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Standard methods of structural dynamic analysis assume that the structural characteristics are deterministic-
Recognizing that these characteristics are actually statbtical in nature, researchers have recently developed a
variety of methods that use this information to determine probabilities of a desired response characteristic, such
as natural frequency, without using expensive Monte Carlo simulations. One of the problems in these methods

is correctly identifying the statistical properties of primitive variables such as geometry, stiffness, and mass.
We present a method where the measured dynamic properties of substructures are used instead as the random
variables. The residual flexibility method of component mode synthesis is combined with the probabilistic methods

to determine the cumulative distribution function of the system eigenvalucs. A simple cantilever beam test problem

is presented that illustrates the theory.

Nomenclature

b = boundary degrees of freedom

[C] _ = correlation matrix of random variables in
substructure a

g = limit state function

i = internal degrees of freedom
k = number of kept modes per substructure

[L]_ = Cholesky decomposition of [C] a
N = total number of degrees of freedom

per substructure
p = total number of substructures

pj = probability of failure
p(x < X) = probability that x is less than X
{u} = vector of uncorrelated standard normal random

variables

X = vector of random variables

X" = design or most probable point

{x} = vector of correlated normal random variables

(x}' = vector of correlated standard normal random
variables

a = substructure number

Introduction

TRUCTURAL analysts have always known that the parametersof the system being modeled are not deterministic, because of
manufacturing tolerances, material deviation, and other factors. Un-
til recently, the primary way to deal with this knowledge was to use
safety factors, which are qualitative and based primarily on experi-
ence. In an effort to take account of these variations in the structural

parameters in a more quantitative fashion, significant research has
been performed to develop methods to actually use the statistical
characteristics of the input quantities in the analysis to generate an
output value that is also described statistically. Monte Carlo (MC)
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simulations can be performed to calculate these probability distri-

butions, but up to a million runs are required for accurate results.

Approximate techniques have therefore been developed that require
several orders of magnitude fewer calculations than MC techniques.
One such method, the fast probability integration (FPI) method, _

has recently been implemented in a new probabilistic finite element
code, NESSUS. 2

Numerical analyses of structural vibration generally use the finite
element method (FEM) as the basis for obtaining free and forced

response characteristics. A frequent problem when using the FEM
is that, for large models composed of many substructures, the num-

ber of degrees of freedom (DOFs) is so large that the computational
costs are prohibitively expensive for eigenanalysis. This problem is

particularly relevent when using probabilistic techniques, because

the eigenanalysis has to be repeated many times. The favored so-
lution method in industry for the deterministic situation is to apply

dynamic component mode synthesis (CMS) methods, which sub-

stantially reduce the DOFs for the system model.
This paper defines a procedure for combining CMS with proba-

bilistic methods to obtain the statistical characteristics in an efficient

manner. These characteristic are summarized in the form of the cu-

mulative distribution function (CDF). The procedure makes use of
statistical distribution information of each substructure's dynamical

modes and residual flexibility, which are available from experimen-

tal data. This information is synthesized into a system model using

the residual flexibility method of CMS, and the statistics of the sys-

tem dynamic characteristics are obtained using FPI. An advantage

of this method over existing probabilistic structural analysis meth-

ods is that, in many cases, the statistics of the substructure dynamic
characteristics may be easier to determine than those of primitive

random variables (RVs) such as geometry, material stiffness, or den-

sity. In addition, these statistical dynamic characteristics completely

incorporate all random factors in the structure. This is virtually im-
possible to do with primitive RVs such as thickness or density, since

they are in reality random fields, varying over the entire structure.
Final development of the method should allow probabilistic meth-

ods to be applied to much larger models than previously possible,

such as turbomachinery bladed disks, which are composed of many
almost identical substructures whose structural characteristics can

be described statistically.

