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SUbIMARY

This report describes the use of novel techniques for heat containmem that could be used to build a high

temperature transparent furnace. The primary objective of the work was to experimentally demonstrate

transparent furnace operation at 1200°C. Secondary objectives were to understand furnace operation and furnace

component specification to enable the design and constrnction of a low power prototype furnace for delivery to

NASA in a follow-up project.
The basic approach of the research was to couple high temperature component design with simple concept

demonstration experiments that modify a commercially available transparent furnace rated at lower temperature.

A detailed energy balance of the operating transparent furnace was performed, calculating heat losses through the

furnace components as a result of condncdon, radiation, and convection. The transparent furnace shells and

furnace components were redesigned to permit furnace operation at at least 1200°C. Techniques were developed

that are expected to lead to significantly improved heat containment compared with current transparent furnaces.

The design of a thermal profile in a multizone high temperature transparent furnace design was also addressed.

Experiments were performed to verify the energy balance analysis, to demonstrate some of the major furnace

improvement techniques developed, and to demonstrate the overall feasibility of a high temperature transparent
furnace. The important objective of the research was achieved: to demonstrate the feasibility of operating a

transparent furnace at 1200°C.

INTRODUCTION

Although it is believed that there are many reasons for being able to achieve superior high temperature

processing of materials in microgravity, major commercial applications are still being developed. A major cause
for this is that the removal of gravity as a driving force has led to the discovery of a series of more subtle

phenomena such as surface tension that have limited successful materials processing in space. These phenomena
have so far been inferred and investigated based on the final state of materials that have been processed in space.

Most high temperature materials processing conditions are set by general principles, experience and iteration.
Non-intrusive, in-situ diagnostics are needed for research and optimum process control in the presence of these

effects. Experiments using optical diagnostics must begin with measurement of unknown optical properties such

as emissivity and index of refraction at high temperature. Full optical access to furnace applications is needed

for diagnosis and feedback control of the subtleties of high temperature processes under microgravity

conditions.
Small furnace windows are currently used to provide access for assessing crystal quality, but only small

portions of the object can be viewed and these windows themselves cause heat disturbances that affect the growth

process. Also, many semi-transparent materials of interest have a large index of refraction that makes single

direction viewing of an entire piece very difficult. Transparent furnaces are in use, but at relatively low

temperatures because these furnace systems cannot survive the temperatures and heat loads required at high

temperature. Specifically, current reflective coatings designed to contain thermal radiation have severe
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limitations. There is a great need to develop advanced transparent furnace technology for material
processing research at high temperatures.

The innovation of this project is the use of advanced techniques for heat containment and high
temperature optical materials to build a transparent furnace rated at 1200°C or higher. Full optical access to
furnace applications is needed to diagnose the subdeties of high temperature processes under microgravity
conditions, as well as for future applications in manual and automatic process control in space and on earth.
Advanced high temperature radiation containment methods, convection reduction, high temperature transparent
materials, and improved transparent heater component design are combined to achieve a significantly higher
temperature rating compared with current technology. Phase I has demonstrated transparent furnace operation at
1200°C by coupling energy balance analysis and heat shield design with simple modifications to a currently
available transparent furnace. Furnace performance has been predicted and additional design strategies for major
improvements in the follow-on project have been developed. A high temperature transparent furnace will create
many new oppornmities for high temperature material processing research and process control applications.
These furnaces may be the necessary means for developing commercial materials processing in space.

BACKGROUND

Transparent Furnaces

Transparent furnaces have been used in ground-based research for many years, in a concept first invented
and patented at MIT [1]. They have been used in space in shuttle experiments where visibility of the process is
crucial for performing rapid experiments [2-4]. Transparent furnaces are used for research in areas that include

crystal growth, metal bonding, combustion, solar energy, biomass energy conversion, and others. The ability to
observe processes within the furnace can provide information unobtainable from post-cooldown sample
characterization. In the area of crystal growth the in-situ, non-intrusive observational capability of a transparent
furnace leads to the ability to change the growth ampoule temperature and/or temperatme profile. As a specific
example, control of the visible onset of nucleation and growth of crystals is far superior to preprogrammed
techniques that are typically used with standard furnaces.

A standard earth-based transparent furnace uses a thin gold mirror coated onto the wall of a quartz tube
to surround the hot zone of a furnace and contain infrared (IR) radiation. A typical furnace being used for crystal
growth is shown schematically in Fig. 1. The mirror coating has the characteristic that it is reflective for longer
wavelengths of radiation in the IR and transparent at shorter wavelengths in the visible. Depending on the details
of the coating, approximately 95% of the incident infrared energy is reflected while roughly 80% of the visible

radiation is transmitted. Typically over 90% of the total energy incident from a 850°C blackbody is reflected.
The thin film gold coating is an effective radiant heat insulator while simultaneously allowing a clear view of
processes occurring within. Furnace heating energy is provided by one or more helically wound resistance
heating elements that have a coil spacing large enough to permit good visibility through the coils. A quartz shield
tube is located between the heater and mirror to prevent the outgassing heater material from coating the mirror,
reducing its reflectivity. A quartz 'muffle' tube is mounted between the heater and the growth ampoule, acting as
an impurity barrier for the growth ampoule and reducing hot spots. The crystal growth ampoule is located along
the axis of the furnace inside the muffle robe.

The primary constraints on future transparent furnace development are in the areas of transparent shell
materials and radiation containment coatings. Current technology uses fused silica tubes, whereas much higher
temperature versions will use materials such as sappkire. Subsidiary issues are the binding of the reflective
coating to the substrate and the ability of these coatings to survive high temperatures. To date, multizone
transparent furnaces have been limited to temperature ratings of approximately IO00°C.



Figure 1. Transparent furnace schematic.



HighTemperatureHeatTransfer

At high temperatures radiant heat transfer is the dominant mechanism for heat loss, assuming no flowing

or boiling liquids, and no large-area, high thermal conductivity solid contact between the hot zone and the
environment. Radiation heat loss is defined by the Planck function as it describes blackbody radiation - a body

that absorbs all incoming radiation.

W(Z,T) = ct/[kS)(e c/_x- 1)l (1)

Where W(X,T) is defined as the power radiated per unit wavelength interval at wavelength X by unit area of a

blackbody at temperature T in measured in degrees K. cl and c are constants. The total radiated power by a

blackbody at temperature, T, is given by the familiar Stefan-Boltzmann function:

Wt,_(T) = 5.679 x 1012 T 4 W/cm 2 (2)

The T 4 dependence of the radiated power accounts for the dominance of radiation at high temperatures. For real

materials the total radiated power differs from that of a blackbody by the total emittance, r_, such that

W_.al(T) = _(T)Wbtnckbody(T) (3)
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Figure 2. Total emittances of common materials versus temperature.



Totalemittancesareintegralsoverwavelengthof detailedemissivitiesthatarealsowavelengthdependent.Total
emittancescanbequietlow,butalsocandependstronglyontemperature,usuallyincreasingwithtemperature.
Examplesofcommonlyusedmaterialsareshownin Fig.2.

Heattransferasaresultofconvectionandconductioncanbeestimatedbyusingathermalresistance
concept:

R_,r_t= AT/q (4)

whereAT is the temperature difference across the resistance path and q is the heat flux entering the resistance. A
contact coefficient of heat transfer, It,, is R/A, where A is the contact area. For a wall, h = k/t, where k is the

thermal conductivity, and t is the wall thickness. Orders of magnitude for h in W/m2-K are: 1) Gases in natural

convection: 5-29, 2) Flowing gases: 11-290, and flowing liquids (non-metallic): 170-5700.

Convection can be eliminated by using vacuum enclosures. Conduction can be reduced by limiting

contact area and using materials of low thermal conductivity (quartz). Thermal radiation can be reduced by using

nmterials of low thermal emissivity.

Transparent Furnace Applications

There are many possible uses for transparent furnaces, including sintering, metal joining, and annealing,

but current applications center on crystal growth. For this application, some of the capabilities introduced by a

transparent furnace are 1) Nucleation can be observed; if multiple nucleation sites occur solidification can be

restarted, 2) The melt/solid interface can be viewed as a result of differences in density and emissivity between

the liquid and solid, 3) Surface tension effects can be studied as a result of these liquid-solid differences. (This

capability is important for microgravity research), 4) Convection can be studied through index of retraction

changes with temperature, 5) Internal temperatures can be monitored by tomographic means, and 6) A variety

of crystal defects are visible, depending on the optical properties of the crystal. Together, these advantages

provide a powerful incentive to use transparent furnaces. The incentives will be further enhanced when standard

optical diagnostics are produced to monitor processes in these furnaces. Typical of what can be seen in a

transparent furnace are the images of Fig. 3, showing the glowing crystal, and defects at two magnifications. A

case study in the actual benefits of transparent furnace use is given by Schunemann and Pollak 151. In this work

simple visual access to the process allowed drastic reductions (a factor of 10) in the time needed to develop a

process for ZnGePh. An increasing amount of work is being done in the area of intelligent processing of

materials 16,71; optical access and optical diagnostics are playing a key role in this effort.

Test Chamber Thru microscope
in Furnace (2X)

Enhanced image on
monitor (47X)

Figure 3. Transparent furnace crystal growth images.



Crystal t_rQwth - There are a number of techniques that can be used to grow crystals, including vapor

phase growth [8], solution growth [9l and melt growth [10], are used to obtain crystals. Figure 4 shows the

construction of the electric furnace and temperature profile for typical Bddgnmn crystal growth with vapor control

of composition [1 l]. In a transparent furnace the quartz ampoule is the container for the material. The typical
temperature profile has an isothermal in the upper zone, a 20°C temperature elevation in a middle region of 2.5

cm long at the melt-solid interface, and a bottom zone cooling gradient of 25°C/cm. Crystals can be grown from
a seed or seedless. The ampoule is translated through the temperature field and the crystal grows at a rate of 2-4
mm/hr.

