	29.6	0.524	15570	6.91	64.0	9.12	74.8	11.53	89.9	10.89	101.5	13.07	114.0	0.165	0.095
35.1 31.5	7.65	43.6	30.7	0.524	15570	7.64	62.9	9.79	78.4	11.93	97.5	12.11	108.5	14.46	118.5	0.188	0.100
35.2 32.2	7.70	40.5	31.4	0.524	15570	7.65	54.8	9.83	74.0	11.81	98.3	11.83	109.9	13.70	125.3	0.243	0.092
35.3 32.8	8.04	40.2	32.0	0.524	15570	8.02	44.8	10.19	68.3	12.17	96.8	12.14	109.9	13.91	127.8	0.337	0.093
35.5 33.1	6.75	42.7	32.3	0.525	4157	6.61	32.8	12.09	53.1	18.00	86.3	14.71	101.6	16.50	120.7	0.620	0.111
36.3 33.3	9.39	38.8	32.8	0.525	0	9.38	42.3	10.81	56.1	12.38	75.1	12.34	92.3	13.90	112.5	0.446	0.086
36.3 33.4	10.06	39.2	32.7	0.525	0	10.18	43.7	11.94	69.0	13.55	92.9	13.36	105.5	14.92	120.4	0.251	0.092
36.4 33.8	11.68	40.6	33.0	0.526	0	11.66	42.5	12.47	75.1	13.52	100.9	13.35	108.5	14.47	126.9	0.151	0.071
36.3 34.3	12.87	40.2	33.5	0.525	0	12.04	42.8	12.50	82.3	13.23	106.3	13.27	112.5	14.08	130.1	0.113	0.048
36.3 34.6	14.12	42.9	34.0	0.525	0	12.27	62.3	12.62	98.8	13.25	111.7	13.28	119.2	13.99	134.0	0.085	0.000
36.1 35.1	13.41	41.8	34.5	0.525	0	13.02	59.1	13.44	99.0	14.20	117.2	14.20	121.5	14.93	133.7	0.078	0.056
36.2 35.4	13.81	41.5	34.8	0.525	0	13.39	57.4	13.72	97.2	14.30	120.3	14.31	123.2	14.95	136.0	0.064	0.046
36.0 35.6	14.07	41.3	35.1	0.524	0	13.67	56.8	13.92	96.4	14.42	121.0	14.43	124.2	14.98	136.3	0.057	0.040

.

References

- 1. Hannum, N.P., Technology Issues Associated with Fueling the National Aerospace Plane with Slush Hydrogen, NASA TM-101386, 1989.
- 2. DeWitt, R.L., Hardy, T.L., Whalen, M.V., Richter, G.P., and Tomsik, T.M., Background, Current Status and Prognosis of the Ongoing Slush Hydrogen Technology Program for the NASP, NASA TM-103220, 1990.
- 3. Hardy, T.L., and Whalen, M.V., Slush Hydrogen Propellant Production, Transfer, and Expulsion Studies at the NASA K-Site Facility, AIAA Paper 91-3550, Presented at the 27th JPC, Cleveland, OH, Sept. 1991.
- 4. Fazah, M.M., STS Propellant Densification Feasibility Study Data Book, NASA TM-108467, September 1994.
- 5. Lynn, E., and Graham, B., Effect of Propellant Densification on Winged-Body RLV Weight, NASA MSFC, Oct. 10, 1995.
- 6. Lak, T., Lozano, M., and Tomsik, T. M., Advancement in Cryogenic Propulsion System Performance Through Propellant Densification, AIAA Paper 96–3123, Presented at the 32nd JPC, Lake Buena Vista, FL, July 1996.

LH ₂ IPTD tank		LH ₂ Recirc pumps	
Tank diameter, ft Total volume, ft ³ Ullage volume, percent Maximum tank pressure, psia Initial propellant mass, lb Densification time, hr	10 2706 2.0 35.0 11720 2.0	Recirc mass flowrate, lb/sec Recirc volume flowrate, gpm Maximum diff pressure, psid Head rise, ft	1.8 - 2.0 180 - 200 5.0 160 - 170
gH ₂ Compressor		LH ₂ Heat exchanger	
Type Driver Number of stages Design flowrate, lb/sec Design inlet temperature, R Design inlet pressure, psia Discharge pressure, psia Horse power, GHP Design pt. speed, rpm	Centrifugal AC Motor 4 0.40 26.0 1.2 15.6 40.0 22000	Inlet mass flowrate, lb/sec Max inlet temperature, R Inlet pressure, psia Outlet temperature, R Maximum pressure drop, psid Heat transfer rate, Btu/sec Bath pressure, psia Bath temperature, R	2.0 42.6 40.0 27.0 1.0 34 - 63 1.4 ± 0.2 25.9 ± 0.5