Probabilistic Theoretical Background

Research in the field of probabilistic structural mechanics has
concentrated in two areas. The first can be described as perturbation

830



BROWN AND FERR] 831

methods, and the second as reliability methods. The perturba-

tion method, as developed by Collins and Thomson, Kiefling, and

Collins, Kennedy, and Hart, is used to derive an analytical expres-

sion for the mean and standard deviation of structural eigenvalues
and eigenvectors as a function of the derivatives of the mass and

stiffness matrix for each input RV. 3-5 Hasselman and Hart 6 used

CMS to derive analytical expressions for the system, or global,
eigenvalue matrix as a function of the modally reduced substruc-

ture stiffness and mass matrices. This approach is presently being
studied by Mahadevan and Mehta. 7

The research described in this paper employs the reliability

method approach to determining the statistical structural response
characteristics. To review this technique briefly, consider the scalar

limit state function g(X), defined as some value of interest that is
a function of a vector of RVs. Cornell, g using the reliability ap-

proach, developed what would later be called the first-order relia-

bility method (FORM) by truncating the higher-order terms (HOTs)
from the series

g(X) = g(#x) + _ _ (xi -/x/) + HOTs
i=1

(1)

where /Zx is a vector of the mean values of the RVs irt X. This

resulted in the following simple approximations for the mean value

and standard deviation (or) of g:

lz8 _ g(Ixx) (2)

(3)

Hasofer and Lind 9 refined and expanded this method further. They

redefined g as

g (YO = Y (X) - y (4)

where y is a specific value and the performance function Y(X) is

a function of the RVs. This formulation divides the space into two

parts, g < 0 (Y < y) and g > 0 (Y > y). The probability that the
function Y does not exceed the value y is the probability that g < 0.

For example, if y equals an eigenvalue of interest, p(g < 0) will

be the probability that the actual eigenvalue obtained is less than
the one of interest. There will therefore be a limit state function

g for every y in the range of possibility. If the distributions of the

RVs are normal and the resulting distribution of g is normal, then
the following steps can be performed to obtain the probability that

g < 0 (Y < y). First, a transformation of g to standard normal
coordinates Z is made as follows:

z = g(YO - u_ (5)

and if/_, which Cornell termed the safety index, is defined as

/3 = _/a_ (6)

then

P[g(YO < 01 -- p(Z < -/3) = qb(-fl) (7)

where 4) is the CDF of the standard normal distribution function

found in handbooks. Since negative values for/3 are not tabulated,
the relationship

,_(-/3) = l - _(/3) (8)

is used instead to calculate this probability. The complete CDF is

formed by finding the/3 values for all the limit states in the range of

possibility. These values are only accurate, though, for linear limit

states where the RVs have normal distributions. In addition, g could
be formulated differently for some cases, thereby yielding different

probabilities. To provide invariance with respect to the formulation

f(v)

_ g<O g(vl,v2)-O

_ _----_vl

Fig. 1 Joint probability volume of two standard normal RVs.

of g, Hasover and Lind introduced an initial reduction of each of
the primitive normal RVs xl to standard normal RVs vi using

xi -- I.t.xi
vi = _ (9)

o'xi

This transformation allows the new limit states g(V) = 0 to

be plotted in standard normal joint probability space for every

possible y. The joint probability of g < 0 will be the volume un-
der the multidimensional bell-shaped surface over the area where

g < 0. Furthermore, 13 can be shown to be the shortest distance

from the origin to the line g(V) = 0, and the point on the line at

can be called the most probable point (MPP), or design point X',
because that point will have the highest probability of occurrence

of any point along the line g(V) = 0 (see Fig. 1).

The reliability method was expanded by Rackwitz m to multi-

dimensional, nonlinear limit states in which g is an explicit func-
tion of the RVs. Wu and Wirshing z1 developed the advanced mean
value (AMV) method, a procedure for minimizing the number of
iterations needed to obtain the MPP for nonlinear limit states; this

is vital for nonexplicit limit states, such as finite element solutions.
The limit state is approximated as a linear function about the means

of the RVs [F_.,q.(1)], and the partial derivatives are approximately

obtained by numerically differentiating the limit state with respect
to each RV. Values of _ and X* are obtained for each desired limit

state by using the FPI method, which is a compilation of the im-

provements to the FORM made by Wu, '1 Rackwitz) ° and others.