Research has indicated that the achievement of improved crystalline and chemical perfection in single

crystals grown using the vertical Bridgman technique is to a significant extent dependent on the ability to control

the morphology of the growth interface [12], which will be visible using a transparent furnace. Recent analyses

furthermore indicate that thermal conditions inherent to the Bridgman method, referred to as the "interface

effect", in principle reduce the effectiveness of conventional means for controlling the interface shape.

The interface effect is due to a difference in the thermal conductivities of the melt and the crystal and/or

the release of latent heat at the growth interface in the presence of a charge confining crucible. Such conditions
lead to a change in the axial temperature gradient of the charge at the growth interface whereas the axial

temperature gradient of the crucible is continuous [121. A temperature difference (and, thus, heat exchange)

between the charge and crucible results, causing the interface shape to be nonplanar. For semiconductors, whose

thermal conductivity of the melt is greater than that of the solid, the charge is cooled by the crucible and therefore

the interface shape is such that the crystal is concave. Experimental evidence for this behavior is provided, for

example, by Lehoczky and Szofran [13] who first described the interface effect in order to explain observed
segregation data in Bridgman-grown Hgl.xCdxTe. In the case of semi-trausparent crystals this interface can be

monitored using a variety of optical diagnostics, depending on the properties that change from the liquid to solid
state.
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Figure 4. Schematic construction of an electric furnace and a typical temperature profile for
Bridgman crystal growth [ 11 ].
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PROGRAMAPPROACH

Thegoalof this program has been to provide an experimental demonstration of transparent furnace

operation at 1200°C thereby proving techniques that can be used to construct a prototype furnace in a follow-on

project that will operate reliably at this temperature.
The project work has shown how complex the heat transfer is inside the standard transparent furnace. It

has also been shown how difficult it is to obtain a high temperature mirror coating. Operation at 1200°C was

achieved by using forced-air cooling to keep the mirror temperature low at the price of increased furnace power.

Solutions to all of these problems have been found for the design and construction of a much improved prototype

transparent furnace.

ENERGY BALANCE ANALYSIS

Introduction

The overall goal of this task has been to analyze the energy flows in the transparent furnace and to

identify the major heat losses of the system together with their dependence on furnace parameters. By minimizing

system heat losses one can 1) minimize the temperature of all of the components in the furnace, 2) minimize the

electrical power required to obtain a specific sample temperature,

Table 1. Transparent furnace project parameters

Furnace axis

Furnace power
Muffle tube inside diameter/outside diameter(ID/OD)

Heater element diameter; coil/wire 65/1.52

Heater element support (fused to muffle tube)
Shield tube ID/OD

Buffer tubes ID/OD

Mirror tube ID/OD

Overall length of quartz elements

Heated length
Heater element

Furnace end insulation

Horizontal

AC feedback controlled

37/40 mm

nun
Three 1 cm diam. slotted rods

70/75 mm

Varies

Varies

215ram

180 mm

Kanthal AF

Alumina felt

Figure 5. High temperature commercial transparent furnace sold by C/VI.



and 3) minimize the overall heat release of the furnace. In the project, the energy balance effort centers on the

characteristics of the furnace that presently limit operating temperature. In the follow-on project the primary

research effort will be directed toward furnace redesign to optimize operation by minimizing heat losses in general

and electrical power requirements in particular.

Overall Energy Balance

Since the transparent furnace operates as a steady state device the power dissipated as an electrical load in

its heating element must equal the heat power lost from the furnace through convection, radiation, and conduction

at the external envelope of the furnace. The heat power emerges from the furnace either as 1) radiation that is

transmitted directly from the heating element to the external environment through all of the inner quartz shells and

the mirror tube, or 2) heat that has been relayed by convection, conduction, and radiation to the external shell

where it is primarily carried away by natural convection, assuming an uncooled system. Conduction losses axe all

end losses through the gas tubing connections, the electrical connections, and the supports for the quartz shells.

Conduction losses also finally become primarily convective losses in this case, rather than being absorbed to heat

solid objects because of minimal large-area thermal contact.

Heat transfer theory is well known in general but has a number of critical factors that axe difficult to

calculate in detail. These factors include emissivity, contact resistance, complex geometric effects, and flow

patterns for convective heat loss. High temperature heat transfer is dominated by radiant heat transfer in most
cases, increasing in proportion to T 4 (in degrees K), because careful thermal isolation must have been done to

achieve such temperatures for practical heating powers. For transparent furnaces, most of the heat absorbed by a

workpiece is transferred by radiation, and this radiation must be contained in the furnace the by IR mirrors at the

outside of the furnace. In standard furnaces the walls axe opaque, thermally isolated, and in radiant equilibrium at
high temperatures with the entire interior of the furnace.

Previous Experimental Data - A large amount of data on transparent furnaces is available to this

program through the extensive work done in the past by Insight Scientific in their transparent furnace business.

The most important data for the purposes of determining the proportion of heat lost through convection,
conduction, and radiation has been obtained from a furnace operated at 900°C both in air and in vacuum. This

furnace had the standard geometry, with a quartz muffle, shield, and mirror tube, and a standard gold coating on
the outside of the mirror tube. To achieve a 900°C sample temperature the furnace required 1800 W of power

operating in air, whereas in vacuum it required 600 to 650 W. Further measurements showed that in vacuum, 1/3

of the heat was lost radially (radiation), and 1/3 was lost out each end. The data indicates that for a 900°C sample
temperature (the filament was hotter) approximately 2/3 of the heat was lost as a result of convection and 1/3 was

lost through radiation and conduction. This data also provides a basis for comparison with analytical quantitative

prediction of the beat losses. Other data this is available is the typical electrical power dissipated per unit of

furnace surface axea, and mirror surface temperatures that have resulted from previous attempts at high
temperature operation.

Convection

The transparent furnace data that implies that 2/3 of the heat transfer in the furnace occurs as a result of

the presence of atmospheric pressure gas in the furnace initially indicates that convective heat transfer dominates

the heat transfer inside the famace up to approximately 1000°C. This convective heat transfer must occur as a

result of gravity driven buoyant laminar free flow. Between the cylindrical shells there are tangential flows

around the shells that are driven by buoyancy forces resulting from density differences in the gas that are in turn
caused by temperature differences. The inner shell is hotter, so the heated gas next to this shell rises from the

bottom to the top, then cools and falls near the cooler outer shell. Nominally, two circulating flows occur as
shown in Fig. 6, but the actual flows axe more complex as a result of three-dimensional effects. The flows that

travel along the inner and outer faces of the tubes greatly enhance the heat transfer between the hot inner tube and

the cooler outer tube compared with conduction through the gas.

To estimate how the magnitude of convective heat transfer changes with furnace parameters, its analytical

form was investigated. Natural convection can occur as a laminar or turbulent flow, where hotter objects cause

larger buoyancy forces, higher flow rates, and turbulent flows. The flow regime is determined by both the



PrandtlNumber(Pr= ratioof momentum to thermal diffusivities) and the Grashof Number (Gr = ratio of

buoyancy to viscous forces). The convective flows are laminar in the case considered here [14], where

104 < GrPr < 10 9 (5)

Figure 6. Internal natural convection cooling flows between cylindrical shells in the transparent furnace.

Data for horizontal cylinders in air have been correlated [14] to give the result

q/A oc ATS/4/D114 (6)

Where q/A is the heat flux per unit area, AT is the temperature difference between the hot surface and the

environment, and D is the tube diameter. The heat flux thus essentially scales as T, with a minor dependence on
the tube diameter.

It should be noted that there is an optimum spacing for minimal convective heat transfer between two

concentric tubes with an air gap. A large separation allows higher flow velocities to be created and thus large

amounts of convection losses, whereas a very small separation leads to relatively large conduction losses. The

optimum is defined by a gap that is small enough that the inner and outer buoyant flows interfere with each other

and large enough that air conduction is not important. This optimum gap should be on the order of a few mm, as

is typically used in the furnace construction in the project. This description of free convection heat transfer is

strongly geometry dependent; the flows and heat transfer between a tube and a surrounding polygon, as used late

in the experiments, is quite different.
Radiation

Objects that have a high emissivity and are much hotter than 500°C emit enough radiation to be visible to

the naked eye in a dark room. However in terms of heat flow, radiation is insignificant relative to other factors at

this temperature for objects that are not isolated in vacuum. For a ttm_arent furnace the radiative heat flows
depend on the temperature and radiating characteristics of the hot sources. The driving source of radiation is the

heating element, which is a metal (kanthai) in the case of the 1200°C transparent furnace used in this program.

Derivative sources, which can be major radiators, are the sample itself as well as the quartz tubes and support rods

that mound the heater element. All radiative sources emit as blackbodies modified by the emissivity of their

surfaces, which depend on the wavelength of the radiation and a variety of surface properties. Determining the
detailed emissivities and absorbances of the mirror shell is important, since radiant heat transfer dominates the

energy balance at the high temperatures involved in this program. Although radiation containment dominates the

furnace design more and more at higher temperatures, small losses as a result of all causes become significant
because the internal heat fluxes are so large and the tolerable external heat fluxes are fixed.

Overall radiation confinement by the mirror robe is diminished by 1) absorption of a significant fraction

of the radiated energy (discussed below) by the quartz outer shell (the mirror tube), and 2) the eventual escape of

much of the radiant energy initially contained by the mirror robe through the large end holes after a few

reflections. At high temperatures the radiated power rapidly grows to become equal and then to dominate the
overall heat transfer because of its T 4dependence, so that at the higher temperatures that are being attempted in

this program, radiation containment becomes crucially important for the overall containment of heat in the furnace

and its electrical efficiency.

