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Anexperimentalprogramto reduceaircr jet turbulence noise investigated the interaction
of small auxiliary jets with a larger main jet. Significant reductions in the far field jet noise were

obtained over a range of auxiliary jet pressures and flow rates when used in conjunction with an

acousticany lined ejector. While the concept is similar to that of conventional ejector suppressors that

use mechanical mixing devices, the present approach should improve thrust and lead to lower weight

and less complex noise suppression systems since no hardware needs to be located in the main jet

flow. A variety of auxiliary jet and ejector configurations and operating conditions were studied. The

best conditions tested produced peak to peak noise reductions ranging from 11 to 16 riB, depending

on meaaamumt angle, for _ jet mass flows that were 6.6% of the main jet flow with ejectors

that were 8 times the main jet diameter in length. Much larger reductions in noise were found at the

original peak frequencies of the unsuppressed jet over a range of far field measurement angles.

INTRODUCTION AND BACKGROUND

Supersonic jet noise is radiated by tud_ent vdodty fluctuations and _ock interactions in the

plume downstream of the jet nozzle. The goal for many jet noise suppression techniques is to

increase the mixing between the jet and the ambient air or between the jet and a secondary fan stream

so that the length of the high velocity region of the jet is reduced. The mixing techniques usually

result in smaller eddies so that there is a shitt in the source spectrum from low to high frequencies.

However, the ing,_lementation of standard mixers 1for th_ reduction of jet turbulence noise in practical

appl/calions has proven to be a difficult chaUenge because of the mixers' weight, thrust loss and the

complexity of integrating them into a propulsion system (it is desirable that they not be in the jet

stream duringcruise.)

The Phase I study 2 found that both ideally end nonideally expanded supersonic jets

experienced greatly increased mixing under the action of _ jets that were aimed radially toward

the main jet centedine at Reynolds numbers up to 300,000. This occurred for the case of one, two,
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and three auxiliary jet configurations and for auxiliary air jets impinging on either air or helium main
jets.

In the present study the objective was to measure noise suppression due to auxiliary jets

operating with an ejector suppressor at main jet Reynolds numbers above 600,000 to more closely
simulate full-scale turbulent phenomena. The basic arrangement is shown in Fig. I with the auxiliary
jets entering through the ejector suppressor shroud. The auxiliary jet exits have also been placed flush
with the ejector walls, and other locations for the _ jet nozzles could be used. Basically the

auxilia_ jets take the place of mechanical mixers in other designs for ejector suppressors. The
auxilialyjets can potentially lead to a lighter wdght, lower drag system since no hardware needs to

be positioned in the main jet stream. Since mixing is produced by the auxiliary jet fluid instead of
hardware, complexities due to stowage after take-off are greatly reduced, if not eliminated. The

magnitude and characteristics of the mixing effect are easily controlled by varying the auxiliary jet
flow rate and pressure.

Much of the work in the literature on jet interaction has treated the problem of a small jet
entering into a large uniform stream through a side wail with the main interest being mixing of the
small jet with the larger stream. Injection of subsonic jets into subsonic confined flows was studied

by Rudinge_, with the momenaun flux being the determining parameter for the penetration distance
of a small jet into a larger flow. For injection of nonideally expanded, supersonic jets into supersonic
flows, mass flux was reported to be the important parameter 4. Jet penetration changed little as
pressure was raised and diameter reduced to hold mass flow constant.

A physical description of the above interaction for subsonic flow is given by Durando s who
models jet injection into a cross flow by the formation of counter-rotating vortices. The transverse
force introduced by the jet is analogous tO a lift; and-lift over a finite span results in axial vorticity in

the same manner as the formation of trailing vortices beh/nd a wing. Broadwell and Briedenthal s have

performed water experiments on jet injection into transverse streams that quantify the enhanced
mixing due to this jet induced vortex system.

Shaw 7 and Walked su_y used auxiliary jets that intersected the main jet at a shallow

angle to reduce shock tone noise fi'om two nearby interacting main jets.

Reeder and Zaman 9 found a small effect on jet flow mixing due to injection by a single
auxiliary jet through the main jet nozzle wall.

The most relevant work in the literature for our case is that of Davis x°who investigated the
injection of two opposed radial jets into a main jet for subsonic flows. Although his study was

motivated by noise reduction, no noise measurements were taken. The present study extends this
work to supersonic jet flows and performs noise measurements.

From the point of view of fluid mechanics the unique aspect of our approach is that a
relatively small flow stream, the auxiliary jets, is used to enhance the mixing between two larger flow

2
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streams: the main jet and either the ambient environment through which the plane flies or a secondary

fan air stream. The mvdliary jets improve the mixing between the main jet and the stream surrounding

it in a manner similar to the action of mechanical mixers, but allow easier control of the mixing

process without requiring mechanical parts to be in the hot exhaust stream. The amount of

momentum that is supplied by the auxiliary jets is small compared to the two streams that are being

mixed.

REVIEW OF FLOW RESULTS

Cross-sectional profiles of the total head pressure made in the Phase I program found that a

jet is highly distorted by the interaction of auxiliary jets as shown in Fig. 2. In Fig. 3 shadowgraphs

obtained in the Phase lI program show the _on of an ideally expanded supersonic main jet with

both two and four auxiliary jets which are tilted downstream 30 ° from the radial orientation of Fig.

1. A sideways compression of the flow is displayed for two jets and a rapid spread occurs for four

jets. A typical centefline pressure distribution for the two auxiliary jet case for a nonideally expanded

main jet appears in Fig. 4, and a survey across the flow is found in F'_ 5. From these plots it appears

that significant mixing has occurred at a distance of 3 to 4 main jet diameters from the nozzle exit.