TABLE I.—LH2 PROPELLANT DENSIFICATION GSE DESIGN BASIS

TABLE II.---PROPELLANT DENSIFICATION TEST DATA SUMMARY

Test number	Description	Recirc flow, lb/sec	Inlet temperature, °R	Bath pressure, psia	Outlet temperature, °R	Compressor speed, rpm	Run time, sec
N1	LN_2 Densification	1.8	144	3.0	120	8020	1070
N2	LN_2 Densification	1.5	149	3.6	121	8530	630
N3	LN_2 Densification	9.0	148	3.8	123	8020	1420
H1	LH ₂ Densification	2.0	40	3.4	30	16670	470
H2	LH ₂ Densification	1.9	40	7.1	34	13350	380
H3	LH ₂ Densification	2.3	40	4.8	32	14760	210
H4	LH ₂ Densification	2.0	39	3.0	29	15570	1110

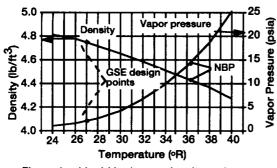


Figure 1.—Liquid hydrogen density and vapor pressure curves.

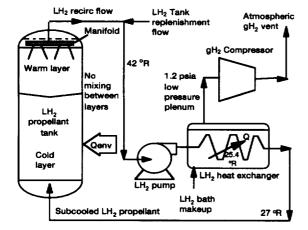


Figure 2.—Integrated RLV propellant tank and LH₂ propellant densification unit based on thermodynamic vent principle.

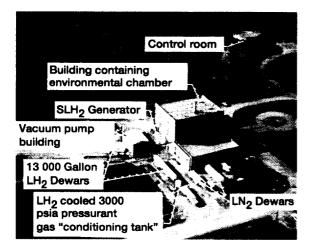
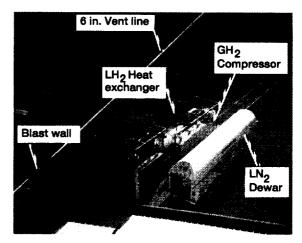
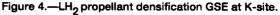




Figure 3.---NASA Plum Brook K-Site facility.

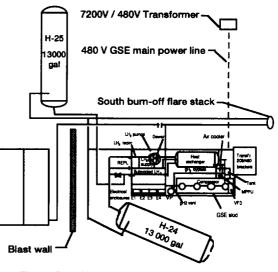


Figure 5.—LH₂ propellant densification GSE configuration for testing at K-Site.

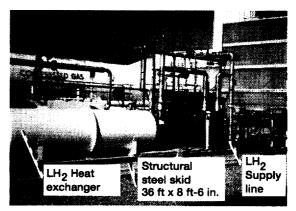


Figure 6.—Skid mounted LH₂ propellant densification assembly.

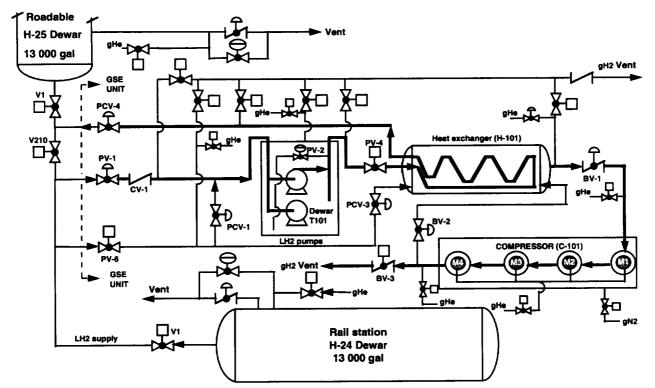


Figure 7.—LH₂ propellant densification GSE system flow schematic.

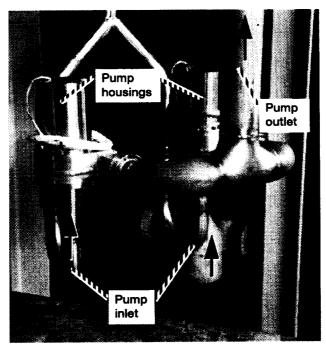


Figure 8.---LH₂ recirculation pump assembly.