The wide spacing and relatively small diameter of the heater coils makes the total radiating area of the

coil relatively small, so that the total radiated power from the furnace will be significantly increased by adding a
large sample in the furnace even though the sample is at a somewhat lower temperature than the coils. The quartz

tubes are in large part transparent, but have been shown to play a major role in the radiated heat flux because of
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theirlargearea.Thequartzusedin transparentfurnaceshas a low OH concentration, and is transparent (ct =

absorptivity = 0) for all wavelengths less than approximately 4 _m. whereas more typical quartz is opaque at

wavelengths larger than 3 )_m. The absorptivity of a material surface equals its emissivity, so the quartz in the

furnace absorbs and radiates at wavelengths longer than 4 _m. Another factor to be considered is that the

absorption edge moves to lower wavelength as the temperature of the quartz increases. The outer shell is
relatively cool, whereas the inner tubes are hot, so there will be a small disparity in emission and absorption in

the shells that is too complex to be considered here.
The tram.mission versus wavelength of quartz is especially important in terms of radiant heat flux for the

mirror tube. The mirror tube nominally reflects the IR radiation incident on it to contain the radiant heat in the

furnace. In the present transparent furnace, however, absorption in the mirror coating and in the quartz itself

(because the mirror coating is on the outside of the quartz tube) degrade the efficiency of the IR radiation

reflection. The mirror coating is on the outside of the tube because the vapor deposition coating process is much

less expensive and superior coatings are obtained in this coating geometry.

Quartz absorbs all radiation beyond 3 - 5 )_m wavelength, depending on the type of quartz used. The

mirror tube in a transparent furnace uses special IR transmissive quartz (GE type 124). For thicknesses over 1

mm this quartz absorbs all radiation with wavelengths longer than 5 )xm. Absorption begins at about 4 _m and is

40% at 4.5 )_m. Assuming a sharp absorption cutoff at 4.5 _tm (a good approximation) the radiative power

absorbed in the quartz can be calculated by integrating the blackbody spectrum given above from 4.5 Ixm to

infinite wavelength. Table 2 below gives the fraction of radiant power absorbed, the absolute power absorbed,

and the total power emitted for quartz and sapphire (assumed to cutoff at 6 _m). Sapphire is included as a

possible replacement for quartz to reduce absorption. Power absorbed is presented as power per unit area of the
radiator (not the absorber). The absorption in the quartz is a significant part of the total radiated power at the

temperatures relevant to this program. The use of sapphire reduces the absorption in the mirror tube by about a

factor of two, whereas ZnSe (transparent to 20 ttm) makes the absorption insignificant. The mirror coating also

absorbs about 10% of the radiation as a result of the high absorptivity of the very the thin layer of binder that is

necessary for the adhesion of the reflective gold film to the quartz

It is important to note that although the fraction of power deposited in the quartz decreases with

temperature, the absolute magnitude of the power deposited increases steadily; not as fast as the total power

Table 2. Absorption of blackbody radiation in quartz and sapphire at transparent furnace temperatures. Power
absorbed is presented as power per unit area of the radiator (not the absorber).

Quartz Sapphire

Temperature % Abs. Power Abs. % Abs. Power Abs. Total Power
(C) (Wlcm 2) (Wlcm _) (Wlcm 2)

900 32 3.5 18 1.9 10.7

1000 27.5 4.1 15 2.2 14.8

1100 24 4.8 13 2.5 20.2

1200 20.5 5.5 11 2.9 26.7

(T4), but with a dependence between T 2 and "1"3. This power deposition will be a more significant problem as the

temperature rating of the furnace increases.

A temperature increase from approximately 925°C to 1150°C implies an increase by a factor of 2 in

radiated power as a result of the T 4 power dependence. As the radiated power increases the radiation must be

more efficiently contained to maintain the same level of deposited external power. The standard gold coatings

used in previous transparent furnaces survive a temperature as high as 400-5000C; beyond this temperature the

coatings degrade. This temperature is easily exceeded by trying to operate at higher temperature.

Another aspect of radiation containment is end losses. Once the mirror tube has been optimized to

maximize the reflection of IR radiation, multiple reflections followed by loss out the ends must be considered. To

date there has been no attempt to contain end radiation, and it is estimated that over half of the radiation reflected

at the mirror tube wall may be finally lost in this way in vacuum operation, rather than being reabsorbed by
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componentsin thefurnacetoreducethe electrical power required for heating. A typical furnace geometry has a
mirror tube of 85 ram OD and 215 mm in length. With this aspect ratio there are major end losses. Longer

mirror tubes have been built, which would reduce the problem, but eventually end losses will have to be reduced

by reflectors at the ends of the tubes.

Conduction

Conductive heat losses in the transparent furnace are insignificant relative to convective and radiative

heat transfer. This is a result of the low thermal conductivity of the quartz and the ceramic end mounts, and the

small cross-sectional area of the electrical conductors and other gas flow attachments. That conductive losses are

small is confirmed by 1) the small change increase in temperature of the furnace as the end fittings heat slowly,

and 2) the low temperature of the end fittings during operation.

Energy Balance Analysis

In the first part of the project research the basic energy balance in the ttm_arent furnace was thought to

be similar to standard furnace with convective gas heat transfer between insulating walls. This belief was

motivated by the vacuum versus atmospheric pressure furnace power data mentioned above. The reduction by

almost 2/3 of the power requirement for furnace operation at 900°C seemed to imply that convective heat transfer

was causing most of the heat transfer in the furnace. It was known that there was radiant heat transfer to the

absorbent binder in the mirror tube and radiant cooling of the outside of the mirror tube, but this was thought to

only modify the convective cooling of the mirror tube, together determining the heat flux radially out of the
furnace.

If convection dominates, a simple model of heat resistances (modified for mirror tube radiation

absorption and emission) can be formed using heat flow resistances. Heat conduction within each quartz shell can

be relatively easily calculated, assuming no corrosion or other types of interface layers have built up in the

system. Heat transfer as a result of convection and conduction can be estimated by using a thermal resistance

concept.
An algebraic computer model of the heat transfer in the transparent furnace was then created using

MATHCAD TM. The model is given in Appendix A. Temperatures are chosen for the coil and the quartz shells,

and the heat transfer between components are then calculated using standard radiation heat transfer and relevant

convective heat transfer correlations [141. A correct solution is found when the heat trausfer is the same through

each interface of a cylindrical shell except for the radiant heat transfer at wavelengths less than 4 lain that is

deposited direcdy into the mirror tube. Iteration is rapid since the calculations are instantaneous once the

temperatures are entered.

This model was first used to attempt to predict outside mirror tube temperatures, since previous furnace

operation was limited by degradation of the mirrors at high temperatures. When only convective heat transfer in

the gas and conductive heat transfer in the quartz were included, significandy lower temperatures (and thus heat

transfer) were predicted for the quartz shells than were measured experimentally. Investigation showed the

surprising fact that the radiant heat transfer between quartz shells at wavelengths longer than 4.5 pm was not only

a significant means of heat transfer, it actually dominates the heat transfer at higher temperatures. The model was

then changed to add long wavelength radiant heat transfer from shell to shell and it was then found to match the

experimental data much better. The model was found to be sensitive enough to the radiant heat transfer that a

detailed approximation to the integrated blackbody power versus wavelength at an arbitrary temperature had to be
added.

The proper description of the internal heat transfer in the specific case of a high temperature transparent

furnace is thus that the convective heat transfer results in quartz shell temperatures which lead to more radiant heat

transfer than is caused directly by the convection itself. The dynamics of radiant heat transfer are thus separate

for wavelengths shorter than 4 microns and for longer wavelengths.

The model can first be used to analyze the vacuum/pressurized furnace operation discussed above. The

furnace used for these tests was very similar to that used in the inidal tests of the project; the standard transparent

furnace configuration. The heating element wire was smaller 0.6 mm in diameter, and the coil dimensions were
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approximately as used in this program. Assuming a coil temperature of 970°(: in vacuum and an emissivity of 0.7
(as with kanthal) the model predicts a radiated power of 650 watts, as was reported. In vacuum the heat transfer
is all radiant from the heater coils. The model does not properly account for end losses, which arc known to
account for 2/3 of the power in vacuum operation. Predicted heat transfer in the system is about 350 watts, and
the predicted shell temperatures are 555°C and 312°C for the inside of the shield tube and the inside of the mirror
tube respectively assuming the outside of the mirror tube is in air. Presumably end losses account for the

additional power above the 216 w (1/3 of radiant power) became of the large apertures at each end through which
the direct and reflected coil radiation can be lost.

The model heat transfer is dominated by the radiation from quartz shell to quartz shell. This implies a
very different radial temperature profile and heat losses in pressurized operation. As a result of convection the

muffleandinnershieldtubetemperaturesarcapproximatelyequalandequaltothecoretemperature.Thishas

beenthecaseinallsuggestedby experimentalmeasurements.Thisisnottrueatallinvacuum operation,since

thcinnershieldtubecancoolitselfby radiationtoreachamuch lowertemperaturethanthemuffletubeandthe

coil.Thisleadstotheimportantconclusionthattheendlossesaresignificantlyreducedforpressurizedoperation

becausetheheattransferinthefurnaceisdominatedby the> 4 timwavelengthradiationcomingoutwardfrom
theinnershieldtubethatisinequilibriumwithcomponentsinsideit.Whereasthecoreandmuffletubeshave

largeopeningsateachend,theinnershieldtubeiscloselyconfinedon theoutsideby themirrortubeorbuffer
tubes.

For theabovecaseof900°Coperation,theoutsideofthemirrortubeispredictedtobeat520°Cfor

naturalconvectioncooling.For acoiltemperatureofI020°C,wheretheadded50°Cisneededtosupplythe

much higherpowerlevelsrequired,thepowertransmittedthroughthesystemispredictedtoby approximately
870 watts,and thepower radiatedby thecoil780 watts.Ifendlossesareapproximately400 watts(halfthecoil

radiantpowerasinvacuum operation),themeasuredpowerconsumptionof1800wattsistheresultsince30% of

the coil radiation is absorbed in the quartz. The model is thus in good agreement with this experimental data. In
this case the radiant power from the inner shield to the mirror tube is about 3 times the convective heat flow.

The power flow in a typical transparent furnace is thus a subtle mixture of radiation and convection that

changes dramatically between vacuum and pressurized operation. The project model can be used to predict the
effectiveness of adding an additional buffer tube to reduce the heat flow from the furnace and the mirror tube

temperature. The added buffer tube would be expected to significantly improve the overall performance of the
furnace as a means for decreasing the radiated power to the mirror tube.