This distance will be important in interpreting the noise results.

EXPERIMENT

Experiments were performed for both ideally and non-ideally expanded flows using main jet

nozzles with an exit diameter of 12.7 mm (0.5 inches). For the non-ideatly expanded case a round

convergent nozzle with a constant area section about 2 D_ in length at the nozzle exit provided a

supersonic flow with a shock wave structure and shock noise. A convergent-divergent nozzle was

alsoconstructedwith nearly shock freeperformance ata Mach number of 1.42.

A Brujel and Kjaer (B&K) Type 4135, 6 mm (1/4 inch), condenser microphone with a B&K

Type 2639T preamplifier was used, and the noise was analyzed with a Stanford Research Systems

Model SR760 100 kHz, real time, FFT spectrum analyzer. A single microphone was traversed at a

distance of 100 main jet diameters from the main jet centerline and at the same height as the jet to

measure noise ranging fi'om angles of 90 ° to 150 ° from the jet inlet. The microphone body was

positioned vertically so that sound waves would travel parallel to the diaphragm face. For this grazing

inddeace angle the microphone response would be independent of the relative position between any

noise source in the jet and the microphone position along the traverse. The microphone was operated

with a normal protection grid. The B&K grid calibration curves were extrapolated to obtain the

response out to 100 kHz.

Tests were performed in an anechoic chamber with dimensions that were 2.7m (9 R) x 2.7m

x 2.4m (8 R) (Fig. 6). The chamber was determined to be anechoic (± 1 dB) from below 1 kI-Iz out

to 100 kHz by measuring the fall-off in sound level with distance from a 3ram (1/8 inch), high



TP-547

subsonic Mach number reference jet. This reference jet's noise was measured prior to each day*s

testing of the larger nozzles to verify that all components of the acoustic system were operating

properly.

Air mpplied by a Worthington air compressor passed on its way to the jet nozzle through, in

turn, a Hankison Model DHS0 desiccant dryer, a 660 gallon receiver tank, a Fisher Model 4160K

pneumatic pressure regulator equipped with a Whisper TITCage, and a high pressure muffler designed

for the project. Separate lines were also connected upstream of the Fisher regulator to the auxiliary

jet supply and to the reference jet, both controlled by individual regulators. This setup is shown

schematically in Fig. 7.

Thrust was measured with an Omega Model LCCA-25 load cell located at the rear of the

nozzle pl_urn chamber. Care was taken to reduce any constraint to motion of the nozzle assembly

against the load cell by suspending the plenum from the ve_dcal air supply pipe which rotated in a ball

bearing as.um3bly near the ceiling. The use of flexible plastic tubing at the inlet to the supply pipe also

reduced the constraint to motioa By recording thrust at similar conditions for a large number of runs

over the course of the program, we estimate that thrust readings were accurate to within _0.5% of

the main jet thrust. Back to back runs are closer in accuracy. Thrust will be reported to the nearest
0.1% since we believe that this shows valid trends.

Noise meamremmts were made at angles of 90 °, 135 °, and 150 ° from the jet inlet to focus

on particular physical mechanisms and characteristics. The propagation of sound through flows

depends on the ratio of the flow velocity U_ to the acoustic phase velocity v_,, relative to the flow

direction, there being no flow effect when that ratio is zero. There should be minimal propagation

effects at 90 ° since that velocity ratio is zero due to the phase velocity being infinite. Thus, noise at

90 ° should depend primarily on the jet turbulence source strength produced by the turbulent

fluctuations. The 135 ° angle is characterized as being close to the jet noise peak angle t. The 150"

ansle, close to the jet exhaust direction, should display the effects of the mean flow on sound

propagation since the velocity ratio U_Vph,,, is close to unity. At low frequencies the propagation

path length through the jet is small relative to an acoustic wavelength, and so the propagation effect

is small for all angles.

Since the Phase I studf found that two opposed _ jets produced significant distortion

of the main jet, the noise was expected to depend on whether the microphone was exposed to the

broad side or the narrow side of the resultant jet. Two measurement modes, Configurations I and

H illusUated in Fig 8, were used to explore this dependence. These two configurations were attained

by rotating the main jet and the auxiliary jets about the main jet axis with the microphone fixed.

The ejectors tested were positioned inside a metal square tube support structure which was

secured to the main jet plenum chamber with rods that were parallel to the main jet axis (Fig. 9). The

inside of the square tube was lined with plywood and then acoustically absorbing foam to create

ejectors with either a square or a rectangular cross-section. Slots were cut in the forward section of

the square tube, plywood and foam to allow arbitrary positioning of the ejector relative to the

4
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auxiliary jets which passed through the slots. For hard walled ejector studies, metal tubes with round

and square cross-sections were inserted inside the square box formed by the plywood and acoustic

foam Several cases were treated for the round metal tube. In the first case the tube extended 1 Dj,,

upstream of the main jet nozzle exit as shown in Fig. 10a. In another configuration slots were cut in

the metal tube to connect with the slots in the support structure (Fig. lOb). In the final configuration

the slots were closed and the entire ejector and support structure were pulled downstream of the

auxiliary jets (Fig. 10c).