At this point in the procedure, an exact solution for each of the

limit states (usually a finite element solution) is found by plugging
in these most probable points. These results and their associated/3
values can then be used to create an entire CDF, which is shown in

Wu's paper H to be in very good agreement with MC simulations

for several examples. Further iterations can be performed by ex-

panding the limit state about the new design points, instead of about
the means as in Eq. (1). The FPI and AMV methods have been

incorporated in NESSUS, 2 a probabilistic finite element program

under development by NASA Lewis and the Southwest Research
Institute.

Probabilistic Dynamic Synthesis

The proposed methodology makes use of the residual flexibility
method of CMS. This method has been developed by MacNeil, 12
Craig and Chang, _3 and Martinez et all4 The essential idea in CMS

is that substructure modes are truncated because their higher modes

will not have a major effect on the system modes. The residual

flexibility method incorporates the effects of the higher modes by
determining their flexibility. A side benefit is that all the elements

of the system stiffness matrix can be obtained from test and that the

mass matrix can be closely approximated by a unity matrix in the
nonboundary partition (equal in size to the number of kept modes,

k). Since all the substructure information can be obtained from test,

probabilistic data can be completely incorporated into the system

matrices to obtain the system modes.
The first step of the probabilistic dynamic synthesis (PDS) method

developed in this paper is to divide the model of a structure into sub-

structures a = a, b ..... p. The physical displacement vectors of

each substructure, which have either a subscript i denoting internal
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DOFs or a subscript b denoting boundary DOFs, can be written
as

xi , Xi .... xi (10){x} ° {xI"
where there are altogether dimxi + dimxh = N DOFs for that
substructure.

Each substructure is represented by n samples. Each sample

is modally tested individually in a configuration such that the
interface locations with other substructures are in a free condi-

tion. For substructure or, sample i, the test will yield eigenvalues

),,_ and eigenvectors {qo_'}. In addition, the boundary partition of

the residual flexibility matrix [G_] 7 is obtained from the measured
boundary drive-point frequency response functions of the boundary

coordinates) 5 For use in the PDS method, only the kept (nontmn-

cated) eigenvalues, the boundary coordinates of the kept eigenvec-
tors, and the boundary partition of the residual flexibility matrix are

needed. These values can be combined into a single vector {x}7,
defined as

{_ob}*

{x}7= X_ (1 I)

{Ghh}
i

where {qot,}j is a vector of the boundary-node modal displacements

for the jth mode, and XJ is the jth eigenvalue of substructure u.

If the entire sample of substructure a is tested, {x}_' can there-
fore be defined as a vector composed of elements that are each

normally distributed RV with measured mean and standard devi-

ation. Using Eq. (9), this vector is now converted to {x}'% a vec-
tor of standard normally distributed RVs. In addition, there will

be some degree of correlation between the RVs. These correlation

values range from 0, or no correlation, to +1, or fully correlated,
and can be easily calculated from the measured data. The values

are placed in a correlation matrix [C] = relating each element with
every other element. For the probabilistic analysis, a set of inde-

pendent standard normal RVs {u} = will have to be obtained. This
can be accomplished ts by making an orthogonal transformation of

{x} '_ with its Cholesky-decomposition lower triangular matrix [L]_

to uncouple the {x}' coordinates, thereby creating {u}a. This can be

expressed for substructures ot = a, b ..... p as

{x}'_"= [Ll_{u}" (12)

The FPI algorithmrequiresthateachindependentRV be varied

individuallyby some percentageof itsstandarddeviation_, which
was chosen to be 50% forthisdevelopment,whiletheotherRVs

arekeptconstantattheirmean values.The choiceof thesizeofthe
variation is somewhat arbitrary. Each of these cases is then back-

transformed to form a corresponding case of the original correlated

RVs. These are then plugged into the model to generate the limit

state approximation [Eq. (1)] of the response value, which is used
to obtain the/5 values and the design points X*.