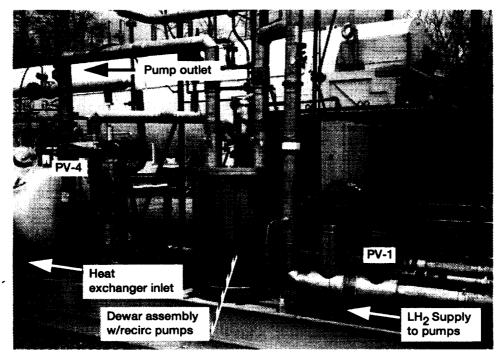
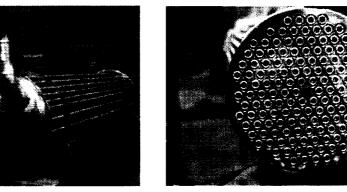
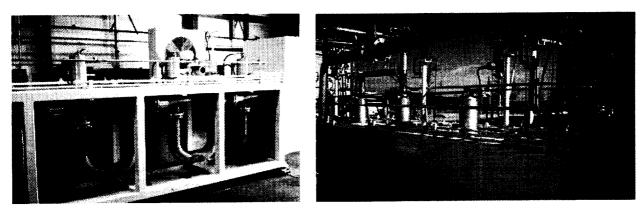
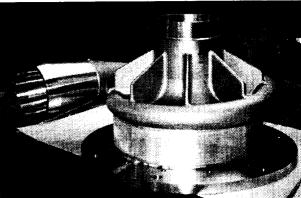



Figure 9.—LH₂ recirculation pumps mounted inside dewar.



inner shell assembly

Tube bundle assembly End view of tubes Figure 10.—LH₂ heat exchanger fabrication and assembly.



Interstage assemblies

Four stage GH₂ compressor assembly

14-in. Compressor impeller

Compressor housing

Figure 11.—Gaseous hydrogen compressor assembly.

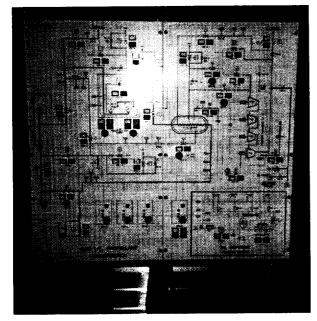


Figure 12.—LH₂ propellant densification operator control panel.

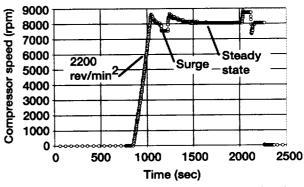
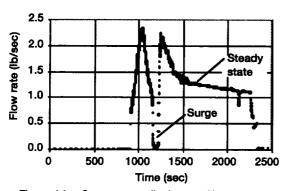
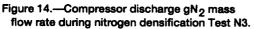




Figure 13.—Compressor speed during LN₂ densification Test N3.

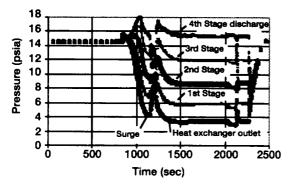


Figure 15.—Compressor stage discharge gN₂ pressures during nitrogen densification Test N3.

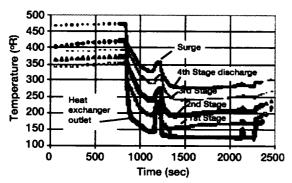


Figure 16.—Compressor stage discharge gN₂ temperatures during nitrogen densification Test N3.

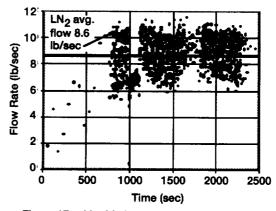


Figure 17.—Liquid nitrogen mass flow rate through GSE heat exchanger tubes during LN₂ densification Test N3.

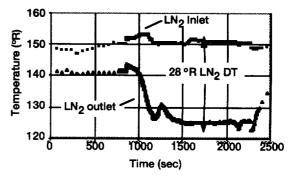


Figure 18.—Heat exchanger LN₂ inlet and outlet temperatures during nitrogen densification Test N3.

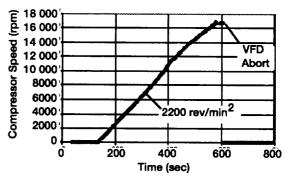


Figure 19.—Compressor speed during LH₂ densification Test H1.

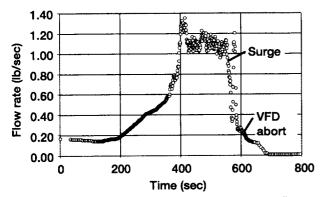


Figure 20.—Compressor discharge gH₂ mass flow rate during hydrogen densification Test H1.

