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Abstract T
t

A study is made of the issues surrounding predic-
tion of microchannel flows using the direct simulation V

Monte Carlo method. This investigation includes the u,
introduction and use of new inflow and outflow bound- w

ary conditions suitable for subsonic flows. A series of
test simulations for a moderate-size microchannel indi-

cates that a high degree of grid under-resolution in the
streamwise direction may be tolerated without loss of P

accuracy. In addition, the results demonstrate the impor-

tance of physically correct boundary conditions, as well

as possibilities for reducing the time associated with the

transient phase of a simulation. These results imply that

simulations of longer ducts may be more feasible than

previously envisioned.
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Velocity components in x and y directions
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Fluid viscosity

Mass density

General coordinate direction

Subscripts:

e Exit condition

i Inlet condition

m Computational cell index

Nomenclature

a Local speed of sound

Crop Most probable thermal speed
Kn Knudsen number

L Channel length

n Number density

ti Particle flow rate

p Pressure

R Specific gas constant
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Introduction

Microelectromechanical systems (MEMS) have

recently become the focus of a great deal of attention in

several research disciplines. These devices are

manufactured using processes similar to those used in

microprocessor fabrication and promise the opportunity

to sense and control physical processes at length scales

on the order of a micron.1 Potential applications for such

devices cover a broad spectrum, including adaptive

optics, surgical instruments, and laminar flow control.

Many of these proposed designs involve fluid flow

through microchannels. One such possibility is the use

of microchannels to dissipate heat in integrated circuits.

Although such microscale flows have actually been

studied for nearly a century, 2 the growth in MEMS

research has prompted a resurgence in the investigation

of these flows. This work includes experimental and

analytical research. 3'4

Because of the very small length scales associated

with MEMS devices, the fluid mean free path can be on
the order of the characteristic channel dimensions. This

fact indicates that treating the flow in the microchannel
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as a continuum phenomenon may lead to inaccurate

results. Additionally, if the mean free path is large

compared to the channel dimensions, it will certainly be

much larger than the gradient scales in the flow, leading
to very large local Knudsen numbers. The use of

continuum-based techniques in microchannel analysis

and design may therefore lead to even larger errors than

expected. However, microchannei flows appear to be

well-suited to the application of Bird's direct simulation

Monte Carlo (DSMC) method. 5 This technique models

a gas flow as a myriad of discrete computational

particles, with each simulated particle representing a

large number of real particles. These simulated particles

move through the computational domain and collide

with one another as well as computational boundaries.

The particle properties are then sampled to determine

macroscopic flow quantities, such as velocity and

density. DSMC has been used with great success in the

prediction of rarefied hypersonic flows, and some

researchers have already applied it to microchannel
flows .6,7

However, microchannel simulations present a set

of challenges not encountered in previous DSMC

applications. First of all, the flow velocities in these

systems are generally much less than the speed of

sound. Consequently, the "stream" and "vacuum"

boundary conditions typically employed in DSMC

calculations are not physically appropriate. Instead, one

must use inflow and outflow conditions that impose the

correct propagation of information across the

boundaries. This fact is now quite well-established, and

alternative DSMC boundary conditions for low-speed
flows have been described in a number of sources. 6'7'8

Secondly, microchannels are characterized by very

large aspect ratios (ratio of channel length to channel

height). One of the fundamental assumptions in the

DSMC method is that the cell size in the gradient

direction must be less than a fluid mean free path if the

solution is to be considered valid. Proper resolution of
both streamwise and transverse flow directions will lead

to a large number of cells, implying that a single

timestep will be quite expensive to compute.

The above problem is aggravated by the need to

compute a very large number of timesteps before steady

flow is attained. Generally, the length of the transient

portion of a simulation is estimated by considering the

amount of time necessary for a particle traveling at the

mean flow velocity to traverse the computational

domain. Since the domain size (i.e., channel length) is

relatively large and the flow velocity is relatively small,

the flow "residence time" will be considerably larger

than in typical reentry simulations. Moreover, operating

conditions for such channels are typically at or around

standard atmosphere and pressure, leading to a high

collision frequency. A high collision frequency

corresponds to a low mean collision time. Since DSMC

also requires that the simulation timestep be less than

the mean collision time, the total number of timesteps

associated with the transient phase will be very large.