HIGH TEMPERATURE COMPONENTS AND HEAT CONTAINMENT IMPROVEMENT

High Temperature Components

The primary issues that arise when increasing the temperature rating of a multizone transparent furnace
above 1000°C are: 1) Heater technology, 2) High temperature transparent materials, and 3) Mirror coating
technology. Of these, the survival of the mirror coating at high temperature dominated the project effort and will
be discussed in the greatest detail. Lower temperature transparent furnaces have been suspect at higher
temperaturesingeneralasa resultofI)possibleproblemswithquartzasamaterial,2)thetemperaturelimitsof

thestandardnichromeelement,and 3)thedegradationofthemirrortubecoatingatelevatedtemperatures.Earlier

attempts to raise furnace temperatures above 1000°C have shown that the mirror coating fails, so effort was
focused on the mirror tube and its IR reflective coating. Degrading mirror tubes become transparent and emit an
excessive mount of heat, requiring unacceptable levels of heater power. The problems of tube and heating
element material have relatively simple solutions, whereas improving the mirror tube is more difficult.

Heater Technology

The first issue has to do with developing new, higher temperature heater technology. Below 1000°C,
standard nickel alloy based-sheathed heaters are typically used in transparent furnaces. In this approach, the
heatingwireiscoaxiallydrawninsideanInconeltubewithMagnesium Oxide(MgO) insulationbetweenfor

electricalisolation.The coaxialwireiswound intospiralcoilsand supportrodsarcbrazedtothesheathtohold
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the coils at a specific spacing. The coil spacing is designed to provide a specific temperature profile that has been

designed to meet a specific customers requirement. Neither the support rods or the electrical lead wires exiting

the furnace cause short circuits since they are electrically isolated from the healer wire by the MgO. Relatively

large gaps between the coils provide a view of the material being processed within the furnace core. At higher

temperatures nickel alloys cannot be used since their practical temperature limit is exceeded.
In standard (i.e., non-transparent) higher temperature furnaces, the heaters are generally made from

uninsulated electrical wire. If the adjacent wires were to touch, short circuits would result, resulting in furnace

failure. Therefore, the wires are wound onto grooved tubes so that the wires cannot short circuit. In the case of

transparent furnaces, grooved quartz rods are used.

Heating Element The temperature limit of the standard nichrome heating element is avoided by using a

kanthal heating element, which is a standard technology. The kanthal element should perform adequately up to

about 1300°C, which is a comfortable temperature limit for a 1200°C sample temperature. Kanthal is an alloy

consisting of 25 % Cr, 3 % Co, 5 % AI, with a balance of Fe. Once the surface is oxidized the elements have a

emissivity of 0.7. Kanthal elements are not appropriate for vacuum use because this material requires continuous

oxidation to create a refractory surface coating that allows the element to survive. In vacuum or inert gases

molybdenum based elements survive to very high temperatures and are the material of choice. These elements are

destroyed by high temperature oxidation and cannot be used in air. During furnace experiments the kanthal

heating element performed well throughout all of the preliminary high temperature tests. The kanthal element

performed without dif'ficulty, and without sagging. Some element distortion occurred at the highest currents

during the final feasibility tests and the surface became slightly degraded, but this was expected, considering the

1280°C element temperature and high current (about 33A).

High Temperature Transparent Materials

Transparent furnaces have traditionally been constructed out of quartz tubes. Quartz has a softemng

point at 1670°C, an annealing point at 1140°C, and a strain point 1070°C. However, quartz is commonly used at

temperatures up to 1400°C in semiconductor industry, where very clean conditions prevents devitrification and

rotation prevents sagging. GAS is grown at 12500C.

The problem of quartz as a material is in its sensitivity to chemical attack at higher temperatures, and its

slow sagging. Although both of these weaknesses will prevent the use of quartz at temperatures much higher than

1200°C it is believed that the performance of quartz is adequate for this project. Chemical attack can be prevented

by standardiT-ing cleanliness procedures and pure gases (necessary for proper sample control in any case). Sagging

is slow and can be compensated for by rotation of the quartz to prevent significant sagging in any one direction.

It is believed that the great additional cost of alternate materials (such as sapphire) outweighs their advantages at

the target temperature.
In fact, the quartz furnace elements performed will throughout the high temperature tests. The quartz

was apparently unaffected by the 1200°C temperatures for 2 days, and post analysis could determine no significant

sagging. The kanthal element performed without difficulty, and without sagging. Some element distortion

occurred at the highest currents, but this is was expected, considering the 1280"C element temperature and high

current (about 33A).
S_hire. The use of alternate materials may be warranted in spite of an increase in price as a result of

being able to use stronger or more wansparent materials. Sapphire has the great advantage of being able to

withstand much higher temperatures than quartz (over 1600"C versus 1100 to 1200°C). It is also over a factor of

10 stronger than glass. Sapphire is so strong (410 MPa) that for a sapphire shell of 15 cm diameter under vacuum

the thickness is determined by how thin a piece can be machined (less than a mm) rather than as a result of failure

stress. Durable gold coatings can easily be produced on sapphire, surviving to at least the temperature limits of

similar coatings on quartz. Edge grown sapphire can be produced cheaply, but polishing expense cannot be

avoided. Long sapphire tubes can be produced by using a sapphire bonding frit, yielding joined pieces that are

functionally the same as the original pieces.

ZnSe. One approach to making a superior mirror tube would be to use an outer shell made of ZnSe with

the gold coating on the outside. ZnSe has two advantages over quartz. First, the ZnSe has a much higher surface

reflection (17% versus 4% as a result of its higher index of refraction), which means less radiation enters the

material. Second, the ZnSe is transparent out to 20 microns, so that it will not absorb any significant IR radiation
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comparedwith the quartz. Any absorption would be in the gold coating and binder itself. It is not known how to
make a hard gold coating on this material, however. Similar reasoning applies to sapphire, but it is only

transparent to 4-5 microns. Because of its relatively low melting point ZnSe can only be used as an outer tube. It

is also expensive to produce.

Mirror Tube Research

The mirror shell is the element in a transparent furnace that contains the radiant heat. At temperatures of

interest for materials processing most of the power of this radiation is in the infrared. The purpose of the mirror
shell is to reflect the IR and thus the heat while transmitting visible radiation so that furnace processes can be

viewed. High temperature IR reflective coadngs that transmit in the visible are usually made from a thin gold

film deposited on a quartz substrate using any one of a number of materials to bind the metallic gold to the oxide
quartz. As the furnace temperature increases the radiant power increases in proportion to T 4, so that optimum

function of the mirror tube is imperative. At 800°C a 200°C temperature increase will double the radiant power

output. The mediate object of this project investigation has been to increase the temperature limit of the mirror

tube coating so that, together with the kanthal element, the transparent furnace in its present form can be operated

at 1200°C. A secondary task has been to understand the cause of the failure of the present mirror tube coating.

As work on this task has proceeded a number of weaknesses have been found in the current operation of

the mirror tube that has diminished its performance. These weaknesses are 1) IR absorption and consequent

headng in the quartz itself because the reflective coadng is on the outside of the mirror tube for superior coating

application, 2) Broadband radiant absorption and heating in the coating itself as a result of an absorptive binder
that is used to attach the gold to the quartz, 3) Loss of large areas of the coating beginning at temperatures of

above 400°C (a temperature reached in the current furnace configuration if the sample temperature is much above

1000°C).

As previously discussed, the quartz absorbs a significant amount of radiant heat from the hot components

at the center of the furnace as a result of its lack of transparency at wavelengths longer than 4 _m. At
temperatures below 800°C this radiant heating is not significant because heat transfer in the furnace is dominated

by convective hearing. At the higher target temperatures of this program, however, this absorption needs to be

reduced. Although the simplest solution is to coat the inside of the mirror tube, such coatings are more expensive

and tend to give non-uniform thickness. Both of these problems can be avoided by changing the envelope shape

from a cylinder to a hexagon, using flat plates that are significantly less expensive to coat than the outside of
tubes. Another approach is to use a buffer tube between the inner shield tube and the mirror tube. Such a tube

was proposed and used in experiments to give straightforward added thermal insulation just from convective heat
transfer. This tube, however, will absorb the IR radiation just as the mirror tube would, but will not reradiate it

as much because its temperature is significantly less than that of the inner shield tube. The buffer tube thus acts as

a protective radiant heat sink for the mirror tube, eliminating absorption of the IR in the mirror tube and

consequent heating and degradation of the coating. If there is sufficient drop in temperature the coating could
remain as an outer coating on a tube.

It was known at the beginning of the program that one factor limiting furnace temperature was that the

performance and integrity of the mirror tube coating degraded when its temperature increased beyond 400-500°C.

At these temperatures small visible flaws appear in the coating and the radiant confinement decreases. The

degradation process continues at a rate determined by the temperature. For borderline temperatures the slow

coating degradation is measured by an increase in heater coil temperature that is required to maintain a given

temperature over the operating period.

IR Reflective Coating - An assessment of the performance and improvement in the IR reflective gold
coating begins with the historical reason for the composition of the coating. Gold is the traditional material that is

used to combine visible transmission with IR reflection. Many other materials have since been used for what are

now known as heat reflective windows, and both high visible transmission and near perfect broadband IR

reflection have been achieved, driven by the mass market of solar windows. Unfortunately, these materials

cannot survive temperatures above a few hundred °C and are thus not candidates for application to transparent

furnaces. Also traditional is the use of chromium as a binder for the gold to the quartz, in wide use in the

electronics industry [15]. Chromium is used for is excellent binding strength to both quartz and gold, and for its
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coefficientof thermal expansion that is midway between that of quarlz and gold, minimizing thermal stress in the

coating. The use of chromium is based on electronics applications, however, and not optical applications.
Binder Radiation Absorption - Examination of the reflection/transmission curves of the current

transparent furnace mirror tubes shows initially that the reflection is good (over 85 % across the IR spectrum).