Since the distributions of the RVs are standard normal, 0.5cr will

simply equal 0.5 for the RV to be varied. The first case is therefore

0,0 I°10
{u}_= . {u}== _ . .., m=2 ..... p (13)

II0 0

The next case will consist of the second element in {u}" equaling

0.5 and all the other elements of {u}a as well as all the elements of

the other {u}" equaling zero, and so on.
For each case, the {u} for each substructure is then transformed

to the set of correlated standard normal RVs {x}' using the transpose

of [L]_ and then into the original RVs {x} using Eq. (9). The new
matrices {X}, [¢], and [Gbb] are pulled out from {x} and placed in

substructure mass and stiffness matrices according to the residual

flexibility formulation:

I °'"1 ['0°elA + _rkG;_l>.k -- ._bl,
K = --- M" =

sym G_7_ '

(14)

where A is a diagonal matrix of the eigenvalues {,X}.
The system mass and stiffness matrices are now generated by

directly coupling the substructure mass and stiffness matrices. This

is accomplished by ordering the kept DOFs of each substructure

sequentially in the system matrices and adding the boundary par-

titions together. The system eigenvalues are then obtained, and a
single eigenvalue of interest is chosen. As each independent RV in

the set of p vectors {u} is varied, the numerical partial differentiation

of the eigenvalue with respect to the RV can be calculated. These
are used to generate the linear approximation of the limit state at

the mean value [Eq. (1)], which is used by the FPI code to obtain
the MPPs and a first mean-value solution for the CDF of the chosen

system eigenvalue. The MPPs are plugged back into the substruc-
tures' mass and stiffness matrices, the system is resynthesized, and

new, updated eigenvalue levels are obtained for each probability
level, following the AMV method described by Wu and Wirshing.ll

These levels are then plotted to show the entire CDE

Test Case

Analysis of a spring-mass system (Fig. 2) using the PDS method
has been completed. The test system consists of two substructures,

a and b, each having four DOls. Five thousand samples of each
substructure were created initially using standard MC techniques.

To achieve complete probabilistic generality, each spring in the sys-

tem was assigned a normal distribution with a mean of 200 and
standard deviation of 10, and each mass was assigned a normal dis-
tribution with a mean _of 1.0 and standard deviation of 0.5• Since

this initial numerical simulation is performed to represent measure-

ments of the dynamic characteristics of a physical population, any
distribution can be chosen for the masses and springs as long as it is
consistent for the full-up model MC case and the PDS case• Normal
distributions were therefore chosen for convenience. The effect of
nonnormal distributions will be discussed later. The MC random
vectors were then used to create the mass and stiffness matrices for

the substructures (5000 for each), and a modal analysis run on the

substructure samples to obtain their eigenvalues {X}= and eigen-
vectors [_]_. Three of the four modes for each substructure were

kept for the analysis• The boundary partition of the N x N residuai
flexibility matrix [Gu,] = was analytically calculated directly from
the modes that had been chosen to be truncated, in this case just the

highest one, using

N

[G]= _ (15)
Xi

i=k+l

where, in this case, k = 3 and N = 4. The statistics on these dy-
namic characteristics and the correlation between them were then

calculated. These statistics are listed in Table 1. The listed quantities

comprise the vectors {x}_ and {x}I' as described in Eq. (11).
A distribution characterization routine _7 was also performed on

the distributions to see if they could be characterized as normal,

which is an assumption of the methodology outlined. Partial results

Full Model

ml _ m3 m%mS6m6v;1--"" -': .A:VA__. V" - v -AI,,2 k3 k4 V'kS- k7

_7

Sub. a Sub.b
K ....... -" v'/I _ V"4 ---- v/I

Fig. 2 Test-case system.
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Table 1 Statistics of dynamic characteristics

