# **IPAC - Inlet Performance Analysis Code**

Paul J. Barnhart\*

NYMA, Inc. Engineering Services Division Brook Park, OH 44142

#### Abstract

A series of analyses have been developed which permit the calculation of the performance of common inlet designs. The methods presented are useful for determining the inlet weight flows, total pressure recovery, and aerodynamic drag coefficients for given inlet geometric designs. Limited geometric input data is required to use this inlet performance prediction methodology. The analyses presented here may also be used to perform inlet preliminary design studies. The calculated inlet performance parameters may be used in subsequent engine cycle analyses or installed engine performance calculations for existing uninstalled engine data.

#### Introduction

Propulsion installations can have a significant effect on the overall efficiency of airbreathing engine systems, particularly for supersonic and hypersonic flight vehicles. To assess the impact of an inlet design on the net thrust and specific fuel consumption for a given engine design, either the inlet performance characteristics must be known in advance, or they must be calculated from a simple geometric design, or in the worst case the inlet system must be designed from scratch and then analyzed to determine performance. This report describes a series of analyses which have been developed into a performance prediction methodology for engine inlet systems. The methodology can be used to predict performance for a given inlet geometric design. Additionally, the methodology can be employed to perform preliminary inlet system design, and subsequent performance analyses.

Inlet performance is typically comprised by determining three quantities: delivered engine airflow,  $W_2$ , total pressure recovery,  $P_{TD}/P_{T0}$ , and aerodynamic drag coefficient,  $C_D$ . It is also very important to be able to characterize inlet performance over the entire vehicle flight and engine operation range, not just at the inlet design point. The methodology presented covers the calculation procedures used to determine inlet performance, both on and off-design, for the broad classification of inlet geometries shown in Figure 1.

<sup>\*</sup>Supervisor, Aerospace Analysis Section

The geometric input used for the analysis modeling is simple and flexible. This permits rapid performance calculations and quick turn-around times for inlet design assessments. The analyses are capable of modeling three broad inlet design classifications: pitot, axisymmetric, and two-dimensional.

#### Method of Analysis

Figure 2 shows the basic modeling elements used to develop the inlet performance analysis methodology. The action of airflow ingestion through the inlet is broken up into a series of distinct processes. Changes in flow properties from the free stream flow station, 0, to the inlet local flow station, L, are modeled as vehicle effects. Flow changes through shock waves ahead of the cowl lip station, 1, are modeled as external compression. Flow changes within the cowl lip to the inlet throat station, TH, are modeled as internal compression. Flow changes downstream of the throat to the engine face station, 2, are modeled as subsonic diffusion.

Aerodynamic drags modeled include spillage, bleed, and bypass. Spillage drag is the sum of the momentum change incurred by air being diverted around the inlet lip, additive drag, and cowl lip suction, if present. Bleed drag results from the momentum change in air which is dumped overboard as required by inlet stability considerations and boundary layer control. Bypass drag results from the momentum change in air which is dumped overboard for inlet/engine weight flow matching requirements. Additional calculations for cowl lip and wave drag are also included.

The relative amounts of airflow ingested into the inlet, lost to bleed, bypass, or spillage are shown in Figure 2 as the free stream tube areas, A. These areas are usually presented in analyses as a ratio with respect to the forward projected cowl lip area,  $A_c$ .

Figure 3 shows the different modes of operation which are possible for mixed-compression inlets in supersonic flight. Of particular importance is the location of the normal shock wave since this will dramatically effect the inlet airflow capture characteristics. The top diagram in Figure 3 shows the inlet operating with the normal shock wave outside of the cowl lip. In this mode of operation the inlet can deliver less (or within limits more) air to the engine by spilling air around the lip as subsonic flow behind the normal shock wave. Thus the engine demand can influence the inlet operation and the location of the normal shock wave. This operation is called sub-critical and the inlet is unstarted. External compression inlets always operate sub-critical.

As the engine demands more airflow, the normal shock wave is drawn up to the cowl lip. When the normal shock wave just reaches the cowl lip, the inlet is ingesting the maximum airflow possible. The center diagram in Figure 3 shows this operation, called critical, but the inlet is still unstarted since the throat Mach number is subsonic. When the normal shock wave is swallowed and located downstream of the throat the operation is called super-critical and the inlet is now started since the throat Mach number is supersonic. The airflow captured by the inlet lip cannot be increased or decreased by the engine operation, but is fixed by the external shock wave structure as shown in the bottom diagram of Figure 3. Inlet/engine airflow matching can only be accomplished in this mode using a bypass system.

#### **Engine Weight Flows**

The primary function of an inlet is to deliver the proper amount of airflow to the engine. The amount of airflow delivered to the engine depends on many factors. The usual requirements for inlet design specify the desired altitude corrected weight flow delivered to the engine face as a function of flight Mach number. Equation 1 shows the relation between engine corrected weight flow and inlet performance and design variables. The leading term in Equation 1 is the inlet capture area,  $A_c$ . The larger the inlet the greater the engine weight flow. The second term is the free stream-tube area ratio and it is a strong function of the inlet design and mode of operation. Stream-tube area ratios will be discussed in a later section.

The inlet total pressure recovery is also an important factor in Equation 1, however, the corrected airflow is inversely proportional to recovery. A higher recovery will result in a lower specific corrected airflow at the engine face, and hence will necessitate a larger inlet,  $A_c$ . And this in turn will result in a propulsion system capturing more absolute airflow, resulting in greater thrust. A lower recovery results in a smaller inlet, less absolute airflow, and lower thrust.

Equations 2 through 8 show how the absolute engine weight flow,  $W_2$ , is calculated from the corrected weight flow. Equation 9 indicates that the free stream static pressure and temperature are known from standard atmosphere tables or curve fits. Equations 7 and 8 are the isentropic flow relations between total and static quantities as a function of Mach number. Equation 6 is a statement of the first law of thermodynamics, and is only valid if the inlet does not transfer heat or shaft work to or from the airflow. Equation 10 may be used to determine the actual weight flow directly from free stream static properties. Equations 1 through 10, as written, imply the use of English units.

#### **Real Gas Effects**

Implicit in Equations 1 through 8 is the ideal gas assumption. This is usually valid for free stream Mach numbers below two. At higher flight speeds real gas effects need to be accounted for. Equations 11 through 15 are used for a calorically imperfect gas model. Primed values correspond to the real gas property. Equation 11 is used to calculate a real gas ratio of specific heats from the ideal gas  $\gamma$  and the static temperature. For a known flight Mach number Equation 12 is solved by iteration to yield a real gas total temperature. Equation 13 is used to determine the total pressure for the real gas model. These total quantities are used to replace the ideal gas values calculated by Equations 7 and 8. Equation 1 must also be modified for stream-tube area variations using Equation 14. Additional information on this real gas model can be found in reference 1.

### Inlet Mass Flow Ratios

Figure 2 shows a rather standard airflow accounting system in terms of idealized free streamtube areas. If these stream-tube areas are normalized by the inlet capture area, a series of relations can be developed. Equations 16 through 18 show the stream-tube area build-up. These ratios are also called mass flow ratios, since the mass flow is equal to density times velocity times area. The density and velocity terms drop out in the ratio format. If there are no vehicle effects on the airflow ahead of the inlet, the right hand side of Equation 18 is equal to one. The airflow captured by the cowl lip and ingested into the inlet is represented by the mass flow ratio  $A_{0l}/A_{C}$ , while the airflow passed through the inlet throat is represented by the mass flow ratio  $A_{0l}/A_{C}$ .

### Vehicle Effects

The effects of a vehicle flow field ahead of an inlet can be simply described as changes to the total pressure, Mach number, and stream-tube area between stations 0 and L. Equations 19 through 25 show the effects of Mach number and total pressure changes on the stream tube area. The analysis extends from the principle of conservation of mass in Equation 19. Equation 25 provides a simple expression for determining the right hand side of Equation 18 if the total pressure ratio and Mach number ratio are known from stations 0 to L.

All of the subsequent analyses are performed in the inlet local reference frame, as if there were no vehicle effects present and the inlet was simply in a free stream of different Mach number and total pressure. However, the overall inlet performance must be represented in the free stream reference, and thus all results from the inlet local reference must be adjusted. Equations 26 through 31 show how a drag coefficient calculated in the inlet local reference is adjusted to represent the same force described as a drag coefficient in the free stream reference frame.

### Vehicle Forebody Model

Figure 4 shows a simple vehicle forebody model employed in the methodology. This model can be used to represent vehicle underbody precompression surfaces, upperbody expansion surfaces, aircraft wings, or slender fuselages. The stream tube area shown in Figure 4 can be seen to decrease as the streamline crosses subsequent shock waves from the free stream to the inlet local stations. Equations 32 and 33 show how the ratios of total pressure and Mach number, from free stream to inlet local, are determined from the changes across each individual flow deflection region. Positive angles,  $\alpha$ , are modeled as oblique shock wave compression regions. Negative angles are modeled as discrete Prandtl-Meyer expansion regions. Conic shock waves are also an included option, in addition to the default planar shock wave calculations. Since shock wave calculations are a central part of the inlet performance methodology, a description of these types of calculations follows.

#### Normal Shock Wave Relations

A shock wave is a very thin layer interaction between two distinct compressible flow regions. The simplest shock wave type is the normal shock wave, shown in the top diagram of Figure 5. Supersonic flow is shocked down to subsonic flow across a normal shock wave. All flow properties are determined by the upstream conditions. Equations 34-38 show the standard normal shock wave flow relations for Mach number, pressure, temperature, and density. Note that all of these relations are only a function of upstream Mach number, and are thus easy to apply.

## **Oblique Shock Wave Relations**

The center diagram in Figure 5 shows the elements of an oblique shock wave. A planar oblique shock wave is produced by a downstream boundary turning an incoming supersonic flow through an angle  $\theta$ . As a result, a shock wave forms, inclined to the incoming flow direction at an angle  $\beta$ . The components of the flow perpendicular to the oblique shock wave are described by the normal shock wave relations. The velocity components parallel to the shock wave are unchanged. Equation 39 gives a relation between the flow turning and shock wave angles. Typically the flow deflection angle is known, and the shock wave angle must be found. Although most references suggest solving Equation 39 iteratively, this is not necessary.

By some algebraic manipulation, Equation 39 can be rewritten in the form of a 6th order polynomial in terms of the sine of the shock wave angle, shown in Equation 40. The coefficient terms of the resulting polynomial are given in Equations 41 through 43. Since Equation 40 only has even power terms, a generalized solution for 3rd order polynomials can be employed. This gives a relation for the square of the sine of the shock wave angle as a function of the flow deflection angle and the upstream Mach number. Equations 44 and 45 show this direct solution. Once the shock wave angle is known, the normal components of the Mach number are found in Equations 46 and 47. The changes in flow properties are then calculated by application of the normal shock wave relations.

### Conical Supersonic Flow Relations

The calculations involved in determining supersonic flow in conical shock fields are a bit more complex. The elements in the conical shock wave problem are shown in the bottom diagram of Figure 5. Equation 48 gives the reduced differential equation describing the flow field between the conical shock wave and the cone surface. The dependent variable in Equation 48,  $V_r$ , is the radial component of a non-dimensionalized velocity in the conic flow field. Equations 49 through 52 give definitions of the non-dimensional velocity components and their relation to the polar angle  $\phi$  and flow direction angle  $\theta$ . Equations 53 and 54 are the two required boundary conditions of tangent flow to the cone surface and the correct flow turning angle behind an oblique shock wave. Equation 48 can be solved numerically by a scheme commonly known as the Taylor-Maccoll solution. A conic shock wave angle is first guessed, and with Equation 54 provides a value for the shock wave boundary condition. Equation 48 is then solved at small increments of  $\phi$  using standard Runge-Kutta integration schemes. The solution is then marched by  $\phi$  through the flow field to the cone angle  $\theta_c$ . If the tangent flow boundary condition, Equation 53 is satisfied, then the initial guess on the conic shock wave angle is correct. Otherwise another guess on the angle  $\beta$  is chosen, and the process is repeated, iterating to a correct solution. Once solved, the flow properties across the conic shock wave are determined from the oblique shock wave relations. Also, the flow velocity variations from the conic shock wave to the cone surface are known from the solution of Equation 48. Other flow properties can be then determined from the isentropic flow relations given below. Reference 2 is a good starting point for further information on calculating conical shock waves.

### Isentropic Flow Relations

Equations 55 through 59 are a series of often used isentropic flow relations found throughout the methodology, and are given here for convenience. Equations 55 through 57 calculate the static pressure, temperature, and density as functions of Mach number only. For example, the static pressure field behind the conic shock wave is determined by Equation 56, since the Mach number field is known from the solution to Equation 48 and the total pressure is a constant, whose value is determined from the oblique shock wave relations. Equation 58 describes the required stream-tube flow area as a function of Mach number, where  $A_*$  is the flow area at the sonic condition.

Equation 59 is the Prandtl-Meyer function and it is used to determine the change in Mach number as a supersonic flow isentropically expands through a turning angle. Typically an initial Mach number is known as well as the turning angle. Equation 59 determines the initial Prandtl-Meyer function value explicitly. By adding the expansion angle (in radians) a new Prandtl-Meyer function value is calculated, from which Equation 59 must be solved iteratively to yield a new value of the Mach number downstream of the expansion. This technique is used as part of the vehicle forebody model for supersonic flow expansions.

### Total Pressure Recovery

The total pressure recovery for the entire inlet is calculated as the product of a series of total pressure ratios across elements of the inlet system. Equation 60 shows this relation, where the terms on the right hand side are the total pressure ratios from: free stream to inlet local, inlet local to inlet lip, inlet lip to throat, and throat to engine face. Each of these terms is calculated in the subsequent modeling elements, with the exception of the free stream to inlet local term, which is calculated in the vehicle forebody model previously discussed.

#### External Compression

The changes in flow properties from the inlet local station to the inlet lip are determined by models of the external compression processes for a given inlet design. Figure 6 shows the elements of the external compression models used in the methodology. Each basic inlet type must be modeled separately, since the external flow is highly dependent on the inlet geometry.

The top diagram in Figure 6 shows the elements of the external compression model for pitot inlets. The total pressure ratio from inlet local to inlet lip is given in Equation 61 and the total pressure loss is only generated by a normal shock wave at the inlet local Mach number. If the inlet local Mach number is subsonic, then the total pressure ratio is one. There is an incurred drag penalty for air which is spilled around the cowl lip called additive drag. Reference 3 gives a procedure for calculating this drag coefficient and Equations 62 through 64 summarize the analysis. The last term in Equation 62 is the mass flow ratio ingested by the inlet lip,  $A_{LI}/A_C$ , and this number is determined by the engine airflow requirements. Equations 63 and 64 result from conservation of mass and the isentropic flow functions.

The center diagram in Figure 6 shows the elements of the external compression model for axisymmetric inlets. This type of inlet is capable of operating either super-critical or subcritical, and the model must distinguish the difference. Equations 65-67 pertain to the supercritical operation mode. The total pressure ratio is produced entirely by the inlet conic shock wave. The additive drag coefficient can be determined either by Equation 66 or 67. However, since the conic flow field is known for supersonic operation, Equation 67 is employed using numerical integration techniques. The integration path corresponds to the streamline intersecting the cowl lip. For subsonic flows Equation 66 must be used and the total pressure ratio is one.

For sub-critical operation, a normal shock wave exists outside of the inlet cowl lip. This results in a greater pressure loss, higher additive drag coefficient, and lower mass flow ratio. Equations 68 through 74 show these calculations for sub-critical inlet operation. The position of the normal shock wave outside of the cowl lip is approximated as standoff distance which is proportional to the inlet capture mass flow ratio relative to critical operation, as indicated by Equation 73. The proportionality factor, K, is a function of Mach number (indicated by Equation 74) and this function was determined from curve fits to data found in reference 4. The functional form of the shock wave standoff factor, K, is shown graphically in Figure 7.

The bottom diagram in Figure 6 shows the elements of the external compression model for multi-ramp two-dimensional inlets. These inlet types can also operate both sub-critical and super-critical. Equations 75-78 show the calculations for super-critical operation. The total pressure ratio in Equation 75 is the product of all the external oblique shock wave total pressure ratios. For sub-critical operation, Equations 79-82 show the calculations used in the model. A normal shock wave can exist outside of the cowl lip and the relations computing the total pressure ratio and additive drag need to account for the position of the normal shock wave, and on which ramp it is located.

#### Internal Compression

Figure 8 shows the elements of the internal compression model. For started inlet operation, an oblique shock wave train is used to model the losses in the internal portion of the inlet from the cowl lip to the throat. The net turning angle is the sum of the last external surface angle and the internal cowl lip angle. The flow properties across each shock wave reflection are determined from the oblique shock wave relations previously discussed. Equation 83 shows the relation between the flow properties in the model and the geometric throat area constraint. Equation 83 is again a statement of conservation of mass for compressible flows.

The reflecting oblique shock wave model, Equations 85 through 87, is primarily used to determine the total pressure loss in the internal compression region. The model may also be used to determine a throat Mach number,  $M_{TH}$ , for a given throat area ratio,  $A_{TH}/A_C$ , by iterative solution of Equation 83. Often the throat Mach number is specified instead and the throat area ratio is then determined directly by Equation 83. If both the throat Mach number and throat area ratio are specified, then the inlet capture mass flow ratio,  $A_{LT}/A_C$ , must then be determined from these constraints.

### Subsonic Diffusion

Figure 9 shows the elements of the subsonic diffusion model. Depending on the inlet operation mode, a terminal normal shock wave may or may not exist downstream of the inlet throat within the subsonic diffuser. Equations 88 through 94 show the calculation procedure for operation with subsonic flow at the inlet throat. The model used here closely follows that given in reference 5. For inlet operation with a subsonic throat, the throat Mach number and area are usually specified, consistent with the desired engine weight flow delivered. For inlet operation with a supersonic throat, or started operation, Equations 95 through 97 are used. The strength of the terminal normal shock wave can be used to provide inlet/engine corrected mass flow matching in some instances. Curve fits are used for the loss factor functions in Equations 90 and 94 corresponding to divergence and throat Mach number loss mechanisms. Figures 10 and 11 show the functional forms for the divergence and throat Mach number loss mechanisms graphically. The friction factor given in Equation 93 is a nominal value, and may be changed if desired.

### **Bleed** Drag

Bleed drag seems to be a necessary evil required for supersonic inlet designs. Since inlets produce large positive pressure gradients, some severe in shock wave interactions, the boundary layers are prone to separation. To alleviate this problem, portions of the boundary layer are removed through wall suction, and then dumped overboard. If done correctly, this usually results in improved inlet recoveries, however, a momentum drag is incurred. Equations 98 through 109 show the procedure used to calculate the bleed drag coefficient. These relations follow the procedures outlined in reference 6. Total pressure losses up to the bleed system plenum are modeled, as well as the effective bleed nozzle exit pressure and

flow area. Non-axial nozzle exit flow losses are also included.

A number of inputs must be specified for the design and operation of the bleed system. In a high speed inlet the bleed system is typically comprised of a series of discrete bleed regions, each having its own type of wall perforation, plenum, and exhaust nozzle. The total bleed drag is thus the sum of the individual bleed system elements. Equation 98 is used to describe the bleed drag for a discrete bleed element. The bleed mass flow ratio,  $A_{LBLD}/A_C$ , nozzle exhaust flow angle,  $\theta_x$ , and nozzle exhaust velocity coefficient,  $\eta_V$ , must all be specified. Additionally, the bleed plenum recovery,  $P_{TBL}/P_{TL}$ , must also be specified. To choose these values extensive experience in the design and operation of bleed systems is usually required. To alleviate this requirement default values have been implemented in the methodology.

Figure 12 shows typical bleed system operating characteristics which are incorporated as user selectable defaults for inputs to the bleed drag model. The bleed plenum recovery is shown as a function of inlet local Mach number for a variety of bleed system design wall perforations. The total bleed mass flow ratio required for typical inlet operation is also shown in Figure 12 over the same Mach number range. The data which comprises the basis for Figure 12 is taken from reference 7.

There are two additional empirical relations embedded within the bleed drag model. Equation 99 shows the functional dependence for the oblique exit nozzle drag factor,  $C_{\pi L}$ , and Figure 13 shows this functional relationship graphically. The relationship for the effective nozzle discharge pressure, Equation 103, is shown graphically in Figure 14. The bleed exhaust nozzle area ratio,  $A_X/A_{TH}$ , is the final input required for the bleed drag model. The nozzle area ratio should be chosen depending on the bleed exhaust nozzle pressure ratio. The operating pressure ratio for the bleed exhaust nozzle is given in Equation 102. Based on this value, Figure 15 can be used to pick the appropriate nozzle area ratio for the bleed element. Other area ratio choices will result in over or under expansion losses which will further increase the resulting bleed drag. Since bleed plenum recoveries are typically low this usually results in the use of convergent nozzles for bleed systems. Bypass systems can have much higher recoveries, and thus may be able to utilize convergent-divergent nozzle designs.

#### **Bypass Drag**

Bypass flows are used to dump air overboard in the subsonic diffuser ahead of the engine face, and are typically employed for inlet/engine flow matching. The resulting drag coefficient is calculated in a manner analogous to that used for the bleed system. Equations 110 through 115 show the modifications made to the bleed drag relations required to model bypass flow. The required inputs to the bypass drag model parallel those necessary for the bleed drag model. As in the bleed system model, the bypass system can be comprised from a series of distinct bypass elements. Each element can be defined with different design and performance characteristics. The total bypass drag thus being the sum of the drags of all the distinct elements. The bypass plenum recovery is typically a function of the amount of bypass flow dumped overboard. Figure 16 shows the methodology default for the relation of the bypass recovery,  $P_{TBP}/P_{T2}$ , as the bypass mass flow ratio,  $A_{LBYP}/A_C$ , varies. The data on which Figure 16 is based can be found from reference 7.

### Cowl Lip Suction

As a result of sub-critical airflow spillage around the inlet cowl lip, the static pressure over the cowl leading edges is decreased, thus reducing the effective cowl pressure drag. This effect, known as cowl lip suction, can be viewed as a correction to the additive drag calculation as presented previously in the external compression model. The net combination of the additive drag and cowl lip suction is the total inlet spillage drag. Equation 116 shows the definition of the cowl lip suction coefficient. This model for the cowl lip suction coefficient is based entirely on empirical relations which can be found in reference 6.

Equations 117 through 124 detail the empirical terms used in Equation 116. The functional form of Equation 117, the first cowl lip suction factor,  $K_{\alpha}$ , is shown graphically in Figure 17. The effective cowl lip angle correction factor,  $\sigma$ , defined in Equation 118 is shown graphically in Figure 18. The procedure for computing the effective cowl lip angle is given in Equations 119 through 121. Equation 119 is an approximation for the effective cowl lip angle, in degrees, determined from the integral parameter,  $\Omega$ , which is defined by Equation 120. This integral parameter evaluates the cowl surface curvature from the cowl lip leading edge to the maximum of the cowl forward projected area location. In Equations 120 and 121, the cowl profile is defined by coordinates (X, Y) and the cowl lip leading edge is located at  $(X_C, Y_C)$ .

The second cowl lip suction factor,  $K_{\beta}$ , defined in Equation 122 is shown graphically in Figure 19. The final empirical cowl lip suction factor,  $C_{D2}$ , is defined in Equation 123 and is also shown graphically in Figure 20. Once the cowl lip suction factors are determined from curve fits and the cowl lip suction coefficient calculated, the inlet spillage drag coefficient is then found by Equation 124.

### Cowl Lip and Wave Drag

The pressure drag acting on the inlet cowl surfaces can typically be broken into two parts; drag due to a blunt inlet lip and wave drag due to the area growth along the remainder of the cowl surfaces. Equation 125 shows this drag decomposition. For sharp lip inlets, the drag component due to a blunt lip is necessarily zero. For non-sharp lip inlets, the blunt leading edge will produce a pressure drag at supersonic local Mach numbers resulting from a detached normal shock wave which is formed over the leading edge radius of the cowl lip. Equation 126 shows the computation of the lip drag coefficient based on the assumption that an average pressure rise produced by a normal shock wave at the inlet local Mach number acts over the forward projected cowl lip surface area. This average pressure rise is modeled as the simple arithmetic mean of the stagnation and static pressures behind a normal shock wave. The forward projection of the blunt cowl lip area is denoted as  $A_x$  in Equation 126.

The pressure drag acting on the rest of the cowl surface area is wave drag. The wave drag coefficient is defined by Equation 127 for two-dimensional inlet geometries. If the cowl profile is comprised by a series of flat plates, the integration in Equation 127 can be replaced by a discrete summation as shown in Equation 128. The pressure acting on each cowl plate segment,  $P_i$ , is calculated by the shock wave and expansion models previously described. The forward facing projected area of each cowl segment plate is denoted as  $A_{xi}$  in Equation 128.

The computations of the wave drag for axisymmetric cowls are given in Equations 129 through 143. The wave drag coefficient is defined as an integration of the pressure coefficient over the cowl surface as shown in Equation 129. Equation 129 is an equivalent statement to Equation 127 which defined the wave drag coefficient for two-dimensional inlet geometries. The computation of the pressure coefficient,  $C_P$ , over an axisymmetric cowl geometry, however, is substantially more complex than the two-dimensional flat plate cowl model of Equation 128. The pressure coefficient in the axisymmetric wave drag model, given in Equation 130, is calculated by a first order approximation using the perturbation velocities determined from the solution of a linearized supersonic slender body theory.

The axisymmetric form of the governing partial differential equation for the perturbation velocity potential by supersonic slender body theory is given in Equation 131. The generalized solution of the perturbation velocity potential,  $\phi$ , and the axial and radial perturbation velocities, u and v respectively, are found in reference 8 and given in Equations 132 through 135. In Equations 133 and 134,  $f'(\xi)$  is a singularity distribution along the centerline axis which uniquely determines the flow field on and about the slender body surface. A statement that the flow is tangent to the body surface on the body surface can be used as a boundary condition to determine the singularity distribution for that body. A more detailed description of the analyses which follow can be found in reference 9.

If the axisymmetric cowl surface profile is described by the coordinate pairs (X,R) then the body surface tangent flow boundary condition can be written as Equation 136. Furthermore, if the cowl surface profile is discretized and the singularity distribution, f', can be assumed piece-wise constant over a small interval  $[\xi_{i,I},\xi_i]$ , then the discrete elements of the singularity distribution can be moved outside of the integration, as shown in Equation 137. The initial and final bounds of the piece-wise integrations are given in Equations 138 and 139 as they apply to Equation 137. The piece-wise integral is now readily evaluated in closed form, and the solution becomes Equation 140. A marching scheme can easily be developed to determine the value of a discrete singularity,  $f'_n$ , corresponding to a location  $(X_n, R_n)$  on the cowl surface in terms of a summation of all the upstream singularities, as shown in Equation 141. Therefore, the entire singularity distribution can be determined by simply marching down the cowl surface using Equation 141.

Once the discrete singularity distribution is known, the pressure coefficient can be determined by an analogous procedure, as shown in Equation 142, which is developed from Equations 130 and 133. Again, the resulting piece-wise integral in Equation 142 can be evaluated in closed form, yielding Equation 143, and the pressure coefficient at discrete points along the cowl surface is subsequently known as a function of the discretized

singularity distribution. The axisymmetric wave drag coefficient is then determined by numerical integration of Equation 130 using the values found from Equation 143.

## Lip Losses

The inlet cowl lip can have additional effects on the inlet recovery, particularly at low speeds. At take-off conditions, the inlet must ingest mass by drawing a large volume of initially stationary air from the surroundings around the cowl lip and then into the engine face. For sharp lip inlets, as the airflow is drawn around the cowl lip, the flow will accelerate and separate as it turns, producing a subsequent fluid dynamic loss and drop in total pressure recovery. Equation 144 shows the total pressure recovery as produced by a theoretical sharp lip loss mechanism. Reference 10 presents the theoretical derivations of Equation 144. The Mach number at the cowl lip,  $M_1$ , can be determined from continuity. Equation 145 is solved iteratively to find the inlet lip Mach number as a function of the inlet throat. For cowl lips which are not sharp, but have some degree of bluntness, Equation 146 has been developed by the author to account for the effects of a non-zero cowl lip radius on the lip loss recovery given by Equation 144. Data from reference 11 was used to determine the exponential damping constant used in Equation 146.