Finally, microchannel simulations require much
larger run times than traditional problems even after

steady flow has been established. It has been pointed

out 6 that many microchannel flows involve mean flow

velocities on the order of 0.1 m/s. Thus, at ambient

temperatures around 300 K, the ratio of the mean flow

velocity to the average thermal speed can be on the

order of 0.01% or even less. This extremely low signal-

to-noise ratio has serious implications for DSMC since

the method is probabilistic in nature. Some researchers
have estimated 6 that Monte Carlo simulation of realistic

microchannels will require over 100 million steady-state

samples in order to eliminate scatter from the results.

These characteristics indicate that realistic micro-

channel simulations will push the limits of existing

computer technology, if they are even currently feasible.

The purpose of this article is to examine the above

issues in the context of a moderately-sized test case and

determine what, if any, approaches can be taken to

improve solution accuracy and turnaround time.

DSMC Al_orithm

This investigation utilizes a parallel version of
Bird's DSMC3 demonstration code. 9 Although the orig-

inal algorithm was developed for three-dimensional

simulations, only two-dimensional cases are considered

here. A uniform Cartesian grid is used to minimize the

time associated with particle movement, and paralleliza-

tion is achieved through use of the CHAOS runtime
library developed at the University of Maryland.l° This

library provides the programmer with simple procedure

calls for data migration, domain decomposition, and

dynamic load balance. CHAOS has already been shown

to yield excellent parallel performance when coupled
with the DSMC3 algorithm. II

In order to perform accurate microchannel solu-

tions, new inflow and outflow boundary conditions were

developed and incorporated into the basic algorithm.

These new boundary conditions are described below, as

well as some further modifications to improve conver-
gence to steady flow.

Inflow Boundary Conditions

At the inflow boundary, we elect to specify the

pressure, temperature, and transverse velocity (assumed

to be zero for the present application). The streamwise

velocity is determined for each boundary cell through

2
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considerationof the fluxes across the cell's boundary

face and enforcing conservation of particles.

For a given mean speed and temperature, the
particle flux across a boundary in a particular direction

can be determined as follows, assuming a Maxwellian
distribution: 9

nC,,,e [ exp (_q2) + ,f_q ( 1 + erfq) ]
ti= (1)

2A

q = scos0

where s is the speed ratio V/Cmt , , and 0 is the angle
between the velocity vector and normal to the boundary

element. Considering the boundary face of inflow cell

m, we can apply Eq. (1) to determine the flux crossing

the face in either direction. Then, if particles are
conserved,

(fl÷ - fl.) m = ni (ui) mA (2)

where the subscripts + and - refer to particle fluxes in

the positive and negative x directions, respectively. A

is the area of the boundary face. Note that the inflow

velocity depends on the incoming number flux, which in

turn depends on the inflow velocity. Hence, Eq. (2) is

actually a nonlinear function of the inflow velocity.

Instead of solving for (ui) m numerically, though, we
use the last computed value to evaluate the positive

number flux. As a result, we can easily rearrange Eq. (2)
to determine the new inflow velocity:

(ri÷- ti.) m

(Ui) m - ni A (3)

The value of (ui) m will vary during the simulation.
However, the velocity should eventually attain a nearly
constant value in each inflow cell. The known inflow

properties are then used to determine the entering

particle distributions.

This inflow condition is quite similar to the sub-

sonic boundary conditions proposed by Ikegawa and
Kobayashi. s One important difference is that Ikegawa

and Kobayashi use the particle-conservation concept to

come up with a constant inflow velocity, whereas in this

work particle conservation is applied on a per-cell basis.

Additionally, the particle fluxes in this implementation
are computed from the Maxwellian distribution. In con-

trast, Ikegawa and Kobayashi determine the particle

fluxes by actually counting the number of particles
crossing the computational boundary.