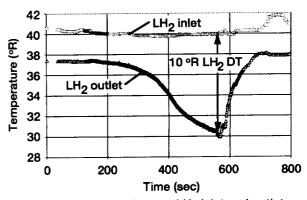


Figure 23.—Heat exchanger LH₂ inlet and outlet temperatures during hydrogen densification Test H1.

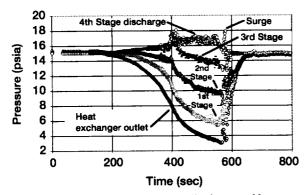


Figure 21.—Compressor stage discharge gH₂ pressures during hydrogen densification Test H1.

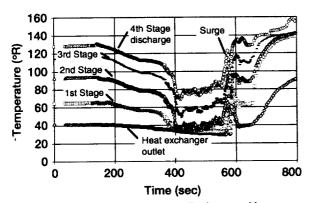


Figure 22.—Compressor stage discharge gH₂ temperatures during hydrogen densification Test H1.

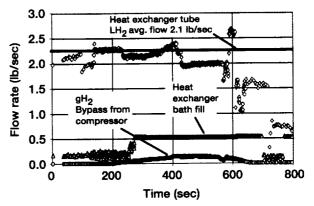


Figure 24.—Hydrogen mass flow rates entering GSE heat exchanger during LH₂ densification Test H1.

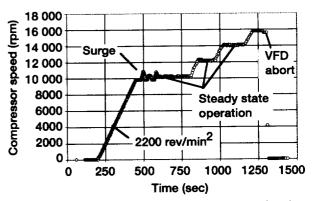


Figure 25.—Compressor speed during LH₂ densification Test H4.

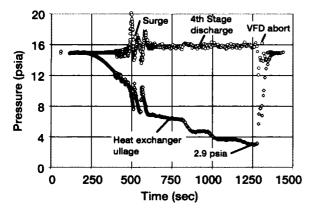
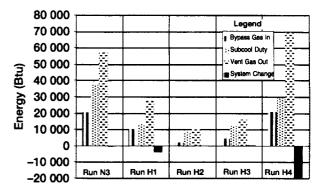
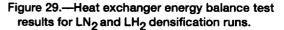




Figure 26.—Compressor discharge and heat exchanger ullage pressure during LH₂ densification Test H4.

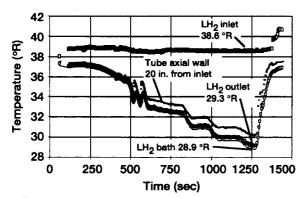


Figure 27.—Heat exchanger LH₂ inlet, axial wall, outlet and bath temperatures during hydrogen densification Test H4.

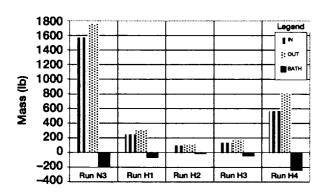
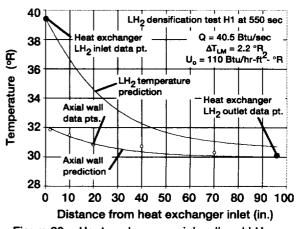
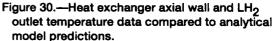
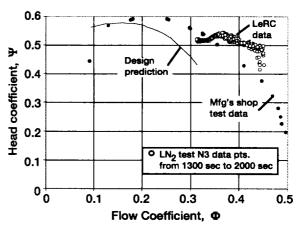
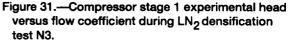






Figure 28.—Heat exchanger mass balance test results for LN_2 and LH_2 densification runs.

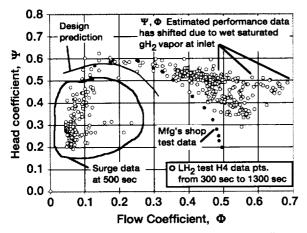


Figure 32.—Compressor stage 1 head versus flow coefficient for LH₂ densification test H4 assuming dry inlet gH₂.

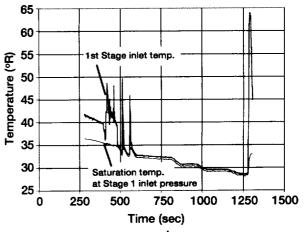


Figure 33.—Compressor 1st stage inlet gH₂ temperature compared to hydrogen saturation temperature during LH₂Test H4.