### **Results**

Results from the IPAC methodology are presented for three sample cases: a Mach 2.0 pitot inlet, a Mach 2.4 axisymmetric inlet, and a Mach 5.0 two-dimensional inlet. Example case output files, each containing copies of the respective input sets, can be found in Appendices II through IV. Additionally, a program User's Guide which describes the input set and program usage can be found in Appendix I.

The geometry of the pitot inlet sample case is shown in Figure 21. The pitot inlet is axisymmetric for this particular design and has a blunt cowl lip for improved low speed total pressure recoveries. Figure 22 shows a performance summary over the entire Mach number operating range for the inlet. The corrected airflow has been matched to a typical engine demand schedule, as shown in the top plot of Figure 22. The inlet throat Mach number was varied and used as an inlet control parameter in order to provide inlet/engine airflow matching. The resulting total pressure recovery and inlet drags are shown in the middle and lower plots in Figure 22. Note that the cowl drag is the dominant drag for this inlet design. This is an expected result of the blunt cowl lip feature of the inlet.

Figure 23 shows the design and variable geometry features for the axisymmetric sample case. Both internal cowl surface variable geometry and a translating centerbody are used to control the operation of this inlet. Figure 24 shows a performance summary for the axisymmetric sample case over the entire Mach number range of inlet operation. Again, the inlet was designed and operated in accordance with a typical engine airflow demand schedule. The axisymmetric inlet is a mixed compression design with a starting Mach number of 1.6. This inlet also requires a boundary layer bleed system. The sharp inlet lip can be seen to result in relatively lower take-off total pressure recoveries for this particular design.

The inlet design and variable geometry features for the two-dimensional sample case is shown in Figure 25. This inlet uses a three ramp compression surface shock-on-lip design at Mach 5.0. The second and third ramps are movable and are used for inlet operation control. Figure 26 shows a performance summary for the two-dimensional design. The inlet employs both a boundary layer bleed system and an engine bypass system. The variable geometry ramp positions and bypass mass flow variations are used to provide matched airflow for a typical engine demand schedule. The inlet starting Mach number is 2.0 for this particular design. As is typical for high speed inlet systems, severe transonic drags are seen in the lower plot of Figure 26.

#### Summary

A series of analyses have been developed which permit the calculation of the performance of common inlet designs. The methods presented are useful for determining the inlet weight flows, total pressure recovery, and aerodynamic drag coefficients for given inlet geometric designs. Limited geometric input data is required to use this inlet performance prediction methodology. The analyses presented here may also be used to perform inlet preliminary design studies. The calculated inlet performance parameters may be used in subsequent engine cycle analyses or installed engine performance calculations for existing uninstalled engine data.

#### References

- 1. Ames Research Staff, "Equations, Tables, and Charts for Compressible Flow", NACA Report 1135, 1953.
- 2. Anderson, J. D., Modern Compressible Flow, McGraw-Hill, 1982, pp. 250-256.
- 3. Sibulkin, M., "Theoretical and Experimental Investigation of Additive Drag", NACA Report 1187, 1951.
- 4. Moeckel, W. E., "Approximate Methods for Predicting Form and Location of Detached Shock Waves Ahead of Plane or Axially Symmetric Bodies", NACA TN 1921, 1949.
- 5. Henry, J. R., Wood, C. C., and Wilbur, S. W., "Summary of Subsonic-Diffuser Data", NACA RM L56F05, 1956.
- 6. Crosthwait, E. L., et al, "Preliminary Design Methodology for Air-Induction Systems", General Dynamics Technical Report SEG-TR-67-1, 1967, pp. 222-231, 184-195.
- 7. Ball, W. H., "Propulsion System Installation Corrections, Volume I: Engineers Manual", AFFDL-TR-72-147, 1972.
- 8. Liepmann, H. W. and Roshko, A., <u>Elements of Gasdynamics</u>, John Wiley & Sons, 1957, pp. 218-233.
- 9. Barnhart, P. J., "A Non-Axisymmetric Linearized Supersonic Wave Drag Analysis: Mathematical Theory", NASA CR 198430, 1996.
- 10. Fradenburgh, E. A. and Wyatt, D. D., "Theoretical Performance Characteristics of Sharp-Lip Inlets at Subsonic Speeds", NACA Report 1193, 1954.
- 11. Blackaby, J. R. and Watson, E. C., "An Experimental Investigation at Low Speeds of the Effects of Lip Shape on the Drag and Pressure Recovery of a Nose Inlet in a Body of Revolution", NACA TN 3170, 1954.

# List of Symbols

-

.

| Α                  | area, or cross-sectional flow area                               |
|--------------------|------------------------------------------------------------------|
| A <sub>c</sub>     | inlet capture area                                               |
| $\tilde{C_p}$      | drag coefficient                                                 |
| $\tilde{C_{n_2}}$  | empirical cowl lip suction factor                                |
| $C_{P}$            | pressure coefficient                                             |
| $C_{\tau}$         | oblique exit nozzle drag factor                                  |
| Ď                  | drag force, or diameter                                          |
| f                  | singularity distribution for the perturbation velocity potential |
| f <sub>n</sub>     | diffuser friction factor                                         |
| 2<br>2             | gravitational constant                                           |
| s<br>K             | empirical normal shock wave standoff factor                      |
| $\overline{K}_{p}$ | empirical subsonic diffuser total pressure loss factor           |
| $K_{\rm E}$        | empirical subsonic diffuser friction loss factor                 |
| $K_{r}$            | empirical subsonic diffuser throat Mach number factor            |
| $K_{0}$            | empirical subsonic diffuser offset loss factor                   |
| K.                 | empirical cowl lip suction factor                                |
| $K_{a}$            | empirical cowl lip suction factor                                |
| $L^{p}$            | inlet local location, or axial length                            |
|                    | diffuser axial length                                            |
| $\frac{D}{M}$      | Mach number                                                      |
| N                  | number of surface segments                                       |
| P                  | pressure                                                         |
| $P_{\tau}$         | total pressure                                                   |
| - <i>i</i>         | dynamic pressure                                                 |
| r. R               | radial coordinate                                                |
| Ŕ                  | gas constant                                                     |
| Т                  | temperature                                                      |
| $T_{\tau}$         | total temperature                                                |
| u                  | axial perturbation velocity                                      |
| v                  | radial perturbation velocity                                     |
| V                  | velocity                                                         |
| W                  | weight flow rate                                                 |
| x, X               | axial coordinate                                                 |
| y, Y               | normal coordinate                                                |
| Yo                 | diffuser offset normal length                                    |
| α                  | forebody model angle                                             |
| β                  | shock wave angle                                                 |
| γ                  | ratio of specific heats                                          |
| $\eta_{v}$         | discharge nozzle velocity coefficient                            |
| θ                  | referenced total temperature, or a flow/surface angle            |
| $\theta_D$         | diffuser half-angle                                              |
| Ð                  | reference temperature for real gas model                         |
| δ                  | referenced total pressure                                        |
| ρ                  | density                                                          |

-

.

.

| $\lambda$ Mach numb | er parameter | in slender | body | theory |
|---------------------|--------------|------------|------|--------|
|---------------------|--------------|------------|------|--------|

- V
- Prandtl-Meyer function integration parameter in slender body theory ξ
- σ
- correction factor for effective cowl angle perturbation velocity potential, or a polar angle cowl curvature function φ
- Ω

# Subscripts

| 0.     | free stream                                                         |
|--------|---------------------------------------------------------------------|
| 1      | upstream, or cowl lip                                               |
| 2      | downstream, or engine face                                          |
| ADD    | additive                                                            |
| BL     | boundary layer bleed                                                |
| BLD    | bleed                                                               |
| BP     | engine bypass                                                       |
| BYP    | bypass                                                              |
| с      | cone                                                                |
| С      | cowl lip                                                            |
| CWL    | cowl                                                                |
| cr     | critical operation                                                  |
| е      | effective                                                           |
| eff    | effective                                                           |
| ENG    | engine flow                                                         |
| i      | general index, or ideal condition                                   |
| Ι      | inlet capture                                                       |
| L      | inlet local                                                         |
| LIP    | inlet lip                                                           |
| LS     | lip suction                                                         |
| n      | general index, or inlet ramp number                                 |
| Ν      | normal component                                                    |
| NS     | normal shock wave                                                   |
| r      | radial component                                                    |
| S      | centerbody or ramp surface                                          |
| sl .   | sharp lip                                                           |
| SPL    | spillage                                                            |
| sub    | sub-critical operation, or subsonic throat                          |
| sup    | supersonic throat                                                   |
| SY     | centerbody or ramp surface behind unstarted inlet normal shock wave |
| TH     | inlet throat, or discharge nozzle throat                            |
| WAV    | wave                                                                |
| x      | axial component                                                     |
| X      | discharge nozzle exit                                               |
| *      | sonic conditions                                                    |
| $\phi$ | polar component                                                     |

· •

# Superscripts

.

thermally perfect (non-ideal) gas property, or normalized velocity

•

.

# **Equations**

# Engine Weight Flows

$$\frac{W_2\sqrt{\theta_2}}{\delta_2} = A_C \left(\frac{A_{0ENG}}{A_C}\right) \left(\frac{P_{T2}}{P_{T0}}\right)^{-1} \frac{2116}{\sqrt{519}} \sqrt{\frac{\gamma g}{R}} M_0 \left[1 + \frac{\gamma - 1}{2} M_0^2\right]^{-\frac{\gamma + 1}{2(\gamma - 1)}}$$
(1)

$$W_2 = \left(\frac{W_2\sqrt{\theta_2}}{\delta_2}\right) \frac{\delta_2}{\sqrt{\theta_2}} \tag{2}$$

$$\delta_2 = \frac{P_{T2}}{2116}$$
(3)

-

.

-

. .....

$$\theta_2 = \frac{T_{T2}}{519} \tag{4}$$

$$P_{T2} = P_{T0} \left( \frac{P_{T2}}{P_{T0}} \right) \tag{5}$$

$$T_{T2} = T_{T0} \tag{6}$$

$$P_{T0} = P_0 \left[ 1 + \frac{\gamma - 1}{2} M_0^2 \right]^{\frac{\gamma}{\gamma - 1}}$$
(7)

$$T_{T0} = T_0 \left[ 1 + \frac{\gamma - 1}{2} M_0^2 \right]$$
(8)

$$P_0, T_0 = f(alt) \tag{9}$$

$$W_2 = A_C \left(\frac{A_{0ENG}}{A_C}\right) \frac{P_0}{\sqrt{T_0}} \sqrt{\frac{\gamma g}{R}} M_0 \tag{10}$$

# Real Gas Effects

$$\gamma' = 1 + \frac{\gamma - 1}{1 + (\gamma - 1) \left[ \left(\frac{\Theta}{T}\right)^2 \frac{e^{\Theta/T}}{(e^{\Theta/T} - 1)^2} \right]}$$
(11)

$$M^{2} = \frac{2}{\gamma'} \frac{T_{T}'}{T} \left[ \frac{\gamma}{\gamma - 1} \left( 1 - \frac{T}{T_{T}'} \right) + \frac{\Theta}{T_{T}'} \left( \frac{1}{e^{\Theta/T_{T}'} - 1} - \frac{1}{e^{\Theta/T} - 1} \right) \right]$$
(12)

$$\frac{P}{P_T'} = \left(\frac{e^{\Theta/T_T'} - 1}{e^{\Theta/T} - 1}\right) \left(\frac{T}{T_T'}\right)^{\frac{\gamma}{\gamma - 1}} \exp\left[\left(\frac{\Theta}{T}\right) \frac{e^{\Theta/T}}{e^{\Theta/T} - 1} - \left(\frac{\Theta}{T_T'}\right) \frac{e^{\Theta/T_T'}}{e^{\Theta/T_T'} - 1}\right]$$
(13)

$$\frac{A}{A_{\star}'} = \frac{1}{M} \sqrt{\frac{T_{\star}'}{T}} \frac{\left(\frac{e^{\Theta/T_{T}'} - 1}{e^{\Theta/T_{\star}'} - 1}\right) \left(\frac{T_{\star}'}{T_{T}'}\right)^{\frac{1}{\gamma-1}} \exp\left[\left(\frac{\Theta}{T_{\star}'}\right) \frac{e^{\Theta/T_{\star}'}}{e^{\Theta/T_{\star}'} - 1} - \left(\frac{\Theta}{T_{T}'}\right) \frac{e^{\Theta/T_{T}'}}{e^{\Theta/T_{T}'} - 1}\right]}{\left(\frac{e^{\Theta/T_{T}'} - 1}{e^{\Theta/T_{T}'} - 1}\right) \left(T_{\star}\right)^{\frac{1}{\gamma-1}} \left[\left(\Theta\right) - e^{\Theta/T} - \left(\Theta_{\star}\right) - e^{\Theta/T_{T}'}\right]}$$
(14)

Inlet Mass Flow Ratios

$$\frac{A_0}{A_C} = \frac{A_{0ENG}}{A_C} + \frac{A_{0BYP}}{A_C} \tag{16}$$

$$\frac{A_{0I}}{A_C} = \frac{A_0}{A_C} + \frac{A_{0BLD}}{A_C} \tag{17}$$

$$\frac{A_{0I}}{A_C} + \frac{A_{0SPL}}{A_C} = \left(\frac{A_L}{A_0}\right)^{-1} \tag{18}$$

Vehicle Effects

$$(\rho VA)_0 = (\rho VA)_L \tag{19}$$

$$\left(\frac{A_L}{A_0}\right) = \left(\frac{\rho_0}{\rho_L}\right) \left(\frac{V_0}{V_L}\right) \tag{20}$$

$$V = M\sqrt{\gamma RT} \tag{21}$$

$$\left(\frac{V_0}{V_L}\right) = \left(\frac{M_0}{M_L}\right) \left[\frac{1 + \frac{\gamma - 1}{2}M_0^2}{1 + \frac{\gamma - 1}{2}M_L^2}\right]^{-\frac{1}{2}}$$
(22)

$$\rho = \frac{P}{RT} \tag{23}$$

$$\left(\frac{\rho_0}{\rho_L}\right) = \left(\frac{P_{TL}}{P_{T0}}\right)^{-1} \left[\frac{1 + \frac{\gamma - 1}{2}M_0^2}{1 + \frac{\gamma - 1}{2}M_L^2}\right]^{-\frac{1}{\gamma - 1}}$$
(24)

$$\left(\frac{A_L}{A_0}\right) = \left(\frac{M_L}{M_0}\right)^{-1} \left(\frac{P_{TL}}{P_{T0}}\right)^{-1} \left[\frac{1 + \frac{\gamma - 1}{2}M_0^2}{1 + \frac{\gamma - 1}{2}M_L^2}\right]^{-\frac{\gamma + 1}{2(\gamma - 1)}}$$
(25)

$$C_D = \frac{D}{qA_C} \tag{26}$$

$$q = \frac{\gamma}{2} P M^2 \tag{27}$$

٠

$$(C_D q A_C)_0 = (C_D q A_C)_L \tag{28}$$

$$C_{D0} = C_{DL} \left(\frac{P_L}{P_0}\right) \left(\frac{M_L}{M_0}\right)^2 \tag{29}$$

$$\left(\frac{P_L}{P_0}\right) = \left(\frac{P_{TL}}{P_{T0}}\right) \left[\frac{1 + \frac{\gamma - 1}{2}M_0^2}{1 + \frac{\gamma - 1}{2}M_L^2}\right]^{\frac{\gamma}{\gamma - 1}}$$
(30)

$$C_{D0} = C_{DL} \left(\frac{P_{TL}}{P_{T0}}\right) \left(\frac{M_L}{M_0}\right)^2 \left[\frac{1 + \frac{\gamma - 1}{2}M_0^2}{1 + \frac{\gamma - 1}{2}M_L^2}\right]^{\frac{1}{\gamma - 1}}$$
(31)

.

Vehicle Forebody Model

$$\left(\frac{P_{TL}}{P_{T0}}\right) = \prod_{i=1}^{n} \left(\frac{P_{Ti}}{P_{Ti-1}}\right)$$
(32)

$$\left(\frac{M_L}{M_0}\right) = \prod_{i=1}^n \left(\frac{M_i}{M_{i-1}}\right) \tag{33}$$

• -

Normal Shock Wave Relations

$$M_2 = \sqrt{\frac{(\gamma - 1)M_1^2 + 2}{2\gamma M_1^2 - (\gamma - 1)}}$$
(34)

$$\frac{P_2}{P_1} = \frac{2\gamma M_1^2 - (\gamma - 1)}{\gamma + 1}$$
(35)

$$\frac{P_{T2}}{P_{T1}} = \left[\frac{(\gamma+1)M_1^2}{(\gamma-1)M_1^2+2}\right]^{\frac{\gamma}{\gamma-1}} \left[\frac{\gamma+1}{2\gamma M_1^2 - (\gamma-1)}\right]^{\frac{1}{\gamma-1}}$$
(36)

$$\frac{T_2}{T_1} = \frac{\left[2\gamma M_1^2 - (\gamma - 1)\right] \left[(\gamma - 1) M_1^2 + 2\right]}{(\gamma + 1)^2 M_1^2}$$
(37)

$$\frac{\rho_2}{\rho_1} = \frac{(\gamma+1)\,M_1^2}{(\gamma-1)\,M_1^2+2} \tag{38}$$

Oblique Shock Wave Relations

$$\tan \theta = 2 \cot \beta \frac{M_1^2 \sin^2 \beta - 1}{M_1^2 (\gamma + \cos 2\beta) + 2}$$
(39)

$$\sin^6\beta + b\sin^4\beta + c\sin^2\beta + d = 0 \tag{40}$$

$$b = -\frac{M_1^2 + 2}{M_1^2} - \gamma \sin^2 \theta$$
 (41)

$$c = \frac{2M_1^2 + 1}{M_1^4} + \left[\frac{(\gamma + 1)^2}{4} + \frac{\gamma - 1}{M_1^2}\right]\sin^2\theta$$
(42)

$$d = -\frac{\cos^2\theta}{M_1^4} \tag{43}$$

$$\sin^2 \beta = -\frac{b}{3} + \frac{2}{3}\sqrt{b^2 - 3c} \cos\left(\frac{\psi + 4\pi}{3}\right)$$
(44)

$$\cos\psi = \frac{9bc - 2b^3 - 27d}{2\sqrt{(b^2 - 3c)^3}} \tag{45}$$

$$M_{1N} = M_1 \sin\beta \tag{46}$$

$$M_{2N} = M_2 \sin\left(\beta - \theta\right) \tag{47}$$

.

-

-

.

.

.

$$\frac{\gamma - 1}{2} \left[ 1 - V_r'^2 - \left( \frac{dV_r'}{d\phi} \right)^2 \right] \left( 2V_r' + \frac{dV_r'}{d\phi} \cot \phi + \frac{d^2 V_r'}{d\phi^2} \right) - \frac{dV_r'}{d\phi} \left( V_r' \frac{dV_r'}{d\phi} + \frac{dV_r'}{d\phi} \frac{d^2 V_r'}{d\phi^2} \right) = 0$$
(48)

$$V' = \sqrt{{V_r}'^2 + {V_{\phi}}'^2}$$
(49)

-

.

$$V_{\phi}' = \frac{dV_{r}'}{d\phi} \tag{50}$$

$$V' = \frac{1}{\sqrt{\frac{2}{(\gamma - 1)M^2} + 1}}$$
(51)

$$\tan\left(\phi - \theta\right) = \frac{V_{\phi}'}{V_{r}'} \tag{52}$$

$$\left. \frac{dV_r'}{d\phi} \right|_{\phi=\theta_c} = 0 \tag{53}$$

$$\frac{V_{\phi}'}{V_{r}'}\Big|_{\phi=\beta} = \tan\beta \frac{(\gamma-1)\,M_1^2 \sin^2\beta + 2}{(\gamma+1)\,M_1^2 \sin^2\beta}$$
(54)

## Isentropic Flow Relations

.

$$\frac{T}{T_T} = \left[1 + \frac{\gamma - 1}{2}M^2\right]^{-1}$$
(55)

$$\frac{P}{P_T} = \left[1 + \frac{\gamma - 1}{2}M^2\right]^{-\frac{\gamma}{\gamma - 1}}$$
(56)

$$\frac{\rho}{\rho_T} = \left[1 + \frac{\gamma - 1}{2}M^2\right]^{-\frac{1}{\gamma - 1}}$$
(57)

$$\frac{A}{A_*} = \left(\frac{\gamma+1}{2}\right)^{-\frac{\gamma+1}{2(\gamma-1)}} \frac{1}{M} \left[1 + \frac{\gamma-1}{2}M^2\right]^{\frac{\gamma+1}{2(\gamma-1)}}$$
(58)

$$\nu(M) = \sqrt{\frac{\gamma+1}{\gamma-1}} \tan^{-1} \sqrt{\frac{\gamma-1}{\gamma+1}} (M^2 - 1) - \tan^{-1} \sqrt{M^2 - 1}$$
(59)

# Total Pressure Recovery

$$\frac{P_{T2}}{P_{T0}} = \left(\frac{P_{TL}}{P_{T0}}\right) \left(\frac{P_{T1}}{P_{TL}}\right) \left(\frac{P_{TTH}}{P_{T1}}\right) \left(\frac{P_{T2}}{P_{TTH}}\right)$$
(60)

#### External Compression

Pitot Inlets

$$\frac{P_{T1}}{P_{TL}} = \left[\frac{(\gamma+1)M_L^2}{(\gamma-1)M_L^2+2}\right]^{\frac{\gamma}{\gamma-1}} \left[\frac{\gamma+1}{2\gamma M_L^2 - (\gamma-1)}\right]^{\frac{1}{\gamma-1}}$$
(61)

-----

•

.

$$C_{D_{ADD}} = \frac{2}{\gamma M_L^2} \left[ \left( \frac{P_1}{P_L} \right) \left( 1 + \gamma M_1^2 \right) - 1 \right] - 2 \left( \frac{A_{LI}}{A_C} \right)$$
(62)

$$\left(\frac{A_{LI}}{A_C}\right) = \left(\frac{P_{T1}}{P_{TL}}\right) \left(\frac{M_1}{M_L}\right) \left[\frac{1 + \frac{\gamma - 1}{2}M_1^2}{1 + \frac{\gamma - 1}{2}M_L^2}\right]^{-\frac{\gamma + 1}{2(\gamma - 1)}}$$
(63)

$$\left(\frac{P_1}{P_L}\right) = \left(\frac{P_{T1}}{P_{TL}}\right) \left[\frac{1 + \frac{\gamma - 1}{2}M_1^2}{1 + \frac{\gamma - 1}{2}M_L^2}\right]^{-\frac{\gamma}{\gamma - 1}}$$
(64)

Axisymmetric Inlets

.

$$\frac{P_{T1}}{P_{TL}}\Big|_{cr} = \left[\frac{(\gamma+1)M_L^2\sin^2\beta}{(\gamma-1)M_L^2\sin^2\beta+2}\right]^{\frac{\gamma}{\gamma-1}} \left[\frac{\gamma+1}{2\gamma M_L^2\sin^2\beta - (\gamma-1)}\right]^{\frac{1}{\gamma-1}}$$
(65)

$$C_{D_{ADD}}\Big|_{cr} = \frac{2}{\gamma M_L^2} \left[ \frac{P_1}{P_L} \left( 1 - \frac{A_S}{A_C} \right) \left( 1 + \gamma M_1^2 \right) + \frac{P_S}{P_L} \frac{A_S}{A_C} - 1 \right] - 2 \left( \frac{A_{LI}}{A_C} \right)$$
(66)

$$C_{D_{ADD}}\Big|_{cr} = \frac{2}{\gamma M_L^2} \int_L^1 \left(\frac{P}{P_L} - 1\right) \frac{dA}{A_C}$$
(67)

$$\frac{P_{T1}}{P_{TL}}\Big|_{sub} = \frac{P_{T1}}{P_{TL}}\Big|_{cr} \left[\frac{(\gamma+1)M_S^2}{(\gamma-1)M_S^2+2}\right]^{\frac{\gamma}{\gamma-1}} \left[\frac{\gamma+1}{2\gamma M_S^2-(\gamma-1)}\right]^{\frac{1}{\gamma-1}}$$
(68)

$$C_{D_{ADD}}\Big|_{sub} = C_{D_{ADD}}\Big|_{cr} + \frac{2}{\gamma M_L^2} \left(\frac{\overline{P} - P_S}{P_L}\right) \frac{A_{SY}}{A_C}$$
(69)

$$\frac{\left(\frac{A_{LI}}{A_C}\right)}{\left(1-\frac{A_S}{A_C}\right)} = \frac{P_{T1}}{P_{TL}}\Big|_{sub} \left(\frac{M_1}{M_L}\right) \left[\frac{1+\frac{\gamma-1}{2}M_1^2}{1+\frac{\gamma-1}{2}M_L^2}\right]^{-\frac{\gamma+1}{2(\gamma-1)}}.$$
(70)

$$\overline{P} = \frac{P_Y + P_1}{2} \tag{71}$$

$$\frac{P_Y}{P_S} = \frac{2\gamma M_S^2 - (\gamma - 1)}{\gamma + 1}$$
(72)

$$\frac{L_{SY}}{Y_C} = K \left[ 1 - \frac{\left(\frac{A_{LI}}{A_C}\right)}{\left(\frac{A_{LI}}{A_C}\right)_{cr}} \right]$$
(73)

$$K = f\left(M_L\right) \tag{74}$$

Two-Dimensional Inlets

.