Fig. 11 shows various components used in the experiments including both the main jet nozzles

used for the ideally and nonideally expanded flow cases, the ejector support structure, round and

square hard walled ejector linings with slots, a wire mesh screen lining to be placed over acoustic

foam, a tapered ejector inlet, an auxiliary jet injection tube, and a coaxial tube which was placed

directly over the main jet nozzle.

pARAMETRIC DEPENDENCIES

The noise reduction is affected by a number of parameters that describe the ejector and the

auxiliary jets. Table 1 indicates that parameters to be considered for an ejector are: lining, length,

cross-section, area ratio relative to the main jet nozzle, inlet position, and occurrence of slots. Table

1 shows that the _ to be considered for auxiliary jets are: number, pressure ratio, flow rate,

position relative to the main jet and the ejector, and angle. A series of experiments were performed

to determine the effect of variation of these parameters with the prime objective of finding

combinations of the parameters that would minimize noise relative to system constraints. For

example, any practical system would need to minimize thrust losses, auxiliary jet mass flow, and the

shroud length, cross-sectional area and weight while achieving a desired noise reduction goal. Since

any partioular application would have its own set of constraints, the results presented here can only

provide a guide for the direction that should be taken to meet particular requirements.

RESULTS

It will be shown later that noise reduction due to auxiliary jet interaction with an ideally

expandedjet relativeto the baseline case was nearly identical to that for a nonideally expanded jet for
similar test conditions. For that reason we chose to concentrate most of our measurements for only

the case of the nonideaUy expanded jet.

All spectra were plotted as functions of Strouhal number, fDj_U_, to generalize the results.

As used for this study the Stanford Systems FFT analyzer provided 15 one third octave bands with

the actual lower band frequencies ranging from 3.2 to 80 iffIz. Low frequencies are characterized by

the 5 lowest Strouhal numbers, mid frequencies by the next 5, and high frequencies by the 5 largest

Strouhal numbers.

5
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Noise reduction can be achieved without an ejector as shown by the noise results for two
auxiliary jets in Fig. 12. Two anxiliary jets produce signilicant distortion of the maiajet as shown
earlier in the report. At 90" to the inlet axis the major effect of the auxiliary jets is to reduce the

shock noise. Note that the noise of the baseline case of no auxiliary jets and no ejector changes with
microphone orientation due to slight imperfections in the nozzle that affect the shock structure.

Increases in noise with the auxiliary jets on may be due to additional noise generated by the mixing
process between the main and auxiliary jets. The baseline case for all future comparisons will be the

curve with the smaller peak.

Two mechanisms that lead to noise reduction at 150 ° in Fig. 12 are directional shielding of
sound produced by the nonaxisymmetric deformation of the main jet and enhanced mixing between
the main jet and the ambient fluid caused, at least in part, by that same deformation. The shielding
mechanism is evidenced by the difference in sound level at mid and high frequencies for the two main

jet odentatons relative to the microphone. Noise is reduced at these frequencies when the

microphone views the narrow side of the deformed main jet (Fig. 8) and makes an acute angle with
the main jet axis. This leads to a condition of sound wave attenuation based on fundamental
principles for the propagation of sound in fluids. The path length for waves traveling through the

flow is longer than for the undistorted case so that attenuation proceeds over a longer distance.

Noise from the broad side of the jet is increased because there is more surface area for

radiation, and the narrowness in the other direction provides a minimal path length for waves in the

jet that are experiencing attenuation by the flow.

The deformed main jet shape increases the surface area for mixing; and other interactions

such as turbulence production may also enhance the mixing. The reduction in low frequency noise

is a result ofa shortming of the length of the region containing the large scale eddies and a lowering

of the jet velocities there. Note that the low frequency noise reduction at 150 ° is similar in Fig. 12

for both the broad and narrow side microphone positions since the ratio of the path length to the

wavelength is too short for any significant attenuation to occur.

In the case of four auxiliary jets (all four either radial, 0" orientation, or angled downstream)
the deformed main jet must display some greater degree of synunetry than for two auxiliary jets. The
Strouhal munber spocCum for four jets displayed in Fig. 13 is typical of that of a multi-element mixer
nozzle _ since the low frequency noise is reduced and the higher frequency noise is increased. The
increased noise is clearly present at 135" and 150". In this case the auxiliary jets were located 0.25

D_ downstream of the main jet nozzle exit and 0.3125 D_ from the outer surface of the main jet
nozzle.

Tdting the four auxiliary jets in the downstream direction at an angle of 30 ° from their radial

(0") position resulted in nearly identical noise levels compared to the radial jet case at the lowest
measured frequency, slightly greater levels at somewhat higher frequencies and reduced levels at mid
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and high frequencies (Fig. 13). The only other case to be treated with angled auxiliary jets is for a

lined ejector, which will be discussed later.

B. Hard Walled Eiectors

Since the effect of an ejector with the auxiliary jets off was small compared to the case of the

auxiliary jets on, we only report the latter cases. This was true whether the ejector was acoustically

lined or hard walled.

Ftg. 14 displays the effect of hard walled ejectors with 4 radial auxiliary jet flows. An ejector

consisting of a simple round tube (Fig. 10a) produces significant noise reduction except at the lowest

fiequencies. The ejector tube's inside diameter is 2 D_ and it extends 8 Dja downstream and 1 Dja

upstream of the main jet nozzle exit.

2. Slots

In an attempt to increase the mixing efficiency, slots were cut in the ejector wall so that

additional external air could be drawn into the ejector (Fig. 10b). Without slats strong recirculation

regions would be formed that could limit the mount of the auxiliary jets' linear momentum that

would reach the main jet flow.

Experiments were performed to examine the effect of slot position and length. One experiment

used 0.375 D_ wide slots that were cut through the ejector inlet and extended from there to the

auxiliary jet tubes, a distance of 1.25 D_. For a _econd experiment the slots upstream of the

jets were taped over and the slots corainued a distance of 1 D_ downstream of the auxiliary jet tubes.