REPORT DOCUMENTATION PAGE			Form Approved
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing			OMB No. 0704-0188
gathering and maintaining the data needed, a collection of information, including suggestion	and completing and reviewing the collection of	information. Send comments regarding dquarters Services, Directorate for Info	g this burden estimate or any other aspect of this mation Operations and Reports, 1215 Jefferson
1. AGENCY USE ONLY (Leave blank	,	3. REPORT TYPE AND D	ATES COVERED
	June 1997	Tech	nical Memorandum
4. TITLE AND SUBTITLE		5.	FUNDING NUMBERS
Performance Tests of a Liq Support System for the X3.	uid Hydrogen Propellant Densif 3/RLV	ication Ground	
6. AUTHOR(S)			WU-242-33-01
Thomas M. Tomsik			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)			PERFORMING ORGANIZATION
		0.	REPORT NUMBER
National Aeronautics and Space Administration			
Lewis Research Center			E-10737
Cleveland, Ohio 44135–3191			
9. SPONSORING/MONITORING AGE	ENCY NAME(S) AND ADDRESS(ES)	10.	SPONSORING/MONITORING
			AGENCY REPORT NUMBER
National Aeronautics and S	pace Administration		
Washington, DC 20546-0	-		NASA TM-107469
.			AIAA-97-2976
11. SUPPLEMENTARY NOTES			
Prepared for the 33rd Joint Washington, July 6–9, 1997	Propulsion Conference & Exhib 7. Responsible person, Thomas	it cosponsored by AIAA, A M. Tomsik, organization cc	ASME, SAE, and ASEE, Seattle, ode 5870, (216) 977–7519.
12a. DISTRIBUTION/AVAILABILITY STATEMENT		121	b. DISTRIBUTION CODE
Unclassified - Unlimited Subject Category 28			
Subject Category 28	m the NASA Center for AeroSpace In	formation, (301) 621-0390.	
Subject Category 28 This publication is available from 13. ABSTRACT (Maximum 200 words A concept for improving the vehicles much like the X33 and liquid oxygen (LOX) production of densified pro- and liquid hydrogen to term thermodynamic vent princi- for the LH ₂ and LOX densi- liquid hydrogen propellant, and a cryogenic LH ₂ heat en- paper presents the design co-	(a) e performance of propulsion sy /RLV has been identified. The a propellants to fuel the propulsion propellant mixture is the subseque pellants however requires special peratures below their normal boo ple which operates at subatmosp fication process to occur. To der a system comprised of a multise exchanger was designed, built an	stems in expendable and sin pproach is to utilize densifi- stage. The primary benefit uent reduction of the launch ilized equipment to actively ling point. A propellant den heric pressure and supercol nonstrate the production co cage gaseous hydrogen com d tested at the NASA Lewis nt densification production	wehicle gross lift-off weight. v subcool both the liquid oxygen institution unit based on an external ld temperatures provides a means incept for the densification of the inpressor, LH_2 recirculation pumps is Research Center (LeRC). This hardware, analytical details and
Subject Category 28 This publication is available from 13. ABSTRACT (Maximum 200 words A concept for improving the vehicles much like the X33 and liquid oxygen (LOX) production of densified pro- and liquid hydrogen to term thermodynamic vent princi- for the LH ₂ and LOX densi- liquid hydrogen propellant, and a cryogenic LH ₂ heat ere paper presents the design co- results of performance testi- 14. SUBJECT TERMS	te) te performance of propulsion sy /RLV has been identified. The a propellants to fuel the propulsion propellant mixture is the subseque pellants however requires special peratures below their normal box ple which operates at subatmosp fication process to occur. To der a system comprised of a multist exchanger was designed, built an onfiguration of the LH ₂ propellan ng conducted with the hydrogen	stems in expendable and sin pproach is to utilize densifie stage. The primary benefit tent reduction of the launch lized equipment to actively ling point. A propellant den heric pressure and supercol nonstrate the production co rage gaseous hydrogen com d tested at the NASA Lewis nt densification production densifier Ground Support	ed cryogenic liquid hydrogen (LH_2) for using this relatively high vehicle gross lift-off weight. v subcool both the liquid oxygen nsification unit based on an external ld temperatures provides a means ncept for the densification of the pressor, LH_2 recirculation pumps s Research Center (LeRC). This hardware, analytical details and Equipment (GSE). 15. NUMBER OF PAGES 41