~4

.

$$\left. \frac{P_{T1}}{P_{TL}} \right|_{cr} = \prod_{i=1}^{n} \left( \frac{P_{Ti}}{P_{Ti-1}} \right) \tag{75}$$

-

٠

$$\left(\frac{P_{T_i}}{P_{T_{i-1}}}\right) = \left[\frac{(\gamma+1)M_{i-1}^2\sin^2\beta_i}{(\gamma-1)M_{i-1}^2\sin^2\beta_i+2}\right]^{\frac{\gamma}{\gamma-1}} \left[\frac{\gamma+1}{2\gamma M_{i-1}^2\sin^2\beta_i - (\gamma-1)}\right]^{\frac{1}{\gamma-1}}$$
(76)

$$M_{i} = \frac{1}{\sin(\beta_{i} - \theta_{i})} \sqrt{\frac{(\gamma - 1)M_{i-1}^{2}\sin^{2}\beta_{i} + 2}{2\gamma M_{i-1}^{2}\sin^{2}\beta_{i} - (\gamma - 1)}}$$
(77)

$$C_{D_{ADD}}\Big|_{cr} = \frac{2}{\gamma M_L^2} \left[ \frac{P_1}{P_L} \left( 1 - \sum_{i=1}^n \frac{A_{Si}}{A_C} \right) \left( 1 + \gamma M_1^2 \right) + \sum_{i=1}^n \frac{P_{Si}}{P_L} \frac{A_{Si}}{A_C} - 1 \right] - 2 \left( \frac{A_{LI}}{A_C} \right)$$
(78)

$$\frac{P_{T1}}{P_{TL}}\Big|_{sub} = \frac{P_{T1}}{P_{TL}}\Big|_{cr} \left[\frac{(\gamma+1)M_n^2}{(\gamma-1)M_n^2+2}\right]^{\frac{\gamma}{\gamma-1}} \left[\frac{\gamma+1}{2\gamma M_n^2 - (\gamma-1)}\right]^{\frac{1}{\gamma-1}}$$
(79)

$$C_{D_{ADD}}\Big|_{sub} = C_{D_{ADD}}\Big|_{cr} + \frac{2}{\gamma M_L^2} \left(\frac{\overline{P} - P_{Sn}}{P_L}\right) \frac{A_{SY}}{A_C}$$
(80)

$$\frac{\left(\frac{A_{LI}}{A_C}\right)}{\left(1-\sum_{i=1}^n \frac{A_{Si}}{A_C}\right)} = \frac{P_{T1}}{P_{TL}}\Big|_{sub} \left(\frac{M_1}{M_L}\right) \left[\frac{1+\frac{\gamma-1}{2}M_1^2}{1+\frac{\gamma-1}{2}M_L^2}\right]^{-\frac{\gamma+1}{2(\gamma-1)}}$$
(81)

$$\frac{P_Y}{P_{Sn}} = \frac{2\gamma M_n^2 - (\gamma - 1)}{\gamma + 1}$$
(82)

Internal Compression

$$\left(\frac{A_{TH}}{A_C}\right) = \left[1 - \left(\frac{A_{LBLD}}{A_C}\right) \left(\frac{A_{LI}}{A_C}\right)^{-1}\right] \left(\frac{A_{LI}}{A_C}\right) \left(\frac{P_{TTH}}{P_{TL}}\right)^{-1} \left(\frac{M_{TH}}{M_L}\right)^{-1} \left[\frac{1 + \frac{\gamma - 1}{2}M_{TH}^2}{1 + \frac{\gamma - 1}{2}M_L^2}\right]^{\frac{\gamma + 1}{2(\gamma - 1)}}$$
(83)

$$\frac{P_{TTH}}{P_{TL}} = \left(\frac{P_{T1}}{P_{TL}}\right) \left(\frac{P_{TTH}}{P_{T1}}\right)$$
(84)

$$\frac{P_{TTH}}{P_{T1}} = \prod_{i=1}^{n} \left( \frac{P_{Ti}}{P_{Ti-1}} \right)$$
(85)

$$\left(\frac{P_{Ti}}{P_{Ti-1}}\right) = \left[\frac{(\gamma+1)M_{i-1}^2\sin^2\beta_i}{(\gamma-1)M_{i-1}^2\sin^2\beta_i+2}\right]^{\frac{\gamma}{\gamma-1}} \left[\frac{\gamma+1}{2\gamma M_{i-1}^2\sin^2\beta_i - (\gamma-1)}\right]^{\frac{1}{\gamma-1}}$$
(86)

$$M_{i} = \frac{1}{\sin(\beta_{i} - \theta)} \sqrt{\frac{(\gamma - 1)M_{i-1}^{2}\sin^{2}\beta_{i} + 2}{2\gamma M_{i-1}^{2}\sin^{2}\beta_{i} - (\gamma - 1)}}$$
(87)

#### Subsonic Diffusion

$$\frac{P_{T2}}{P_{TTH}}\Big|_{sub} = 1 - \left[K_D \left(1 - \frac{A_{TH}}{A_2}\right)^2 + K_O + K_F\right] K_M \left[1 - \left(1 + \frac{\gamma - 1}{2}M_{TH}^2\right)^{-\frac{\gamma}{\gamma - 1}}\right]$$
(88)

$$\frac{A_{TH}}{A_2} = \left(\frac{A_{TH}}{A_C}\right) \left(\frac{A_2}{A_C}\right)^{-1} \tag{89}$$

$$K_D = f(2\theta_D) \tag{90}$$

Ļ

-

$$K_O \simeq 1.2 \left(\frac{Y_O}{L_D}\right) \tag{91}$$

$$K_F = 4f_D\left(\frac{L_D}{D_2}\right) \tag{92}$$

$$f_D \simeq 0.0025 \tag{93}$$

$$K_M = f\left(M_{TH}\right) \tag{94}$$

$$\frac{P_{T2}}{P_{TTH}}\Big|_{sup} = 1 - \left[K_D \left(1 - \frac{A_{TH}}{A_2}\right)^2 + K_O + K_F\right] K_M \\ \times \left[1 - \left(1 + \frac{(\gamma - 1)^2 M_{TH}^2 + 2(\gamma - 1)}{4\gamma M_{TH}^2 - 2(\gamma - 1)}\right)^{-\frac{\gamma}{\gamma - 1}}\right] \left(\frac{P_{T2}}{P_{T1}}\right)_{NS}$$
(95)

$$K_{M} = f\left(\sqrt{\frac{(\gamma - 1)M_{TH}^{2} + 2}{2\gamma M_{TH}^{2} - (\gamma - 1)}}\right)$$
(96)

$$\left(\frac{P_{T2}}{P_{T1}}\right)_{NS} = \left[\frac{(\gamma+1)M_{NS}^2}{(\gamma-1)M_{NS}^2+2}\right]^{\frac{\gamma}{\gamma-1}} \left[\frac{\gamma+1}{2\gamma M_{NS}^2-(\gamma-1)}\right]^{\frac{1}{\gamma-1}}$$
(97)

# Bleed Drag

$$C_{D_{BLD}} = 2\left(\frac{A_{LBLD}}{A_C}\right) \left[1 - C_{TL}\cos\theta_X \eta_v C_T\left(\frac{V_{Xi}}{V_L}\right)\right]$$
(98)

$$C_{TL} = f\left(M_L, \frac{A_X}{A_{TH}}, \theta_X\right) \tag{99}$$

$$C_T = \frac{1}{\gamma M_{Xieff}^2} \left(\frac{A_X}{A_{Xieff}}\right) \left[ \left(\frac{P_X}{P_{Leff}}\right) \left(1 + \gamma M_X^2\right) - 1 \right]$$
(100)

$$M_{Xieff} = \sqrt{\frac{2}{\gamma - 1} \left[ \left( \frac{P_{TBL}}{P_{Leff}} \right)^{\frac{\gamma - 1}{\gamma}} - 1 \right]}$$
(101)

$$\frac{P_{TBL}}{P_{Leff}} = \left(\frac{P_{TBL}}{P_{TL}}\right) \left[1 + \frac{\gamma - 1}{2}M_L^2\right]^{\frac{\gamma}{\gamma - 1}} \left(\frac{P_L}{P_{Leff}}\right)$$
(102)

$$\frac{P_L}{P_{Leff}} = f(M_L, \theta_X) \tag{103}$$

,

$$\frac{A_X}{A_{Xieff}} = \left(\frac{A_X}{A_{TH}}\right) \left(\frac{\gamma+1}{2}\right)^{\frac{\gamma+1}{2(\gamma-1)}} M_{Xieff} \left[1 + \frac{\gamma-1}{2}M_{Xieff}^2\right]^{-\frac{\gamma+1}{2(\gamma-1)}}$$
(104)

$$\left(\frac{A_X}{A_{TH}}\right) = \left(\frac{\gamma+1}{2}\right)^{-\frac{\gamma+1}{2(\gamma-1)}} \frac{1}{M_X} \left[1 + \frac{\gamma-1}{2}M_X^2\right]^{\frac{\gamma+1}{2(\gamma-1)}}$$
(105)

$$\frac{P_X}{P_{Leff}} = \left(\frac{P_{TBL}}{P_{Leff}}\right) \left[1 + \frac{\gamma - 1}{2}M_X^2\right]^{-\frac{\gamma}{\gamma - 1}}$$
(106)

$$\frac{V_{Xi}}{V_L} = \left(\frac{M_{Xi}}{M_L}\right) \left[\frac{1 + \frac{\gamma - 1}{2}M_{Xi}^2}{1 + \frac{\gamma - 1}{2}M_L^2}\right]^{-\frac{1}{2}}$$
(107)

$$M_{Xi} = \sqrt{\frac{2}{\gamma - 1} \left[ \left( \frac{P_{TBL}}{P_L} \right)^{\frac{\gamma - 1}{\gamma}} - 1 \right]}$$
(108)

$$\frac{P_{TBL}}{P_L} = \left(\frac{P_{TBL}}{P_{Leff}}\right) \left(\frac{P_{Leff}}{P_L}\right)$$
(109)

# Bypass Drag

$$C_{D_{BYP}} = 2\left(\frac{A_{LBYP}}{A_C}\right) \left[1 - C_{TL}\cos\theta_X \eta_v C_T\left(\frac{V_{Xi}}{V_L}\right)\right]$$
(110)

$$M_{Xieff} = \sqrt{\frac{2}{\gamma - 1} \left[ \left( \frac{P_{TBP}}{P_{Leff}} \right)^{\frac{\gamma - 1}{\gamma}} - 1 \right]}$$
(111)

٠

$$\frac{P_{TBP}}{P_{Leff}} = \left(\frac{P_{TBP}}{P_{T2}}\right) \left(\frac{P_{T2}}{P_{TL}}\right) \left[1 + \frac{\gamma - 1}{2}M_L^2\right]^{\frac{\gamma}{\gamma - 1}} \left(\frac{P_L}{P_{Leff}}\right)$$
(112)

$$\frac{P_X}{P_{Leff}} = \left(\frac{P_{TBP}}{P_{Leff}}\right) \left[1 + \frac{\gamma - 1}{2}M_X^2\right]^{-\frac{\gamma}{\gamma - 1}}$$
(113)

$$M_{Xi} = \sqrt{\frac{2}{\gamma - 1} \left[ \left( \frac{P_{TBP}}{P_L} \right)^{\frac{\gamma - 1}{\gamma}} - 1 \right]}$$
(114)

$$\frac{P_{TBP}}{P_L} = \left(\frac{P_{TBP}}{P_{Leff}}\right) \left(\frac{P_{Leff}}{P_L}\right)$$
(115)

# Cowl Lip Suction

$$C_{LS} = (1 - K_{\alpha}) C_{D_{ADD}} - (K_{\beta} - K_{\alpha}) C_{D2}$$
(116)

$$K_{\alpha} = f\left(\sigma\theta_{e}, M_{L}\right) \tag{117}$$

$$\sigma = \begin{cases} 1, & M_L > 0.8\\ f\left(\frac{A_{LI}}{A_C}, \theta_e\right), & M_L \le 0.8 \end{cases}$$
(118)

$$\theta_e \approx \sqrt{2}\Omega \tag{119}$$

$$\Omega = \int_{1}^{\max} \frac{\left(\frac{Y}{Y_{C}}\right)\cos\overline{\psi}}{1 + 2\pi \left(\frac{X - X_{C}}{Y_{C}}\right)^{2}} d\left(\frac{Y}{Y_{C}}\right)$$
(120)

$$\overline{\psi} = \tan^{-1} \left( \frac{Y - Y_C}{X - X_C} \right) \tag{121}$$

$$K_{\beta} = \begin{cases} f(\theta_{e}, M_{L}), & M_{L} \ge 1\\ 0, & M_{L} < 1 \end{cases}$$
(122)

$$C_{D2} = \begin{cases} f\left(\frac{A_{LI}}{A_C}, M_L\right), & M_L > 1\\ 0, & M_L \le 1 \end{cases}$$
(123)

$$C_{D_{SPL}} = C_{D_{ADD}} - C_{LS} \tag{124}$$

Cowl Lip and Wave Drag

$$C_{D_{CWL}} = C_{D_{LIP}} + C_{D_{WAV}} \tag{125}$$

$$C_{D_{LIP}} = \frac{2}{\gamma M_L^2} \left\{ \frac{1}{2} \left[ \frac{(\gamma+1) M_L^2}{2} \right]^{\frac{\gamma}{\gamma-1}} \left[ \frac{\gamma+1}{2\gamma M_L^2 - (\gamma-1)} \right]^{\frac{1}{\gamma-1}} + \frac{1}{2} \left[ \frac{2\gamma M_L^2 - (\gamma-1)}{\gamma+1} \right] - 1 \right\} \frac{A_x}{A_C}$$
(126)

Two-Dimensional Inlets

.

.

$$C_{D_{WAV}} = \frac{2}{\gamma M_L^2} \int \left(\frac{P}{P_L} - 1\right) \frac{dA_x}{A_C}$$
(127)

.

•\*

$$C_{D_{WAV}} = \frac{2}{\gamma M_L^2} \sum_{i}^{N_C} \left(\frac{P_i}{P_L} - 1\right) \frac{A_{xi}}{A_C}$$
(128)

Axisymmetric Inlets

$$C_{D_{WAV}} = \int C_P \frac{dA_x}{A_C} \tag{129}$$

$$C_P = -2u = -2\frac{\partial\phi}{\partial x} \tag{130}$$

$$(1 - M_L^2)\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial r^2} + \frac{1}{r}\frac{\partial \phi}{\partial r} = 0$$
(131)

$$\phi(x,r) = \int_0^{x-\lambda r} \frac{f(\xi)d\xi}{\sqrt{(x-\xi)^2 - \lambda^2 r^2}}$$
(132)

$$u(x,r) = \int_0^{x-\lambda r} \frac{f'(\xi)d\xi}{\sqrt{(x-\xi)^2 - \lambda^2 r^2}}$$
(133)

$$v(x,r) = -\frac{1}{r} \int_0^{x-\lambda r} \frac{(x-\xi)f'(\xi)d\xi}{\sqrt{(x-\xi)^2 - \lambda^2 r^2}}$$
(134)

$$\lambda^2 = M_L^2 - 1 \tag{135}$$

$$\frac{dR}{dX} = R'(X) = -\frac{1}{R} \int_0^{X-\lambda R} \frac{(X-\xi)f'(\xi)d\xi}{\sqrt{(X-\xi)^2 - \lambda^2 R^2}}$$
(136)

$$-R'_{n} = \sum_{i=1}^{n} f'_{i} \frac{1}{R_{n}} \int_{\xi_{i-1}}^{\xi_{i}} \frac{(X_{n} - \xi)d\xi}{\sqrt{(X_{n} - \xi)^{2} - \lambda^{2}R_{n}^{2}}}$$
(137)

$$\xi_0 = 0 \tag{138}$$

$$\xi_n = X_n - \lambda R_n \tag{139}$$

$$-R'_{n}R_{n} = -\sum_{i=1}^{n} f'_{i} \left( \sqrt{\left(X_{n} - \xi_{i}\right)^{2} - \lambda^{2}R_{n}^{2}} - \sqrt{\left(X_{n} - \xi_{i-1}\right)^{2} - \lambda^{2}R_{n}^{2}} \right)$$
(140)

$$f'_{n} = \frac{-R'_{n}R_{n} + \sum_{i=1}^{n-1} f'_{i} \left(\sqrt{\left(X_{n} - \xi_{i}\right)^{2} - \lambda^{2}R_{n}^{2}} - \sqrt{\left(X_{n} - \xi_{i-1}\right)^{2} - \lambda^{2}R_{n}^{2}}\right)}{\sqrt{\left(X_{n} - \xi_{n-1}\right)^{2} - \lambda^{2}R_{n}^{2}}}$$
(141)

$$C_P = -2\sum_{i=1}^n f'_i \int_{\xi_{i-1}}^{\xi_i} \frac{d\xi}{\sqrt{(X_n - \xi)^2 - \lambda^2 R_n^2}}$$
(142)

$$C_P = -2\sum_{i=1}^{n} f_i' \ln\left[\frac{X_n - \xi_{i-1} + \sqrt{(X_n - \xi_{i-1})^2 - \lambda^2 R_n^2}}{X_n - \xi_i + \sqrt{(X_n - \xi_i)^2 - \lambda^2 R_n^2}}\right]$$
(143)

#### Lip Losses

$$\frac{P_{T1}}{P_{TL}}\Big|_{sl} = \frac{\left[\frac{1+\frac{\gamma-1}{2}M_1^2}{1+\frac{\gamma-1}{2}M_L^2}\right]^{\frac{\gamma+1}{2(\gamma-1)}}}{(1+\gamma M_1^2)\left[\frac{1+\frac{\gamma-1}{2}M_1^2}{1+\frac{\gamma-1}{2}M_L^2}\right]^{-\frac{1}{2}} - \gamma M_1 M_L}$$
(144)

.

•

$$\frac{1}{M_1} \left[ 1 + \frac{\gamma - 1}{2} M_1^2 \right]^{\frac{\gamma + 1}{2(\gamma - 1)}} = \left( \frac{A_{TH}}{A_1} \right)^{-1} \frac{1}{M_{TH}} \left[ 1 + \frac{\gamma - 1}{2} M_{TH}^2 \right]^{\frac{\gamma + 1}{2(\gamma - 1)}}$$
(145)

$$\frac{P_{T1}}{P_{TL}} = \frac{1}{1 + \exp^{-1}\left[4.66\left(\frac{r_C}{Y_C}\right)\right] \left[\left(\frac{P_{T1}}{P_{TL}}\Big|_{sl}\right)^{-1} - 1\right]}$$
(146)

•





Common Inlet Geometric Types



Figure 2

Basic Inlet Modeling Elements Incorporated in the Analyses



# Figure 3 Mixed-Compression Inlet Modes of Operation

Vehicle Forebody Model



•

.

.



Vehicle Forebody Modeling Elements





Figure 5





External Compression Modeling Elements





Unstarted Inlet Shock Wave Standoff Factor, K



Figure 8

Internal Compression Modeling Elements


,

٠



Subsonic Diffusion Modeling Elements





Subsonic Diffuser Total Pressure Loss Factor,  $K_D$ 





Subsonic Diffuser Throat Mach Number Factor,  $K_M$ 





Bleed System Operating Characteristics





Oblique Exit Nozzle Drag Factor





Effective Nozzle Discharge Pressure for Oblique Exits





Bleed and Bypass System Nozzle Exit Area Ratio





Bypass System Total Pressure Loss





Cowl Lip Suction Factor,  $K_{\alpha}$ 





Cowl Lip Angle Correction Factor,  $\sigma$ 





Cowl Lip Suction Factor,  $K_{\beta}$ 





Cowl Lip Suction Factor,  $C_{D2}$ 



,

Figure 21 Pitot Inlet Geometry





Pitot Inlet Performance Summary









Axisymmetric Inlet Variable Geometry



Figure 24 Axisymmetric Inlet Performance Summary









· Two-Dimensional Inlet Variable Geometry





Two-Dimensional Inlet Performance Summary

Appendix I

## IPAC User's Guide

. . **.** 

.

٠

.

### IPAC - Inlet Performance Analysis Code

#### Input List Description

All variables are defined as implicit real\*4 (a-h,o-z) unless otherwise noted in the following description. Variables beginning with the letters i-n are defined as integer unless otherwise noted. Any array variables are noted below with dimensions, ie. var(10). Default values are listed in the given assignments below.

- &ipac - namelist input set identifier, required table='ipac.dat' - tabular output data file name, character\*80 title=' ' - input case title, character\*80 - echo flag, echoes input set to output if =1, echo=0 integer iout=4\*1- output control flag array, setting each element of iout =1 writes additional data to output file, iout(1) program execution status messages iout(2) formatted performance summary pages iout(3) inlet flow station properties table inlet geometry data summary iout(4) iout(5)
- figure=0 figure output flag, writes inlet figure data and output files if =1, integer
- npts=10,20 number of points defining the engine face spinner or blunt cowl lip, npts(1), and subsonic diffuser contours, npts(2), when output is written using the figure=1 option, npts(2)
- xmach0=0.01 flight free stream Mach number
- alt=0..0 flight altitude (ft)
- alpha0=0.0 flight vehicle angle of attack (degrees)
- gama=1.4 ratio of specific heats for atmosphere
- igas=0 real gas effects flag, real gas calculations are performed if =1, typically only needed if xmach0 is greater than 2.0
- forbdy=0 vehicle forebody effects flag, no forebody if =0, initial conic forebody if =1, initial ramp forebody if =2, if =-1 then forebody effects are

directly input through variables xmlm0 and ptlpt0, integer

- xmlm0=1.0 ratio of inlet local to free stream Mach numbers, used only if forbdy=-1
- idim=1 inlet type flag, symmetric 2-D pitot if =-1, axisymmetric pitot if =0, 2-D pitot if =1, 2-dimensional if =2, axisymmetric if =3, bifurcated 2-dimensional if =4

- ramps=0 number of external 2-D inlet ramps (max 10), or for an axisymmetric inlet conic centerbody set =1, integer
- theta=0.0 array of relative angles (degrees) of 2-D inlet ramps, or for an axisymmetric inlet conic centerbody set equal to the cone half-angle, theta(10) [=1st angle,2nd angle,...]
- xleng=0.0 array of axial lengths (ft) of 2-D inlet ramps, or the axisymmetric inlet conic centerbody length, do not use if the variable rleng is used, xleng(10) [=1st length,2nd\_length,...]
- xcowl=0.0 cowl lip axial distance from inlet origin (ft)
- ycowl=1.0 cowl lip normal distance from inlet origin (ft)
- cowls=0 number of segments defining the external cowl surface (max 10), integer

- cowlrl=0.0 normalized radial lengths of external cowl surfaces, do not use if the input variable cowlxl is used, cowlrl(10) [=1st\_length,2nd length,...]
- cowlxl=0.0 normalized axial lengths of external cowl surfaces, do not use if the input variable cowlrl is used, cowlxl(10) [=1st length,2nd length,...]
- rclip=0.0 normalized cowl lip radius, sharp lip =0
- a2ac=1.0 engine face flow area to inlet capture area ratio
- xldd2=3.0 subsonic diffuser axial length to engine face diameter ratio
- hubtip=0.3 engine face spinner to fan tip radius ratio
- thetac=0.0 cowl lip internal angle (degrees)
- xlipth=-1 normalized length of inlet internal duct from cowl lip to throat, calculate length if =-1
- xmth=1.3 inlet throat Mach number, calculate throat Mach number if =-1
- xmns=1.35 inlet supercritical normal shock Mach number
- xtrans=0.0 normalized centerbody translation distance
- a0ac=1.0 stream tube capture area ratio, usually calculated and not used as an input variable
- ptrec=-1 inlet total pressure recovery, calculate if =-1
- ptreb=-1 total pressure recovery across external oblique shock waves, calculate if =-1
- ptrib=-1 total pressure recovery across internal oblique shock waves, calculate if =-1

58

- ptrfr=-1 total pressure recovery factor resulting from inlet surface friction ahead of the throat, calculate if =-1
- ptrdf=-1 total pressure recovery factor resulting from subsonic diffuser behind the inlet throat, calculate if =-1
- ptrlp=-1 total pressure recovery factor resulting from cowl lip flow losses, calculate if =-1
- fd=0.0025 subsonic diffuser friction loss factor
- bleed=0.0 array of inlet bleed flow mass fractions for each bleed system, up to 10 separate bleed systems can be defined, bleed(10) [=1st sys frac,2nd\_sys\_frac,...]
- pblpt0=0.0 array of total pressure recovery in bleed plenum to freestream for each separate bleed system, pblpt0(10) [=1st\_sys\_rec,2nd\_sys\_rec,...]
- nvbl=0.98 array of bleed flow discharge nozzle velocity coefficients for each separate bleed system, real\*4 nvbl(10) [=1st\_sys\_coef,2nd\_sys\_coef,...]
- nozzbl=1 array of the type of bleed flow discharge nozzle used for each separate bleed system, convergent nozzle if =1, convergent-divergent nozzle if =2, nozzbl(10) [=1st\_sys\_type,2nd\_sys\_type,...]
- axthbl=1.0 array of bleed flow discharge nozzle exit area to nozzle throat area ratio for each separate bleed system, set =1 if the nozzle is convergent, axthbl(10) [=1st\_sys\_ratio,2nd\_sys\_ratio,...]
- bypass=0.0 array of inlet bypass flow mass fractions for each bypass system, up to 10 separate bypass systems can be defined, bypass(10) [=1st\_sys\_frac,2nd\_sys\_frac,...]
- pbppt2=0.0 array of total pressure recovery in bypass plenum to engine face for each separate bypass system, pbppt2(10) [=1st\_sys\_rec,2nd\_sys\_rec,...]
- thexbp=15.0 array of bypass flow discharge angles (degrees) relative to freestream for each bypass system,

thexbp(10) [=1st\_sys\_angle,2nd\_sys\_angle,...]

- nvbp=0.98 array of bypass flow discharge nozzle velocity coefficients for each separate bypass system, real\*4 nvbp(10) [=1st sys coef,2nd sys coef,...]
- nozzbp=1 array of the type of bypass flow discharge nozzle used for each separate bypass system, convergent nozzle if =1, convergent-divergent nozzle if =2, nozzbp(10) [=1st\_sys\_type,2nd\_sys\_type,...]
- axthbp=1.0 array of bypass flow discharge nozzle exit area to nozzle throat area ratio for each separate bypass system, set =1 if the nozzle is convergent, axthbp(10) [=1st\_sys\_ratio,2nd\_sys\_ratio,...]
- refcd=-1 reference inlet drag coefficient, will be set
   equal to -cdcowl if =-1
- etype=0 array of engine type for each engine in an engine module, up to 10 engines per module, set =1 for a ramjet engine, set =2 for a turbojet engine, integer etype(10) [=1st\_eng\_typ,2nd\_eng\_typ,...]
- fn=0.0 array of the uninstalled net thrust (lb) for each engine in an engine module, fn(10) [=1st\_eng\_thrust,2nd eng thrust,...]
- w2cor=0.0 array of the uninstalled engine face corrected weight flow (lb/s) for each engine, w2cor(10) [=1st\_eng\_flow,2nd\_eng\_flow,...]
- w2abs=0.0 array of the uninstalled engine face absolute weight flow (lb/s) for each engine, w2abs(10) [=1st\_eng\_flow,2nd\_eng\_flow,...]
- pt8pt2=1.0 array of the total pressure ratio across the engine, from nozzle throat to engine face, pt8pt2(10) [=1st\_eng\_ratio,2nd eng ratio,...]
- refrec=-1 array of the reference total pressure recovery used for each engine, set =-1 for MIL-SPEC, refrec(10) [=1st\_eng\_rec,2nd\_eng\_rec,...]

| nozzle  | <ul> <li>array of engine module nozzle data, real*4<br/>nozzle(1) uninstalled engine data Cfg<br/>nozzle(2) actual nozzle gross thrust coefficient<br/>nozzle(3) actual nozzle drag coefficient<br/>nozzle(4) reference area (ft**2) for nozzle Cd</li> </ul> |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| noeng=1 | - number of engine modules on vehicle                                                                                                                                                                                                                         |
| aero    | <ul> <li>array of the flight vehicle aerodynamic data<br/>aero(1) lift coefficient<br/>aero(2) drag coefficient<br/>aero(3) angle of attack<br/>aero(4) reference area (ft**2) for Cl and Cd</li> </ul>                                                       |
| &end    | - namelist identifier, required                                                                                                                                                                                                                               |

#### Notes on Input Usage

The input and output filenames may be specified on the command line after the program name. The extensions .in and .out may be left off the filenames and will automatically be appended.

### system\_prompt> ipac ipac.in ipac.out

The program IPAC reads the namelist input set from an input file (the default is ipac.in) and executes the required calculations for that case. The output is written to an output file (the default is ipac.out) and to another tabular data file specified by the input variable table in the namelist input set. If there are subsequent namelist input sets in the file, they in turn are executed, and in this manner numerous cases can be run to design and/or analyze an inlet system over a range of operating conditions. Since the program uses namelist input reads, if a variable is defined once in an input set, it is not necessary to redefine it again in subsequent input sets, unless the value changes. Also, since nearly all of the input variables have predefined defaults, it is usually only necessary to assign The values to a few variables to run the program properly. character string pairs /\* ...comments... \*/ are parsed and discarded by the input set read routine, thus allowing for the inclusion of comments, or the exclusion of commented out inputs, in the input file.

There are a few subtleties which the user needs to be aware of to effectively use IPAC. The following paragraphs describe some of the ways the various input variables are used to model inlet systems.

<u>General Output Control</u>: The first 6 variables listed above determine the output features for IPAC. The data file defined by the **table** variable will contain a summary tabular dataset of inlet operation and performance quantities such as: pressure recovery, mass flow ratios, and drag coefficients. These quantities are sufficient to compose a set of inlet performance maps. To facilitate the generation of performance maps, more than one data file can be defined by the **table** variable in subsequent namelist input sets. Thus, a range of inlet operating points can be written to different tabular datasets. The user must then re-format these datasets to construct inlet map files appropriate for other analysis codes.