In the third experiment both the upstrea m and downstream slots were open. A final experiment had

a square cross-section hard walled ejector with upstream dots similar to those of the round tube case.

The effect of slots on lined ejector performance will be described shortly.

The unslotted tube results are compared with the upstream slot case in Fig. 14. This

particular upstream slot configuration with 5.6% auxiliary jet mass flow will be denoted as the

standard slot case. The open area of these slots is about 2.4 times the main jet nozzle area and 60%

of the ejector inlet area. The standard slot case clearly produces less low frequency noise than the

unslotted case.

The standard slot case gave the largest noise reductions with greater consistency then the

other configurations as seen in Fig 15. A square cross-section metal ejector the same overall length

of the tube and with slots the same length as the standard slot case was substituted for the round

cross-section ejector and produced similar results, as shown in Fig. 15. The square cross-section was

1.875 Dn on a side and had a cross-sectional area 4.47 times that of the main jet's compared to 4 for
the round tube.

7
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3. Increased Flow Rate

The effect of increased auxiliary jet flow rate was tested by raising the total pressure ratio

from 3.72 to 4.4. Fig. 16 compares the noise of the standard slot case with the same slot geometry

at the higher flow rate of 6.6%. The higher flow results in significant improvement except at the

lowest frequencies.

4. Elector Position

To study the effect of a different ejector inlet location, the slots were covered with tape and

the entire ejector was moved just downstream of the auxiliary jet tubes with the auxiliary jets fixed
relative to the main jet nozzle as in Fig. 10c. Thus, the new ejector began more than 0.5 D_

downstream of the main jet nozzle.

H8. 17 compares the higher flow rate cases for the downstream tube and the slotted tube both

at the higher flow rate of 6.6%. The downstream tube case compares quite well with the slotted case

except at low frequencies and at 150 ° .

C. Lined E iectors

Since reslistic ejector-suppressors utilize acousticany absorbing _ experiments were
performed with a commercial urethane foam, bulk material which absorbed sound over a wide

frequency range. Square and rectangular cross-section ejectors were used for all of the fining tests

since the straight sides simplified installation of the sound absorbing foam material, which was

attached to the inside of the ejector shroud with double-sided tape. Although there may be some

differences if an acoustically lined circular cross-sectioned tube had been used, we note that there was

virtually no difference in the results for round and square cross-sections for the hard walled cases.

1. Slots

Results are shown in Fig 18 for a smooth 0.5 Dja thick foam lining (the unslotted case) in an

8 Djt long ejector with a square cross-section, equal nozzle and main jet pressure ratios of 3.72 and

a total auxiliary jet mass flow of 5.6%. Wilh slots in the ejector shroud and foam, the corresponding

curve in Fig. 18 shows substantial noise reduction in the mid and high frequency regions. The low

frequency sound reduction becomes less effective compared to the unslotted case as the observation

angle approaches 90 ° .

Covering the slotted foam with a wire mesh screen (100 mesh, 30% open area) improves the

low frequency perfommm:e without severely decreasing the high frequency characteristics as seen in

Fig. 18.
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2. Anted Auxiliary_ Jets

Experiments were performed with square and rectangular lined ejectors and 4 auxiliary jets
tilted at an angle of 30 ° from the radial position with a component in the main jet flow direction. For
the square ejector case, Fig. 19 shows that the radial jets produce lower noise than the 30 ° jets except

for the lowest frequencies.

3. Rectangular Ejector Orientation

When the ejector has a rectangular cross-section, the mid frequency noise is reduced if the

narrow side of the ejector is viewed by the microphone as shown in Fig. 20. This is similar to the

case shown in Fig. 12 where the noise viewed from the broad side of the jet, caused by deformation
by a two auxiliary jet system, was greater than the noise from the narrow side. However, an
additional mechanism may be an interaction of the jet flow with the ejector itself For example, noise

produced by the interaction of turbulence with the ejector edges would be larger for the broad side
orientation since there is a wider edge that is viewed. A mechanism for noise production is the edge

noise phenomenon .1.

4. Lined Ejector Lenmh

The effect of lined ejector length on noise reduction is shown in Fig. 21 for a rectangular
cross-section ejector and two auxiliary jets operating at NPR=2.14 and a masslflow of 5.6% of the

main jet's. At an ejector length L,j to main jet diameter D_ the suppression has basically disappeared
at the two higher angles and only exists in the mid frequency range at 90 ° .

5. Eiector Shield Extension

In Fig. 22 the case of an ejector with L ._/D_--10 is compared with a device of the same total

length made up of a shorter ejector with L ._/I)_=4 followed by a planar shield between the jet and

the microphone which is 6 D_ long and 12 D_ wide. The combination has good performance rela-
tive to the long ejector for the two smaller angles, but reduced performance at the largest angle.

D. Short E iectors

The basic noise measurement program was concluded by finding the noise from an ejector

that extended four main jet diameters downstream of the nozzle exit, half the ejector length for
most of our studies. The main jet was kept at the same mass flow with NPR=3.72. The four

auxiliary jets were operated at the higher flow rate of 6.6% of the main jet's, corresponding to
NPR=4.4.

The results in Fig. 23 compare the cases of long and short slotted tubes at the same auxiliary

jet flow rate. Depending on the measurement angle and the frequency, roughly half of the long

tube's noise suppression is lost when the ejector length is halved. The case of a short downstream

9
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ejector tube operating at the same flow conditions has characteristics similar to that of the short

slotted tube as shown in the same figure.