Subject Category 28 This publication is available from 13. ABSTRACT (Maximum 200 words A concept for improving the vehicles much like the X33 and liquid oxygen (LOX) production of densified pro- and liquid hydrogen to term thermodynamic vent princi- for the LH ₂ and LOX densi- liquid hydrogen propellant, and a cryogenic LH ₂ heat ere paper presents the design co- results of performance testi- 14. SUBJECT TERMS	te) e performance of propulsion sy /RLV has been identified. The a ropellants to fuel the propulsion propellant mixture is the subsequ pellants however requires special peratures below their normal boo ple which operates at subatmosp fication process to occur. To der a system comprised of a multist exchanger was designed, built an onfiguration of the LH ₂ propella	stems in expendable and sin pproach is to utilize densifie stage. The primary benefit tent reduction of the launch lized equipment to actively ling point. A propellant den heric pressure and supercol nonstrate the production co rage gaseous hydrogen com d tested at the NASA Lewis nt densification production densifier Ground Support	ed cryogenic liquid hydrogen (LH_2) for using this relatively high vehicle gross lift-off weight. v subcool both the liquid oxygen nsification unit based on an external ld temperatures provides a means incept for the densification of the upressor, LH_2 recirculation pumps is Research Center (LeRC). This hardware, analytical details and Equipment (GSE). 15. NUMBER OF PAGES 41 16. PRICE CODE
Subject Category 28 This publication is available from 13. ABSTRACT (Maximum 200 words A concept for improving the vehicles much like the X33 and liquid oxygen (LOX) production of densified pro- and liquid hydrogen (LOX) production of densified pro- and liquid hydrogen to term thermodynamic vent princi- for the LH ₂ and LOX densi- liquid hydrogen propellant, and a cryogenic LH ₂ heat ere paper presents the design cor- results of performance testi- 14. SUBJECT TERMS Propellant densification; Su- 17. SECURITY CLASSIFICATION OF REPORT	 te performance of propulsion sy /RLV has been identified. The a propellants to fuel the propulsion propellant mixture is the subseque pellants however requires special peratures below their normal box ple which operates at subatmosp fication process to occur. To der a system comprised of a multistexchanger was designed, built an onfiguration of the LH₂ propellan ng conducted with the hydrogen 18. SECURITY CLASSIFICATION OF THIS PAGE 	stems in expendable and sin pproach is to utilize densifu- stage. The primary benefit lent reduction of the launch lized equipment to actively ling point. A propellant den heric pressure and supercol nonstrate the production co age gaseous hydrogen com d tested at the NASA Lewis nt densification production densifier Ground Support	ed cryogenic liquid hydrogen (LH_2) for using this relatively high vehicle gross lift-off weight. v subcool both the liquid oxygen nsification unit based on an external ld temperatures provides a means ncept for the densification of the pressor, LH ₂ recirculation pumps s Research Center (LeRC). This hardware, analytical details and Equipment (GSE). 15. NUMBER OF PAGES <u>41</u> 16. PRICE CODE <u>A03</u>
Subject Category 28 This publication is available from 13. ABSTRACT (Maximum 200 words A concept for improving the vehicles much like the X33 and liquid oxygen (LOX) production of densified pro- and liquid hydrogen to term thermodynamic vent princi- for the LH2 and LOX densi- liquid hydrogen propellant, and a cryogenic LH2 heat er- paper presents the design co- results of performance testi- 14. SUBJECT TERMS Propellant densification; Su- 17. SECURITY CLASSIFICATION	 te performance of propulsion sy /RLV has been identified. The a propellants to fuel the propulsion propellant mixture is the subseque pellants however requires special peratures below their normal box ple which operates at subatmosp fication process to occur. To der a system comprised of a multistexchanger was designed, built an onfiguration of the LH₂ propellan ng conducted with the hydrogen 18. SECURITY CLASSIFICATION 	stems in expendable and sin pproach is to utilize densifu- stage. The primary benefit lent reduction of the launch lized equipment to actively ling point. A propellant den heric pressure and supercol nonstrate the production co tage gaseous hydrogen com d tested at the NASA Lewis int densification production densifier Ground Support	ed cryogenic liquid hydrogen (LH_2) for using this relatively high vehicle gross lift-off weight. v subcool both the liquid oxygen nsification unit based on an external ld temperatures provides a means ncept for the densification of the pressor, LH_2 recirculation pumps s Research Center (LeRC). This hardware, analytical details and Equipment (GSE). 15. NUMBER OF PAGES <u>41</u> 16. PRICE CODE <u>A03</u>

r

Prescribed by ANSI Std. Z39-18 298-102