The title variable is printed for each output case if defined. The echo variable can, and is recommended, to be set to 1. This will print the namelist input set ahead of each output case. Additionally, if echo is set to 2 then the entire input file will be printed at the top of the output file. The array variable iout is used to control the level of data written to the output file, ipac.out. Setting the elements of iout =1 will result in additional output data. Currently there are 4 elements in iout which can be used for output control. Status messages of program execution information are enabled/disabled by iout(1) = 1/0. These single line printouts of pertinent variable values from each major analysis segment (as the code executes) are useful for quickly assessing the progress of the inlet design, operation, and performance modeling. Printout of formatted inlet performance summary data is enabled/disabled by iout(2) = 1/0. A formatted data table of flow properties at each of the inlet flow stations is enabled/disabled by iout(3) = 1/0. A brief inlet geometry data summary is enabled/disabled by iout(4) = 1/0. The program defaults will print all of the above information for each input case. Complete inlet performance data is written to 4 other tabular datasets \*.dat for all input cases executed. This information is very easily graphed by a plotting package of the user's choice.

Printout of the inlet geometry contours is enabled by setting the **figure** variable =1. Additional output files \*.fig are written which contain (x,y) coordinate pairs that can be used to construct a simple line drawing of the inlet geometry, and which can be viewed by the user's own plotting package of choice. The **figure** variable should be set to 1 in only one input set, and then reset to 0 for the rest of the cases since the \*.fig output files are overwritten for each case. The array input variable **npts** can be used to increase the number of points written which define the subsonic diffuser, blunt cowl lips, and engine face segments of the figure. This allows for greater resolution of the curved surfaces in the geometry.

<u>Flight Conditions</u>: The Mach number and altitude for flight are set in variables xmach0 and alt. If a positive number is assigned to alt then the program will use that value for the altitude in ft. If alt is assigned a negative number, then the program will assume that the user has entered a flight dynamic pressure (in psf) instead, and will find an appropriate altitude for the specified flight Mach number. This is a convenient feature for finding constant Q flight paths. If the vehicle is situated at an angle of attack to the freestream, the variable **alpha0** should be used. If the user feels it is necessary to adjust the ratio of specific heats constant for the atmosphere, the variable **gama** can be used. If flight conditions exceed Mach 2.0, it is recommended that **igas** be set to 1 to adjust ideal gas assumptions for real gas effects which become important for high speed flight.

<u>Vehicle Effects</u>: If the inlet is located close to the body/wing of the vehicle it may be necessary to account for changes in flow conditions entering the inlet as a result of vehicle effects. The variable **forbdy** controls how the vehicle effects are modeled. Values of 1 or 2 assigned to **forbdy** can model simple combinations of conic and ramp configurations. The necessary relative angles (degrees) are input through the array variable **alphai**. Compressive turning is denoted by a positive angle, and expansions are denoted by a negative angle. If a very complex flowfield is produced by the vehicle, the changes in Mach number and total pressure can be directly input in variables **xmlm0** and **ptlpt0** (provided these values are known) if **forbdy** is set to -1.

<u>Inlet Geometry</u>: A number of variables are used to describe the inlet geometry to be modeled. The first is **idim** which specifies the basic inlet type: pitot, axisymmetric, or 2-dimensional. The permitted values of **idim** follow.

| idim | =-1 | symmetric 2-D pitot inlet      |
|------|-----|--------------------------------|
|      | 0   | axisymmetric pitot inlet       |
|      | 1   | 2-D pitot inlet                |
|      | 2   | 2-dimensional inlet            |
|      | 3   | axisymmetric inlet             |
|      | 4   | bifurcated 2-dimensional inlet |
|      |     |                                |

If the inlet is 2-D the aspect ratio, variable **ar**, is the inlet width divided by height. If the inlet is axisymmetric then **ar** is interpreted as fraction of a full-circle. Thus, for a hemicircular axisymmetric inlet, **ar** would be set to 0.5. The variable determining the gross size of the inlet is the capture area, **ac** in square ft. This can be simply set to 1 for easy normalizations, any physical size in square feet, or if set to -1 will be calculated and automatically sized to match the engine demand airflow requirements if this data is supplied.

External Compression Surfaces: The variables ramps, theta, rleng, and xleng define the inlet external compression surfaces for axisymmetric and 2-D inlets. For axisymmetric inlets, ramps must be set to 1, and theta is set to the conic centerbody halfangle. Either rleng or xleng, in ft, can be used to define the centerbody length, but not both. For 2-D inlets, ramps can be set up to a maximum of 10, and theta is then set to the relative angles (degrees) of each ramp. Either rleng or xleng can be used to define the lengths of each ramp, but not both. It is recommended that rleng be used since it does not change as the ramp angles are varied. Cowl Lip & Shock-On-Lip Design Feature: The location of the cowl lip is specified by variables **xcowl** and **ycowl** in ft. These variables are used in both axisymmetric and 2-D inlets. For axisymmetric inlets **ycowl** is the radial distance from the inlet centerline. There is a feature in IPAC which will automatically calculate the location of the cowl lip for the shock-on-lip condition. Also, this feature will calculate the ramp lengths for multiple ramp 2-D inlets, placing all of the shock waves on the cowl lip, provided that the ramp angles are specified. This is a very useful design feature. To use this automatic design capability do the following in the very first namelist input set.

- (1) set **ramps** to the number of ramps or 1 for a centerbody
- (2) set theta to the ramp or centerbody relative angle(s)
- (3) set rleng and xleng to 0.0, this is the program default
- (4) set **xcowl** =0 and **ycowl** =1, also the program default

IPAC will then calculate the location of the cowl lip, and the lengths of all the ramps for shocks-on-lip for the specified flight Mach number, **xmach0**. These results will be remembered for subsequent cases, and there is no need to input these values by hand.

External Cowl Surfaces: The variables cowls, cowlth, cowlrl, and cowlxl define the external contour of the inlet cowl surface. The number of segments is specified in cowls, the relative angles (degrees) in cowlth, and the lengths in either cowlrl or cowlxl. The lengths are normalized by ycowl and thus specified as multiples of ycowl. A blunt cowl lip radius can be specified by the variable rclip and this radius is also normalized by the length ycowl.

Subsonic Diffuser: There are 4 input variables which are used to define the geometry of the subsonic diffuser element in an inlet. The engine face flow area is defined as a ratio relative to the inlet capture area through the variable a2ac. The axial length of the diffuser is defined as a ratio relative to the engine face diameter through the variable xldd2. The vertical offset location of the engine face is defined as a normalized distance from the inlet origin to the engine centerline, through the variable cloff, as a multiple of the distance ycowl. The variable hubtip performs a number of functions. If hubtip is a positive number then it defines the engine face spinner to fan tip radius ratio. If hubtip equals 0.0 then no engine spinner exists but the engine face is still assumed to be circular. If hubtip is a negative number then the program will recognize that the user has indicated that the engine face is not circular, but rather 2-dimensional, and that the value specified in hubtip is now the aspect ratio for the 2-D engine face duct area.

<u>Internal Shocks</u>: For supercritical operation of mixed compression inlets, internal shock waves are formed between the cowl lip and the inlet throat. The model used in IPAC is relatively simple for this internal supersonic duct. A constantly converging channel is used to model the flow from inlet cowl lip to throat regions. The difference between the internal cowl lip angle (degrees), thetac, and the last external ramp angle forms the net convergence angle for the duct model. A single shock wave train, reflecting off each duct wall, is used to model the supersonic flow. The variable **nishck** is used to specify how many shock waves will be permitted in the duct, and this value will be calculated if set to -1. The variable **xlipth** is the normalized length (multiple of ycowl) of the duct from the cowl lip to the throat, and will also be calculated if set to -1. The variable athac is the inlet throat area to capture area This variable is critical in determining the inlet ratio. If athac is set to -1 this ratio will be calculated. operation. The variable **xmth** is the inlet throat Mach number. By specifying an inlet throat Mach number and area, the mass flow of the inlet is uniquely determined.

In a typical design point calculation it is easiest to specify the throat Mach number, xmth, and then for supercritical operation the rest of the variables, nishck, xlipth, and athac will be determined. For subsequent calculations, the inlet throat area will then be determined from the inlet geometry, and the throat Mach number will in turn be calculated. The variable xmns is the Mach number ahead of the internal terminal normal Note that for supercritical operation xmns must be shock. greater than the throat Mach number xmth. As the normal shock  $\bar{M}$ ach number is increased, the shock will be pulled further downstream from the inlet throat into the subsonic diffuser. This will also decrease the inlet recovery. Specifying xmns is another control variable which can be used to match the inlet supply corrected airflow to the engine demand. If xmns is set =0 and the inlet is operating supercritical, then the flow at the engine face will be calculated as supersonic flow. This permits the modeling of supersonic through-flow fan and scramjet inlets.

<u>Variable Geometry</u>: After the inlet design point is calculated in the first namelist input set, the throat area can be increased or decreased by variable geometry features for off-design operation. For multi-ramp inlets, the ramp angles **theta** can be redefined by the user in subsequent namelist input sets. The cowl internal angle **thetac** can also be changed. A very common variable geometry mechanism for axisymmetric inlets is the translating centerbody, and the input variable **xtrans** can be used to move the centerbody forward a specified distance which is a multiple of **ycowl**. Note that **xtrans** works only for axisymmetric inlets, and produces no translation for two-dimensional inlets.

Two additional, although not typically used, input variables are the stream tube capture area ratio, **a0ac**, and the throat to cowl lip flow area ratio, **atha1**. The stream tube capture area ratio is usually calculated by the program, however, it is possible that for some inlets the capture area ratio can be defined, and then for a given geometry the inlet throat Mach number would be calculated. <u>Recovery Overrides</u>: All of the input variables beginning with <u>ptr\_</u> are the total pressure ratios for various loss producing mechanisms and are normally calculated in the program. The user has the option of overriding these calculations and directly entering values for any and all of these terms. Normally this is not done, however, if other more complex analyses have been performed for an inlet design, then the user can use those values instead of the ones that IPAC would normally calculate.

An additional input variable is the friction loss factor, fd, which is used in the subsonic diffuser loss model. The default value is 0.0025 and this value is suitable for most typical subsonic diffuser designs.

Bleed and Bypass Systems: Boundary layer bleed is a necessary component for all high speed inlet systems. In order to stabilize the shock wave boundary layer interactions, a small amount of air is removed through the walls of the inlet. This air is then dumped overboard and a momentum drag is incurred. Mass removed and dumped ahead of the inlet throat is called bleed, and is necessary for inlet operation. Mass removed and dumped behind the throat is called bypass, and is sometimes necessary for inlet/engine matching. Up to ten independent bleed and ten independent bypass systems can be defined. Both bleed and bypass inputs work the same way, and therefore, only the bleed variables will be directly discussed. The user must specify the variable **bleed**, the fraction of captured airflow which is to be dumped. The variable **pblpt0** is the total pressure ratio (bleed plenum to freestream) for the bleed system and must also be chosen. The rest of the variables, thexbl, nvbl, nozzbl, and axthbl may be left at the default values. For bypass systems, since there is typically much more pressure available for expansion, a convergent-divergent nozzle may be used.

The input variable bleed can be defaulted to any negative number to automatically calculate the amount of boundary layer bleed as a function of inlet local Mach number. If bleed set =-1, then a single bleed system will use the default bleed rate. If bleed is set =-0.8, then a single bleed system will use 80% of the default bleed rate. If **bleed** is =-1.5, then a single bleed system will use 150% of the default bleed rate. If **bleed** =-0.4,-0.5, then two bleed systems will use a total of 90% of the default bleed The bleed plenum total pressure recovery variable, pblpt0, rate. can also be defaulted to an internal calculation, again as a function of inlet local Mach number. Set pblpt0 to: -1 for the nominal average recovery, -2 for the high pressure porous recovery, -3 for the low pressure porous recovery, and -4 for the throat slot recovery. Each individual bleed system can use any appropriate bleed configuration recovery.

For the bypass system, the total pressure recovery in the bypass duct, **pbppt2**, can be calculated from a bypass duct loss as a function of bypass fraction. To calculate, set **pbppt2** =-1. Typically, when matching inlet supply and engine demand the inlet

provides excess airflow which must be bypassed. If engine data is supplied, and the inlet has excess airflow capacity, set **bypass** =-1 to automatically match the inlet and engine airflows by adjusting the bypass fraction. This feature only works on the first bypass system, the other bypass systems if defined cannot be automatically matched but must be directly input.

Drag Accounting: The exact details of which inlet drag components should be charged to propulsion or airframe are a subject of continual debate. Most notable is the cowl drag, which is comprised of cowl blunt lip and cowl wave drags. IPAC calculates these drag components if the input variable **cdcowl** is set =-1, the program default. If any other positive value is assigned to **cdcowl** that value will be used, and the lip and wave drag calculations will be skipped. Since the external drag on an engine nacelle is often accounted for in the vehicle aerodynamic performance, another input variable **refcd** has been included. This variable represents the reference drag coefficient for the inlet installation, and thus part of the inlet drag can be accounted for in the vehicle aerodynamic data.

The net inlet drag at an engine operating point is called the power setting drag, and the power setting drag is equal to the total of all the inlet drags (spillage, bleed, bypass, cowl lip and wave) less the reference drag. Often the cowl drag components are accounted for in the vehicle aerodynamic data. If **refcd** is set =-1, then the reference drag will be set equal to the inlet cowl drag. This will result in an inlet power setting drag comprised of only spillage, bleed, and bypass drags. This is the default for the program, where **refcd** is =-1.

Engine Data: Engine data can be supplied to the program, and IPAC will perform installation calculations and re-calculate engine data if desired. It is assumed that engines are in separate modules, and there can be more than one engine (up to 10) in a module. However, each module has a single inlet, and possibly a common nozzle. The variable **etype** specifies the types of engines in a module. The only types are turbojet and ramjet at this time. A turbofan can be modeled as two separate turbojets, one with and one without fuel. The variable **escale** can be used to adjust the size of the engines for inlet/engine matching and sizing studies.

Each engine in the engine module is specified as an element in the array variables: fn, sfc, w2cor, w2abs, pt8pt2, and refrec. The engine net thrust and specific fuel consumption are specified by the input variables fn and sfc. To perform the installation calculations the total pressure ratio across the engine, pt8pt2, and the inlet recovery used in determining the uninstalled engine data, refrec, must also be supplied. The user may specify that a MIL-SPEC inlet recovery was used in the uninstalled engine data by setting refrec =-1, which is the program default. The absolute engine weight flow must be specified in the input variable w2abs in lb/s. The corrected engine airflow is also required in the variable **w2cor** in lb/s. To perform engine installation calculations correctly, the uninstalled engine corrected weight flow must be the same as the inlet supply corrected weight flow.

The equality of inlet supply and engine demand corrected weight flow is called inlet/engine matching. All proper inlet designs must be matched to an engine demand corrected airflow schedule. If the user is designing an inlet and there is no engine data available, the program will construct an engine demand corrected weight flow schedule automatically for a "typical" engine. If w2cor is set =-1 at the inlet design point, then the program will automatically calculate an engine demand corrected weight flow which matches the inlet supply corrected weight flow. By leaving w2cor =-1 for the rest of the inlet operating points, the program will calculate the "typical" engine demand corrected weight flow schedule as a function of flight Mach number. The user may then use this schedule of engine demand corrected weight flow for inlet/engine matching over the off-design operating points.

The installed thrust for the engine module will be equal to the uninstalled engine thrust adjusted for the actual inlet recovery less the inlet power setting drag. Note that engine data that is installed but not properly matched with the inlet supply corrected weight flow is fundamentally incorrect since conservation of mass will be violated.

<u>Nozzle Data</u>: If nozzle data is available, the installation calculations will also adjust the engine data for nozzle effects. The inputs are in the array variable **nozzle**, and include the gross thrust coefficient used in the engine data, the actual gross thrust coefficient for the nozzle used, a drag coefficient for the nozzle, and a reference area. Note that when using the **nozzle** input variable it is assumed that only one nozzle is used for each engine module, even though more than one engine can be in a module.

<u>Vehicle Data</u>: Since it is often of interest to see how engine systems size on the vehicle, IPAC can accept vehicle aerodynamic data. Thus engine sizing studies can also be performed. The variable **noeng** sets the number of engine modules on the vehicle. The array variable **aero** contains the vehicle lift and drag coefficients, angle of attack, and reference area. Thus, the program can install engines with an inlet design, and can then determine if the propulsion system is capable of powering the aircraft throughout the flight regime.

# Appendix II



Example Case





## Figure II.1

.

**Total Pressure Recoveries** 



Figure II.2 Mass Flow Ratios










Figure II.5 Corrected Airflows

cdspl= 1.350E-01,thetae= 7.682E+00, cdspl= 1.350E-01, cdref= 2.591E-01, w2= 2.913E+01, 7.209E-01, cda=-5.079E-07, 7.209E-01, cda= 1.250E-03, 7.160E-01,thetad= 2.472E+00, 7.209E-01,xlipth= 1.000E+00, 7.209E-01, cda= 1.646E-01, ala0= 1.000E+00, 1.000E+00, 2.000E+00, xmach0= 2.000E+00, xmlm0= 1.000E+00, ptlpt0= 2.000E+00, a0iac= 1.000E+00, xmach1= 5.774E-01, ptlpt0= 2.000E+00, a0iac= 9.990E-01, xmach1= 5.764E-01, ptlpt0= 2.000E+00, a0ac= 8.748E-01, xmns= 1.300E+00, pt2pt0= 5.500E-01, athac= 9.025E-01, nishck=-1.000E+00, pthpt0= 2.000E+00, a0iac= 8.748E-01, xmach1= 4.751E-01, ptlpt0= 8.748E-01, cdtot= 1.350E-01, 8.748E-01, w2c= 3.576E+01, Cls= 2.960E-02, 8.748E-01,w2ceng= 3.576E+01, 2.800E+03 7.019E+02 total 2.000E+00 3.578E+02 3.900E+02 4.189E+04 1.002E+03 ambient 8.748E-01, 2.000E+00, cdlip= 1.490E-01, cdwav= 1.101E-01, echo=1, figure=1, npts=10, 20, iout=1, 1, 1, 1, xmachx= 2.000E+00,a0enac= (lbf/ft\*\*2) a0iac= 2.000E+00, a0iac= 2.000E+00, a0enac= (lbf/ft\*\*2) rclip=0.05, xlipth=1.0, thetac=0.0, cowls=2, cowlth=5, -5, cowlxl=5, 1, a2ac=1.20, xldd2=2.0, hubtip=0.3, title='Pitot Inlet Example Case' Pitot Inlet Example Case (ft) 2.000E+00, 2.000E+00, 3 altitude pressure xmach0=2.0,alt=-1000, temperature dynamic pressure Mach number Flight Conditions xmach0= cdpito: xmach0= xmach0= xmach0= xmach0= cdpito: xmach0= xmth= xmach0= clsuc: xmach0= Vehicle Effects forebd: xmachx= xmach0= idim=0, ac=1.0, xmth=0.550, w2cor=-1, cdblip: cdwave: ptrcv: cdpito: **kipac** IPAC Send

1.000E+00 1.000E+00 1.000E+00

ML/MO PTL/PT0

40

444444

35 36 37

3321

AL/A0

Inlet Mass Flow Ratios

.

-

engine face 2

ΤН

÷

•

| 93<br>94                    | flow area                                 | (ft**2)                      | 8.748E-01                           | <b>8.748E-01</b>       | <b>1.000E+00</b> | 9.025E-01 | <b>1.200E+00</b> |
|-----------------------------|-------------------------------------------|------------------------------|-------------------------------------|------------------------|------------------|-----------|------------------|
| 95<br>96                    | Mach number                               |                              | 2.000E+00                           | 2.000E+00              | 4.751E-01        | 5.500E-01 | 3.804E-01        |
| 97<br>98                    | pressure                                  | (lbf/ft**2)                  | 3.578E+02                           | 3.578E+02              | <b>1.729E+03</b> | 1.643E+03 | <b>1.814E+03</b> |
| 99<br>100                   | temperature                               | (R)                          | 3.900E+02                           | 3.900E+02              | 6.716E+02        | 6.619E+02 | 6.822E+02        |
| 101<br>102                  | density                                   | (slg/ft**3)                  | 5.346E-04                           | 5.346E-04              | 1.500E-03        | 1.446E-03 | 1.549E-03        |
| 103<br>10 <b>4</b>          | velocity                                  | (ft/s)                       | <b>1.936E+03</b>                    | <b>1.936E+03</b>       | 6.036E+02        | 6.936E+02 | 4.870E+02        |
| 105<br>106                  | total pressure                            | (1bf/ft**2)                  | 2.800E+03                           | 2.800E+03              | 2.018E+03        | 2.018E+03 | 2.004E+03        |
| 107<br>108                  | total temperature                         | (R)                          | 7.019E+02                           | 7.019E+02              | 7.019E+02        | 7.019E+02 | 7.019E+02        |
| 109<br>110                  | weight flow                               | (1bm/s)                      | 3.330E+01                           | 3.330E+01              | 2.913E+01        | 2.913E+01 | 2.913E+01        |
| 111                         | corrected weight flow                     | (1bm/s)                      | 2.927E+01                           | 2.927E+01              | 3.552E+01        | 3.552E+01 | 3.576E+01        |
| 114                         | Geometry Data for Axis                    | ymmetric Pitot               | Inlet                               |                        |                  |           |                  |
| 211<br>2115<br>7117<br>7118 | inlet capture, AC<br>wrap angle<br>radius | (ft**2)<br>(degrees)<br>(ft) | 1.000E+00<br>3.600E+02<br>5.642E-01 |                        |                  |           |                  |
| 119<br>120<br>121           | engine face, A2<br>diameter<br>H/T        | (ft**2)<br>(ft)              | 1.200E+00<br>1.296E+00<br>3.000E-01 |                        |                  |           |                  |
| 124                         | Figure Data for Inlet                     | Geometry                     |                                     |                        |                  |           |                  |
| 126<br>126                  | internal cowl surface                     | (ft)                         | x                                   | Х                      |                  |           |                  |
| 127<br>128                  |                                           |                              | 0.000E-01                           | 5.642E-01              |                  |           |                  |
| 129                         |                                           |                              | 4.286E-04                           | 5.593E-01              |                  | -         |                  |
| 130                         |                                           |                              | 1.701E-03<br>3 779E-03              | 5.545E-01<br>5.501E-01 |                  |           |                  |
| 132                         |                                           |                              | 6.600E-03                           | 5.461E-01              |                  |           |                  |
| 133                         |                                           |                              | <b>1.008E-02</b>                    | 5.426E-01              |                  |           |                  |
| 134                         |                                           |                              | 1.410E-02<br>1 856E-02              | 5.398E-01<br>5.377E-01 |                  |           |                  |
| 136<br>136                  |                                           |                              | 2.331E-02                           | 5.364E-01              |                  |           |                  |
| 137<br>138                  |                                           |                              | 2.821E-02<br>5.360E-01              | 5.360E-01<br>5.360E-01 |                  |           |                  |

•

.

| 139        |          |       |         |      | 5.360E-01             | 5.360E-01              |
|------------|----------|-------|---------|------|-----------------------|------------------------|
| 140        |          |       |         |      | 6.724E-01             | 5.369E-01              |
| 141        |          |       |         |      | 8.088E-01             | 5.394E-01              |
| 142        |          |       |         |      | 9.452E-01             | 5.435E-01              |
| 143        |          |       |         |      | 1.082E+00             | 5.488E-01              |
| 144        |          |       |         |      | <b>1.218E+00</b>      | 5.551E-01              |
| 145        |          |       |         |      | <b>1.354E+00</b>      | 5.624E-01              |
| 146        |          |       |         |      | <b>1.491E+00</b>      | 5.704E-01              |
| 147        |          |       |         |      | <b>1.627E+00</b>      | 5.788E-01              |
| 148        |          |       |         |      | <b>1.764E+00</b>      | 5.875E-01              |
| 149        |          |       |         |      | <b>1.900E+00</b>      | 5.963E-01              |
| 150        |          |       |         |      | 2.036E+00             | 6.051E-01              |
| 151        |          |       |         |      | <b>2.173E+00</b>      | 6.135E-01              |
| 152        |          |       |         |      | <b>2.309E+00</b>      | 6.215E-01              |
| 153        |          |       |         |      | <b>2.446E+00</b>      | 6.287E-01              |
| 154        |          |       |         |      | 2.582E+00             | 6.351E-01              |
| 155        |          |       |         |      | 2.718E+00             | 6.404E-01              |
| 156        |          |       |         |      | <b>2.855E+00</b>      | 6.444E-01              |
| 157        |          |       |         |      | <b>2.991E+00</b>      | 6.470E-01              |
| 158        |          |       |         |      | <b>3.128E+00</b>      | 6.479E-01              |
| 159        |          | ,     | u       |      | 1                     | ;                      |
| 161<br>161 | external | COWL  | surtace | (It) | ×                     | ¥                      |
| 162        |          |       |         |      | 0.000E-01             | 5.642E-01              |
| 163        |          |       |         |      | 3.824E-04             | 5.688E-01              |
| 164        |          |       |         |      | 1.519E-03             | 5.733E-01              |
| 165        |          |       |         |      | 3.379E-03             | 5.776E-01              |
| 166        |          |       |         |      | 5.913E-03             | 5.815E-01              |
| 167        |          |       |         |      | 9.051E-03             | 5.849E-01              |
| 168        |          |       |         |      | <b>1.271E-02</b>      | 5.878E-01              |
| 169        |          |       |         |      | 1.679E-02             | 5.900E-01              |
| 170        |          |       |         |      | 2.117E-02             | 5.915E-01              |
| 171        |          |       |         |      | 2.575E-02             | 5.923E-01              |
| 172        |          |       |         |      | 2.847E+00             | 8.391E-01              |
| 173        |          |       |         |      | <b>3.411E+00</b>      | 8.391E-01              |
| 174<br>175 | enine    | ene i | enimer  | (++) | >                     | >                      |
| 264        | anthra   | דמרנו | Tamirde | 1771 | <                     | I                      |
| 177<br>177 |          |       |         |      | 3 128E+00             | 1 944E-01              |
| 178        |          |       |         |      | DOLEVEL S             | 10-3110 1              |
| 0.1        |          |       |         |      | 00144400.0            | TO_95TC.T              |
|            |          |       |         |      | 001010100<br>00000000 | TO-2070.T              |
| 181        |          |       |         |      | 2.00244000            | 1.4895-01<br>1.4895-01 |
| 182        |          |       |         |      | 0.426ET00             | 1 249E-01              |
| 183        |          |       |         |      | 2.959E+00             | 9 718E-02              |
| 184        |          |       |         |      | 2.945E+00             | 6.648E-02              |

. . **.** 

÷.