Meamremen_ were taken with a short square cross-section hard walled ejector at the same

flow conditions. However, compared to the round tube case there was no demonstrated

improvement in the noise in the mid or high frequency ranges, and the noise reduction was

diminished at low frequencies.

When results for a short square foam lined ejector at the same flow conditions were

compared to the round hard walled tube, there were slight improvements at high frequencies (but

little or no improvement relative to the baseline case), little change at mid frequencies, and a 2 dB

increase in the noise level at low frequencies.

E. Ideally Exnanded Jet Nozzle

Experiments were carried out at NPR=3.24 with a convergent-divergent main jet nozzle to

achieve an ideal expansion. Noise suppression was measured relative to the convergent nozzle

operating at the above pressure ratio. Since the convergent nozzle's throat is a tittle larger than the

convergent-divergent nozzle's, the baseline values are high by about 0.75 riB. Results are shown in

Fig. 24 for the noise due to the convergent-divergent nozzle operating in a lined rectangular ejector

for separate cases of two and four anxiliaryjets.

A comparison of the amount of suppression attained for the convergent nozzle and the

convergent-divergent nozzle is displayed in Fig. 25. The spikes seen in the convergent-divergent

nozzle curve are due to corresponding variations in the baseline nozzle results at that pressure ratio.

Thus, the incorporation of an anxiliary jet system with a convergent-divergent nozzle does not lead

to any marked difference in the noise suppression. The major advantage is in the thrust performance
which will be discussed later.

F. Parametric Trends

1. Momentum Dependence

An assessment of the dominant parameters was made by considering the mid frequency

range as being the most important one since the peak noise is often found in that range. Data for

lined rectangular ducts were examined for both two and four auxiliary jet systems. Noise

suppression is plotted in Fig. 26 as a function of_e percentage of auxiliary jet momentum relative

tothe mainjetfor the three measurement angles reported and an ejector length equal to 8 D_. The

data is nearly linear in mass flow at all the angles with the curve for 90 ° passing through the zero

mass flow, zero suppression point. While the other curves must also eventually reach that zero

point, they appear to intersect zero suppression at a finite mass flow. Thus, there must be a

nonlinear region.

10
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A more detailed picture is provided by looking at the complete spectra of Fig. 27 for the

cases corresponding to the two highest values of momentum in Fig. 26. The mount of noise
suppression is close except for one region. While the momenta are nearly the same, the mass flows

and pressure ratios are vastly different, one corresponding to subsonic and one to supersonic flow.

2. Ejector LenTh

The effect of ejector length is shown in Fig. 28 for the mid frequency range and in Fig. 29
for the high frequency range. Data for the low frequency range are not shown because we believe
that they are strongly influenced by a noise generating interaction with the lining. The results show

that noise suppression requires a minimum length of lining before it can lead to a net noise reduction
except for the 90 ° mid frequency case which appears to provide increasing suppression as the

ejector is increased from zero length.

3. Other Jet Confibmrations

An assessment of the mixing capabilities of other auxiliary jet configurations was studied by
examining shadowgraphs of the effect on the overall shock structure. In addition to the angled jets

the case of two vertical opposed jets at one axial location and two horizontal opposed jets at a
second downstream location was studied. However, the amount of noise suppression was much
smaller than that for the other cases.

Additional variatiom in auxiliary jet location were tried. Moving the auxiliary jets short

distances upstream or downstream made tittle difference in the noise levels. Moving the jets radially
outward so that they were flush with the ejector wall reduced the noise suppression by up to 1 dB
in certain frequency ranges.

G. Th_st

Optimization of thrust was not a prime objective of this program because of the di_Sculty in
producing low drag shapes for all the components used at the small scales of the tests. The major

emphasis was on noise reduction techniques and the construction of hardware that would facilitate
the rapid variation of components to test ideas for increased noise suppression.

However, thrust was recorded for most of the noise tests, and there were definite trends that

will be reported. The structure that was used to house end support the various ejectors studied in

the noise tests, had an overall square cross-section, 8 Dja on a side. This entire cross-section was
generally closedoff to air flow except for the middle where the ejector was located.

The effect of the ejector, the support _cture, and the mixing processes are summarized as

follows. Ambient airflow that is drawn into the ejector experiences reduced pressure as it moves

and accelerates over the front surface of the ejector and the support structure. This reduced
pressure leads to a thrust. On the other hand the air flow that leaves the ejector entrains additional

11
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ambient air which travels from the upstream side of the support structure to its downstream side.

This airflow would be expected to separate from the downstream side of the support structure,

leaving a lower pressure region that results in drag (so-called "boat-tail" drag) that acts counter to

the thrust generated at the ejector entrance. In addition, there is internal friction drag due to

airflow within the ejector. Changes in the cross-sectional area of the ejector can be made to further

increase thrust, but this was not pursued.

Thrust measured for the baseline case of no ejector, no support structure, and no auxiliary

jet operation was used as the standard of comparison. With a square cross-section metal ejector

lining having an area ratio of 4.47, operation of the convergent nozzle with the auxiliary jets offled

to a thrust increase of 1.5%. With four radial auxiliary jets operating with a mass flow of 5.6% of

the main jet's, the thrust decreased 1% relative to the baseline. For a round ejector tube the thrust

increased by 0.7% without auxiliary jet operation, and it is decreased by 1.6% with them on.

Operation with the foam lining in a square ejector decreased the thrust by 1.7% without auxiliary

jets and by 14.3% with them. When the wire screen was placed over the foam, the thrust was

reduced by 1.1% with the jets off and by 7.1% with them on. Thus, the screen greatly reduced the
thrust loss.