Outflow Boundary Conditions

For the outflow, we appeal to the theory of

characteristics, which is frequently used in continuum

calculations to derive boundary conditions for subsonic

flows. The use of the theory implicitly assumes the flow

to be locally inviscid, adiabatic, and close to a perfect

gas. Note that we can apply the theory of characteristics

even though the flow is rarefied, since the conservation

equations themselves still hold. In this case, we have

employed Whitfield's characteristic formulation,t2 since

it allows the specification of a constant exit pressure.

The resultant equations (for a Cartesian grid) are:

(P,) m = P,,,+ p" --.fPm (4)
a m

Pm -Pe
(u e)= = us + _ (5)

Pmam

(V,) m : Vm (6)

In the above relations, the subscript e signifies exit

quantities. Since the exit pressure is known, the new
value of the exit temperature can then be determined

using the perfect-gas law:

(T,) m = P,/[ (P,) mR] (7)

As with the inflow conditions, the outflow proper-
ties are expected to vary during the simulation before

settling out to steady values.

Convergence Enhancement

As discussed in the Introduction, simulation of

low-Mach-number microchannel flows can be very

time-consuming, partly because of the very long

transient period associated with such problems. In an

effort to improve convergence for low-speed
microchannel flows, two further modifications were

made to the present DSMC algorithm.
First, a closed-form continuum solution is used for

flowfield initialization instead of the traditional

uniform- stream condition. The analytic solution is

obtained through integration of the Navier-Stokes

equations for isothermal, steady, two-dimensional flow

with velocity slip. a This approach yields the following

result for the velocity in the x direction:

u = 2_tkdx7 (y2_ Ct 2) (8)

C = 1 + 2Kn

where the y coordinate is measured from the channel

centerline and fully diffuse surface reflection is
assumed.

Eq. (8) shows that the velocity is a function of the
pressure gradient as well as the local Knudsen number

3
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basedonchannelheight.Thisquantitycanbedeter-
minedusing

Kn = Knep p"(x)

The pressure distribution is found to be only a
function of x :

p ---- pe_(Cl'l" 1)2"4 " C2(1-L)-flPe
(9)

C 1 = 3Kn e

3pRTLQ m

C2 - 2wt3pe

Qm is the volume flow rate, given by

3 2

2wtp, r(p,_2 6Kn,(_-l)] (10)

These expressions are used to determine the

streamwise velocity and number density at the center of

each computational cell during the initialization phase.

The cell is then populated with simulated particles gen-

erated according to these conditions.

Second, it was observed that the computed inlet

and exit mass fluxes can become negative during the

transient phase of the simulation. Since negative mass

fluxes are to be avoided, we simply choose not to update

the boundary conditions at the inflow (or outflow) if a

negative inlet (or exit) mass-flow rate is calculated.

Results and Discussion

The algorithm described above was applied to the

microchannel geometry and flow conditions shown in

Fig. 1. The given dimensions correspond to a channel

aspect ratio of 60, and 0 2 was specified as the working

gas. Additionally, the Knudsen number based on chan-

nel height ranges from about 0.02 at the channel inlet to

about 0.05 at the channel exit. This range of Knudsen

numbers suggests that the channel operates in the slip-

flow regime.

Several runs were conducted in order to ascertain

the impact of various simulation parameters on the qual-

ity of the solution. In each run, an initial population of

30 simulated particles per cell was specified. This value

is larger than what is often specified in simulations, but

was used in order to help reduce scatter. All computa-

tions were carried out on an IBM SP2, with 8 to 25 pro-
cessors used for each run.

Comnarison to Navier-Stokes _olution

Fig. 2 compares a grid-resolved solution obtained

using the DSMC algorithm to the analytic Navier-
Stokes solution described above. Both solutions return

the correct inflow and outflow pressures. Additionally,

both solutions show a fairly significant departure from

the linear pressure distribution predicted by traditional

(no-slip) continuum theory. Although not shown here, it

was found that the DSMC pressure distribution displays
little variation in the transverse direction. This charac-

teristic is in agreement with the continuum result for the

pressure distribution.