cdspl= 9.085E-02,thetae= 7.682E+00, cdspl= 9.085E-02, cdref= 2.651E-01, cda=-3.233E-07, a0iac= 9.990E-01,xmach1= 6.154E-01,pt1pt0= 8.127E-01, cda= 1.152E-03, a0ac= 9.063E-01, xmns= 1.300E+00,pt2pt0= 8.057E-01,thetad= 2.472E+00, athac= 9.025E-01,nishck=-1.000E+00,pthpt0= 8.127E-01,xlipth= 1.000E+00, a0iac= 9.063E-01,xmach1= 5.276E-01,pt1pt0= 8.127E-01, cda= 1.136E-01, ala0= 1.000E+00 8.127E-01, 3.389E+01, 1.000E+00 w2= 1.800E+00, xmlm0= 1.000E+00,ptlpt0= 1.000E+00, xmach1= 6.165E-01, pt1pt0= 9.063E-01, cls= 2.273E-02, 9.063E-01, cdtot= 9.085E-02, 9.063E-01, w2c= 3.861E+01, 9.063E-01, w2c= 3.861E+01, 9.063E-01,w2ceng= 3.861E+01, 0.000E-01 -3.375E-02 2.565E+03 6.427E+02 3.375E-02 -6.648E-02 -9.718E-02 -1.249E-01 -1.489E-01 -1.683E-01 -1.826E-01 -1.914E-01 rend -1.944E-01 total xmach0=1.8,xmth=0.621, figure=0,iout=1,1,0,0, 1.000E+00 1.000E+00 2.933E+00 2.936E+00 2.945E+00 4.464E+02 3.900E+02 3.061E+00 1.800E+00 1.012E+03 2.959E+00 2.979E+00 3.003E+00 3.094E+00 3.128E+00 3.729E+04 3.030E+00 936E+00 ambient 1.420E-01, 1.231E-01, (lbf/ft\*\*2) 1.800E+00, a0iac= cdlip= (lbf/ft\*\*2) cdpito: xmach0= 1.800E+00, a0iac= 6.210E-01, athac= a0iac= cdwav= 1.800E+00, a0iac= xmach0= 1.800E+00, a0iac= xmachx= 1.800E+00,a0enac= **1.800E+00, xmach0=** 1.800E+00,a0enac= Pitot Inlet Example Case (ft) 1.800E+00, **1.800E+00**, **1.800E+00**, **1.800E+00**, R) altitude pressure temperature dynamic pressure ML/M0 PTL/PT0 Mach number Flight Conditions clsuc: xmach0= ptrcv: xmach0= cdpito: xmach0= xmach0= xmach0= cdwave: xmach0= xmach0= xmth= Vehicle Effects xmachx= cdblip: forebd: cdpito: £ipac IPAC 198 199 200 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 191 192 193 194 195 195 186 187 188 189 190 197 185

|                  |                        |            |           |           |           |           |           |     |                        |           |            |           |                      |                    |            |                      |     |                  | (1bf)<br>( |     | 9.197E+01 | 0.000E-01 | 0.000E-01 | 2.684E+02 | 3.603E+02 | 2.684E+02 | 9.197E+01     | inatal lad             | NETTERST       | -3.603E+02 | -0.000E-01   | 3.389E+01 | 3.861E+01    |     |                    |     |
|------------------|------------------------|------------|-----------|-----------|-----------|-----------|-----------|-----|------------------------|-----------|------------|-----------|----------------------|--------------------|------------|----------------------|-----|------------------|------------|-----|-----------|-----------|-----------|-----------|-----------|-----------|---------------|------------------------|----------------|------------|--------------|-----------|--------------|-----|--------------------|-----|
| <b>1.000E+00</b> |                        | 0 0638-01  | 9.373R-02 | 0.000E-01 | 9.063E-01 | 0.000E-01 | 9.063E-01 |     |                        | 8.057E-01 | 1 000E+00  | 8.127E-01 | 1.000E+00            | 7.7440°04          | 1.000E+00  |                      |     | <b>1.000E+00</b> | 8          |     | 9.085E-02 | 0.000E-01 | 0.000E-01 | 2.651E-01 | 3.559E-01 | 2.651E-01 | 9.085E-02     | uninetallad            | not too ciitim | 0.000E-01  | 0.000E-01    | 0.000E-01 | 3.861E+01    |     | 9.445E-01          |     |
|                  |                        |            |           |           |           |           |           |     | ecoveries              |           |            |           |                      |                    |            |                      |     | (ft**2)          |            |     |           |           |           |           |           |           |               | a                      | 1              | (1bf)      | (lbm/hr/lbf) | (1bm/s)   | (1bm/s)      |     |                    |     |
| AL/A0            | Inlet Mass Flow Ratios |            | ACSPL/AC  | AOBLD/AC  | A0/AC     | A0BYP/AC  | A0ENG/AC  |     | Inlet Total Pressure R | PT2/PT0   | рт1,/рт0   | PTI/PTL   | LTG/HTTG<br>LTTG/CTG | UTT <i>3  </i> 713 | PTx/PTy    | Inlet Drag Breakdown |     | AC               |            |     | spillage  | bleed     | bypass    | cowl      | total     | reference | power setting | andine Derformance Dat |                | net thrust | SFC          | W2        | corrected W2 |     | reference recovery |     |
| 231<br>232       | 233                    | 404<br>725 | 236       | 237       | 238       | 239       | 240       | 24T | 242                    | 244       | 246<br>246 | 247       | 248<br>249           | 250                | 251<br>252 | 253                  | 254 | 255<br>255       | 257        | 258 | 259       | 260       | 261       | 262       | 263       | 264       | 205           | 267                    | 268            | 269        | 270          | 271       | 272          | 273 | 274<br>275         | 276 |

• •

...

| <pre>Credent: 1:6005-00, and/or 1:0005+00, machine 1:00005+00, machine 1:00005+00, machine 1:6005+00, add/or 1:2005-01, add/or 1:20055-01,</pre>                                                                                                                                                                                                                                                                                                                                                                                  | &ipac xm                            | ach0=1.6,xmth=                                     | 0.670, &end                                         |                                                 |                                                                      | 0074000                                | ala0- 1 0008+00                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------|-----------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------|
| pricrow: xmachon = 16008+00; abace = 9.0358=01, xmachon = 12008+00; pripero = 8.9528=01, xitghts = 1.0548=01, codenters = 10008+00; cdenters = 1.0548=01, codenters = 1008+00; cdenters = 1.0548=01, codenters = 1.0008+00; cdenters = 1.0548=01, codenters = 1.0008+00; cdenters = 1.0548=01, codenters = 1.0008+00; cdenters = 1.0008+00; cdenters = 1.0548=01, cdenters = 1.0008+00; cdenters = 1.0008+00; cdenters = 1.0548=01, cdenters = 1.0548=01, cdenters = 1.0548=01, cdenters = 1.0548=01, cdenters = 1.0008+00; cdenters = 1.0008+00; cdenters = 1.0548=01, cdenters = 1.0008=01, cdenters = 1.00008=01, cdenters = 1.00008=01, cdenters = 1.00008=01, cdenters = 1                                                                                                                                                                                                                                                                                                                                                                                                                       | forebd: x<br>cdpito: x<br>cdpito: x | machx= 1.600E+<br>mach0= 1.600E+<br>mach0= 1.600E+ | -00, xmach0= 1.<br>-00, a0iac= 1.<br>-00, a0iac= 9. | 600E+00, xmlm<br>000E+00,xmach<br>990E-01,xmach | 0= 1.000E+00,pt1pt0=<br>1= 6.684E-01,pt1pt0=<br>1= 6.671E-01,pt1pt0= | 1.000E+00,<br>8.952E-01,<br>8.952E-01, | atau= 1.000E+00,<br>cda=-2.856E-07,<br>cda= 1.017E-03, |
| cdpite: xmach0= 1.6008-00, addar= 9.0368-01, xmach1= 5.6118-01,pt.ptcu= 0.9548-01, cdware: xmach0= 1.6008+00, cdware: 19038-01, cdware: 19038-01, cdware: 19038-01, cdware: 9.0368-01, without 16008+00, addar= 9.0368-01, without 16008+00 altitude (ft) 3.2098+04 altitude (ft) 3.2098+02 6.1128+02 6.1128+02 6.1128+02 6.1128+02 6.1128+02 6.1128+02 6.1128+02 6.1128+02 6.1128+02 6.1128+02 6.1128+02 6.1128+02 6.1128+02 6.1128+02 6.1128+02 6.1128+02 6.1128+02 6.1128+02 6.1128+02 6.1128+02 6.1128+02 6.1128+02 6.1128+02 6.1128+02 6.1128+02 6.1128+02 6.1128+02 6.1128+02 6.1128+02 6.1128+02 6.1128+02 6.1128+02 6.1128+02 6.1128+02 6.1128+02 6.1128+02 6.1128+02 6.1128+02 6.1128+02 6.10008+00 74L/PAC 9.0008+00 74L/PAC 9.00088+01 700008+00 74L/PAC 9.0008+00                                                                                                                                                                                                                                                                                                                                                                                         | ptrcv: x                            | mach0= 1.600E+<br>xmth= 6.700E-                    | -00, a0ac= 9.<br>-01, athac= 9.                     | 036E-01, xmn<br>025E-01,nishc                   | <pre>s= 1.300E+00,pt2pt0= k=-1.000E+00,pthpt0=</pre>                 | 8.866E-01,t<br>8.952E-01,z             | chetad= 2.472E+00,<br>klipth= 1.000E+00,               |
| contrip:       xmachio:       1:008:00.       cdlip:       1:323E-01.         control:       xmachio:       1:008:00.       oddiace:       9:056E-01.       cdef=       2:652E-02.       cdepl=       7:682E+00.         xmachio:       1:008:00.00.001:0:002:01.       visce:       9:056E-01.       wisch:       7:708:401.       wisch:       2:7308-01.         xmachio:       1:008:00.00.001:0:002:00.000:000:000:000:000:000:000:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cdpito: x<br>cdwave: x              | mach0= 1.600E+<br>mach0= 1.600E+                   | +00, a0iac= 9.<br>+00, cdwav= 1.                    | .036E-01,xmach<br>.408E-01,                     | .1= 5.611E-01,pc1pc0=                                                | 4.10-3264.8                            | COA 1.0345-01,                                         |
| <pre>clau: xmachom 1.6008+00, a01ac= 9.0368-01, clast 2.0328-01, clast 2.0328-01, w2= 3.7708+01,</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | cdblip: x                           | mach0= 1.600E+                                     | +00, cdlip= 1.                                      | .323E-01,                                       | - crrn oo                                                            | - CO - AF - CO - F                     |                                                        |
| <pre>: xmachos 1:6005400, a0enace 9:036E-01, w2ce 4:0255401,<br/>: xmachos 1:6005400, a0enace 9:036E-01, w2ce 4:0255401,<br/>: xmachos 1:6005400, a0enace 9:036E-01, w2cenge 4:0255401,<br/>Flight Conditions<br/>Mach number 1:6005400<br/>altitude (ft) 3:2095404<br/>altitude (ft) 3:2095404<br/>ambient total<br/>pressure (lbf/ft+*2) 5:7065402 2:4255403<br/>dynamic pressure (lbf/ft+*2) 1:0238403 6:1128402<br/>dynamic pressure (lbf/ft+*2) 1:0238403 6:1128402 6:1128402 0:008400<br/>prL/PTO 1:0008400 1:0008400<br/>fllet Mass Flow Ratios<br/>for avaitation<br/>fllet Mass Flow Ratios<br/>for avaitation<br/>fluet Mass Flow Ratios<br/>for avaitation<br/>fluet Mass Flow Ratios<br/>for avaitation<br/>fluet Mass Flow Ratios<br/>for avaitation<br/>fluet Mass Flow Ratios<br/>fluet Mass Flow Ratios fluet Ratios<br/>fluet Mass Flow Ratios fluet Ratios fluet</pre>                                                                              | clsuc: x                            | mach0= 1.600E+<br>mach0= 1.600E+                   | +00, autac= 9.<br>-00 aniac= 9.                     | .036E-01, C1<br>036E-01, Cdtc                   | <pre>g= 2.665E-02, cuspl=<br/>t= 7.874E-02, cdspl=</pre>             | 7.874E-02,                             | cdref= 2.730E-01,                                      |
| <pre>: xmachx= 1.600E+00, a0emac= 9.036E-01, w2ceng= 4.025E+01,<br/>IPAC Pitct Inlet Example Case<br/>Flight Conditions<br/>Mach number 1.600E+00<br/>altitude (ft) 3.209E+04<br/>altitude (ft) 3.209E+04<br/>ambient total<br/>pressure (lbf/ft++2) 5.706E+02 2.425E+03<br/>temperature (R) 4.042E+02 6.112E+02<br/>dynamic pressure (R) 1.023E+03 6.112E+02<br/>dynamic pressure (lbf/ft++2) 1.023E+03 6.112E+02<br/>dynamic pressure (lbf/ft++2) 1.023E+03 6.112E+02<br/>dynamic pressure (lbf/ft++2) 1.023E+03 6.112E+02<br/>dynamic pressure (lbf/ft++2) 1.000E+00<br/>mL/MO 11.000E+00<br/>mL/MO 11.000E+00<br/>Inlet Mass Flow Ratios<br/>Inlet Mass Flow Ratios<br/>SASP/AC 9.643E-01<br/>ADSP/AC 9.036E-01<br/>ADSP/AC 9.036E-01<br/>ADSP/AC 9.036E-01<br/>ADSP/AC 9.036E-01</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < X<br>                             | mach0= 1.600E+                                     | +00, a0enac= 9,                                     | .036E-01, w2                                    | c = 4.026E+01, w2 =                                                  | 3.770E+01,                             |                                                        |
| IPAC Pitot Inlet Example Case<br>Flight Conditions<br>Mach number 1.600E+00<br>altitude (ft) 3.209E+04<br>altitude (ft) 3.209E+04<br>ambient total<br>temperature (lbf/ft+2) 4.042E+02 4.125E+03<br>dynamic pressure (lbf/ft+2) 1.023E+03 4.042E+02 4.042E+02 4.042E+03 4.042E+02 4.042E+03 4.0442E+03 4.042E+03 4.0442E+03 4.04440+03E+03 4.0442E+03 4.04440+03 4.0444+03 4.0444+03 4.0444+03 4.0444+03 4.0444+03                                                                                                                                                                                                                                                                                                                                                                    | ×                                   | machx= 1.600E+                                     | +00,a0enac= 9.                                      | .036E-01,w2cer                                  | lg= 4.025E+01,                                                       |                                        |                                                        |
| Flight Conditions<br>Mach number 1.600E+00<br>altitude (ft) 3.209E+04<br>altitude (ft) 3.209E+04<br>pressure (t) 3.209E+04<br>temperature (t) 3.209E+04<br>temperature (t) 1.023E+03<br>temperature (t) 1.023E+03<br>temperature (t) 1.023E+03<br>th/MC<br>vehicle Effects<br>vehicle Effects<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00<br>In00E+00 | IPAC Pi                             | tot Inlet Exam                                     | mple Case                                           |                                                 |                                                                      |                                        |                                                        |
| Mach number         1.600E+00           altitude         (ft)         3.209E+04           altitude         (ft)         3.209E+04           altitude         (ft)         3.209E+04           ambient         ambient         total           pressure         (lbf/ft+*2)         5.706E+02           dynamic pressure         (lbf/ft+*2)         5.706E+02           dynamic pressure         (lbf/ft+*2)         1.023E+03           dynamic pressure         (lbf/ft+*2)         1.023E+03           dynamic pressure         (lbf/ft+*2)         1.023E+03           dynamic pressure         0.00E+00         1.000E+00           prL/PrO         1.000E+00         1.000E+00           mlet Mass Flow Ratios         1.000E+00         1.000E+00           Inlet Mass Flow Ratios         9.036E-01         9.036E-01           A0PAC         9.036E-01         9.036E-01           MSYP/AC         9.036E-01         9.036E-01           MSYP/AC         9.036E-01         9.036E-01           A0SYP/AC         9.036E-01         9.036E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Flight Co                           | nditions                                           |                                                     |                                                 |                                                                      |                                        |                                                        |
| altitude (ft) 3.209E+04<br>ambient total<br>pressure (lbf/ft**2) 5.706E+02 2.425E+03<br>temperature (R) 4.042E+02 6.112E+03<br>dynamic pressure (R) 1.023E+03 6.112E+03<br>temperature (R) 1.023E+03 1.023E+03<br>temperature (R) 1.000E+00<br>mL/M0 1.000E+00 1.000E+00<br>mL/A0 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+01 2.028E-01 2.028E                                                                                                                                                                                                                                                                                                                                                                |                                     | Mach number                                        |                                                     | 1.600E+00                                       |                                                                      |                                        |                                                        |
| ambienttotalpressure(lbf/ft**2)5.7068+022.4258+03temperature(R)4.0428+026.1128+02dynamic pressure(lbf/ft**2)1.0238+034.0428+02vehicle Effects1.0238+031.0238+001.0008+00which effects1.0008+001.0008+001.0008+00prit/Pro1.0008+001.0008+001.0008+00prit/Ao1.0008+001.0008+001.0008+00prit/Ac9.0368-010.0008+001.0008+00not Aass Flow Ratios9.0368-019.0368-01aosPr/Ac9.0368-010.0008-01aosWr/Ac9.0368-010.0008-01aosWr/Ac9.0368-010.0008-01aosWr/Ac9.0368-010.0008-01aosWr/Ac9.0368-010.0008-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     | altitude                                           | (ft)                                                | З.209Е+04                                       |                                                                      |                                        |                                                        |
| pressure<br>(R)         [lbf/ft**2)<br>temperature<br>dynamic pressure<br>(R)         5.706E+02<br>4.042E+02         5.425E+03<br>6.112E+02           Vehicle Effects         1.023E+03         1.023E+03         1.12E+02           Vehicle Effects         1.000E+00         1.000E+00         1.000E+00           ML/M0         1.000E+00         1.000E+00         1.000E+00           PTL/PTO         1.000E+00         1.000E+00         1.000E+00           Inlet Mass Flow Ratios         9.036E-01         9.036E-01           A01/AC         9.036E-01         9.036E-01           A01/AC         9.036E-01         9.036E-01           A01/AC         9.036E-01         9.036E-01           A01/AC         9.036E-01         9.036E-01           A05AC         0.000E-01         9.036E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |                                                    |                                                     | ambient                                         | total                                                                |                                        |                                                        |
| dynamic pressure (lbf/ft**2)       1.023E+03         Vehicle Effects       ML/M0         WL/PT0       1.000E+00         PTL/PT0       1.000E+00         PTL/PT0       1.000E+00         Inlet Mass Flow Ratios       9.036E-01         A0I/AC       9.036E-01         A0SPL/AC       9.036E-01         A0BLD/AC       9.036E-01         A0SPL/AC       9.036E-01         A0SPL/AC       9.036E-01         A0SPL/AC       9.036E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     | pressure<br>temperature                            | (lbf/ft**2)<br>(R)                                  | 5.706E+02<br>4.042E+02                          | 2.425E+03<br>6.112E+02                                               |                                        |                                                        |
| Wehicle Effects         ML/M0         1.000E+00           PTL/PT0         1.000E+00         1.000E+00           AL/A0         1.000E+00         1.000E+00           Inlet Mass Flow Ratios         9.036E-01           AOI/AC         9.036E-01           AOBELD/AC         9.036E-01           AOBELD/AC         9.036E-01           AOBY/AC         9.036E-01           AOBY/AC         9.036E-01           AOBY/AC         9.036E-01           AOBY/AC         9.036E-01           AOBY/AC         9.036E-01           AOBY/AC         9.036E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | dyne                                | umic pressure                                      | (lbf/ft**2)                                         | 1.023E+03                                       |                                                                      |                                        |                                                        |
| ML/M0         1.000E+00           PTL/PT0         1.000E+00           AL/A0         1.000E+00           Inlet Mass Flow Ratios         9.036E-01           A01/AC         9.036E-01           A0SPL/AC         9.036E-01           A0NAC         9.036E-01           A0SPL/AC         9.036E-01           A0SPL/AC         9.036E-01           A0SPL/AC         9.036E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Vehicle F                           | ßffects                                            |                                                     |                                                 |                                                                      |                                        |                                                        |
| PTL/PT0       1.000E+00         AL/A0       1.000E+00         Inlet Mass Flow Ratios       9.036E-01         A01/AC       9.036E-01         A0SPL/AC       9.643E-02         A0BLD/AC       0.000E-01         A0DAY/AC       9.036E-01         A0BYP/AC       0.000E-01         A0BYP/AC       9.036E-01         A0BYP/AC       9.036E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     | ML/M0                                              |                                                     | <b>1.000E+00</b>                                |                                                                      |                                        |                                                        |
| AL/A0       1.000E+00         Inlet Mass Flow Ratios       9.036E-01         A01/AC       9.036E-01         A0SPL/AC       9.643E-02         A0BLD/AC       0.000E-01         A0AY/AC       9.036E-01         A0BYP/AC       9.036E-01         A0BYP/AC       9.036E-01         A0BYP/AC       9.036E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     | PTL/PT0                                            |                                                     | 1.000E+00                                       |                                                                      |                                        |                                                        |
| Inlet Mass Flow Ratios       9.036E-01         A01/AC       9.036E-01         A0SPL/AC       9.643E-02         A0BLD/AC       0.000E-01         A0BYP/AC       9.036E-01         A0BYP/AC       9.036E-01         A0BYP/AC       9.036E-01         A0BYP/AC       9.036E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     | AL/A0                                              |                                                     | 1.000E+00                                       |                                                                      |                                        |                                                        |
| AOI/AC         9.036E-01           AOSPL/AC         9.643E-02           AOBLD/AC         9.643E-02           AOBLD/AC         0.000E-01           AOBYP/AC         9.036E-01           AOBYP/AC         9.036E-01           AOBYP/AC         9.036E-01           AOENG/AC         9.036E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Inlet Mag                           | ss Flow Ratios                                     |                                                     |                                                 |                                                                      |                                        |                                                        |
| A0SPL/AC       9.643E-02         A0BLD/AC       0.000E-01         A0/AC       9.036E-01         A0BYP/AC       0.000E-01         A0BYP/AC       9.036E-01         A0ENG/AC       9.036E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     | AOI/AC                                             |                                                     | <b>9.036E-01</b>                                |                                                                      |                                        |                                                        |
| A0BLD/AC       0.000E-01         A0/AC       9.036E-01         A0BYP/AC       0.000E-01         A0ENG/AC       9.036E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     | A0SPL/AC                                           |                                                     | 9.643E-02                                       |                                                                      |                                        |                                                        |
| A0/AC 9.036E-01<br>A0BYP/AC 0.000E-01<br>A0ENG/AC 9.036E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     | AOBLD/AC                                           |                                                     | 0.000E-01                                       |                                                                      |                                        |                                                        |
| AOBYP/AC 0.000E-01<br>AOENG/AC 9.036E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     | A0/AC                                              |                                                     | 9.036E-01                                       |                                                                      |                                        |                                                        |
| AOENG/AC 9.036E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     | A0BYP/AC                                           |                                                     | 0.000E-01                                       |                                                                      |                                        |                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     | AOENG/AC                                           |                                                     | 9.036E-01                                       |                                                                      |                                        |                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |                                                    |                                                     |                                                 |                                                                      |                                        |                                                        |

|           |                                                     |                   |                    |                                                              | ) (lbf)                 | 1.052E+01   | 0.000E-01   | .000E-01                   | .5978+02    | 792E+02     | 1.052E+01     | nstalled              | 1.597E+02    | 000E-01      | 1.770E+01   | 026E+01      |                    |            |                      | -   | <pre>l= 1.000E+00, ptlpt0= 1.000E+00, ala0= 1.000E+00,</pre> | <pre>= 7.397E-01,pt1pt0= 9.582E-01, cda=-6.867E-07,</pre> | <pre>.= 7.379E-01,pt1pt0= 9.582E-01, cda= 8.180E-04,</pre> | <pre>i= 1.300E+00, pt2pt0= 9.488E-01, thetad= 2.472E+00,</pre> | <pre>:=-1.000E+00, pthpt0= 9.582E-01, x1ipth= 1.000E+00,</pre> | = 5.657E-01, pt1pt0= 9.582E-01, cda= 1.273E-01, |                                                | <pre>i= 3.947E-02. cdsp1= 8.779E-02.thetae= 7.682E+00.</pre> | = 8.779E-02, cdspl= 8.779E-02, cdref= 2.856E-01, | ⊨ 4.048E+01,      |
|-----------|-----------------------------------------------------|-------------------|--------------------|--------------------------------------------------------------|-------------------------|-------------|-------------|----------------------------|-------------|-------------|---------------|-----------------------|--------------|--------------|-------------|--------------|--------------------|------------|----------------------|-----|--------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------|------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------|-------------------|
| 8.866E-01 | 1.000E+00<br>8.952E-01<br>1.000E+00<br>9.904E-01    | 1.000E+00         |                    | <b>1.000E+00</b>                                             | CD                      | 7.874E-02 8 | 0.000E-01 0 | 0.000E-01 0<br>2 730E-01 2 | 3.518E-01 3 | 2.730E-01 2 | 7.874E-02 8   | uninstalled i         | 0.000E-01 -3 | 0.000E-01 -0 | 0.000E-01 3 | 4.025E+01 4  | <b>9.624E-01</b>   |            |                      |     | 400E+00, xmlm0                                               | 000E+00, xmach1                                           | 990E-01, xmach1                                            | 670E-01, xmns                                                  | 025E-01, nishck                                                | 670E-01, xmach1                                 | 672E-Ul,<br>1045-01                            | 104в-01, cls                                                 | 670E-01, cdtot                                   | 670E-01, w2c      |
|           |                                                     |                   |                    | (ft**2)                                                      |                         |             |             |                            |             |             |               | đ                     | (lbf)        | (lbm/hr/lbf) | (1bm/s)     | (lbm/s)      |                    |            | =0.677. &end         |     | +00, xmach0= 1.                                              | +00, a0iac= 1.                                            | +00, a0iac= 9.                                             | +00, a0ac= 8.                                                  | -01, athac= 9.                                                 | +00, a0iac= 8.                                  | +00, COWAV= 1.                                 | +00, συ⊥⊥μ≃ ⊥.<br>+00. a0iac= 8.                             | +00, a0iac= 8.                                   | +00, a0enac= 8.   |
| PT2/PT0   | PTL/PT0<br>PT1/PT1<br>PT1/PT1<br>PT2/PT2<br>PT2/PT2 | PTx/PTY           | let Drag Breakdown | AC                                                           |                         | spillage    | bleed       | bypass                     | total       | reference   | power setting | gine Performance Data | net thrust   | SFC          | W2          | corrected W2 | reference recoverv | •          | bac xmach0=1.4.xmth= |     | rebd: xmachx= 1.400E+                                        | pito: xmach0= 1.400E4                                     | pito: xmach0= 1.400E4                                      | trcv: xmach0= 1.400E4                                          | xmth= 6.770E-                                                  | pito: xmach0= 1.400E4                           | WAVE: XMACNU= 1.400E+<br>N1in: YmarhO- 1 400E+ | lauc: xmach0= 1.400E+                                        | : xmach0= 1.400E4                                | : xmach0= 1.400E+ |
| 323       | 325<br>326<br>328<br>328<br>328<br>328<br>328       | 220<br>230<br>100 | 332 In             | 0.04<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 1 9 C<br>1 3 C<br>1 3 C | 338         | 939         | 3 <b>4</b> 0<br>341        | 342         | 343         | 344<br>245    | 346 En                | 348          | 349          | 350         | 351          | 353                | 354<br>266 | 356 & £1             | 357 | 358 fo                                                       | 359 cd                                                    | 360 cd                                                     | 361 p                                                          | 362                                                            | 363 CQ                                          | 264 CQ                                         | 366                                                          | 367                                              | 368               |

.

.