Eigenvalues Mean Standard deviation

Substructure A

1 30.431 1.2702

2 246.74 10.336

3 552.89 23.014

Eigenvectors, boundary location only

1 0.7073 0.01155

2 -0.70725 0.0285446

3 0.70688 0.058827

Residual flexibility (one boundary point only)

I 6.46E-04 1.6159E-04

Substructure B

1 0.0 0.0

2 150.51 6.706
3 489.03 21.916

Eigenvectors, boundary location only

1 0.53466 6.9105E-03
2 0.75592 2.1945E-02

3 -0.55443 7.4042E-02

Residual flexibility (one boundary point only)

1 6.46E-04 1.5347E-04

Table 2 Partial results of distribution-types

routine: substructure B, eigenvalue 2

W statistics (all types included)

Normal 0.00948

Exponential 0.30339
Weibull 0.04448

EVD 0.04323

Lognormal 0.00934

Normal distribution parameters

Sample mean = 150.61
Sample std. dev. = 6.502

Normal-distribution CDF fit to data

Response value CDF value

143.0 0.1210
147.0 0.2895

150.0 0.4628

155.0 0.7503

Lognormal parameters, base e

Ix = 5.014
cr = 0.43201

Lognormal-distribution CDF fit to data

Response value CDF value

143.0 0.1193

147.0 0.2947
150.0 0.4713

155.0 0.7540

of the distribution characterization routine for one of the RVs are

shown in Table 2. The W statistic is a goodness-of-fit test developed

by Wirshing and Carlson, where a smaller number indicates a closer

fit. _s The results show that the data are well represented by both

normal and lognormal distributions, with the lognormal being a

little better. The CDF values for each distribution, however, indicate

that the curves for the two distributions predict almost exactly the

same value, which can be the case for a particular set of lognormal

parameters. The assumption of normality was therefore deemed to
be accurate.

At this point, the procedure follows the outline discussed previ-

ously for an actual case, which would use modal testing of physi-

cal samples to generate the dynamic characteristics and correlation

matrix. For each substructure, a matrix composed of cases of {u}

vectors [see Eq. (14)] was generated and multiplied by the correla-

tion Cholesky decomposition matrix [L],. to obtain {x}', the set of

correlated standard normal RVs. These were then converted to their

nonstandard normal distributions and used in the residual flexibility

substructure stiffness matrix. The substructures were then coupled

Table 3 Sample MPP output

Fund. eigenvalue response value = 8. ! 01

Probability = 0.01

Most probable point
Substructure-a RV Value

ul -0.4863

u2 -0.1692

u3 -0.05685
u4 -1.5807

u5 -0.1221

u_ -0.0269

u7 0.211

Substructure-b RV Value

Ul -1.5205

U2 0.2641

u3 -0.2361
u4 -0.0085

u5 -0.3057

u6 -0.0473

u7 0.2267

Table 4 Dispersion error of PDS vs full MC model

CDF A from Lx from Error

value AMV AMV mean MC MC mean of A, %

0.010 8.116 --0.635 8.094 --0.613 --3.46

0.050 8.300 --0.451 8.266 --0.441 --2.23

0.100 8.399 --0.352 8.352 --0.355 0.87

0.159 8.476 --0.275 8.426 --0.281 2.22
0.200 8.520 --0.232 8.467 --0.240 3.62

0.500 8.751 0.000 8.707 0.000 Not applicable
0.800 8.985 0.234 8.944 0.237 1.44

0.841 9.029 0.278 8.987 0.280 0.74
0.900 9.108 0.357 9.072 0.365 2.25

0.950 9.210 0.459 9.169 0.462 0.65

0.990 9.403 0.652 9.344 0.637 -2.28

I.O

0.9-

0)( -

0.7 .