This plot also shows differences between the

DSMC and Navier-Stokes pressure distributions away
from the inflow and outflow boundaries. Somewhat

larger differences were observed in the velocity distribu-

tions, particularly near the channel wall, as may be

observed in Fig. 3. This discrepancy is a consequence of
a higher local degree of rarefaction. As we move to the

centerline, the difference between the two results

decreases, as shown in Fig. 4.

We may also compare the surface shear-stress dis-
tributions predicted by the two methods, as shown in

Fig. 5. A considerable amount of scatter is present in the

DSMC solution, but it agrees fairly well with the
Navier-Stokes result across most of the channel wall.

Influence of Grid Resolution

One of the requirements for a successful DSMC

application is that the cell size in the gradient direction
be less than a mean free path, as stated earlier. However,

this requirement does not give us any insight into how

well-resolved the grid must be normal to the primary

gradient direction. In channel flow, there are gradients in
both the streamwise and transverse directions, but the

gradients in the latter tend to be much greater. If high

resolution is required in both directions for an accurate

solution, simulation of very high-aspect-ratio micro-

channels will be virtually impossible. Thus, one impor-
tant consideration is the degree of under-resolution
which can be tolerated in the streamwise direction.

In order to make such a determination, the test

channel was first simulated using a fully-resolved grid

(cell size in each direction less than a mean free path).

This solution required 2400 cells in the streamwise
direction and 40 cells normal to the channel wall, and

yielded a total of approximately 2.1 million simulated

particles at steady state. Once this solution was com-

plete, the grid in the x direction was coarsened by suc-

cessively doubling the cell length. This procedure was

repeated several times, and the results were compared to

those for the baseline, fully-resolved solution.
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Figures6 and 7 show some representative results

from this procedure. Property distributions along the

channel centerline are compared for three different lev-
els of refinement in the streamwise direction. Note that
there is a factor-of-32 difference between the resolution

on the finest grid and on the coarsest. Even so, both the

pressure (Fig. 6) and velocity (Fig.7) distributions agree

very well on all three grids. In order to gain some insight

on why such under-resolution is permissible, consider
the variation of the local Knudsen number, defined as

Kn <Q, =

where Q is the flow property used to define the gradient

scale. Note that the value of this quantity depends both
on the direction under consideration as well as the flow

property being examined. In regions of strong gradients,

this Knudsen number will be large. Fig. 8 shows values

of this local Knudsen number for differing flow proper-
ties and directions. For this plot, the local Knudsen
numbers are shown at the surface. Based on these

results, it is clear that the velocity gradient in the y

direction is much stronger than the pressure gradient in

the x direction. (The velocity gradient in y is also much

greater than the velocity gradient in x ; for clarity, how-

ever, Kn(u,x) is not shown in this figure.) Since the

streamwise direction is not the direction of the primary
flow gradient, it makes sense that a loss of resolution in

this direction will not have a significant impact on the
accuracy of the solution.

This plot also helps make another important point.

As indicated at the beginning of this section, the maxi-
mum value of Knudsen number based on channel

dimension is about 0.05. However, Fig. 8 indicates that

the maximum value of Kn based on gradient length

scales is around 0.5--ten times greater than the value

based on channel dimension. Since the local gradient

scale is the proper length scale to use in Knudsen-num-

ber computation, this difference implies that the degree
of rarefaction present in a microchannel flow can be

considerably greater than that predicted by using gross
overall dimensions.

Of course, reduction in grid resolution will have a

significant impact on computation time. Table 1 lists

measured computation times for completion of 100

steady-state print cycles (10,000 simulation time steps).

Since each of these cases was run on varying numbers

of processors, the figures listed are in terms of node-

hours (CPU hours required multiplied by number of

processors used). There is a factor-of-36 difference

between the execution time on the fully-resolved grid
and the CPU time on the coarsest grid used. Each of the

solutions shown here was obtained using a total of 1,000

print cycles. Thus, the coarse-grid solution requires less

than 1/30th the overall time required for the fine-grid
solution.