-

| 369                      | : xmachx= 1.400E+                           | -00,a0enac= 8.6                   | 70E-01,w2cer                        | 1g= 4.046E+01,         |
|--------------------------|---------------------------------------------|-----------------------------------|-------------------------------------|------------------------|
| 371                      | IPAC Pitot Inlet Exam                       | ple Case                          |                                     |                        |
| 372<br>373               | Flight Conditions                           |                                   |                                     |                        |
| 37 <b>4</b><br>375       | Mach number                                 |                                   | 1.400E+00                           |                        |
| 376<br>377               | altitude                                    | (ft)                              | 2.611E+04                           |                        |
| 378<br>379               |                                             |                                   | ambient                             | total                  |
| 380<br>381<br>382<br>383 | pressure<br>temperature<br>dynamic pressure | (lbf/ft**2)<br>(R)<br>(lbf/ft**2) | 7.481E+02<br>4.256E+02<br>1.026E+03 | 2.381E+03<br>5.924E+02 |
| 38 <b>4</b><br>385       | Vehicle Effects                             |                                   |                                     |                        |
| 386<br>387<br>388        | ML/M0<br>PTL/PT0<br>A1/A0                   |                                   | 1.000E+00<br>1.000E+00<br>1.000E+00 |                        |
| 391<br>391               | Inlet Mass Flow Ratios                      |                                   |                                     |                        |
| 392<br>393               | A01/AC                                      |                                   | 8.670E-01<br>1.330E-01              |                        |
| 395<br>395               | AOBLD/AC<br>AOBLD/AC                        |                                   | 0.000E-01<br>8.670E-01              |                        |
| 397<br>398<br>398        | AOBYP/AC<br>AOENG/AC                        |                                   | 0.000E-01<br>8.670E-01              |                        |
| 399<br>400               | Inlet Total Pressure R                      | ecoveries                         |                                     |                        |
| 401                      | PT2/PT0                                     |                                   | 9.488E-01                           |                        |
| 403                      | рт1,/рт0                                    |                                   | 1.000E+00                           |                        |
| 405                      | PT1/PTL                                     |                                   | 9.582E-01                           |                        |
| 406<br>407               | PTTH/PT1<br>PT2/PTTH                        |                                   | 1.000E+00<br>9.902E-01              |                        |
| 408<br>409               | ртх/рту                                     |                                   | 1.000E+00                           |                        |
| 410<br>411               | Inlet Drag Breakdown                        |                                   |                                     |                        |
| 412<br>413<br>414        | AC                                          | (£t**2)                           | 1.000E+00                           |                        |

. ...

-

-

| spillage<br>bleed                                                 |                                           | 8.779E-02<br>0.000E-01                      | 9.011E+01<br>0.000E-01                                                                                 |
|-------------------------------------------------------------------|-------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------|
| bypass                                                            |                                           | 0.000E-01                                   | 0.000E-01                                                                                              |
| cowl                                                              |                                           | <b>2.856E-01</b>                            | 2.931E+02                                                                                              |
| total                                                             |                                           | <b>3.733E-01</b>                            | 3.832E+02                                                                                              |
| reference                                                         |                                           | <b>2.856E-01</b>                            | 2.931E+02                                                                                              |
| power setting                                                     |                                           | 8.779E-02                                   | 9.011E+01                                                                                              |
| ngine Performance Data                                            |                                           | uninstalled                                 | installed                                                                                              |
| net thrust (1                                                     | bf)                                       | 0.000E-01                                   | -3.832E+02                                                                                             |
| SFC (1<br>W2 (1                                                   | bm/hr/lbf)<br>bm/s)                       | 0.000E-01<br>0.000E-01                      | -0.000E-01<br>4.045E+01                                                                                |
| corrected W2 (1)                                                  | bm/s)                                     | 4.046E+01                                   | 4.048E+01                                                                                              |
| reference recovery                                                |                                           | 9.782 <b>E-0</b> 1                          |                                                                                                        |
| tord the second                                                   |                                           |                                             |                                                                                                        |
| Lpac Xmacnu=1.2, &end                                             |                                           |                                             |                                                                                                        |
| orebd: xmachx= 1.200E+00                                          | , xmach0= 1.                              | 200E+00, xml                                | .m0= 1.000E+00, ptlpt0= 1.000E+00, ala0= 1.000                                                         |
| dpito: Xmacnu= 1.200E+00<br>dpito: Xmach0= 1.200E+00              | , aulac= 1.<br>a0iac= 9.                  | 990E-01. xmac                               | 2014 8.422E-U1,PT1PT0= 9.928E-U1, COA=-5.840<br>2014 8.389E-01.011010= 9.928E-01. rdar 5.070           |
| ptrcv: xmach0= 1.200E+00                                          | , a0ac= 8.                                | 302E-01, xm                                 | ms= 1.300E+00, pt2pt0= 9.831E-01, thetad= 2.472                                                        |
| xmth= 6.770E-01                                                   | , athac= 9.                               | 025E-01, nish                               | <pre>ick=-1.000E+00,pthpt0= 9.928E-01,xlipth= 1.000</pre>                                              |
| dpito: xmach0= 1.200E+00<br>dwave: xmach0= 1.200E+00              | , a0iac= 8.<br>rdway- 2                   | 302E-01, xmac                               | :hl= 5.657E-01, pt1pt0= 9.928E-01, cda= 1.309                                                          |
| dblip: xmach0= 1.200E+00                                          | , cdlip= 9.                               | 766E-02,                                    |                                                                                                        |
| clsuc: xmach0= 1.200E+00                                          | , a0iac= 8.                               | 302E-01, C                                  | ls= 5.322E-02, cdspl= 7.772E-02,thetae= 7.682                                                          |
| : xmach0= 1.200E+00<br>: xmach0= 1.200E+00<br>: xmachx= 1.200E+00 | , a0iac= 8.<br>,a0enac= 8.<br>,a0enac= 8. | 302E-01, cdt<br>302E-01, w<br>302E-01, w2ce | <pre>cot= 7.772E-02, cdspl= 7.772E-02, cdref= 3.136 2c= 4.048E+01, w2= 4.362E+01, ng= 4.046E+01,</pre> |
| PAC Pitot Inlet Example                                           | e Case                                    |                                             |                                                                                                        |
| light Conditions                                                  |                                           |                                             |                                                                                                        |
| Mach number                                                       |                                           | <b>1.200E+00</b>                            |                                                                                                        |
| altitude (f                                                       | t)                                        | 1.906E+04                                   |                                                                                                        |
|                                                                   |                                           | ambient                                     | total                                                                                                  |
| pressure (1)                                                      | bf/ft**2)                                 | 1.012E+03                                   | 2.453E+03                                                                                              |

.

÷

| 461<br>462               | temperature (R)<br>dynamic pressure (lbf/ft**2) | 4.507E+02<br>1.020E+03                           | 5.805E+02              |
|--------------------------|-------------------------------------------------|--------------------------------------------------|------------------------|
| 463<br>464               | Vehicle Effects                                 |                                                  |                        |
| 465<br>466<br>467<br>468 | ML/MO<br>PTL/PTO<br>AL/AO                       | 1.000E+00<br>1.000E+00<br>1.000E+00              |                        |
| 469<br>470               | Inlet Mass Flow Ratios                          |                                                  |                        |
| 471<br>472<br>473        | AOI/AC<br>AOSPL/AC                              | 8.302E-01<br>1.698E-01                           |                        |
| 474<br>475<br>476<br>477 | AOBLD/AC<br>AO/AC<br>AOBYP/AC<br>AOENG/AC       | 0.000E-01<br>8.302E-01<br>0.000E-01<br>8.302E-01 |                        |
| 478<br>479               | Inlet Total Pressure Recoveries                 |                                                  |                        |
| 480<br>481               | PT2/PT0                                         | 9.831E-01                                        |                        |
| 482<br>483<br>484        | РТL/РТО<br>РТ1/РТL                              | 1.000E+00<br>9.928E-01                           |                        |
| 485<br>486               | PTTH/PT1<br>PT2/PTTH                            | 1.000E+00<br>9.902E-01                           |                        |
| 487<br>488               | ртх/рту                                         | 1.000E+00                                        |                        |
| 490<br>490               | Inlet Drag Breakdown                            |                                                  |                        |
| 491<br>492               | AC (ft**2)                                      | 1.000E+00                                        |                        |
| 493<br>494               |                                                 | 8                                                | D (lbf)                |
| 495                      |                                                 | 7 772E-03                                        | 7 9758401              |
| 496<br>497               | spiilage<br>bleed                               | 0.000E-01                                        | 0.000E-01              |
| 498                      | bypass                                          | 0.000E-01                                        | 0.000E-01              |
| 499                      | COWI<br>totol                                   | 3.136E-UI<br>2 914E-01                           | 3.198E+02<br>3 990E+02 |
| 501<br>501               | reference                                       | 3.136E-01                                        | 3.198E+02              |
| 502                      | power setting                                   | 7.772E-02                                        | <b>7.925E+01</b>       |
| 503<br>504               | Engine Performance Data                         | uninstalled                                      | installed              |
| 505<br>506               | net thrust (lbf)                                | 0.000E-01                                        | -3.990E+02             |

. .

-

-

|                                      |                    |                      | ala0= 1.000E+00,<br>thetad= 2.472E+00,                  | xiiptn= 1.000±400,<br>cda= 9.982E-02,<br>thetae= 7.682E+00,              | cdref= 0.000E-01,                                        |                      |                   |                   |            |                                                                      |                                             |                 |           |                  |                        |            |           |           |           |                        |
|--------------------------------------|--------------------|----------------------|---------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------|----------------------|-------------------|-------------------|------------|----------------------------------------------------------------------|---------------------------------------------|-----------------|-----------|------------------|------------------------|------------|-----------|-----------|-----------|------------------------|
|                                      |                    |                      | 1.000E+00,<br>9.902E-01,                                | 1.000E+00,<br>1.000E+00,<br>4.965E-02,                                   | 4.965E-02,<br>4.869E+01,                                 |                      |                   |                   |            |                                                                      |                                             |                 |           |                  |                        |            |           |           |           |                        |
|                                      |                    |                      | +00,ptlpt0=<br>+00,pt2pt0=                              | -00, pumpuo<br>-01, pt1pt0=<br>-02, cdspl=                               | -02, cdspl=<br>-01, w2=<br>-01,                          |                      |                   |                   |            |                                                                      |                                             |                 |           |                  |                        |            |           |           |           |                        |
| -0.000E-01<br>4.362E+01<br>4.048E+01 |                    |                      | m0= 1.000E4<br>ms= 1.300E4                              | LCK=-⊥.000±1<br>thl≈ 5.657E-<br>tls= 5.017E-                             | ot= 4.965E-<br>2c= 4.048E+<br>ng= 4.046E+                |                      |                   |                   |            | total                                                                | 2.712E+03<br>5.779E+02                      |                 |           |                  |                        |            |           |           |           |                        |
| 0.000E-01<br>0.000E-01<br>4.046E+01  | 9.915E-01          |                      | 00E+00, xm]<br>L15E-01, xn                              | 115E-01, Xmac                                                            | l15E-01, cdt<br>l15E-01, v<br>l15E-01,w2ce               |                      |                   | 1.000E+00         | 1.040E+04  | ambient                                                              | 1.433E+03<br>4.816E+02<br>1.003E+03         |                 | 1.000E+00 | 1.000E+00        |                        | 0 11 EU. 0 | 1.885E-01 | 0.000E-01 | 8.115E-01 | 0.000E-01<br>8.115E-01 |
| (lbm/hr/lbf)<br>(lbm/s)<br>(lbm/s)   |                    | nd                   | +00, xmach0= 1.(<br>+00, a0ac= 8.                       | -01, aunac= 7.7<br>+00, a0iac= 8.1<br>+00, a0iac= 8.1                    | +00, a0iac= 8.]<br>+00,a0enac= 8.]<br>+00,a0enac= 8.]    | mple Case            |                   |                   | (ft)       |                                                                      | (lbf/ft**2)<br>(R)<br>(lbf/ft**2)           |                 |           |                  |                        |            |           |           |           |                        |
| SFC<br>W2<br>COTTECTED W2            | reference recovery | &ipac xmach0=1.0, &e | <pre>forebd: xmachx= 1.000E ptrcv: xmach0= 1.000E</pre> | cdpito: xmach0= 1.000E<br>clsuc: xmach0= 1.000E<br>clsuc: xmach0= 1.000E | : xmach0= 1.000E<br>: xmach0= 1.000E<br>: xmachx= 1.000E | IPAC Pitot Inlet Exa | Flight Conditions | Mach number       | altitude   |                                                                      | pressure<br>temperature<br>dynamic pressure | Vehicle Effects | ML/MO     | PTL/PT0<br>AL/A0 | Inlet Mass Flow Ratios | ADT /AC    | AOSPL/AC  | AOBLD/AC  | A0/AC     | AOBYP/AC<br>AOENG/AC   |
| 503<br>508<br>509                    | 511<br>512         | 514<br>514<br>715    | 516<br>517<br>517                                       | 519<br>520                                                               | 521<br>522<br>523                                        | 524<br>525           | 527<br>527        | 070<br>070<br>070 | 531<br>531 | 5 0 0<br>7 0<br>7 0<br>7 0<br>7 0<br>7 0<br>7 0<br>7 0<br>7 0<br>7 0 | 535<br>535<br>537                           | 538<br>539      | 541       | 542<br>543       | 544<br>545             | 546<br>547 | 548       | 549       | 550       | 551<br>552             |

.

-

.

| PTL/PTU       1.000E+00         PTL/PTU       0.000E-01         PTL/PTU       0.000E-01         PTL/PTU       0.000E-01         PTL/PTU       0.000E-01         PTL/PTU       1.000E+01         PTL/P |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

.

.

,

-

٠

| 599        |            |                    |             |                  |           |
|------------|------------|--------------------|-------------|------------------|-----------|
| 600        | IPAC Pit   | ot Inlet Exa       | mple Case   |                  |           |
| 601        |            |                    |             |                  |           |
| 602        | Flight Con | ditions            |             |                  |           |
| 603<br>604 |            | Mach number        |             | 0 0005-01        |           |
| 605<br>605 | -          |                    |             | TO-9000.0        |           |
| 606        |            | altitude           | (ft)        | 0.000E-01        |           |
| 607        |            |                    |             |                  |           |
| 608<br>609 |            |                    |             | ambient          | total     |
| 610        |            | pressure           | (lbf/ft**2) | 2.116E+03        | 3.226E+03 |
| 611        |            | temperature        | (R)         | 5.187E+02        | 5.851E+02 |
| 612        | dynam      | ic pressure        | (lbf/ft**2) | 9.481E+02        |           |
| 614<br>614 | Vehicle Ef | fects              |             |                  |           |
| 615        |            |                    |             |                  |           |
| 616        |            | ML/MO              |             | 1.000E+00        |           |
| 617<br>618 |            | PTL/PTO            |             | 1.000E+00        |           |
| 619        |            | AL/AU              |             | 00+9000 T        |           |
| 620        | Inlet Mass | Flow Ratios        |             |                  |           |
| 621<br>621 |            | 04/ H04            |             |                  |           |
| 623<br>623 |            | AUT/AC             |             | 8.426E-UI        |           |
| 624        |            | AOBLD/AC           |             | 0.000E-01        |           |
| 625        |            | A0/AC              |             | 8.426E-01        |           |
| 626        |            | A0BYP/AC           |             | 0.000E-01        |           |
| 627        |            | A0ENG/AC           |             | 8.426E-01        |           |
| 628<br>620 | Tulet Tota | Droccinco D        |             |                  |           |
| 630        |            | NY ATROCATS T      |             |                  |           |
| 631        |            | PT2/PT0            |             | 9.902E-01        |           |
| 632<br>632 |            | DTT./DTTO          |             | 00.8000 1        |           |
| 634        |            | <i>р</i> т1 / рт1, |             | 1 000E+00        |           |
| 635        |            | PTTH/PT1           |             | 1.000E+00        |           |
| 636        |            | PT2/PTTH           |             | 9.902E-01        |           |
| 637        |            |                    |             |                  |           |
| 638<br>630 |            | РТх/РТУ            |             | 1.000E+00        |           |
| 640        | Inlet Drag | Breakdown          |             |                  |           |
| 641        | ]          |                    |             |                  |           |
| 642<br>643 |            | AC                 | (ft**2)     | <b>1.000E+00</b> |           |
| 644        |            |                    |             | G                | D (1bf)   |

.

.

÷

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |                   | 000E+00,<br>472E+00,<br>000E+00,<br>334E-03,<br>382E+00,<br>000E-01,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |                   |                   |                                                                                            |                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------|-------------------|--------------------------------------------------------------------------------------------|-------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |                   |                   |                                                                                            |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |                   | ala0<br>hetad<br>lipth<br>cda<br>hetae<br>cdref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |                   |                   |                                                                                            |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |                   | + + 00<br>+ + + 00<br>+ + + 00<br>+ + 00<br>+ + 00<br>+ + + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                   |                   |                                                                                            |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |                   |                   |                                                                                            |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |                   | <pre>% D D t t t t t<br/>% D D t t t t t t<br/>0 D D D D D D<br/>8 D D D D D<br/>8 D D D D<br/>8 D D D<br/>8 D D D<br/>8 D 8</pre> |                          |                   |                   |                                                                                            |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |                   | pt1p<br>pt2p<br>pt1p<br>pt1p<br>cds<br>cds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |                   |                   |                                                                                            |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ed<br>10<br>01<br>01                      |                   | 0E+00<br>0E+00<br>0E+00<br>7E-01<br>3E-03<br>3E-03<br>9E-04<br>6E+01<br>6E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                   |                   | 03                                                                                         |                   |
| 26881-++<br>00088-++<br>00088-++<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26885-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26855-1-2<br>26755-1-2<br>26755-1-2<br>26755-1-2<br>26755-1-2<br>26755-1-2<br>26755-1-2<br>26755-1-2<br>26755-1-2<br>26755-1-2<br>26755-1-2<br>26755-1-2<br>26755-1-2<br>26755-1-2<br>26755-1-2<br>26755-1-2<br>26755-1-2<br>26755-1-2<br>26755-1-2<br>26755-1-2<br>26755-1-2<br>26755-1-2<br>26755-1-2<br>26755-1-2<br>26755-1-2<br>26755-1-2<br>26755-1-2<br>26755-1-2<br>26755-1-2<br>26755-1-2<br>26755-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2<br>27555-1-2 | stall<br>268E+<br>000E-<br>756E+<br>048E+ |                   | 1.00<br>-1.30<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-1.00<br>-                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                   | total             | 699E+<br>560E+                                                                             |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                         | 0                 | mlm0=<br>xmns=<br>shck=<br>ach1=<br>cls=<br>dtot=<br>w2c=<br>ceng=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          | -                 | 4                 | 0 0 0<br>0 7<br>0 7                                                                        |                   |
| 37E-00<br>00E-00<br>00E-00<br>37E-00<br>37E-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | talle<br>00E-0<br>00E-0<br>00E-0<br>46E+0 | 00E+0             | 01, x<br>01, ni<br>01, xm<br>01, xm<br>01, c<br>01, w2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | 00E-0             | bient             | .16E+0<br>.87E+0<br>.33E+0                                                                 |                   |
| H 0 H 0 0 0 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | unins<br>0.0<br>0.0<br>4.0                | 1.0               | 0000<br>643<br>643<br>643<br>643<br>8<br>643<br>8<br>643<br>8<br>643<br>8<br>643<br>8<br>643<br>8<br>643<br>8<br>643<br>8<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | 0.0<br>0.0        |                   |                                                                                            |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lbf)                                      |                   | 00000000<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                   |                   | ·*2)<br>·*2)                                                                               |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | f)<br>m/hr/<br>m/s)<br>m/s)               |                   | xmach<br>a0a<br>atha<br>a0ia<br>a0ia<br>a0ia<br>a0ena<br>a0ena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Case                     | -                 | -                 | if/ft+<br>bf/ft+                                                                           |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ta<br>(1b<br>(1b)<br>(1b)<br>(1b)         | end               | Б-01,<br>Б-01,<br>Б-01,<br>Б-01,<br>С-01,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ample                    | 4                 |                   | (11<br>(11<br>(11)                                                                         |                   |
| llage<br>bleed<br>cowl<br>total<br>tence<br>tting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ce Da<br>hrust<br>SFC<br>W2<br>ed W2      | overy<br>6, &     | 6.000<br>6.000<br>6.770<br>6.000<br>6.000<br>6.000<br>6.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | et Ex<br>B               | umber             | Trude             | ssure<br>ature<br>ssure                                                                    |                   |
| spirit<br>reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | orman<br>net t<br>rrect                   | e rec<br>h0=0.    | chx=<br>ch0=<br>ch0=<br>ch0=<br>ch0=<br>ch0=<br>ch0=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | t Inl<br>ition           | ach n             | ате               | pre<br>emper<br>c pre                                                                      | ects              |
| wod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Perf                                      | erenc<br>xmac     | :: Xma<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pito<br>Cond             | Σ                 |                   | t<br>ynami                                                                                 | e Eff             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ngine                                     | ref<br>ipac       | orebd<br>ptrcv<br>dpito<br>clsuc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PAC<br>light             |                   |                   | σ                                                                                          | ehicl             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ð                                         | لغ<br>ا           | Ψ, <sup>77</sup> 0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | нц                       |                   |                   |                                                                                            | >                 |
| 6<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00000000000000000000000000000000000000    | 661<br>662<br>663 | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 675<br>675<br>676<br>677 | 678<br>679<br>680 | 681<br>682<br>683 | 686<br>686<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | 689<br>690<br>690 |

•.

.

-

|                                     |                        |                        |                      |           |           |           |                         |            |                    |           |            |                  |                      |           | D (1bf)    | <b>2.085E-01</b> | 0.000E-01 | 0.000E-01 | 2.085E-01 | 0.000E-01 | <b>2.085E-01</b> | installed               | , 0855-01  | 0.000E-01    | 4.940E+01 | 4.048E+01          |                    |
|-------------------------------------|------------------------|------------------------|----------------------|-----------|-----------|-----------|-------------------------|------------|--------------------|-----------|------------|------------------|----------------------|-----------|------------|------------------|-----------|-----------|-----------|-----------|------------------|-------------------------|------------|--------------|-----------|--------------------|--------------------|
| 1.000E+00<br>1.000E+00<br>1.000E+00 |                        | 9.643E-01<br>2 E72E-02 | 0.0008-01            | 9.643E-01 | 0.000E-01 | 9.643E-01 |                         | 9.902E-01  | 1.000E+00          | 1.000E+00 | 9.902E-01  | <b>1.000E+00</b> |                      | 1.000E+00 | Ð          | 3.909E-04        | 0.000E-01 | 0.000E-01 | 3.909E-04 | 0.000E-01 | 3.909Е-04        | uninstalled             | 0 0000-01  | 0.0005-01 -  | 0.000E-01 | <b>4.046E+01</b>   | 1.000E+00          |
|                                     |                        |                        |                      |           |           |           | ecoveries               |            |                    |           |            |                  |                      | (ft**2)   |            |                  |           |           |           |           |                  |                         | (1 hf)     | (lbm/hr/lbf) | (1bm/s)   | (lbm/s)            |                    |
| ML/MO<br>PTL/PT0<br>AL/A0           | Inlet Mass Flow Ratios | A01/AC                 | AUSFU/AC<br>AORLD/AC | A0/AC     | AOBYP/AC  | AOENG/AC  | Inlet Total Pressure Re | PT2/PT0    | PTL/PT0<br>PTL/PT0 | LLd/HLLd  | PT2/PTTH   | PTx/PTY          | Inlet Drag Breakdown | AC        | ·          | spillage         | bleed     | bypass    | total     | reference | power setting    | Engine Performance Data | net thrugt | SFC SFL      | W2        | corrected W2       | reference recovery |
| 691<br>692<br>693                   | 695<br>695             | 020<br>697<br>698      | 020<br>699           | 700       | 701       | 702       | 704                     | 706<br>707 | 708                | 012       | 712<br>712 | 713<br>714       | 715                  | 717       | 017<br>027 | 721              | 722       | 723       | 725       | 726       | 727              | 729                     | 721        | 732          | 733       | 73 <b>4</b><br>735 | 736                |

•

. ••

.

æ

|                       | 00E-01, xmlm0= 1.000E+00,ptlpt0= 1.000E+00, ala0= 1.000E+00,<br>78E+00, xmns= 1.300E+00,pt2pt0= 9.808E-01,thetad= 2.472E+00,<br>25E-01,nishck=-1.000E+00,pthpt0= 9.904E-01,xlipth= 1.000E+00,<br>78E+00, cda= 0.000E-01 | 78E+00, cdtot= 0.000E-01, cdspl= 0.000E-01, cdref= 0.000E-01, | 78E+00, w2c= 4.048E+01, w2= 4.366E+01,<br>78E+00.w2ceng= 4.046E+01, |                        |                   | 4.000E-01   | 0.000E-01  | ambient total | 2.116E+03 2.363E+03<br>5.187E+02 5.353E+02<br>2.370E+02 |                 | 1.000E+00<br>1.000E+00<br>1.000E+00 |                        | 1.278E+00 | -2.781E-01 | 1.2785+00         | 0.000E-01 | 00440/7.1                            | 9.808E-01 |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------|------------------------|-------------------|-------------|------------|---------------|---------------------------------------------------------|-----------------|-------------------------------------|------------------------|-----------|------------|-------------------|-----------|--------------------------------------|-----------|--|
| _                     | 1, xmach0= 4.(<br>1, a0ac= 1.2<br>1, athac= 9.(                                                                                                                                                                         | 1, a0iac= 1.                                                  | 11, a0enac= 1.3                                                     | ole Case               |                   |             | (ft)       |               | (lbf/ft**2)<br>(R)<br>(lbf/ft**2)                       |                 |                                     |                        |           |            |                   |           | coveries                             |           |  |
| dpac xmach0=0.4, &end | orebd: xmachx='4.000E-0<br>ptrcv: xmach0= 4.000E-0<br>xmth= 6.770E-0<br>                                                                                                                                                | : XMACHO= 4.000E-0                                            | : xmach0= 4.000E-0<br>• xmachx= 4 000E-0                            | [PAC Pitot Inlet Examp | 'light Conditions | Mach number | altitude ( |               | pressure (<br>temperature (<br>dynamic pressure (       | /ehicle Effects | ML/M0<br>PTL/PT0<br>AL/A0           | Inlet Mass Flow Ratios | A01/AC    | AOSPL/AC   | AUBLU/AC<br>AO/AC | AOBYP/AC  | AUENG/AC<br>Inlet Total Pressure Rec | PT2/PT0   |  |

.

÷

| 829               | altitude                | (ft)               | 0.000E-01              |                        |
|-------------------|-------------------------|--------------------|------------------------|------------------------|
| 830<br>831        |                         |                    | ambient                | total                  |
| 832<br>833<br>834 | pressure<br>temperature | (1bf/ft**2)<br>(R) | 2.116E+03<br>5.187E+02 | 2.176E+03<br>5.228E+02 |
| 835<br>836        | dynamic pressure        | (lbf/ft**2)        | 5.925E+01              |                        |
| 837               | Vehicle Effects         |                    |                        |                        |
| 670<br>670        | ML/MM                   |                    | 1.000E+00              |                        |
| 841<br>841        | AL/A0                   |                    | 1.000E+00              |                        |
| 842<br>843        | Inlet Mass Flow Ratios  |                    |                        |                        |
| 844<br>845        | A01/AC                  |                    | 2.290E+00              |                        |
| 846               | AOSPL/AC                |                    | -1.290E+00             |                        |
| 847<br>848        | A0BLD/AC<br>A0/AC       |                    | 0.000E-01<br>2.290E+00 |                        |
| 849               | A0BYP/AC                |                    | 0.000E-01              |                        |
| 850               | AOENG/AC                |                    | 2.290E+00              |                        |
| 851<br>852        | Inlet Total Pressure Re | coveries           |                        |                        |
| 853               |                         |                    |                        |                        |
| 854<br>855        | PT2/PT0                 |                    | 9.427E-UI              |                        |
| 856               | PTL/PT0                 |                    | 1.000E+00              |                        |
| 857               | PT1/PTL                 |                    | 1.000E+00              |                        |
| 858<br>859        | РТТН/РТТ<br>РТТ / РТТН  |                    | 9.520E-01<br>9.902E-01 |                        |
| 860               |                         |                    |                        |                        |
| 861               | PTx/PTY                 |                    | <b>1.000E+00</b>       |                        |
| 863<br>863        | Inlet Drag Breakdown    |                    |                        |                        |
| 864               | 1                       |                    |                        |                        |
| 865<br>21         | AC                      | (ft**2)            | <b>1.000E+00</b>       |                        |
| 867<br>867        |                         |                    | 8                      | D (1bf)                |
| 868               |                         |                    |                        |                        |
| 869               | spillage                |                    | 0.000E-01              | 0.000E-01              |
| 870               | bleed                   |                    | 0.000E-01              | 0.000E-01              |
| 872<br>872        | Lypass<br>Cowl          |                    | 0.000E-01              | 0.000E-01              |
| 873               | total                   |                    | 0.000E-01              | 0.000E-01              |
| 874               | reference               |                    | <b>0.000E-01</b>       | 0.000E-01              |

. .