An interesting test involved the installation of a coaxial tube that fit snugly over the main jet

nozzle and extended downstream of it. The auxiliary jets entered through the side wall of the

coaxial tube at a point downstream of the main jet exit. Thrust with the auxiliary jets off resulted in

a 2.5% thrust loss and operation with them on produced a lower loss of 0.6%. This condition was

not pursued because the noise suppression was negligible.

When the four auxiliary jets were angled downstream at 30 ° from the radial direction, the

thrust was increased by 2.2% with no ejector or support structure in place. When a lined

rectangular ejector was installed, the thrust was decreased by 5.3% when the angled amdfiary jets

were used. Thus, the thrust loss for the angled jets was significantly smaller than the 14.3%

experienced for the radial jets. We would expect the thrust loss to be smaller if the angled jets were

used with wire screen over the foam lining, but thrust measurements for this case were not taken. A

specially shaped inlet (a cone with a 30 ° half angle) increased the thrust but produced excessive low

frequency noise.

The most significant increases in thrust occurred for the high pressure, higher flow rate

cases of 6.6% of the main jet's flow with the round, hard walled ejector located downstream of the

radial _ jets. Here the thrust increased 3.9°/6 with the jets off and 2.9% with them on. When

the ejector was shortened, the thrust increased by 2.3% relative to the baseline case for both the

auxiliaryjets on and off.

These results and results for other cases are summarized in Table 2.
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DISCUSSION OF RESULTS

A. Mechanisms

The preceding results have shown that hard walled linings can greatly reduce low frequency
noise while acoustically absorbing foam performs best at higher _equencies. We next hypothesize
that an ideal lining may be found possessing the properties of hard wall ejectors for low frequencies

and the properties of foam tined ejectors at higher frequencies. The spectra for such a lining are
plotted as the composite curve in Fig. 30 by using the lower of the values at each frequency from
the case of the hard wafted, dotted tube (Fig. 14) and the case of the foam lined, slotted box from

previous examples (F_ 18). In these cases there are four radial auxiliary jets with a total mass flow
of 5.6% of the main jet's operating at the main jet pressure ratio and the ejector length is eight times

the main jet diameter.

The composite curve is plotted in Fig. 30 along with the results for an earlier test in which
the foam lining was covered with a wire mesh screen. The screen provides enough flow resistance

to improve the low frequency performance of foam liners while not sacrificing much in terms of
their high frequency performance. Thus, some other combination of sound absorbing and flow

resistive materials may result in values closer to those of the composite curve.

A problem arose in assessing the noise reduction potential of the higher flow rate auxiliary

jets (6.6% of the main jet's mass flow) because data had been obtained for only the hard walled
ejector case. To generate an estimate for the lined ejector case similar to that used to generate Fig.
30, we simply lowered the noise curve obtained with a slotted foam lining at 5.6% mass flow in Fig.
18 by the improvement found between the 6.6% and 5.6% hard walled cases in Fig. 16. A new
simulated composite curve, shown in Fig. 31 was formed from the lowest noise levels of the

corrected lined ejector curve and the measured hard wali ejector curve at each frequency.

The potential for large reductions in jet turbulence noise has been demonstrated. This has
been accomplished with auxiliary jet mass flows on the order of 5.6 to 6.6% of the main jet mass
flow and ejector lengths that are 8 times the main jet diameter in length from the main jet nozzle exit

to the ejector exit. The total length of the ejector, including the portion that extended upstream of

the main nozzle exit, is 9 D_.

The noise reductions for the best cases at 5.6% and 6.6% mass flows are summarized in

Table 3. The largest reductions occur at 90 ° and 150 °. The baseline noise at 90 ° contains a
substantial amount of shock noise which is easily eliminated by the auxiliary jets. The large

reduction in the low frequency noise at 150 ° is indicative of good mixing. The major difference

between the 135 ° and 150 ° cases is that the phase velocity v_,, in the main flow direction is

smaller at 150 ° so that the ratio of U_V_h,,, is larger. For larger values of Uj,, typical of real jet
engines this ratio would also be larger at 135 °. Thus, we might expect to find more noise reduction
in that case.
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Alternatively, there are other approaches that can be taken. For example, it has been shown

that a similar amount of noise reduction can be achieved at lower auxiliary jet pressure ratios if the

total mass flow is increased to maintain the same momentum. The choice would depend on the

details of the engine cycle.

B. Hardware Considerations

It is also clear that the mid and high frequency noise can be substantially reduced by making

a long enough lined ejector. However, the hard walled ejectors can be quite effective for the low

frequencies and portions of the mid frequency range, especially if the auxiliary jet mass flow is

increased. For the cases studied here, it appeared that lined ejectors needed to extend more than

4Dj,, downstream of the main nozzle exit to make effective use of the lining. For hard walled

ejectors, with auxiliary jets operating at the highest momentum flow, the suppression at low and

mid frequencies seemed to scale roughly with the ejector length. Thus, the suppression for an

ejector that is 4Dja long is about half of that for an 8D_ ejector.

The above discussion on ejector length effects is directly related to duct propagation and
radiation characteristics in addition to consideration of the noise source location. In addition to

sound absorption by the foam lining there is also sound attenuation in the hard walled ejectors due

to the cutoff phenomenon TM. These explanations are consistent with the linear dependence of

suppression in decibels with ejector length.

Details concerning the design of the ejector inlet shape and location can have an important

effect on the low fiequency noise. We view reductions in low frequency noise as being indicative of

the overall degree of mixing achieved by the auxiliary jet/ejector combination. The greatest low

frequency reduction was achieved using slots in the upstream portion of the ejector. The slots may

be beneficial for more than one reason. First, the area for entraining ambient air is increased.