Influence of Boundary Conditions

In order to illustrate the significance of correct

boundary conditions on the solution, the coarsest-grid
case was rerun using standard DSMC stream conditions

for the inflow and outflow planes. In order to apply these

conditions, it is necessary to specify an inflow velocity.
Based on the results shown above, a value of 20 m/s was

selected. Fig. 9 compares computed pressure distribu-
tions along the duct centerline for the subsonic bound-

ary conditions and the conventional boundary

conditions. It is obvious from this graph that use of the
physically incorrect conditions results in an erroneous
solution.

Fig. 9 also shows results for this case computed

using the subsonic boundary conditions proposed by
Piekos and Breuer. 7 This plot shows that these results

are virtually identical to those obtained with the bound-

ary conditions proposed here. The agreement for other

flow properties was found to be equally good.

Influence of Initial Conditions

It was mentioned earlier that the analytic Navier-
Stokes solution was used to initialize the flowfield for

the DSMC computations. We would like to determine if

this initialization method biases the final result in any
way. Additionally, it would be instructive to determine

the relative benefit, if any, of starting the DSMC compu-
tation in this manner.

To help answer the first question, the coarsest-grid
solution was rerun beginning with a uniform initial con-

dition. Such an initial state is commonly used in DSMC
computations. Fig. 10 compares this result with the

result obtained with the Navier-Stokes initialization.

Clearly, the two solutions are very similar; examination

of other flow properties indicated that the differences
between two results are well within the statistical scat-

ter.

Both of the solutions shown in Fig. 10 were

obtained over the same number of steady-state samples.

The number of print cycles to reach the assumed steady-
flow state was also the same for each run. Therefore, the

only savings afforded by the Navier-Stokes initialization

lies in the use of fewer initial particles (when initializing
with a uniform flow, no account is made of the decreas-

ing density through the channel). However, it may be

possible to start steady-flow sampling earlier than sug-
gested by the transient-flow analysis described in the
Introduction.

5
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If weexaminethetimehistoriesof themeasured
inletandexitmass-flowratesfortheuniform-initializa-
tioncase(Fig.11),weseethattheinletandexitvalues
"converge"longbeforethetransientperiodisassumed
to beover.In addition,themass-flowhistoriesfor the
Navier-Stokesinitializationcase(Fig.12)shownoreal
variationpriorto thebeginningof steadyflow.These
graphsindicatethatwemaybeableto beginsteady
samplingafterabout200printcyclesfortheuniform-
initializationcase,andonly100cyclesfortheNavier-
Stokesinitializationcase.

Tovalidatetheabovehypothesis(andalsotohelp
answerthesecondquestionposedatthebeginningof
thissection),eachofthecaseswasrerunwiththenum-
berof printsto steadyflowresetto thevalueslisted
above.Figs.13and14compareresultsobtainedusing
theNavier-Stokesinitializationandtheoriginaltran-
sientphaseof 635printcyclestoresultsobtainedwith
theshortenedtransientphases.Theresultsforallthree
solutionsshowexcellentagreement.It thereforeappears
thatshorteningthetransientphaseispermissible,both
whenuniformandNavier-Stokesinitializationtech-
niquesareused.However,it appearsthatsteady-flow
samplingcanbestartedsoonerby initializingwiththe
Navier-Stokessolutioninsteadofauniformstream.

It is importanttonotethattheeffectivenessofthe
Navier-Stokesinitializationismostlikelydependenton
theoveralldegreeof rarefaction,aswellasthemagni-
tudeof theflowvelocity.If thefinalDSMCsolution
departsmoredrasticallyfromthecontinuumsolution
thanin thecaseconsideredhere,therewill almostcer-
tainlybeamorevisibletransientregionbeforetheinlet
andexitmassfluxesconvergeto nearlyequalvalues.
However,basedontheresultsshownhere,it appears
thatmonitoringof themass-flowhistoryto determine
whensteadyflowisestablishedisavalidprocedure.

Forlowermeanvelocities,weexpecttofindgen-
eralconvergencetrendssimilartothosereportedabove.
Thetimerequiredtoestablishconvergenceof themass
fluxesmayincreasesubstantially,though,becauseofthe
evenlowersignal-to-noiseratio.