However, subtraction of the transmission from the reflection curves (and accounting for surface boundary

reflections caused by differences in the index of refraction of the materials) as a function of wavelength across the

spectrum indicates that the coating has a 10% absorption. It was initially thought that this was a characteristic of

the gold, because the chromium layer was so thin (about 10 Angstroms) that it would not absorb a significant
amount of radiation.

The optical behavior of thin films is well understood, however, and the absorption/transmission

characteristics of coatings can be predicted theoretically based on published values of n and k, the real and

imaginary parts of the index of refraction of the material [16]. Such a detailed calculation was performed and is

presented in Appendix B. It shows that the radiation absorption is not in the gold, but in the chromium.
Conversation with commercial coaters indicated that this is generally recognized in the very small optical gold/IR

reflective coating business. This absorption can be avoided by facing the gold to the heat source and not using a

protective overcoat. One test sample with such a transparent test coating in fact showed a 10% higher reflectivity

with comparable transmission, confirming experimentally that the absorption results from the chromium binder.

The absorption can also be reduced by using a different material than chromium. To bind the gold

chrome alloys with the gold and forms and oxide alloy with the quartz. The chrome in the gold is itself

absorptive, as are most normal metals, but its oxide, Cr203, is particularly absorptive; it is a material known for
its broadband, near-perfect absorption. Other materials, such as titanium, form a transparent oxide, but have

different problems.
Mirror Tube Improvements There are quite a few possible solutions to the coating problem. The brute

force approach is to provide a water cooling jacket to maintain a very low coating temperature. This approach

was too complex for Phase I and suffers from all of the problems of sealing a water jacket onto a complex system.
Air cooling is also possible and was used in the feasibility experiments discussed below. If a cooling flow is

used, a number of factors must be kept in mind. The first is that uniform flow must be maintained around the

circumference. This can be done using a high pressure drop manifold that is uniform around the circumference.
In the case of water the flow rate should be considerably higher than that calculated, because the basic heat

extraction geometry is unstable. If a hot spot develops, the water turns to steam and cuts off further local water

flow, leading to less cooling and a runaway temperature locally. The large spot heating will cause large local
thermal stresses and break the shell. Water cooling would be used on the outside of the reflective coating itself

rather than on the inside of the mirror tube because water absorbs strongly in the IR. The immediate contact with

water would keep the coating cool even if the inside of the shell were much warmer. This technique is limited for

glass, since a buildup of a thermal gradient through the shell would again cause thermal stresses that would break

the glass. Glass has a very low thermal conductivity so this would take a time on the order of minutes, but it
failure would occur for inner to outer temperauxre gradients on the order of 10's of degrees rather than 100's. In

the case of the transparent furnaces discussed in this program the quartz shells are too thin to support dangerous

thermal gradients except in extreme cases.
Another approach would be to use an outer shell made of ZnSe with the gold coating on the outside.

ZaSe has two advantages over quartz. First, the ZnSe has a much higher surface reflection (17% versus 4% as a

result of its higher index of refraction), which means less radiation enters the material. Second, the ZnSe is

transparent out to 20 microns, so that it will not absorb any significant IR radiation compared with the quartz.

Any absorption would be in the gold coating and binder itself. It is not known how to make a hard gold coating
on this material, however. Similar reasoning applies to sapphire, but it is only transparent to 4-5 microns.

A modification to the gold coating that would cut the transmitted radiant power would be to attempt to

create more narrow band coatings. One way to do this would be a gold interference filter. The normal

constraints of avoiding higher resonances by using blocking material would not be necessary in this case, since the

coating is just intended to cut down on the transmission relative to a simple gold coat.,
Convective heat losses could be reduced by evacuating the furnace or building an outer mirror shell with

2 layers separated by a vacuum. Another simple solution is to simply increase the size of the mirror tube and thus

lower the power deposited per unit area and increase the effectiveness of external cooling. Large, tubes are more

expensive but most of the cost is in the coating process, so significant improvements could be made in this way at
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the expense of a more awkward apparatus. This technique would lead to a lower mirror tube temperature, but
would not decrease the heat released from the furnace; it would be better to improve the heat rejection.

Gold Coating Failure; Mirror Tube Examination - A few mirror tubes that had been heated to
temperatures over 500°C previous to this program were available for microscopic study. Inspection of these tubes
showed that mirror degradation occurred as a result of spalling of the coating extending slightly into the substrate.
The coating did not come off in large patches, but in small pieces of fractious of amm in diameter. Large areas

became transparent when the spalling became widespread in a particular area (Fig. 6). Widely dispersed spalling
was visible even in areas that had no apparent degradation (Fig. 7). This coating behavior implies that the coating
is failing as a result of thermal stress at the binder interface [171.

Much is known about the strength of thin film coatings [18]. The overall strength of the coating is
determined by the binding energy of the materials, their coefficient of thermal expansion, their yield strength, and
their failure strength. Ideally the in coefficient of thermal expansion of the substrate and the gold should be
identical. Quartz has a very low coefficient of expansion, however, so coatings on its surface tend to buckle.
Gold binders reduce stress the most if they have in intermediate coefficient of thermal expansion between the
quartz and the gold, and this is the case with chromium. As has been discussed above, metallic binders diffuse

away from the interface and thus lose their effectiveness. Gold is also known to agglomerate at high temperatures
[19,20]. Additional references in the area of thin film gold coatings and their optical properties are also given
[21-36].

Many possibilities have been considered as causes for the failure of the coating, but spalling resulting
from thermal expansion stress is the most probable candidate. There have been two confusing pieces of past
experimental data to explain. One is that optical fiats with the same coating as the tubes survive in furnaces at
temperatures as high as 7000C without degradation, whereas the tubes begin to degrade at 400°C. Furthermore

a competing vendor supplies tubes with similar gold coatings on the inside, and these survive at somewhat higher
temperatures. It is now believed that all of this data is consistent with thermal expansion stress failure of the
coating. The problem is centered on the peculiar processing the surface of the quartz tubes. Since these tubes are
melt formed, the resulting surface finishes are smooth on a microscale. This results in microscopically flat
coatings that fail in accordance with thermal expansion stress calculations. The optical flats, however, are ground
and polished to a standard 80/50 scratch/dig finish, and are thus not fiat on a microscale, allowing the coating to
expand without spalling off. The internal coating, although also smooth, experiences compressive rather than
tensile stress as the coating expands more than the quartz, and thus fails at a higher temperature. This reasoning
will be tested by grinding and polishing, then coating in a standard manner a new set of mirror tubes. It is
expected that the coating on these tubes will survive the feasibility demonstration tests when the buffer tube is
used.

Mirror Tube Experiments

Experiments with a core temperature of 1100°C using the old-style mirror tubes during the reporting

period showed that the mirror tube deteriorates slowly but steadily over a 12 hour period at temperatures much in
excess of 5000C. In this test another already partially deteriorated mirror tube was used as a buffer tube and this
mirror tube coating was much less reflective but kept the same degradation patterning from previous experiments.
This tube was operated at much higher temperaatres (700-800"C). Another mirror tube was operated at
temperatures over 1100*C, and patterning remains. This is apparently a result of diffusion of the chromium (and
possibly gold) into the quartz, leading to the extreme stability of the pattern at high temperatures. This effect will
be investigated in a follow-on project.

Research into the problem of mirror degradation has been described above. A solution proposed by a
coating vendor was to use an oxide binder for the gold that would not absorb thermal radiation and would be

stable to higher temperatures than the present coating. This would lead not only to a lower mirror temperature for
equivalent conditions where the mirror tube degraded previously, but to stable performance at higher temperatures
using the new coating. Another problem that the new coating would solve is metal diffusion of the binder into the
gold. It is believed that this diffusion is the cause of the coating degradation in the standard furnace over the
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Figure 6. General coating failure near a scratch (400x).
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Figure 7. Dispersed coating failure as a result of spalling (200x).
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periodof 10 days at high temperatures; when the chromium binder diffuses into the gold, binder strength
decreases, and the coating spalls off.

New Mirror Coatin_ Experiments Twelve quartz plates were gold coated by the GM Coating Labs for

the final tram_arent furnace feasibility tests. This coating was claimed to function well at high temperature
because the binder was oxide based rather than metallic and was not absorptive. Metallic binders such as were

being used initially in this program are known to absorb a significant amount of radiant heat throughout the

spectrum. In a simultaneous effort to begin an investigation of ZnSe IR mirrors, a 2.5 cm diam., 1 turn thick disc

was included in the new gold coating process.

In furnace experiments the coating performed worse that the chromium-gold mirror coating, failing

rapidly in the 400-500°C temperature range. As with the standard gold coating, the exact temperature where the

coating fails is impossible to fix because the failure is gradual, the temperatures non-uniform and fluctuating in

time. Not only did the coating fail at lower temperatures, it also failed in a more destructive manner - the gold

coating disappeared over a broad area simultaneously. This is dangerous because it rapidly leads to an unstable

feedback with the furnace controller: the coating failure causes more power to be fed to the heater coil, which

causes more heat to be incident on the coating and more degradation. The chromium bound coating does not fail

rapidly over large areas, but slowly and progressively spalls off in small pieces. Some of the coating survives to

much higher temperature than the first small areas that come off. This is true of the oxide coating also, but to a

much lesser degree.
The coating vendor was consulted, and stated that the coating was known to survive at 450°C, and

unknown at higher temperatures. The coating is not absorptive in the IR only when the gold side faces the heat
source; facing away from the source the binder absorbs across the radiating spectrum. The binder is matched with

the gold for maximum transmission at visible wavelengths. Having the gold facing the heat source was attempted
in the furnace, but at core temperatures over 1000°C the inner faces of the plates were hotter than 500°C as a

result of convection heating, and thus could not be used in this configuration. Re,assembly of the furnace with the

gold facing out allowed the coating to be cooled to low temperatures as described below, leading to excellent
coating performance and furnace stability at 1100°C core temperature. Unfortunately hot indoor summer

temperatures combined with a coating degradation temperature that was lower as a result of absorption in the

binder (degradation observed at about 400°C) caused a slow deterioration of the coating and furnace performance

at 1200°C core temperature.