Secondly, the absence of a wall at the slot position may allow deeper penetration of the auxiliary jet

flow into the main jet since a wall would impose a boundary condition that would require a

recirculating flow region. Finally, any vortices shed from the slot edges would increase the mixing

process.

The slotted ejector might have more potential than we have found. This is because we have

not studied variations in slot width, which could lead to increased mixing. Limitations caused by the

airflow path through the current slots may limit the amount of air entrained since air that passes

through the slots must also pass through slots in the support structure that are 2 Dja in depth (Fig.

10b). A more realistic open ejector could lead to greater mixing for the slot case.

The use of a more downstream location for the ejector is a viable alternative. This is

especially true when a lined ejector is used because the lining provides additional mid frequency

suppression. Pros and cons that must be weighed ifa downstream location for the ejector is to be

used are a pore'hie loss of suppression at angies less than 90 ° to the engine inlet axis vs an increase

in thrust. However, one reason why this downstream location might be effective in suppressing
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noise at small angles is that complete mixing does not occur for some distance beyond the main jet

nozzle exit. In this ease the noise generated by strong mixing is contained within the ejector even

though there is and open gap between the main jet nozzle and the ejector.

One advantage of an auxiliary jet system is that the main nozzle can be designed to provide

oplinmm thrust through the use of a convergent-divergent nozzle to produce ideally expanded flow.

Computations we performed showed that there is a wide range of nonideal pressure ratios for

which a convergent-divergent nozzle can be operated and still maintain substantial improvements

over a convergent nozzle. One obtains degraded performance for a convergent-divergent nozzle

only when operating at supersonic pressure ratios well below the design pressure ratio.

CONSIDERATIONS FOR FUTURE APPLICATIONS

The current experiments were carried out with an unheated jet flow that limited the ideally

expanded main jet velocity to 1400 flJs (427 m/s). Work with other types of noise suppressors

often shows a trend of increased noise suppression with increasing jet velocityL While we don_t

know how suppression based on the auxiliary jet interaction will behave at higher velocities,

experiments at higher velocities could demonstrate that even greater amounts of suppression are

possible. Higher velocities would be achieved with a heated jet facility.

Perhaps the biggest problem in terms of implementation of the concept is the length of the

ejector required to attain large amounts of suppression. The ejector length could be shortened by

having an engine exhaust split into more than one nozzle (although this would increase the

hardware complexity that we are trying to avoid) or by going to a rectangular nozzle with the

characteristic dimension for mixing being the short side of the nozzle. Since practical engine

installations have a centerbody plug at the engine exhaust, the annular jet flow over the plug has a

thickness which is much smaller than the jet radius without the plug. The plug effect is also utilized

in some current design mechanical flow mixers and noise suppressors.

While we don_ know the result of auxiliary jet interaction with the flow passing over a plug,

we would expect that it would be quite strong since the plug surface would require those portions

of the main jet flow in contact with the auxiliary jets to move away from the plug. In this ease the

characteristic dimension would be the actual flow thickness so that a shorter ejector could be

utilized. The increased interaction would increase the mixing rate, also allowing a shorter ejector,

or enabling the use of lower mass injection rates.

Other possible variations would include injecting some of the auxiliary flow outward from

the plug wall and using auxiliary jets with a time-varying mass flow.

One parameter that was not fully studied was the ratio of the ejector area to the main jet

nozzle area. All of the values studied were large, e.g., greater than 4. The use of a smaller area

ratio would make sound waves hit a lined ejector wall at a shorter axial distance so that a shorter
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ejector would achieve the same amount of sound absorption as attained by a longer higher area ratio

ejector.

Another option that we did not pursue fully was the use of angled jets. In the case of no

ej or the angled jet suppression was comparable to that of the radial jets except for the high

frequencies where the angled jets produced less noise than the radial jets. The angled jets also

yielded relatively good results for the lined jet case. Another advantage is the improved thrust since

a component of the auxiliary jet momentum is directed along the main je L axis. An interesting

combination would be using angled auxiliary jets directed into an ejector at a more downstream

location. In this way one might benefit from additive thrust effects of both configurations.

An aircraft systems problem that must be addressed to make the use of auxiliary jets
practical is obtaining sufficient airflow to supply the auxiliary jets. Work is currently being

performed to seek means to utilize onboard sy_ems to provide air for injection into the engine

nozzle to provide flow area ratio control and thrust vectoring is. Full scale engine tests have been

performed to supply engine air for aerodynamic control 14.

CONCLUSIONS

A novel method that uses auxiliary jets to mix a main jet flow with the ambient air has been

combined with ejector technology to achieve significant reductions in jet turbulence noise.

Auxiliary jet momentmn flow is a key parameter that detemfines the amount of suppression.

For hard walled ejectors, the suppression is roughly proportional to the ejector length with

the major suppression ocoarring in the low and mid frequency ranges.

For lined ejectors, suppression in the mid and high frequency ranges requires a minimum

ejector length before the lining is effective.

A variety of details about the ejectorshape and location control the low frequency noise

suppression of hard walled ejectors. A basic requirement for effective noise suppression is a

capability to entrain sufficient air into the mixing region. This applies as well for lined ejectors

where ejector slots reduce the noise level for the mid and high frequency ranges.