•

| 00, ptlpt(<br>cdspl<br>01, cdspl<br>01, v2<br>v2 |
|--------------------------------------------------|
|--------------------------------------------------|

.

|                                                  |                    |            |                        |                        |                   |                   |                  | D (1bf)    | 0.000E-01  | 0.000E-01 | 0.000E-01 | 0.000E-01     | 0.000E-01 | 0.000E-01     | installed           | 0.000E-01  | 0.000E-01    | 3.562E+01 | 4.048E+01    |     |                    |     |
|--------------------------------------------------|--------------------|------------|------------------------|------------------------|-------------------|-------------------|------------------|------------|------------|-----------|-----------|---------------|-----------|---------------|---------------------|------------|--------------|-----------|--------------|-----|--------------------|-----|
| 0.000E-01<br>4.172E+01<br>0.000E-01<br>4.172E+01 |                    | 8.795E-01  | 1.000E+00<br>1.000E+00 | 8.882E-01<br>9.902E-01 | <b>1.000E+00</b>  |                   | <b>1.000E+00</b> | 8          | 0.000E-01  | 0.000E-01 | 0.000E-01 | 0.000E-01     | 0.000E-01 | 0.000E-01     | uninstalled         | 0.000E-01  | 0.000E-01    | 0.000E-01 | 4.046E+01    |     | 1.0006+00          |     |
|                                                  | ecoveries          |            |                        |                        |                   |                   | (ft**2)          |            |            |           |           |               |           |               | a                   | (1bf)      | (lbm/hr/lbf) | (1bm/s)   | (1bm/s)      |     |                    |     |
| AOBLD/AC<br>A0/AC<br>A0BYP/AC<br>A0BYP/AC        | t Total Pressure R | PT2/PT0    | PTL/PT0<br>PT1/PTL     | PTTH/PT1<br>PT2/PTTH   | PTX/PTY           | et Drag Breakdown | AC               |            | anillade   | bleed     | bypass    | cow1<br>total | reference | power setting | ine Performance Dat | net thrust | SFC          | W2        | corrected W2 |     | reference recovery |     |
| 921<br>922<br>924                                | 926 Inle           | 928<br>928 | 929<br>930<br>931      | 932<br>933             | 934<br>935<br>935 | 937 Inle          | 938<br>939       | 940<br>941 | 942<br>943 | 944       | 945       | 946<br>947    | 948       | 949<br>950    | 951 Engi            | 952<br>953 | 954          | 955       | 956          | 957 | 958 I              | 960 |

.

.

-

.

. **.** 

## Appendix III

## Mach 2.4 Axisymmetric Inlet

## Example Case





## Figure III.1

**Total Pressure Recoveries** 



Figure III.2 Mass Flow Ratios













9.118E-01. 5.186E-02, ptblpe= 1.465E+00, 8.542E-03, 3.023E-06, 4.057E+00, cdref= 7.306E-02, 1.000E+00 3.023E-06 8.903E-01, thetad= 9.606E-01,xlipth= ala0= cda= cda= cda= 3.023E-06, 9.997E-01, 5.186E-02, 9.997E-01, 6.095E-01, 1.000E+00. 2.574E+01, 9.400E-01, xmns= 1.350E+00,pt2pt0= 4.341E-01,nishck= 1.000E+00,pthpt0= 9.999E-01,xmach1= 2.241E+00,pt1pt0= 1.000E+00,ptlpt0= 9.999E-01, xmach1= 2.241E+00, pt1pt0= 9.989E-01, xmach1= 5.360E-01, pt1pt0= cdspl= W2= cdb1d= cdbld= 6.000E-02, 6.000E-02, 5.186E-02, 2.170E+01, 9.399E-01, w2ceng= 2.170E+01 3.585E+03 8.392E+02 total 2.400E+00, xmlm0= 9.999E-01, bleed= cdtot= 9.999E-01, bleed= w2c= 3.900E+02 9.888E+02 2.400E+00 4.974E+04 2.452E+02 1.000E+00 ambient 9.999E-01, 7.306E-02, 9.399E-01, title='Axisymmetric Inlet Example Case', echo=1, figure=1, npts=10, 20, iout=1, 1, 1, 1, Axisymmetric Inlet Example Case 1.300E+00, athac= 2.400E+00, a0enac= (lbf/ft\*\*2) 2.400E+00, xmach0= 2.400E+00, a0iac= a0ac= a0iac= a0iac= 2.400E+00, a0enac= (lbf/ft\*\*2) a0iac= cdwav= a0iac= a0iac= cowls=2, cowlth=5, -5, cowlxl=4,1, nishck=-1, xmth=-1.30, xmns=1.35, a2ac=1.00,xldd2=1.5,hubtip=0.3, (ft) **2.400E+00**, 2.400E+00, 2.400E+00, 2.400E+00, 2.400E+00, 2.400E+00, 2.400E+00, R xmach0=2.4, alt=-1000, rclip=0.0, thetac=3.0, altitude pressure temperature dynamic pressure xcowl=0.0,ycowl=1.0, Mach number ML/M0 idim=3,ac=1.0,ar=1, bleed=-1,pblpt0=-1, ramps=1,theta=10, Flight Conditions xmach0= xmth= cdaxi: xmach0= xmachx= cdwave: xmach0= xmach0= xmach0= forebd: xmachx= xmach0= xmach0= xmach0= xmach0= Vehicle Effects athac=-1, w2cor=-1, cdaxi: cdbld: cdaxi: ptrcv: sibac Send IPAC 10087654321 008400470000 45 46

| PTL/PT0<br>AL/A0     1.000E+00       nlet Mass Flow Ratios     9.999E-01       A01/AC     9.399E-01       PT2/PT0     PT2/PT0       PT2/PT0     8.903E-01       PT2/PT1     9.597E-01       PT2/PT1     9.5069E-02       PT2/PT1     9.597E-01       PT2/PT1     9.597E-02       PT2/PT2     9.597E-01       PT2/PT2     9.597E-02       PT2/PT2     9.597E-02       PT2/PT2     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                        |                                                  |                        |                         |           |                                                  |           |                      |           | (1bf)    | .990E-03<br>.128E+01       | .000E-01    | .224E+01    | .224E+01    | .128E+01      | nstalled                | .235E+02<br>.000E-01         | .574E+01<br>.170E+01       |                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|--------------------------------------------------|------------------------|-------------------------|-----------|--------------------------------------------------|-----------|----------------------|-----------|----------|----------------------------|-------------|-------------|-------------|---------------|-------------------------|------------------------------|----------------------------|--------------------|
| PTL/PT0<br>AL/A0<br>nlet Mass Flow Ratios<br>A01/AC<br>A08FL/AC<br>A0BLD/AC<br>A0BLD/AC<br>A0BLD/AC<br>A0BUD/AC<br>A0BYC/AC<br>A0BYC/AC<br>A0BYC/AC<br>A0BYC/AC<br>A0BYC/AC<br>A0BYC/AC<br>A0BYC/AC<br>A0BYC/AC<br>A0BYC/AC<br>A0BYC/AC<br>A0BYC/AC<br>A0BYC/AC<br>A0BYC/AC<br>A0BYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>A0FYC/AC<br>AC<br>A0FYC/AC<br>AC<br>AC<br>AC<br>AC<br>AC<br>AC<br>AC<br>AC<br>AC<br>AC<br>AC<br>AC<br>A                                                                                                                                                                                                                                                                                                                                                                                                  | 1.000E+00<br>1.000E+00 |                        | 9.999E-01<br>8.440E-05<br>6.000E-02<br>9.399E-01 | 0.000E-01<br>9.399E-01 |                         | 8.903E-01 | 1.000E+00<br>9.997E-01<br>9.609E-01<br>9.268E-01 | 9.697E-01 |                      | 1.000E+00 | CD<br>CD | 3.023E-06 2<br>5.186E-02 5 | 0.000E-01 0 | 7.306E-02 7 | 7.306E-02 7 | 5.186E-02 5   | uninstalled i           | 0.000E-01 -1<br>0.000E-01 -0 | 0.000E-01 2<br>2.170E+01 2 | 8.819E-01          |
| PTL/PTO<br>AL/AO<br>AL/AO<br>AL/AO<br>AL/AO<br>ADLD/AC<br>AOSPL/AC<br>AOBRYP/AC<br>AOBYP/AC<br>AOBYP/AC<br>AOBYP/AC<br>AOBYP/AC<br>AOBYP/AC<br>AOBYP/AC<br>AOBYP/AC<br>AOBYP/AC<br>AOBYP/AC<br>AOPYPAC<br>PTL/PTD<br>PT2/PTH<br>PT2/PTH<br>PT2/PTH<br>PT2/PTH<br>PT2/PTH<br>PT2/PTH<br>PT2/PTH<br>PT2/PTH<br>PT2/PTH<br>PT2/PTH<br>PT2/PTH<br>PT2/PTH<br>PT1/PTL<br>PT1/PTL<br>PT2/PTO<br>PT1/PTL<br>PT2/PTO<br>PT1/PTL<br>PT2/PTH<br>PT2/PTH<br>PT2/PTH<br>PT2/PTH<br>PT2/PTH<br>PT2/PTH<br>PT2/PTH<br>PT2/PTH<br>PT2/PTH<br>PT2/PTH<br>PT2/PTH<br>PT2/PTH<br>PT1/PTL<br>PT2/PTH<br>PT2/PTH<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT2/PTH<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT2/PTH<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT2/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT1/PTL<br>PT |                        |                        |                                                  |                        | coveries                |           |                                                  |           |                      | (ft**2)   |          |                            |             |             |             |               | -                       | (1bf)<br>(1bm/hr/1bf)        | (1bm/s)<br>(1bm/s)         |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PTL/PT0<br>AL/A0       | Inlet Mass Flow Ratios | AOI/AC<br>AOSPL/AC<br>AOBLD/AC<br>AO/AC          | AOBYP/AC<br>AOENG/AC   | Inlet Total Pressure Re | PT2/PT0   | PTL/PT0<br>PT1/PT1<br>PT2/LT7<br>PT2/PT1         | PTx/PTY   | Inlet Drag Breakdown | AC        |          | spillage<br>bleed          | bypass      | cowl        | reference   | power setting | Engine Performance Data | net thrust<br>SFC            | W2<br>corrected W2         | reference recovery |

.

• •

| 000<br>040                        | Inlet Flow Properties                     |                              | free<br>stream                        | inlet<br>local                      | cowl<br>lip      | throat           | engine<br>face   |
|-----------------------------------|-------------------------------------------|------------------------------|---------------------------------------|-------------------------------------|------------------|------------------|------------------|
| 96<br>96                          | station                                   |                              | 0                                     | ц                                   |                  | ТН               | <b>73</b>        |
| 800                               | flow area                                 | (ft**2)                      | 9.999E-01                             | 9.999E-01                           | 8.706E-01        | 4.341E-01        | <b>1.000E+00</b> |
|                                   | Mach number                               |                              | 2.400E+00                             | 2.400E+00                           | <b>2.241E+00</b> | 1.300E+00        | 2.651E-01        |
| 102                               | pressure                                  | (lbf/ft**2)                  | <b>2.452E+02</b>                      | <b>2.452E+02</b>                    | 3.145E+02        | 1.243E+03        | 3.040E+03        |
| 101<br>401                        | temperature                               | (R)                          | 3.900E+02                             | 3.900E+02                           | <b>4.187E+02</b> | 6.273E+02        | 8.276E+02        |
| 106                               | density                                   | (slg/ft**3)                  | <b>3.664E-04</b>                      | 3.664E-04                           | 4.377E-04        | 1.155E-03        | 2.140E-03        |
| 108                               | velocity                                  | (ft/s)                       | <b>2.323E+03</b>                      | 2.323E+03                           | 2.248E+03        | <b>1.596E+03</b> | <b>3.738E+02</b> |
|                                   | total pressure                            | (lbf/ft**2)                  | <b>3.585E+03</b>                      | 3.585E+03                           | 3.585E+03        | 3.444E+03        | <b>3.192E+03</b> |
|                                   | total temperature                         | (R)                          | <b>8.392E+02</b>                      | 8.392E+02                           | <b>8.392E+02</b> | 8.392E+02        | 8.392E+02        |
| 114<br>114<br>124                 | weight flow                               | (lbm/s)                      | <b>2.739E+01</b>                      | 2.739E+01                           | 2.739E+01        | 2.574E+01        | 2.574E+01        |
| 1176                              | corrected weight flow                     | (lbm/s)                      | 2.055E+01                             | 2.055E+01                           | 2.056E+01        | 2.011E+01        | 2.170E+01        |
| 118                               | Geometry Data for Axis                    | ymmetric Inlet               |                                       |                                     |                  |                  |                  |
| 121                               | inlet capture, AC<br>wrap angle<br>radius | (ft**2)<br>(degrees)<br>(ft) | 1.000E+00<br>3.600E+02<br>5.642E-01   |                                     |                  |                  |                  |
| 12 <b>4</b><br>12 <b>4</b><br>126 | engine face, A2<br>diameter<br>H/T        | (ft**2)<br>(ft)              | 1.000E+00<br>1.183E+00<br>3.000E-01   |                                     |                  |                  |                  |
| 128                               | Figure Data for Inlet                     | Geometry                     |                                       |                                     |                  |                  |                  |
| 1310                              | internal cowl surface                     | (ft)                         | x                                     | Х                                   |                  |                  |                  |
| 132<br>133                        |                                           |                              | 1.147E+00<br>2.040E+00                | 5.642E-01<br>5.173E-01              |                  |                  |                  |
| 13 <b>4</b><br>135                |                                           |                              | 2.040E+00<br>2.134E+00                | 5.173E-01<br>5.179E-01              |                  |                  |                  |
| 136<br>137<br>138                 |                                           |                              | 2.227E+00<br>2.321E+00<br>2.414E+00   | 5.196E-01<br>5.223E-01<br>5.258E-01 |                  |                  |                  |
|                                   |                                           |                              | , , , , , , , , , , , , , , , , , , , |                                     |                  |                  |                  |

•

•

| 139   |             |    |         |      | 2.507 | 臣+00        | 5.300E-01        |  |
|-------|-------------|----|---------|------|-------|-------------|------------------|--|
| 140   |             |    |         |      | 2.601 | 日+00        | 5.348E-01        |  |
| 141   |             |    |         |      | 2.694 | 臣+00        | 5.401E-01        |  |
| 142   |             |    |         |      | 2.788 | 臣+00        | 5.457E-01        |  |
| 271   |             |    |         |      | 2.881 | E+00        | 5.515E-01        |  |
| 144   |             |    |         |      | 2.974 | 臣+00        | 5.573E-01        |  |
| 145   |             |    |         |      | 3.068 | 臣+00        | 5.631E-01        |  |
| 146   |             |    |         |      | 3.161 | 臣+00        | 5.687E-01        |  |
| 147   |             |    |         |      | 3.254 | 日+00        | 5.739E-01        |  |
| 148   |             |    |         |      | 3.348 | 臣+00        | 5.787E-01        |  |
| 071   |             |    |         |      | 3.441 | 臣+00        | 5.830E-01        |  |
|       |             |    |         |      | 3.535 | 日+00        | 5.865E-01        |  |
| 151   |             |    |         |      | 3.628 | E+00        | 5.891E-01        |  |
| 1 5 1 |             |    |         |      | 3.721 | <b>E+00</b> | 5.908E-01        |  |
| 153   |             |    |         |      | 3.815 | 臣+00        | 5.914E-01        |  |
| 154   |             |    |         |      | ł     |             | ;                |  |
| 155   | external co | ž  | surface | (ft) | ×     |             | Я                |  |
| 156   |             |    |         |      |       | 00 · 0      | 10-90A-61        |  |
| 157   |             |    |         |      | /#T.T |             |                  |  |
| 158   |             |    |         |      | 3.403 | 00+3        | TO-2010./        |  |
| 159   |             |    |         |      | 3.967 | 臣+00        | 7.616E-01        |  |
| 160   |             |    |         |      |       |             |                  |  |
| 161   | centerbo    | άy | surface | (ft) | ×     |             | Ч                |  |
| 162   |             |    |         |      |       |             |                  |  |
| 163   |             |    |         |      | 0.000 | E-01        | 0.000E-01        |  |
| 164   |             |    |         |      | 2.040 | 臣+00        | 3.598E-01        |  |
| 165   |             |    |         |      | 2.040 | E+00        | 3.598E-01        |  |
| 166   |             |    |         |      | 2.134 | 日+00        | 3.583E-01        |  |
| 167   |             |    |         |      | 2.227 | 日+00        | 3.542E-01        |  |
| 168   |             |    |         |      | 2.321 | 臣+00        | <b>3.476E-01</b> |  |
| 169   |             |    |         |      | 2.414 | 5+00        | 3.389E-01        |  |
| 170   |             |    |         |      | 2.507 | 日+00        | 3.286E-01        |  |
| 171   |             |    |         |      | 2.601 | 日+00        | 3.167E-01        |  |
| 172   |             |    |         |      | 2.694 | 臣+00        | 3.038E-01        |  |
| 173   |             |    |         |      | 2.788 | 医+00        | 2.900E-01        |  |
| 174   |             |    |         |      | 2.881 | E+00        | 2.758E-01        |  |
| 175   |             |    |         |      | 2.974 | 5+00        | 2.614E-01        |  |
| 371   |             |    |         |      | 3.068 | 1日+00       | 2.472E-01        |  |
|       |             |    |         |      | 3.161 | .E+00       | 2.334E-01        |  |
|       |             |    |         |      | 3.254 | 11100       | 2.205E-01        |  |
| 170   |             |    |         |      | 3.348 | 医+00        | 2.087E-01        |  |
|       |             |    |         |      | 3.441 | E+00        | <b>1.983E-01</b> |  |
|       |             |    |         |      | 3.535 | SE+00       | <b>1.896E-01</b> |  |
| 182   |             |    |         |      | 3.628 | )E+00       | <b>1.831E-01</b> |  |
|       |             |    |         |      | 3.721 | LE+00       | <b>1.789E-01</b> |  |
| 184   |             |    |         |      | 3.815 | 5E+00       | <b>1.774E-01</b> |  |

. **.** 

-

•

.

1.774E-01 3.815E+00

a0iac= 9.259E-01, xmach1= 5.708E-01, pt1pt0= 7.024E-01, cda= 1.631E-03, a0ac= 8.743E-01, xmns= 1.370E+00, pt2pt0= 8.939E-01, thetad= 3.789E+00, athac= 4.780E-01, nishck= 1.000E+00, pthpt0= 9.668E-01, xlipth= 7.176E-01, a0iac= 9.268E-01, xmach1= 2.039E+00, pt1pt0= 9.999E-01, cda= 4.079E-03, ala0= 1.000E+00, cda= 4.079E-03, 4.766E-02,ptblpe= 1.225E+00, cdref= 7.992E-02, 9.999E-01, 7.024E-01, 4.079E-03, 4.766E-02, 1.000E+00, W2= 2.627E+01 cdbld= / forebd: xmachx= 2.200E+00, xmach0= 2.200E+00, xmlm0= 1.000E+00, ptlpt0= cdaxi: xmach0= 2.200E+00, a0iac= 9.268E-01, xmach1= 2.039E+00, ptlpt0= cdsp1= 5.250E-02, 5.250E-02, 5.174E-02, W2C= 2.410E+01, 8.743E-01,w2ceng= 2.413E+01, 3.138E+03 7.675E+02 total 9.268E-01, bleed= 9.268E-01, bleed= 9.268E-01, cdtot= 1.000E+00 1.000E+00 7.319E-02 2.200E+00 2.934E+02 3.900E+02 9.942E+02 **1.000E+00** 9.268E-01 4.601E+04 ambient 8.743E-01, cdwav= 7.992E-02, Axisymmetric Inlet Example Case a0iac= a0iac= xmachx= 2.200E+00,a0enac= (lbf/ft\*\*2) (lbf/ft\*\*2) xmach0=2.2,figure=0,iout=1,1,0,0, a0iac= 2.200E+00, a0enac= 2.200E+00, (ft) 2.200E+00, 2.200E+00, 2.200E+00, 2.200E+00, **1.284E+00**, 2.200E+00, 2.200E+00, (R) xtrans=0.45, xmns=1.37, Inlet Mass Flow Ratios A01/AC A0SPL/AC ML/MO altitude pressure temperature dynamic pressure PTL/PT0 AL/A0 Mach number xmth=-1.3, xlipth=-1 Flight Conditions ptrcv: xmach0= cdaxi: xmach0= xmth= xmach0= cdaxi: xmach0= cdbld: xmach0= xmach0= xmach0= xmach0= Vehicle Effects cdwave: &ipac IPAC &end 203 205 205 205 208 208 210 217 218 219 188 189 190 195 196 197 198 199 2012 212 213 214 215 216 220 221 222 223 226 185 186 187 191 192 193 194 211 224 225 227 228 229

| 5.250E-02<br>8.743E-01<br>0.000E-01<br>8.743E-01 |                         | 8.939E-01 | 1.000E+00<br>9.999E-01<br>9.670E-01<br>9.245E-01    | 9.653E-01  |                      | <b>1.000E+00</b> | CD D (1bf) | 1 0100 03 1 0EED+00 | 4.0/36-03 4.0336+00<br>4.7396+01 | 0.000E-01 0.000E-01 | 7.992E-02 7.946E+01 | 1.317E-01 1.309E+02 | 7.992E-02 7.946E+01 | 5.174E-02 5.144E+01 | ninstalled installed   |     | 0.000E-01 -1.309E+02 | 0.000E-01 2.627E+01     | 2.413E+01 2.410E+01 |     | 9.041E-01          |     |       |                      |                       |              |             |
|--------------------------------------------------|-------------------------|-----------|-----------------------------------------------------|------------|----------------------|------------------|------------|---------------------|----------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|------------------------|-----|----------------------|-------------------------|---------------------|-----|--------------------|-----|-------|----------------------|-----------------------|--------------|-------------|
|                                                  | coveries                |           |                                                     |            |                      | (ft**2)          |            |                     |                                  |                     |                     |                     |                     |                     | ц<br>Ц                 |     | (1bf)<br>(1bf)       | (1Dm/nr/101)<br>(1Dm/s) | (lbm/s)             |     |                    |     |       |                      |                       |              |             |
| AOBLD/AC<br>AO/AC<br>AOBYP/AC<br>AOENG/AC        | Inlet Total Pressure Re | PT2/PT0   | PTL/PTO<br>PT1/PT1<br>PT2/LTT<br>PT2/PT1<br>PT2/PT1 | PTx/PTY    | Inlet Drag Breakdown | AC               |            |                     | spillage<br>biode                | bypass              | COWL                | total               | reference           | power setting       | Engine Performance Dat | 1   | net thrust           | SFC<br>W2               | corrected W2        |     | reference recovery |     | &ipac | xmach0=2.0,figure=0, | xtrans=0.61,xmns=1.35 | thetac= 1.5, | <b>kend</b> |
| 2331<br>2332<br>234<br>234                       | 236                     | 238       | 222222222222222222222222222222222222222             | 244<br>245 | 247                  | 249<br>249       | 250<br>251 | 252                 | 253                              | ע<br>104<br>107     | 256                 | 257                 | 258                 | 259                 | 260<br>261             | 262 | 263                  | 264<br>265              | 266                 | 267 | 268<br>269         | 270 | 271   | 272                  | 273                   | 274          | 275<br>276  |

•

. **.** 

| <pre>D= 1.000E+00, ala0= 1.000E+00,<br/>D= 9.999E-01, cda= 7.564E-03,<br/>D= 7.889E-01, cda= 9.161E-04,<br/>D= 9.187E-01,thetad= 3.383E+00,<br/>D= 9.796E-01,xlipth= 6.263E-01,<br/>D= 9.999E-01, cda= 7.564E-03,<br/>d= 4.195E-02,ptblpe= 1.093E+00,<br/>d= 4.195E-02, cdref= 8.844E-02,<br/>d= 2.786E+01, cdref= 8.844E-02,</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |            |            |            |       |                                   |         |                   |        |            |        | - <b>-</b> |            |        |         |                   |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|------------|------------|-------|-----------------------------------|---------|-------------------|--------|------------|--------|------------|------------|--------|---------|-------------------|------------|
| pt1pt<br>pt1pt<br>pt1pt<br>pt1pt<br>pt1pt<br>pt1pt<br>pt1pt<br>cdbl<br>cdbl<br>cdbl<br>v cdbl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |            |            |            |       |                                   |         |                   |        |            |        |            |            |        |         |                   |            |
| 0 = 1.000E+00<br>1 = 1.853E+00<br>1 = 1.853E+00<br>1 = 6.086E-01<br>1 = 6.086E-01<br>1 = 1.350E+00<br>1 = 1.350E+00<br>1 = 1.853E+00<br>1 = 4.500E-02<br>0 = 4.500E-02<br>0 = 4.500E-02<br>0 = 2.665E+01<br>0 = 2.664E+01<br>0 = 2.664E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |            |            |            | total | 2.800E+03<br>7.019E+02            |         |                   |        |            |        |            |            |        |         |                   |            |
| xmlm<br>xmach<br>xmach<br>xmn<br>xmn<br>xmn<br>xmch<br>xmach<br>ymach<br>ymach<br>ymach<br>ymach<br>ymach<br>ymach<br>ymach<br>ymach<br>ymach<br>ymach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xmach<br>xm |            |            | E+00       | E+04       | ent   | 8+02<br>8+02<br>8+03              |         | 00+M              | 00+00  |            | 3-01   | 3-01       | ₫-02       |        | 10-10-2 |                   | 1-01<br>1  |
| 2.000E+00<br>8.816E-01<br>8.807E-01<br>8.366E-01<br>5.429E-01<br>8.816E-01<br>8.816E-01<br>8.816E-01<br>8.816E-01<br>8.816E-01<br>8.366E-01<br>8.366E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Case       |            | 2.000      | 4.1891     | ambie | 3.5781<br>3.9001<br>1.0021        |         | 1.0001            | 1.0001 |            | 8.8161 | 1.1841     | 4.5001     | 8.3661 | 8.3661  |                   | 9.187      |
| <pre>+00, xmach0=<br/>+00, a0iac=<br/>+00, a0iac=<br/>+00, a0iac=<br/>-00, a0iac=<br/>-00, a0iac=<br/>-00, a0iac=<br/>-00, a0enac=</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | et Example |            |            | (ft)       |       | (lbf/ft**2)<br>(R)<br>(lbf/ft**2) |         |                   |        |            |        |            |            |        |         | coveries          |            |
| 2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E4<br>2.000E                                                                                                                                                                                                                                                                      | ric Inl    | ~          | mber       | itude      |       | ssure<br>iture<br>isure           |         | IL/MO             | VL/A0  | latios     | I/AC   | L/AC       | D/AC       |        | IG/AC   | ure Re            | /PT0       |
| xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmth=<br>xmth=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xmachu=<br>xm                                                                                                                                                                                                                                                                   | Axisymmetı | Conditions | Mach nı    | alti       |       | pres<br>tempera<br>namic pres     | Effects | 2 1               |        | ass Flow R | AO     | AOSF       | AOBL       | AORY   | AOEN    | otal Press        | PT2        |
| forebd:<br>cdaxi:<br>cdaxi:<br>ptrcv:<br>cdavi:<br>cdbld:<br>:<br>:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IPAC       | Flight (   |            |            |       | đyı                               | Vehicle |                   |        | Inlet Ma   |        |            |            |        |         | Inlet To          |            |
| 22222222222222222222222222222222222222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 289        | 292<br>292 | 294<br>294 | 296<br>296 | 298   | 00100<br>0051000                  | 304     | 306<br>306<br>306 | 308    | 310        | 312    | 313        | 314<br>215 | 316    | 317     | 318<br>319<br>210 | 321<br>322 |

٠

. -

•

- ---
|                                                                                          | 1bf)<br>8E+00<br>2E+01<br>0E-01<br>0E+01<br>2E+02<br>2E+02<br>0E+01<br>0E+01                               | alled<br>28+02<br>05-01<br>58+01<br>58+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .000E+00, pt1pt0= 1.000E+00, ala0= 1.000E+00,<br>.666E+00, pt1pt0= 1.000E+00, cda= 1.342E-02,<br>.631E-01, pt1pt0= 8.697E-01, cda=-2.811E-05,<br>.350E+00, pt2pt0= 9.309E-01, thetad= 3.060E+00,<br>.000E+00, pt1pt0= 9.876E-01, xlipth= 5.039E-01,<br>.666E+00, pt1pt0= 1.000E+00, cda= 1.342E-02,<br>.750E-02, cdbld= 3.344E-02, ptblpe= 1.082E+00,<br>.750E-02, cdbld= 3.344E-02, ptblpe= 1.082E+00, |
|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                          | D (<br>44.20<br>8.86<br>4.386<br>4.96                                                                      | inst<br>1.38<br>2.78<br>2.66<br>2.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.000E+00<br>9.999E-01<br>9.796E-01<br>9.379E-01<br>9.697E-01                            | 1.000E+00<br>CD<br>7.564E-03<br>4.195E-02<br>0.000E-01<br>8.844E-02<br>1.380E-01<br>8.844E-02<br>4.951E-02 | uninstalled<br>0.000E-01<br>0.000E-01<br>2.664E+01<br>9.250E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 800E+00, xmlt<br>182E-01, xmacl<br>174E-01, xmacl<br>807E-01, xmacl<br>933E-01, nish<br>182E-01, xmacl<br>182E-01, ble                                                                                                                                                                                                                                                                                  |
|                                                                                          | (ft**2)                                                                                                    | a<br>(lbf)<br>(lbm/hr/lbf)<br>(lbm/s)<br>(lbm/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +00, xmach0= 1.<br>+00, a0iac= 8.<br>+00, a0iac= 8.<br>+00, a0ac= 7.<br>+00, a0iac= 8.<br>+00, a0iac= 8.<br>+00, a0iac= 8.<br>+00, a0iac= 8.                                                                                                                                                                                                                                                            |
| PTL/PT0<br>PT1/PTL<br>PTTH/PT1<br>PT2/PTTH<br>PTX/PTY<br>PTX/PTY<br>Inlet Drag Breakdown | AC<br>spillage<br>bleed<br>bypass<br>cowl<br>reference<br>power setting                                    | Engine Performance Data<br>net thrust<br>SFC<br>W2<br>corrected W2<br>reference recovery<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ipac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ipac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&ibac<br>&iba | <pre>forebd: xmachx= 1.800E<br/>cdaxi: xmach0= 1.800E<br/>cdaxi: xmach0= 1.800E<br/>ptrcv: xmach0= 1.800E<br/>xmth= 1.331E<br/>xmth= 1.331E<br/>cdaxi: xmach0= 1.800E<br/>cdwave: xmach0= 1.800E<br/>cdbld: xmach0= 1.800E</pre>                                                                                                                                                                        |
| 322<br>322<br>322<br>322<br>322<br>322<br>322<br>322<br>322<br>322                       |                                                                                                            | , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8 4 6 6 5 <del>7</del> 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                            |

•.