It is concluded that the oxide coating is inferior to the standard chromium-gold coating as an external

coating in this application. The performance of the standard coating is also significantly worse as an outer coating

on the quartz tubes being used for this program when compared with its use as an internal coating or on a fiat
plate. Flat plate coatings have been shown to survive to 700°C in a furnace by Insight Scientific. The project

experiments using such plates would have easily enabled stable operation at 1200°C.

Discussions with the coating vendor indicate that there are avenues to improve the high temperature

capabilities of IR mirrors that are transparent at visible wavelengths.

Heat Containment Improvement

A major furnace design issue is that the relatively large power requirement of high temperature

transparent furnaces must be reduced. The high power required results in mirror tube surface temperatures at or

above 400*C in air, which is not practical for routine operation. Thermal energy released by the furnace is not

tolerable in space based operations or in a laboratory on earth where it can provide enough heating to prevent

work nearby. Furthermore, multi-kilowatt power requirements are unacceptable for space operation. It is

planned to address this question in the follow-on project by improving the efficiency of the radiation containment

and by eliminating convective heat transfer with an outer vacuum jacket. It should be noted that in terms of heat

transfer a factor of 10 reduction in pressure is adequate insulation and an easy vacuum to obtain.

Heat containment can be improved by making the muffle tube absorb radiation across the spectrum. This

would concentrate the radiative heat at the center of the furnace rather than having it undergo multiple reflections

and be lost out the ends. There is more than enough visible radiation emitted by the coil at high temperature to be

able to view the sample. Typical gold coatings are less than 10% transmissive, and there is easy visibility above
800°C. Another possibility is radiation containment at the furnace ends.
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TEMPERATURE PROFILE DESIGN

Work on this task takes advantage of the extensive work performed by Insight Scientific in the design,

construction and optimization of transparent furnaces. At present detailed multizone temperature control designs

are subcontracted to companies that specialize in furnace computations. These computations will have to be

modified if, as planned, the IR containment is significantly improved for this program. Detailed multizone

designs are less important for the demonstration of transparent furnace operation at 1200°C, however, so that

work in the project has concentrated on the other tasks. Work in this area has been summarized in terms of

simple sets of basic design rules.

There are three basic types of furnace designs that have been considered: a l zone constant gradient not

adjustable, a 2 zone constant gradiem, and a 3 zone profile if no derivative equal to 0 is required. These are
discussed below.

Isothermal Profiles

One heating element is required; two may be used if coil spacing rules are followed.

Coil Spacing Rules:

1. The spacing of the coils at the ends of the furnace should be 1/2 the spacing at the center.

2. Coil spacing at the center should not exceed 1.3 cm (center-to-center) for 0.32 cm diameter wire.

3. If coil spacing exceeds 1.3 cm, thermal "striping" can occur (i.e., "swirling" isotherms).

4. Coil spacing at the center should not exceed 1.9 cm for 0.48 cm diameter wire.

5. Four tightly spaced coils are necessary at the end of the heater to bring the temperature up to the

isothermal core region temperature.

6. Five coils will create a bump.

7. Three coils will decrease the isothermal length but can be used if the length of the furnace is limited.

Constant gradient profiles

Coil spacing rules above apply.

Single zone
1.

2.

3.

4.

is required,
5.

the coil.

6.

design:
A constant gradient can be obtained with one zone.

The slope of constant gradients obtained with one zone are not adjustable.

It is impossible to precisely predict the slope a given coil design will provide.

Gradient requirements specified by a customer will always change with time, so if a gradient profile
two coils should be used.

The slope of the gradient is primarily driven by the difference in the coil spacing at the two ends of

The coil spacing in the middle is of secondary importance.

Two zone design:

1. Two zones provide adjustable constant gradients.

2. The interface between the two zones should be in the center of the gradient region.

3. Coil spacing at the center should be constant.

4. The discontinuity in the coil spacing of the two elements in the middle should be minimized.

5. Two heater leads (one from each element) should extend out from each end cap.

Constant gradient profiles are not very difficult to achieve if the tolerances on the constancy of the slope are not
severe.
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Non-constant gradient profiles

Coil spacing rules apply

The detailed requirements for a non-constant temperature gradient tend to be difficult to specify by the
customer, often leading to a changing design constraints. Non-constant profiles are usually twice as time

consuming and expensive as initial estimates predict.
Isothermal plateaus adjacent to sharp gradients are very difficult to achieve. The most difficult problem

is in the region where the slope changes. It is critical to know if the furnace will be run horizontally or vertically,
since a profile developed for horizontal operation will change if the furnace is rotated to the vertical.

HIGH TEMPERATURE TRANSPARENT FURNACE FEASIBILITY

Transparent Furnace Experiments

A series of experiments were performed to explore the high temperature limits of the current and new
configurations of the transparent furnace. During these experiments power supply instability problems were
overcome as were power measurement problems. Power measurement using SCR phase angle controlled supplies
is difficult because of the unusual nature of the current waveform. Radiant power measurements were also made

with the meter purchased for the program.
Furnace operation was typically performed at progressively higher temperatures to measure the radial

temperature profile inside the furnace and the mirror surface temperature as a function of core temperature.
Except for the air gap used in the final experiments, the end gaps between adjacent cylinders were packed with
alumina felt insulation to minimize heat losses through the ends. A small hole was left in each packing at one end
to permit the internal surface of each shell to be measured. This was done by inserting a thin gauge sheathed type
K thermocouple with a handheld thermocouple monitor readout. Internal surface temperatures could be measured
in this way, but were sometimes distorted by contact with the opposite surface as a result of the small radial
clearances between tubes. The handheld unit also allowed measurement of coil temperature because it is
ungrounded.

1) Standard Configuration and Comoonent Experiments - Initial experiments using a variac to supply
the heater current were done to explore the low (relatively) temperature behavior of the standard furnace
configuration (Fig. 8). The transparent furnace was made up of cylindrical quartz tubes in order of increasing
diameter: 1) an inner muffle tube with 3 slotted quartz rods attached with fused quartz, 2) a kanthal heating
element wound in the slots, 3) a quartz inner shield tube, and 4) a partially degraded mirror tube. The furnace is
mounted in a cradle with half-circle fiber ceramic end supports. Tests were done at furnace core temperatures up
to 600"C to practice operating the furnace, take measurements for comparison with modeling, and assess the
temperature differences between the quartz shells. The variac, rated at 10 A, was run safely at over 13 A as a
result of an understanding of transformer operation and specification.

The next series of experiments tested the temperature limits of stable operation for this standard
configuration. For higher current tests a Eurotherm controller and SCR current supply allowed temperature
feedback control for supply currents up to 30 A at 120 VAC. Core temperatures up to 900°C were achieved,
measuring shell and coil temperatures. Radiant power was also measured. Higher core temperatures were not
attempted because the external mirror tube temperature reached 550°C and the mirror coating was degrading
rapidly. These results were consistent with Insight Scientific's previous experience; they were able to obtain
950°C using new mirror tubes with very slow degradation over 10 days. This has been the previous limit to
practical furnace operating temperature.

2) Buffer Tube Experiments - A larger diameter mirror tube was next added outside the standard

configuration. The inner mirror tube then functions less as a mirror tube than a thermally insulating buffer tube
between the high temperature inner assembly surrounding the coil and the mirror tube. This buffer tube adds
another effective gas insulating layer, and since its temperature is a few hundred degrees C lower than the shield
tube, it significantly decreases the long wavelength thermal radiation transmitted to the mirror tube. At the time
no clear quartz tube of the proper dimensions was available, and assembly was simpler. The larger mirror tube
which then formed the outer furnace shell had been degraded in previous experiments before this
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Figure 8. Photograph of the standard configuration transparent furnace used for initial tests.

program by Insight Scientific.
The core temperature was increased in steps as usual, monitoring the radial temperature profile and the

external surface temperature, and watching for degradation, At a core temperature of 900°C the outside of the
mirror tube was at 330°C at the side; at 1000*C the outside temperature increased to 375°C, and at 1100°C it

increased to 525°C. This configuration was operated at 1000°C for 20 hours with a slight increase in power,

probably as a result of degradation of the inner mirror tube. The core temperature was then raised to 1100°C and

held there for 12 hours. During this time the required power steadily increased and the outer mirror coating

seemed to be degrading slowly. Operation was terminated when the outer surface reached 590°C and it was clear

that the degradation was continuing and worsening in an unstable combination with the increasing power demand.

3) Buffer Tube _n_l Nfw MirrQr Ttjbe Coatin_ Exneriments - After the above tests 12 plates gold

coated using the new binder arrived. A platinum-rhenium thermocouple was also obtained to measure the

expected 1200°C core temperature, as opposed to the Type K thermocouples that had been used. Since the new

coating was supposedly a high temperature coating the furnace was assembled with the standard core, a clear

buffer tube (newly obtained) surrounding this, and finally 6 mirror plates arranged in a hexagon as the IR
containment mirror tube. A muffin fan was added to increase external cooling beyond natural convection. The

gold coating was on the outside to mimic the configuration of the standard mirror tubes.
The core temperature was increased to 800°C and held for temperature profile measurements (Fig. 9).

Spots became visible in the coating, and since the outside peak temperature was only 330°C it was believed that

these spots were characteristics of the coating that appeared when the coil got brighter. The coating was only

10 % transparent, so visibility increases in general at higher temperatures. The core temperature was increased to

900°C, measured radiant power increased, and larger faintly brighter areas began to appear on some plates. The

temperature was further increased to 1000°C and the outer mirror surfaces were found to be at 500°C. A this time

the radiant power meter showed a factor of 2 increase in a brighter area, and the plate temperature was found to be
130°C cooler in an area that was not as bright, so it became clear that the coating was failing. Operation was

halted to assess the situation.