Angled auxiliary jets can produce significant amounts of noise suppression while either

increasing the thrust or reducing thrust losses.
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Variables

Lining

Length

3ross-SecUon

_rea Rato

TABLE 1

EJECTOR

SYSTEM PARAMETERS STUDIED

AUXLIARY JETS

Range

Hard wall
Foam
Wire mesh screen over foam

4to 12 D_
No ejector
Round
Square
Rectangular
4to 10.7

Inlet Position 1Diet upskeam
Downstream of auxiliaryjets

Modifications Slots
No slots

Variables

Number

NPR

% Main Jet Flow

Position

Angle

Range

2 and 4

1.69 to 4.4

5.6 to 8.1

A)dal: 0.125 to 0.375 D_
Radial: 0.125 D_ from nozzle
outer wall to flush with ejector
wall

,-30
0 (radial)
:30
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TABLE 2 THRUST DEPENDENCE ON GEOMETRY AND AUXILIARY JET FLOW
Thrust Changes Relative to Baseline Case

All au)dliaryiet flows 5.6% unless otherwise noted
EJECTOR AUXILIARY JETS

On/Off Lining Cross-section Angle On/Off Other Features

off _ "***"***"*** 30 on ***----"

off '***** "'********_ 0 off coaxial tube*

off "*"** '--**"**"--* 0 on coaxial tube*

on foam rectangle 30 off "*'**"***

on _foam rectangle 30 on ***********

on bfoam square 30 off ***"**"

on foam square 30 on ***********

on foam square -30. off

on roam square -30 on ***"--"

on roam square 0 off "*--"--"

on roam square 0 on ***"**"**

on screen over foam square 0 off iupstream slots

on screen over foam square 0 on upstream slots

on metal square 0 off upstream slots

on metal square 0 on upstream slots
on metal round 0 off no slots

on metal "ound 0 on no slots

on metal round 0 ioff shaped inlet
on metal round 0 Ion shaped inlet

on metal round 0 off upstream slots

on metal round 0 on upstream slots

on metal round 0 off long slots

on metal round 0 on long slots

on metal round 0 off upstream slots**

on metal round 0 on upstream slots"

up_eam slots, short
on metal round 0 off tube"

upstream slots, short
on metal round 0 on tube"

on metal round 0 off downstream tube**

on metal round 0 on downstream tube**

on metal round 0 off short downstream tube**

on metal round 0 on short downstream tube"

*Tube extension over main jet nozzle
"Auxiliaw jet mass flow=6.6% of main jet

%THRUST

INCREASE

2.2

-2.5

-0.6

-1.9

-5.3

-1"2

-10.1

-2.2

-20.2

-1.7

-14.3

-1.1

-7.1 _

1.5

_.

0.7

-1.6
4.4

1

-1.5

-3"2

-1.3

-2.1

0.2

-2.5

1

-0.6

3.9

2.8

2.3

2.3
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TABLE 3 COMPARISON OF NOISE REDUCTIONS

PvticrophoneAngle to Jet Inlet

Composite Case* ;
Screen over foam"

High flow simulation**

* Auxiliaryjet mass flow = 5.6% of main jet
"Auxiliary jet mass flow = 6.6% of main jet

Peak to peak noise reduction, dB
90 135 150

18.3 10.3 162

16.3 7.5 132

19.1 11.1 16.3

OASPL noise reduction, dB
90 135 150

14.9 9.5 15.8

13.4 8 13.5

16.5 11 16
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Main jet nozzle _
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/
Fig. 1 Ejector Suppressor with Auxiliary Yet Mixing

L

-8

m

-1-

t

-6

9_-29

Auxiliary Jlet Direction DTOTAL/PPLF_aNIj M

-r'r-_-- 1/0.38
d.

!111 I_/.J I I I I i I I [ I t i I I V___-_°-32

J
t

_ u

! L I i i 1 1

-4 -2 0 2 4 6 8

y/K

Fig. 2 Measured Total Pressure Contours for an Underexpanded Air Jet
x/K-- 10

Main jet NPP,. ffi 4.47

2 Auxiliary Iets with NPR = 4.1

Auxiliary Iet Mass Flow ffi 7.7% of Main Yet
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Airflow into slots

\ "-,,

::::::::::: Inner square tube

Sp ee

(one of four spacers shown)

Foam is exposed when inner tube is absent

a. Assembly Sketch of Ejector

b. View of Plenum, Main Jet, Ejector, Auxiliary Jets

Fig. 9 Experimental Hardware
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Open slots /_IWood

_._Urethane foam

Metal tube

I
b. Ylow through upstream slots
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._Wood
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Metal tube

c. Downstream ejector

Fig. I0 Various Configurations for Ejector Support Struem_

°
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Fig. 12 Eff_-t of Anxiliary Jet Orientation Without an Ejector
Main Jet NPR = 3.72

2 auxiliary jets with NPR = 2.37

Auxiliary jet mass flow = 6.2% of main jet
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Effect of Auxiliary Jet Angle without an Ejector

Main jet NPR = 3.72

4 auxiliary jets with NPR = 3.72

Auxiliary jet mass flow = 5.6*/, of main jet
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5

STRO_ NUMBER, fDj_Sj_

Fig. 14 Range of Effects with and without a Hard Wailed Ejector

Main jet NPR ffi 3.72

4 auxiliary jets with NPR = 3.72

Auxiliary jet mass flow = 5.6% of main jet
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135"

150 °

STROUHAL NUMBER, fDj,t/Uj, t

Fig. 15 Effect of Different Types of Ejector Slots

Main jet N'PR = 3.72

4 auxiliary jets with NPR = 3.72

Auxiliary jet mass flow = 5.6% of main jet
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Effect of Auxiliary J'et Mass Flow on Slotted Tube Ejector

Main jet NPR = 3.72

4 auxiliary jets
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Fig. 18 Effect of Liv.ing Details for Square Ejectors
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