Overall Performance

Table 2 summarizes the performance benefits real-

ized by reducing the streamwise grid refinement and

decreasing the length of the transient phase of the simu-

lation. These figures indicate that the original case run

(fully-resolved, original transient length) would require

more than 65 days of continuous run time on a single

SP2 processor. For this particular run, 25 nodes were

used, resulting in an actual overall CPU time of about

2.6 days. Of course, the total wallclock time required

was considerably greater (a week or more) because of

queue waiting time.

At the other extreme, the solution utilizing only 75

cells in the streamwise direction and 100 prints to steady

flow would need less than a single day on one node.

Since 8 processors were used for this simulation, less

than 3 CPU hours were actually required to obtain the
results. The total wallclock time for the run is not much

greater, since this smaller job was usually able to run

with little or no waiting. The CPU time could be further

reduced for any of these cases by increasing the number

of processors, but the relative benefit would be

decreased by dropoff in parallel efficiency and increased

queue time.

Concludiw, Remarks

In this work, we have proposed new DSMC

boundary conditions suitable for use in low-speed

MEMS applications. These conditions respect the

proper directions of signal propagation for subsonic

flows, and allow specification of inlet and exit pressures.

Low-speed microchannel computations using these new

conditions yield much better results than when tradi-

tional DSMC boundary conditions are used. However,

the solutions are essentially the same as those obtained

with the boundary conditions proposed by Piekos and
Breuer.

The results obtained from this work also indicate

that it is possible to effect a substantial reduction in the

CPU time required to obtain an accurate DSMC solution

of a microchannel flow. This decrease in compute time

is obtained by increasing the cell size in the x direction

and using the Navier-Stokes initialization to reduce the

time to steady flow. These modifications were shown to

yield a solution approximately 70 times faster (on a per-

node basis) than on a fully-resolved grid using residence

time to gauge the onset of steady flow.

It remains to be seen whether this approach will be

equally effective for higher degrees of rarefaction. In

addition, a factor-of-70 decrease in solution time may

still not be great enough to permit simulation of longer
microchannels in a reasonable amount of CPU time.

Future work should thus be focused on the effectiveness

of this approach for varying Knudsen number, as well as

application to progressively longer channels.
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Tables

Table 1. Timing comparisons for grid refinement.

Number of cells in x Time for 100 steady-

direction (I.t m) state prints (node-hr)

2400 156.7

300 17.03

75 4.329

Table 2. Overall solution times.

Solution Number of CPU time

steady-state (node-hr)

samples

Baseline (fully 36,600 1567

resolved)

Reduce number 36,600 43.29
of cells in x

direction

Shorten tran- 40,000 25.97

sient with uni-

form

initialization

Shorten tran- 40,000 21.65
sient with N-S

initialization
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Figure 1. Microchannel geometry considered in this
work.
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Figure 4. Comparison of Navier-Stokes and DSMC

centerline velocity distributions.
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Figure 2. Comparison of Navier-Stokes and DSMC

centerline pressure distributions.
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Figure 3. Comparison of NavieroStokes and DSMC slip
velocity distributions.
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Figure 5. Comparison of Navier-Stokes and DSMC
wall shear stresses.
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Figure 6. Influence of grid resolution on centerline pres-
sure distribution.
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Figure 7. Influence of grid resolution on centerline

velocity distribution.
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Figure 10. Comparison of pressure distributions for
Navier-Stokes and uniform initialization.
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Figure 8. Comparison of local Knudsen-number values
at the channel wall.
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Figure 11. Evolution of measured mass-flow rates for
uniform initialization.
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Figure 9. Comparison of pressure distributions for new

boundary conditions and standard DSMC boundary
conditions.
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Figure 12. Evolution of measured mass-flow rates for

Navier-Stokes initialization.
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Figure 13. Comparison of pressure distributions for dif-

ferent initializations and transient lengths.
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Figure 14. Comparison of centerline velocity distribu-

tions for different initializations and transient lengths.
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