It was clear at this point in the experiments that the mirror plates had a similar temperature limit to the

standard mirror coating, and that they were not superior in temperature performance (temperature numbers were
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notsuppliedbythevendor).Theobject then became to decrease the mirror tube temperature during operation.
To do this 4 more clear quartz buffer tubes were added to the original core (6 total) as added

Figure 9. Photograph of transparent furnace with buffer tube and hexagonal mirror tube operating at 800°C.

insulation, and the mirror plates added as an octagon on the outside of this assembly using 6 new plates and 2

that had experienced the least degradation from previous operation in the hexagonal configuration. The gold

coating was placed on the inside to reflect the maximum amount of radiation, while radiant cooling from the

quartz outside was to provide extra cooling. The alumina felt between the apexes of the octagon and the adjacent
buffer tube was removed to allow the hot gas between the surfaces to escape.

In this configuration the core temperature was increased to 800°C, at which time the mirror surface

temperature was found to be 420°C. The surface was also scratched in the act of measurement, so it soft and close

to failure. A fan blowing at the end did not significant reduce the surface temperature. The outside of the outer

quartz tube was found to be at 535°C, and thus the extra buffer tubes were not adding a large amount of insulating

effect. Furnace operation was terminated to try another configuration. No coating degradation was experienced.

Feasibility Demonstration Experiments

Feasibility experiments were performed in a final assembly that used 3 innovations compared with the
furnace built in its standard geometry. In order of importance these innovations were 1) The addition of outer

quartz shells that were mounted with an open gap between them to allow air flow between these concentric

cylinders, 2) The use of quartz buffer tubes for additional thermal insulation between the furnace core and the

mirror tube, 3) The use of mirror tubes as buffer tubes such that the mirror coatings after degradation would

function as absorbers for reflected heat radiation. These experiments were almost entirely successful in spite of
the new mirror coatings that turned out to be worse than those in use in the current furnace.

The furnace was operated at I100°C core temperature for 100 hours at a stable power levd, and

near 1200°C for 50 hours with slight but steady deterioration of the outer mirror coating and slowly

increasing power levels. The furnace was operated at 1200°C for 24 hours, then the power level was fixed and

the core temperature allowed to drift. After 26 more hours of operation the core temperature had drifted to
1180°C.

22



Thefurnacewas assembled based on the recognition that the mirror coatings could not survive the

temperatures on the outside of the outer quartz shell that result from a 1200°C core temperature, assuming an

uncooled transparent furnace that uses clear quartz tubes with air gap insulation. The goal of the assembly was
then to achieve maximum cooling on the mirror surface with minimal heat transfer to the mirror shell. Three

small muffin fans directed at the mirror surfaces provided the forced-air cooling on all of the external mirror

surfaces to keep their temperature to a minimum. Heat transfer was enhanced by the fact that the coating external

surface was gold with high thermal conductivity, rather than the more traditional glass overcoat. One of the fans
was directed at the end of the furnace to force air through the gap between the outer shells and reduce the heat

load entering the outer shell that supports the mirrors. The furnace geometry is shown in Fig. 10. A photograph

of the assembly is shown in Fig. 11.

Gap with open ends

Muffle Tube

Heater Coil

Shield Tube

Inner Mirror Tube

Clear Buffer Tube

Outer Mirror Tube

Clear Support Tube

Figure 10. Transparent furnace configuration for feasibility experiments.

Two mirror tubes were inserted into this assembly with the understanding that the mirror coatings would

disappear, but some metal would be absorbed into the quartz and act as a radiant heat sink, preventing some of

this heat from reaching the mirror tube. This technique was suggested by earlier experiments that showed that

clear quartz tubes reduced the heat transfer less than the degraded mirror tubes. Analysis will show how large an

effect this was.

The temperature versus time history of the furnace during the feasibility experiments is shown in Fig. 12.

The first test of performance was at a core temperature of 1000°C (measured with a platinum-rhenium

thermocouple attached to the furnace controller). In this test one fan was blowing at the furnace end to drive air

flow between the open gap between outer tubes. The resulting external mirror surface temperatures varied from
40°C to 160°C. The furnace was operated for 19 hours to assure power stability and no deterioration of the

coatings. The temperature was next ramped to 1100°C, and 2 additional fans were added for more direct surface

cooling from each side of the furnace at 45 ° to induce flows in the same direction as the fan blowing through the

end. At 1100°C mirror surface temperatures ranged from 85°(2 to 180°(7.

Operation was again continued until power stability was reached. Reaching stability was a somewhat

slow process because stability could only occur after the coatings on the inner mirror tubes completed their slow
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degradation to their final burned-in state. At each higher level of core temperature further degradation was

observed on the outer mirror tube, accounting for the slow stabilization even when the outer flat mirrors were not

degrading. Operation at 1 I00°C was continued after stabilization for a total of 48 hours after 1100°C was initially

reached as a certain demonstration of feasibility at that temperature in case the furnace could not survive the next

step to 1200°C.

Figure 11. Photograph of final transparent furnace assembly without insulation removed to create a cooling air

gap.

The core temperature was then raised to 1200°C and maintained. Power levels steadily and slowly

increased as at 1100°C, but were now approaching the limit of the coil and power supply. Outer mirror

temperatures of 350°C were measured. This was apparently near their operating limit with the coating facing

outward, since degradation began to be apparent by small bright holes appearing in some areas of the mirrors, and

application defects near the edges. Two of the octagonal mirrors had been partially degraded from previous
experiments, and this raised the heat flux necessary for 1200°C operation also. Room temperatures from 80-90°F

also caused increases in the required power.

After 24 hours of operation at 1200"C with feedback control and slowly increasing power demand, it was

decided to fix the power and observe the core temperature. The mirror coatings were slowly but definitely
deteriorating in some areas near the center where end cooling was less important. In another 26 hours the

temperature drifted from 1200 to 1180°C. The mirrors were clearly slowly degrading, which was causing the

power demand increase. At this time the power was slightly increased, raising the temperature to 1187°C, but

coil distortion began to be observed, so no further operation at this power level was attempted.

The core temperature was then decreased to 1100°C and stable operation again demonstrated, continuing

operation until a 100 hour demonstration period was completed. As expected the mirrors stabilized at the lower

temperatures and no delay for stabilization was observed, since the inner mirror tubes were already burned-in.
Total operating time at high temperature was 172 hours.

It is unfortunate that this demonstration was performed during the summer, since a cooler environment

would definitely led to stable operation at 12000C. This was demonstrated a number of times during operation.

During constant power operation the room temperature increased steadily overnight with the doors closed and

with a limited amount of fan cooling. When supervised the garage door near the furnace was open, cooling the
entire room with cross flow from a window fan in an opposite door. In one case when the room was shut the
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itmidetemperatureincreasedfrom79°Fto83°Fandthefurnacecoretemperaturedecreasedfrom1194°Cto
1188°(2.A decreasein temperaturefrom79°Fto77°Cresultedinanincreaseincoretemperaturefrom1175°Cto
!185°C.Thereisastrongdependenceofcoretemperatureonabsoluteroomtemperature.A testof coating
temperature(coretemp= 1100°C)showedthataroomtemperaturechangefrom78°Fto76°Ccausedasurface
temperaturechangefrom104°C to 86°12. This effect is larger for higher surface temperatures; a change in room

temperature from 79°F to 77°C caused a surface temperature change from 215°C to 186°(2. Winter operation

would have led to mirror surface temperatures low enough to prevent mirror degradation for
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Time history of transparent furnace core temperature during feasibility experiments.

core temperatures of 1200°C and thus stable operation for indefinite periods at this temperature, even for

the inferior mirror coating.
The choice of introducing cooling to minimize mirror temperature was taken with the understanding that

this would increase the power required to operate at a given temperature. This also makes higher temperature

operation more difficult, since the power required (over 3 kw) increases more rapidly than for uncooled operation
and increases the heat fluxes at the mirror surface. This effect contributed to the mirror degradation and the

approach to the limit of the heater coils. Using a muffle tube that absorbs radiation and vacuum insulation

between the outer shells cooling will radically reduce power requirements in the follow-on project.

Furnace Operation Analysis

Extensive temperature and power data was taken for all of the experiments discussed above. Radial

temperature profiles at the surfaces of the furnace tubes are shown in Fig. 13 for operation at 1000, 1100, and
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12000(2. Data points in parenthesis are projected on the basis of lower temperature measurements. Temperature
measurements near 1200°C could not reliably be made by the Type K handheld thermometer that was used. The
radial profiles show a steady drop in temperature away from the furnace core. As the core temperature increases
the temperature drop in the air gap increases. The outer temperatures are averages of the various plate
temperatures, since they vary from face to face and axially in temperature.

The axial variation in temperature of the inside top of the outer quartz tube that supports the mirror plates
is shown in Fig. 14. This plot shows that the cooling velocity between the tubes was not adequate to cool the end
of the downstream end of the furnace. It is noted that the safe temperature for mirror operation is below 400°C,
and there is an additional heat input to the mirrors from absorbed radiation. In fact the mirror
coating on some of the plates failed at the end, and the lack of cooling at the end was a major contributing factor
leading to unstable operation at 1200°C. Adequate cooling would have shown a slow linear increase in
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Figure 13. Radial temperature profiles at the furnace quartz surfaces for high temperature operation.
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temperature rather than the asymptotic behavior seen.

Furnace power data is shown in Fig. 15, together with the temperature/time history of high temperature

operation and room temperature measurements. Room temperature measurements are included in the data because

of tile dependence of power ambient temperature as discussed above. The power levels required for furnace

operation at 1000, 1100, and 1200°C are shown and given in Table 3 below. At 1000 and 1100°C furnace

operation is stable in power, varying slightly in response to changes in feedback control and room temperature

changes. Room heating as a result of furnace operation is seen, as is a corresponding rise in required power. The

slight increase in final power at 1100°C is cause by an increase in room temperature. The increase in power

required for operation at 1100°C in final testing is a direct result of partial mirror degradation, but tile power is
still stable because mirror temperatures have been lowered enough to prevent further degradation. The constant

power shown at 1200°C occurs because temperature feedback has been discontinued and the core temperature is

slowly decreasing (about 20°C in 26 hours). The power was fixed to prevent coil degradation.
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Figure 14. Axial temperature profile of the inside of the outer quartz tube supporting the mirror plates in

response to the air cooling in the gap between this tube and the next smaller tube.
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mirror

Table 3. Transparent furnace power requirements in various configurations.