O.6-

o.a,.

i1_'1

11.2

i1.1

iui

........... _', 'I ' '"/g _t,l} g.2 144 _,6 I(+_ 9 9, 9.4

System FundamentalEigenvalue

Fig. 3 CDFs for fundamental eigenvalue using PDS method and MC

of full, uusubstructured model: --+.-, pds amy and _, full rood. me.

together, and a modal analysis was performed on the system ma-

trices. The first system eigenvalue for each case, which was the

response value chosen, was then input along with its {u} case into

the FPI algorithm routine.

Theoutput of the FPI routine is the mean-value solution, an initial

estimate of the CDF of the response variable, and the MPPs for

the specified CDF probability levels. One MPP from the output

is shown in Table 3. Following the AMV procedure, these MPPs

were recorrelated and converted to the original dynamic RVs as

before, coupled, and a solution obtained for the updated fundamental

eigenvalue. This value and its associated probability level were then
used to create a new CDE
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For verification of the PDS method, an MC analysis was per-

formed on the same nondeterministic spring-mass system, with the

system eigenvalue directly obtained from each unsubstructured sam-

ple. The CDF for this full model is superimposed on the AMV CDF

from the PDS method in Fig. 3. A very small amount of error is

indicated graphically. To identify the error quantitatively, the amount

of variation of the fundamental eigenvalue from its mean value at

selected probability values for the PDS method was compared with

the spread for the full model. The result, shown in Table 4, indi-

cates that the deviations from the mean as computed by the AMV

and MC methods agree to within 5%. In addition, the mean value

of the fundamental eigenvalue computed by the AMV method is

8.751, which is only 0.5% higher than the one computed using MC

(8.707), and the AMV standard deviation is 0.276, which is only

1.8% less than the MC standard deviation (0.281).

Concluding Remarks

A new methodology has been presented for performing analysis

of structures composed of substructures whose dynamic characteris-

tics can be identified statistically. This method uses the substructure

eigenvalues, eigenvectors, and residual flexibility as random vec-

tors for determining the desired response value by combining new

probabilistic analysis techniques with the residual flexibility method

of CMS. By this combination, improved computational efficiency

is obtained as well as more confidence in the input statistics. Re-

sults for a test case show the method predicts close to the same

CDF for the system fundamental eigenvalue as a nonsubstructured

probabilistic MC analysis.

Future work on this method will include examining some ba-

sic conceptual questions on the limitations and applicability of the

method. The fact that the dynamic RVs exhibited normal distribu-

tions may be a result of the assumption of normal distributions for

the original primitive RVs. One extension of this research will be to

examine the effect of nonnormal primitive RVs, which could result in

nonnormal dynamic RVs. Equivalent normal distributions for these

RVs would have to be obtained using methods developed by Chela

and Lind and other researchers. R9The methodology for handling the

correlation of these nonnormal RVs will also have to be examined,

as the correlation coefficient may not adequately describe the rela-

tionship between the variables. Since the research described in this

paper is the first step in developing an entirely new methodology, the

assumption of normal primitive RVs was necessary to avoid these

complexities, and since normal distributions are commonly found,

the results are applicable and worthwhile.

Another topic of interest is the formulation of a hybrid method

combining analysis and test, since some of the dynamic charac-

teristics necessary for the synthesis may be difficult to measure in

some circumstances. Other questions include finding cases where

the number of RVs can be reduced by perhaps only allowing stiffness

or mass to vary, and examining the effect of boundary variability for

situations like the fir-tree interface between blades and disks, which

are neither fixed nor free. In addition, the method will be compared

with perturbation methods to determine the areas of most efficient

applicability for each one.

References

_Wu, Y.-T., and Wirsching, P., "New Algorithm for Structural Reliability

Estimation" Journal of the Engineering Mechanics Division, ASCE, Vol.