Core Temperature (C) Power (W) Furnace Modification

1200 3000

1100 2100

1000 1200

1000 1750

1000 1120

800 400

800 560

800 660

Final Configuration, 4 buffer tubes, octagonal
tube, end fan, 2 side fans.
Same

Same, without 2 side fans.

Hex mirror tube, one buffer tube, 1 side fan

Standard Transparent Furnace

Final Configuration, no cooling
Same, add end fan

Standard Transparem Furnace
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The large power and large power increase at high operating temperature are the result of the T 4

dependence of radiant power, and the addition of cooling. Table 3 shows the power response of the furnace to

configuration change. Only one configuration could be used to reach 1100 and 1200"C, requiring cooling

between the outer furnace tubes and direct cooling of the mirror plates. Even with the end fan, the additional

tubes are seen to reduce the power requires of the smaller hex configuration by 30 %, back to the level of the
standard furnace that is uncooled. Presumably the fan cooling of the hex configuration was responsible for the

power increase relative to the standard configuration. At 800°C the addition of the end fan is seen to increase the

power requirement by 40 %, which implies that the cooling is responsible for much of the power increase at high
temperature, which is encouraging for development of the furnace. Operation at 800°C also shows a 40 % power

reduction in furnace power as a result of the addition of buffer tubes when compared with standard furnace

operation.

Photographs of furnace operation at 1200°C are given in Figs. 16 and 17. The results presented in this

analysis have been compiled in a short period at the end of the program, and, while correct to the best analysis at

this writing, are subject to future correction.

Furnace Improvements. The project work has led to a much more complete understanding of

transparent furnace technology. During the program further possible improvements in the construction of the
furnace have become apparent, both for increasing operating temperature and for decreasing power.

Changes in technology available to the project that are believed to have permitted stable operation at
12000(3 are:

Certain:

1) Standard mirror coating on plates used in the feasibility experiment.

2) Winter operation (> 20°1: cooler furnace environment temperature)

Highly Probable:

1) More uniform cooling air flow over mirrors that were used.
2) More flow between the outer quartz cylinders.

Advances in this program have already been incorporated in commercial furnaces sold by C/VI to allow a furnace
temperature limit of 1050°(3. Previous research by Insight Scientific had achieved a core temperature of 1150°(3

for 5 minutes before component failure.
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Figure 16. Photograph of transparent furnace operating at 1200°C.

Figure 17. Photograph of transparent furnace operating at 1200°C showing coating degradation. (The large
blotch and scratches are on the old mirror tube inside the furnace.)
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DISCUSSION OF RESULTS

The work has shown that there is no fundamental limitation on high temperature transparent furnace

operation. Transparem furnace operation at 1200°C was demonstrated for 100 hours using active air cooling,
although this requires a significant increase in furnace power compared with passive cooling. The furnace was
operated at high temperature continuously for over a week. These demonstration experiments showed that
internal components of the furnace could operate at 1200°C without major degradation. Furnace peak power was
over 3 kw, but power comparisons show that the new furnace configuration would require less power than the
standard furnace if air cooling were not required.

The primary technique that has been used to evaluate the performance of the furnace was to examine the
energy balance of the furnace, accounting for the electric power used in terms of radiation, convection, and
conduction energy losses. Heat transfer modeling of the transparent furnace was performed in detail, and furnace
power was measured at high temperature and in response to cooling and changes in the configuration of the
thermal insulation. The modeling was verified by experiments and then used to prediction the benefits of design
changes intended to increase the operating temperature of the furnace and to reduce the power used. Since most
of the heat energy is lost through the quartz shells rather than out the ends of the furnace, radial temperature
profiles were measured for all furnace configurations. Proprietary techniques were developed to reduce furnace
power consumption in a follow-up project intended to build an advance transparent furnace for NASA.

Modeling and experiments led to a recognition that radiant heat transfer between quartz shells plays a
dominant role in the overall thermal behavior of the transparent furnace. The behavior of quartz in a transparent

furnace application was studied as well as alternate, more transparent materials with the intention of possibly
reducing infrared heat absorption. The benefits of an increase in transparency do not seem to be justified by the
increased cost, the decrease in temperatme limits compared with quartz, and the possibility of using an internal

reflective coating to reduce the absorption in quartz. Extensive research into infrared mirror coating science and
engineering was performed. Methods were developed for increasing mirror operating temperature that involved
processing the substrate differently and relocating the coating so that little radiation would be absorbed in the
binder or, in the far infrared, the substrate. The primary mechanism of coating degradation seemed to be spalling
as a result of differential thermal expansion between the coating and the substrate. Air cooling techniques
between quar_ insulating shells were demonstrated to prevent mirror coating degradation by preventing

overheating of the coating. Degraded mirrors were used to demonstrate the usefulness of absorptive radiant heat
containment in the transparent furnace.

The project research has laid the foundation for follow-on work not only by demonstrating transparent
furnace operation at 1200°C, but by identifying the important areas that must be investigated. These are:

• The use of improved insulating techniques between the furnace core and the IR mirror tube.

The development of IR mirror coatings that survive temperatures significantly in excess of
500°C.

• Minimization of convective, conductive, and radiant end losses.

• Heat transfer modeling as a design tool.

• Temperature profile design.

Work in these areas will lead to significant advances in transparent furnace technology and make the prototype
furnace a new generation of iustmment for materials processing.
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CONCLUSIONS AND SUMMARY OF RESULTS

The project has resulted in significant advances in many areas of transparent furnace technology. The

weaknesses of present transparent furnace technology have been identified in detail and a variety of improvements

have been extensively investigated and attempted experimentally. Furnace configuration changes that significantly
reduce heat transfer have been demonstrated experimentally, and further large improvements have been identified

for inclusion in a furore prototype furnace. Furnace heat transfer is driven primarily by radiation between the

concentric quartz shells, such that significant furnace design improvements can be achieved by modifying the

internal radial temperature profile, adding internal absorbers, and perhaps be using materials that are transparent

over a broader wavelength range. Cooling techniques were developed that permitted 1200°C operation with

present mirror tube technology. The advances and achievements of the project program indicate that the prototype
furnace to be constructed will be a new generation of device that performs much better than present transparent

furnace technology.
The important objective of the project research was achieved: to demonstrate the feasibility of transparent

furnace operation at 1200°C. Project work has offered solutions to most of the problems with current transparent
furnaces, and has demonstrated them in some cases. Techniques for improved radiation containment, reduced

convection heat losses, and reduced end losses have been developed. Temperature limits on current infaxred

mirror tubes were identified as the primary limitation on high temperature operation. Current mirror tube designs

were demonstrated to be adequate for high temperature operation if adequate air cooling was provided inside the

mirror tube, although at a price of significantly increased power use. Operation at 1200°C within the constraints

of the project is a significant technological advance and a proof of the possibilities the can be realized for major

improvements in future work.
The primary technical benefits of a high temperature transparent furnace are first that it permits optical

access to materials processing that requires temperatures that have not been previously accessible. Secondly it

provides the capability for development of the many tools and calibration measurements that will be required for
non-intrusive high temperature intelligent materials processing. The development of a high temperature

transparent furnace would result in major savings for many NASA programs by allowing real time feedback
control of materials processing. Such control has been demonstrated to dramatically reduce cycle times and labor

investments. Allowing rapid manual interaction with materials processing is of crucial importance for research in

space. The transparent furnace developed in this program may lead to the most important economic benefit for
NASA - the development of commercial applications for materials processing in space. The benefits of

commercial development of the transparent furnaces are extensive and assured by requests by industry for this

furnace, which will allow rapid development of high temperature materials processing.

Applications

There are many generic uses for transparent furnaces in materials processing and fluid and solid

mechanics at elevated temperatures. Transparent furnaces can be used for research in crystal growth, sintering,

metal joining, and annealing, high temperature materials properties, and the behavior of flowing systems that use

high temperature liquids. In the area of crystal growth, some of the capabilities introduced by a transparent

furnace are 1) Nucleation can be observed; if multiple nucleation sites occur solidification can be restarted, 2)
The melt/solid interface can be viewed as a result of differences in density and emissivity between the liquid and

solid, 3) Surface tension effects can be studied as a result of these liquid-solid differences. (This capability is

important for microgravity research), 4) Convection can be studied through index of refraction changes with

temperature, 5) Internal temperatures can be monitored by tomographic means, and 6) A variety of crystal

defects are visible, depending on the opdcal properties of the crystal.
In other areas, transparent furnaces can be used to investigate high temperature surface tension effects in

microgravity as used in thermal storage devices. Long distance microscopy will allow the study of material

microstructure, which is crucially important for many processes such as sintering. Finally, the development and

use of a wide variety of optical diagnostics will lead to the development of intelligent materials processing in

many specific cases.

33



Fullopticalaccesstofurnaceapplicationswillallowdiagnosisof the subtleties of high temperature

processes under microgravity conditions, as well as for future applications in process control in space and on

earth. There are many specific applications for both NASA and commercial interests that will now be possible in

important processes that only occur at high temperatures. Transparent furnace technology will be a key space

station capability, allowing astronauts to interactively perform materials processing experiments in microgravity.

The development of a high temperature transparent furnace will create many new opportunities for high

temperature material processing research and process control applications. The follow-on program is expected to

give NASA important new broad capabilities for advances in high temperature materials processing science.

Commercial potential is similarly great because an important class of materials processing techniques occurs in the

newly acquired temperature range and can now be studied. For example, important types of crystals that melt in

the range of 1000-1200°C can be observed, and joining processes that involve melting copper (melting point
I0840C) can be inspected.
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