! 13, No. 9, 1987, pp. 1319-1336.
2Anon., FPI Tlmorerical Manual, NESSUS Reference Manual, Version

1.0, Southwest Research Inst., San Antonio, TX, July 1991.

3Collins, J. D., and Thomson, W. T., "The Eigenvalue Problem for Struc-

tural Systems with Statistical Properties," AIAA Journal, Vol. 7, No. 4, 1968,
pp. 642-648.

4Kiefling, L. A., "'Comment on 'The Eigenvalue Problem for Structural

Systems with Statistical Properties,'" AIAA Journal, Vol. 8, No. 7, 1970, pp.
1371, 1372.

5Collins, J. D., Kennedy, B., and Hart, G. C., "'Bending Vibrational Data

Accuracy Study," NASA TR 70-1066, Sept. 1970.

6Hasselman, T. K., and Hart, G. C. "Medal Analysis of Random Structural

Systems:' Journal of the Engineering Mechanics Division, ASCE, Vol. 98,
No. EM3, 1972, pp. 561-579.

7Mabadevan, S., and Mehta, S., "Finite Element Dynamic Reliability

Analysis with Condensation," Proceedings, 6th ASCE Joint Specialty Con-
ference on Probabilistic Mechanics and Structural and Geotechnical Relia-

bility, Denver, CO, 1992, pp. 332-335.
SComell, C. A., "A Probability-Based Structural Code," Journal of the

American Concrete Institute, Vol. 66, No. 12, 1969, pp. 974---985.
9Hasofer, A. M., and Lind, N. C., "Exact and lnvariant Second Mo-

ment Code Format" Journal of the Engineering Mechanics Division, ASCE,

Vol. 100, No. EM1, 1974, pp. 111-121.
t°Rackwitz, R., Fiessler, B., and Neumann, H. J., "Quadratic Limit States

in Structural Reliability;' Journal of the Engineering Mechanics Division,

ASCE, Vol. 105, Aug. 1979, pp. 661--676.
tlWu, Y. T., and Wirshing, P. H., "Advanced Reliability Methods for

Probabilistic Structural Analysis," 5th International Conference on Structual

Safety and Reliability, ASCE, 1989, pp. 2275-2281.
t2MacNeal, R. H., "A Hybrid Method of Component Mode Synthesis,"

Coraputers and Structures, Vol. 1,197 I, pp. 581-601.
13Craig, R. R., and Chang, C., "Free-Interface Methods of Substructure

Coupling for Dynamic Analysis," AIAA Journal, Vol. 14, No. !1, 1976,

pp. 1633-1635.
14Martinez, D. R., Came, T. G., and Miller, A. K., "Combined Experimen-

tal/Analytical Modeling Using Component Mode Synthesis," Proceeding of
the AIAA 25th Structures, Structural Dynamics, and Materials Conference,

AIAA, New York, 1984, pp. 140-152.
tSAdmire, J. R., Tinker, M. L., and Ivey, E. W., "Residual Flexibility Test

Method for Verification of Constrained Structural Models," AIAA Journal,

Vol. 32, No. 1, 1994, pp. 170-175.
16Mahadevan, S., "Modem Structural Reliability Methods:' unpublished

report for NASA, Marshall Space Flight Center, Oct. 1994, pp. 68-70.

17Townsend, J., and Wirshing, P., "A Seminar and Workshop on Reliability

Methods in Mechanical and Structural Design," Univ. of Arizona, Tucson,
AZ, Jan. !992.

lSWirshing, P. H., and Carlson, J. R., "Model Identification for Engineer-

ing Variables," Journal of the Engineering Mechanics DivLrion, ASCE, Vol.

103, No. EMI, 1977, pp. 125-138.
19Mahadevan, S., "Modem Structural Reliability Methods" unpublished

report for NASA, Marshall Space Flight Center, Oct. 1994, pp. 62-68.