.

.

-

| 369<br>370<br>371                  | : xmach0= 1.800E<br>: xmach0= 1.800E<br>: xmachx= 1.800E | +00, a0iac= 8.<br>+00,a0enac= 7.<br>+00,a0enac= 7. | 182E-01, cdt<br>807E-01, w<br>807E-01,w2ce | ot= 4.686E-02,<br>2c= 2.879E+01,<br>ng= 2.876E+01, | cdspl= 1.342E-02<br>w2= 2.919E+01 | , cdref= 9.942E-02, |
|------------------------------------|----------------------------------------------------------|----------------------------------------------------|--------------------------------------------|----------------------------------------------------|-----------------------------------|---------------------|
| 2 2 2                              | IPAC Axisymmetric In                                     | let Example Ca                                     | ISE                                        |                                                    |                                   |                     |
| 375                                | Flight Conditions                                        |                                                    |                                            |                                                    |                                   |                     |
| 377                                | Mach number                                              |                                                    | <b>1.800E+00</b>                           |                                                    |                                   |                     |
| 379<br>379                         | altitude                                                 | (ft)                                               | 3.729E+04                                  |                                                    |                                   |                     |
| 381                                |                                                          |                                                    | ambient                                    | total                                              |                                   |                     |
| 3 8 9 7<br>8 9 7<br>9 9 7<br>9 9 7 | pressure<br>temperature<br>dvnamic pressure              | (lbf/ft**2)<br>(R)<br>(lbf/ft**2)                  | 4.464E+02<br>3.900E+02<br>1.012E+03        | 2.565E+03<br>6.427E+02                             |                                   |                     |
| 386<br>387                         | Vehicle Effects                                          |                                                    |                                            |                                                    |                                   |                     |
| 388                                |                                                          |                                                    |                                            |                                                    |                                   |                     |
| 389<br>391                         | ML/MO<br>PTL/PTO<br>AL/AO                                |                                                    | 1.000E+00<br>1.000E+00<br>1.000E+00        |                                                    |                                   |                     |
| 392<br>393                         | Inlet Mass Flow Ratios                                   |                                                    |                                            |                                                    |                                   |                     |
| 470<br>104                         |                                                          |                                                    | 0 1075-01                                  |                                                    |                                   |                     |
| 396                                | AC AC AC AC AC                                           |                                                    | 0.1025-01<br>1.818E-01                     |                                                    |                                   |                     |
| 397                                | A0BLD/AC                                                 |                                                    | 3.750E-02                                  |                                                    |                                   |                     |
| 398                                | A0/AC                                                    |                                                    | 7.807E-01                                  |                                                    |                                   |                     |
| 4004<br>004                        | AUBIE/AC<br>AOENG/AC                                     |                                                    | 7.807E-01                                  |                                                    |                                   |                     |
| 401<br>402                         | Inlet Total Pressure R                                   | ecoveries                                          |                                            |                                                    |                                   |                     |
| 403                                |                                                          |                                                    |                                            |                                                    |                                   |                     |
| 404<br>105                         | PT2/PT0                                                  |                                                    | 9.309E-01                                  |                                                    |                                   |                     |
| 409                                | סיים, / סיים                                             |                                                    | 1 0008700                                  |                                                    |                                   |                     |
| 407                                | TT1/LT4                                                  |                                                    | 1.000E+00                                  |                                                    |                                   |                     |
| 408                                | PTTH/PT1                                                 |                                                    | 9.876E-01                                  |                                                    |                                   |                     |
| 409                                | PT2/PTTH                                                 |                                                    | 9.426E-01                                  |                                                    |                                   |                     |
| 410<br>411                         | <u>рту / рту</u>                                         |                                                    | 0 6078-01                                  |                                                    |                                   |                     |
| 412                                | K + 3 / 44 3                                             |                                                    | HO-9-00.0                                  |                                                    |                                   |                     |
| 413<br>414                         | Inlet Drag Breakdown                                     |                                                    |                                            |                                                    |                                   |                     |

•

| 512            | AC                      | (ft**2)       | <b>1.000E+00</b> |                                                                |
|----------------|-------------------------|---------------|------------------|----------------------------------------------------------------|
| 0 F 0          |                         |               | 8                | D (1bf)                                                        |
| ~ ~            | spillage                |               | <b>1.342E-02</b> | 1.358E+01                                                      |
| _              | bleed                   |               | <b>3.344E-02</b> | 3.386E+01                                                      |
|                | bypass                  |               | 0.000E-01        | 0.000E-01                                                      |
| ~              | cowl                    |               | 9.942E-02        | 1.007E+02                                                      |
| ~              | total                   |               | <b>1.463E-01</b> | 1.481E+02                                                      |
|                | reference               |               | 9.942E-02        | 1.007E+02                                                      |
| 10.1           | power setting           |               | <b>4.686E-02</b> | 4.744E+01                                                      |
| 0 -            | Engine Performance Data | æ             | uninstalled      | installed                                                      |
| æ              | 1                       |               |                  |                                                                |
| <b>"</b>       | net thrust              | (1bf)         | 0.000E-01        | -1.481E+02                                                     |
| 0              | SFC                     | (lbm/hr/lbf)  | 0.000E-01        | -0.000E-01                                                     |
|                | WZ MZ                   | (1) hm / c)   | 0.000E-01        | 2.7136FVL<br>2 879F101                                         |
| N M            | COLLECTED NZ            |               | 10190/0.7        | 10-10-10-10-10-10-10-10-10-10-10-10-10-1                       |
|                | reference recovery      |               | 9.445E-01        |                                                                |
| 10.10          |                         |               |                  |                                                                |
| ~~             | £ipac                   |               |                  |                                                                |
| ~              | xmach0=1.6,figure=0,    |               |                  |                                                                |
| •              | xtrans=1.2,xmns=1.36,   |               |                  |                                                                |
| <u> </u>       | thetac=0.0,             |               |                  |                                                                |
|                | xerra                   |               |                  |                                                                |
| י ר            | forehd: xmachx= 1 600E  | +00 xmach0= 1 | 600E+00. xn      | ]m0= 1.000E+00.ntlnt0= 1.000E+00. ala0= 1.000E+00.             |
| ) <del>4</del> | cdaxi: xmach0= 1.600E   | +00, a0iac= 7 | .367E-01, xma    | ch1= 1.477E+00, pt1pt0= 1.000E+00, cda= 2.276E-02,             |
| س              | cdaxi: xmach0= 1.600E   | +00, a0iac= 7 | .360E-01, xma    | ch1= 7.419E-01, pt1pt0= 9.369E-01, cda= 4.604E-03,             |
| 9              | *** error *** in prog.  | ram segment p | trint (erı       | flg=1)                                                         |
| 2              | ptrcv: xmach0= 1.600E   | +00, a0ac= 7  | .067E-01, x      | <pre>mns= 1.360E+00,pt2pt0= 9.324E-01,thetad= 3.060E+00,</pre> |
| œ              | xmth= 1.258E            | +00, athac= 5 | .933E-01, nie    | hck= 0.000E-01,pthpt0= 1.000E+00,xlipth= 0.000E-01,            |
| 6              | cdaxi: xmach0= 1.600E   | +00, a0iac= 7 | .367E-01, xma    | ch1= 1.477E+00, pt1pt0= 1.000E+00, cda= 2.276E-02,             |
| 0              | cdwave: xmach0= 1.600E  | +00, cdwav= 1 | .144E-01,        |                                                                |
| ч              | cdbld: xmach0= 1.600E   | +00, a0iac= 7 | .367E-01, bl     | <pre>eed= 3.000E-02, cdbld= 2.609E-02,ptblpe= 1.037E+00,</pre> |
| 2              | : xmach0= 1.600E        | +00, a0iac= 7 | .367E-01, bl     | eed= 3.000E-02, cdbld= 2.609E-02,                              |
| e              | : xmach0= 1.600E        | +00, a0iac= 7 | .367E-01, cd     | tot= 4.885E-02, cdspl= 2.276E-02, cdref= 1.144E-01,            |
| 4              | : xmach0= 1.600E        | +00,a0enac= 7 | .067E-01,        | w2c= 2.995E+01, w2= 2.949E+01,                                 |
| ъ              | : xmachx= 1.600E        | +00,a0enac= 7 | .067E-01,w2c     | eng= 2.998E+01,                                                |
| 9              |                         |               |                  |                                                                |
|                | IPAC Axisymmetric In    | let Example C | <b>ase</b>       |                                                                |
| <b>m</b> (     |                         |               |                  |                                                                |
| <b>л</b> (     | Flight Conditions       |               |                  |                                                                |
| 5              |                         |               |                  |                                                                |

•

| 461        | Mach number                               |                    | 1.600E+00              |                        |
|------------|-------------------------------------------|--------------------|------------------------|------------------------|
| 462        |                                           |                    |                        |                        |
| 463<br>464 | altitude                                  | (ft)               | 3.209E+04              |                        |
| 465        |                                           |                    | ambient                | total                  |
| 466        |                                           |                    |                        |                        |
| 467<br>468 | pressure<br>temperature                   | (lbf/ft**2)<br>(R) | 5.706E+02<br>4.042E+02 | 2.425E+03<br>6.112E+02 |
| 469        | dynamic pressure                          | (lbf/ft**2)        | 1.023E+03              |                        |
| 471        | Vehicle Effects                           |                    |                        |                        |
| 472        |                                           |                    |                        |                        |
| 474<br>474 | ML/MO<br>PTL/DT0                          |                    | 1.000E+00<br>1.000E+00 |                        |
| 475<br>176 | AL/A0                                     |                    | 1.000E+00              |                        |
| 477        | Inlet Mass Flow Ratios                    |                    |                        |                        |
| 478        |                                           |                    |                        |                        |
| 479        | A01/AC                                    |                    | 7.367E-01              |                        |
| 480        | A0SPL/AC                                  |                    | 2.633E-01              |                        |
| 481        | A0BLD/AC                                  |                    | 3.000E-02              |                        |
| 482        | A0/AC                                     |                    | 7.067E-01              |                        |
| 483        | AOBYP/AC                                  |                    | 0.000E-01              |                        |
| 484<br>405 | AUENG/AC                                  |                    | 7.067E-01              |                        |
| 486        | Inlet Total Pressure Re                   | scoveries          |                        |                        |
| 487        |                                           |                    |                        |                        |
| 488        | PT2/PT0                                   |                    | 9.324E-01              |                        |
| 489        |                                           |                    |                        |                        |
| 490<br>491 | 0.1.7 / T.1.7                             |                    | 1.000E+00              |                        |
| 404        | ד 1 ב 1 ב 2 ב ב 1 ב 2 ב ב ב 1 ב 2 ב ב ב ב |                    | 1.000E+00              |                        |
| 493        | HLLJ/LLL                                  |                    | 1.000E700<br>9.324E-01 |                        |
| 494<br>405 |                                           |                    |                        |                        |
| 496        | <b>бта / х</b> та                         |                    | 7.676E-UT              |                        |
| 497        | Inlet Drag Breakdown                      |                    |                        |                        |
| 498        |                                           |                    |                        |                        |
| 499        | AC                                        | (ft**2)            | <b>1.000E+00</b>       |                        |
| 500        |                                           |                    |                        |                        |
| 501        |                                           |                    | 8                      | D (1bf)                |
| 502        |                                           |                    |                        |                        |
| 503        | spillage<br>Flood                         |                    | 2.276E-02              | 2.328E+01              |
| 505        | DIEEQ                                     |                    | 2.609E-02<br>0.000E-01 | 2.667E+01<br>0.000E-01 |
| 506        | cowl                                      |                    | 1.144E-01              | 1.170E+02              |

.

.

. ...

| Engine                                                        | rotal<br>reference<br>power setting<br>Performance Dat<br>net thrust<br>SFC<br>W2<br>corrected W2                          | a<br>(lbf)<br>(lbm/hr/lbf)<br>(lbm/s)<br>(lbm/s)                                                           | 1.632E-01<br>1.144E-01<br>4.885E-02<br>uninstalled<br>0.000E-01<br>0.000E-01<br>2.998E+01        | 1.669E+02<br>1.170E+02<br>4.995E+01<br>installed<br>-1.669E+02<br>-0.000E-01<br>2.949E+01<br>2.995E+01                                                                        |                                                                                                             |                                                           |                         |
|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------|
| refe<br>&ipac<br>xmach0<br>xtrans<br>thetac<br>xmth=0<br>&end | rence recovery<br>=1.6,figure=0,<br>=1.2,<br>.832,                                                                         |                                                                                                            | 9.624E-01                                                                                        |                                                                                                                                                                               |                                                                                                             |                                                           |                         |
| forebd:<br>cdaxi:<br>ptrcv:<br>cdaxi:<br>cdaxi:               | <pre>xmachx= 1.600E xmach0= 1.600E xmach0= 1.600E xmach0= 1.600E xmach0= 1.600E xmach0= 1.600E xmach0= 1.600E</pre>        | ++00, xmach0= 1<br>++00, a0iac= 5<br>++00, a0ac= 6<br>01, athac= 5<br>++00, a0iac= 7<br>++00, cdwav= 1     | .600E+00, xml<br>.000E-01, xmac<br>.772E-01, xm<br>.933E-01, nish<br>.072E-01, xmac<br>.144E-01, | <pre>m0= 1.000E+00,pt1<br/>h1= 4.061E-01,pt1<br/>ns= 1.360E+00,pt2<br/>ck=-1.000E+00,pth<br/>h1= 6.790E-01,pt1</pre>                                                          | pt0= 1.000E+00,<br>pt0= 9.369E-01,<br>pt0= 8.924E-01,<br>pt0= 9.369E-01,<br>pt0= 9.369E-01,                 | ala0= 1.<br>cda= 3<br>thetad= 3.<br>xlipth=-1.<br>cda= 4. | . 588<br>. 588<br>. 060 |
| clsuc:<br>cdbld:                                              | xmach0= 1.600E<br>xmach0= 1.600E<br>xmach0= 1.600E<br>xmach0= 1.600E<br>xmach0= 1.600E<br>xmachx= 1.600E<br>xmachx= 1.600E | ++00, a0iac= 7<br>++00, a0iac= 7<br>++00, a0iac= 7<br>++00, a0iac= 7<br>++00, a0enac= 6<br>++00, a0enac= 6 | .072E-01, c<br>.072E-01, ble<br>.072E-01, ble<br>.072E-01, cdt<br>.772E-01, w<br>.772E-01, w2ce  | <pre>1s= 7.686E-03, cc<br/>ed= 3.000E-02, cc<br/>ed= 3.000E-02, cc<br/>ed= 5.888E-02, cc<br/>ot= 5.888E-02, cc<br/>ot= 2.998E+01,<br/>ng= 2.998E+01,<br/>ng= 2.998E+01,</pre> | <pre>[spl= 3.280E-02,<br/>bld= 2.609E-02,<br/>bld= 2.609E-02,<br/>[spl= 3.280E-02,<br/>w2= 2.826E+01,</pre> | thetae= 3<br>ptblpe= 1<br>cdref= 1                        | . 81<br>. 037<br>. 144  |
| IPAC<br>Flight                                                | Axisymmetric In<br>Conditions                                                                                              | llet Example C                                                                                             | ase                                                                                              |                                                                                                                                                                               | ·                                                                                                           |                                                           |                         |
|                                                               | Mach number<br>altitude                                                                                                    | (ft)                                                                                                       | 1.600E+00<br>3.209E+04                                                                           |                                                                                                                                                                               |                                                                                                             |                                                           |                         |
|                                                               | pressure<br>temperature                                                                                                    | (1bf/ft**2)<br>(R)                                                                                         | ambient<br>5.706E+02<br>4.042E+02                                                                | total<br>2.425E+03<br>6.112E+02                                                                                                                                               |                                                                                                             |                                                           |                         |

•

~

,

\_

-

|                  |              |                        |                  |                     |           |                        |           |            |                      |            |            |                        |           |                  |     |                   |                  | D (1bf)            |     | 3.354E+01 | 2.66/E+UI  | 1.170E+02              | 1.772E+02 | <b>1.170E+02</b> | 6.021E+01     | installed            |        | -1.//2E+02        |
|------------------|--------------|------------------------|------------------|---------------------|-----------|------------------------|-----------|------------|----------------------|------------|------------|------------------------|-----------|------------------|-----|-------------------|------------------|--------------------|-----|-----------|------------|------------------------|-----------|------------------|---------------|----------------------|--------|-------------------|
| 1.023E+03        |              | 1.000E+00<br>1.000E+00 | <b>1.000E+00</b> |                     | 7.072E-01 | 2.9265-01<br>3.000E-02 | 6.772E-01 | 6.772E-01  |                      | 8.924E-01  | 1.000E+00  | 9.369E-01<br>1.000E+00 | 9.525E-01 | <b>1.000E+00</b> |     |                   | <b>1.000E+00</b> | ₿                  |     | 3.280E-02 | 2.609E-02  | 0.000E-01<br>1.144E-01 | 1.733E-01 | <b>1.144E-01</b> | 5.888E-02     | uninstalled          |        | 0.000E-01         |
| (lbf/ft**2)      |              |                        |                  |                     |           |                        |           |            | ecoveries            |            |            |                        |           |                  |     |                   | (ft**2)          |                    |     |           |            |                        |           |                  |               | Ø                    | (31.6) | (lbm/hr/lbf)      |
| dynamic pressure | icle Effects | ML/MU<br>ML/MO         | AL/A0            | et Mass Flow Ratios | AOI/AC    | AUSFL/AC<br>AOBLD/AC   | A0/AC     | AUBIE/AC   | et Total Pressure Re | PT2/PT0    | PTL/PT0    | РТ1/РТL<br>РТТ4/РТ1    | PT2/PTTH  | PTX/PTV          |     | et Drag Breakdown | AC               |                    |     | spillage  | beeto      | aany ta<br>Cow         | total     | reference        | power setting | ine Performance Data |        | net thrust<br>SFC |
| 553              | 555 Veh:     | 557<br>558             | 559              | 561 Inle            | 563       | 565<br>565             | 566       | 568<br>568 | 570 Inle             | 572<br>572 | 574<br>574 | 575<br>576             | 577       | 578<br>579       | 580 | 581 Inle          | 583<br>583       | 58 <b>4</b><br>585 | 586 | 587       | 588<br>603 | 190<br>190             | 591       | 592              | 593<br>504    | 595 Eng:             | 596    | 597<br>598        |

,

· •

, **-**

| ) 0.000E-01 2.826E+01<br>) 2.998E+01 2.998E+01<br>9.624E-01 |                                                                                                  | ch0= 1.400E+00, xmlm0= 1.000E+00, ptlpt0= 1.000E+00, ala0= 1.000E+00,<br>iac= 5.000E-01, xmach1= 3.580E-01, ptlpt0= 9.807E-01, cda= 4.593E-01,<br>oac= 6.331E-01, xmns= 1.360E+00, pt2pt0= 9.807E-01, thetad= 3.060E+00,<br>hac= 5.933E-01, nishck=-1.000E+00, pthpt0= 9.807E-01, xlipth=-1.000E+00,<br>iac= 6.556E-01, xmach1= 5.051E-01, pt1pt0= 9.807E-01, xlipth=-1.000E+00,<br>wav= 1.369E-01, cls= 8.257E-03, cdspl= 2.156E-01, thetae= 3.811E+00,<br>iac= 6.556E-01, bleed= 2.250E-02, cdbld= 1.884E-02, ptblpe= 1.001E+00,<br>iac= 6.556E-01, bleed= 2.250E+01, cdspl= 2.156E+01, cdref= 1.369E-01,<br>nac= 6.331E-01, w2c= 3.014E+01, w2= 2.954E+01, cdref= 1.369E-01,<br>nac= 6.331E-01, w2ceng= 3.014E+01, w2= 2.954E+01, cdref= 1.369E-01, w2= 2.954E+01, w2= 2.954E+0 | mple Case             |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| (lbm/s)<br>(lbm/s)                                          |                                                                                                  | 00, xmach<br>000, x01c<br>001, atha<br>001, atha<br>000, a01c<br>100, a01c<br>100, a01c<br>100, a01c<br>100, a01c<br>100, a01c<br>100, a01c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | et Exam               |
| W2<br>corrected W2<br>reference recovery                    | <pre>&amp;ipac &amp;ipac xmach0=1.4,figure=0, xtrans=0.5, thetac=0.0, xmth=0.837, &amp;end</pre> | <pre>forebd: xmachx= 1.400E+<br/>cdaxi: xmach0= 1.400E+<br/>ptrcv: xmach0= 1.400E+<br/>xmth= 8.370E-<br/>cdaxi: xmach0= 1.400E+<br/>cdwave: xmach0= 1.400E+<br/>clsuc: xmach0= 1.400E+<br/>cdbld: xmach0= 1.400E+<br/>: xmach0= 1.400E+<br/>: xmach0= 1.400E+<br/>: xmach0= 1.400E+<br/>: xmach0= 1.400E+</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IPAC Axisymmetric Inl |

Axisymmetric In IPAC

Flight Conditions 

| 670 |                  |             |                  |           |
|-----|------------------|-------------|------------------|-----------|
| 630 | Mach number      |             | <b>1.400E+00</b> |           |
| 631 |                  |             |                  |           |
| 632 | altitude         | (ft)        | 2.611E+04        |           |
| 633 |                  |             |                  | I         |
| 634 |                  |             | ambient          | total     |
| 635 |                  |             |                  |           |
| 636 | pressure         | (lbf/ft**2) | 7.481E+02        | 2.381E+03 |
| 637 | temperature      | (R)         | 4.256E+02        | 5.924E+02 |
| 638 | dynamic pressure | (lbf/ft**2) | <b>1.026E+03</b> |           |
| 639 | 1                |             |                  |           |
| 640 | Vehicle Effects  |             |                  |           |
| 641 |                  |             |                  |           |
| 642 | ML/MO            |             | <b>1.000E+00</b> |           |
| 643 | PTL/PT0          |             | <b>1.000E+00</b> |           |
| 644 | AL/A0            |             | <b>1.000E+00</b> |           |

-

. .

| 645<br>646                                                                                  | Inlet Mass Flow Ratios          |                        |
|---------------------------------------------------------------------------------------------|---------------------------------|------------------------|
| 647                                                                                         |                                 |                        |
| 648                                                                                         | A01/AC                          | 6.556E-01              |
| 649                                                                                         | A0SPL/AC                        | 3.444E-01              |
| 650                                                                                         | AOBLD/AC                        | 2.250E-02              |
| 651                                                                                         | A0/AC                           | 6.331E-01              |
| 652                                                                                         | A0BYP/AC                        | 0.000E-01              |
| 653                                                                                         | A0ENG/AC                        | 6.331E-01              |
| 654                                                                                         |                                 |                        |
| 655<br>655                                                                                  | Inlet Total Pressure Recoveries |                        |
| 200                                                                                         | 084/084                         |                        |
| 658                                                                                         | 01 <i>4/2</i> 13                | 9.30/E-UI              |
| 659                                                                                         | PTL/PT0                         | 1.000E+00              |
| 660                                                                                         | PT1/PTL                         | <b>9.807E-01</b>       |
| 661                                                                                         | PTTH/PT1                        | 1.000E+00              |
| 662                                                                                         | PT2/PTTH                        | 9.490E-01              |
| 500                                                                                         | 50% / DU.:                      |                        |
| 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | KT2/872                         |                        |
| 666<br>666                                                                                  | Inlet Drag Breakdown            |                        |
| 667                                                                                         |                                 |                        |
| 668                                                                                         | AC (ft**2)                      | <b>1.000E+00</b>       |
| 669                                                                                         |                                 |                        |
| 670                                                                                         |                                 | CD D (1                |
| 671                                                                                         |                                 |                        |
| 672                                                                                         | spillage                        | 2.156E-01 2.213        |
| 673                                                                                         | bleed                           | 1.884E-02 1.934        |
| 674                                                                                         | bypass                          | 0.000E-01 0.000        |
| 675                                                                                         | cowl                            | <b>1.369E-01 1.406</b> |
| 676                                                                                         | total                           | 3.714E-01 3.812        |
| 677                                                                                         | reference                       | 1.369E-01 1.406        |
| 678                                                                                         | power setting                   | 2.344E-01 2.407        |
| 679                                                                                         |                                 |                        |
| 680                                                                                         | Engine Performance Data         | uninstalled insta      |
| 681                                                                                         |                                 |                        |
| 682                                                                                         | net thrust (lbf)                | 0.000E-01 -3.812       |
| 683                                                                                         | SFC (1bm/hr/11                  | f) 0.000E-01 -0.000    |
| 684                                                                                         | W2 (1bm/s)                      | 0.000E-01 2.954        |
| 685                                                                                         | corrected W2 (lbm/s)            | 3.014E+01 3.014        |
| 686                                                                                         |                                 |                        |
| 687                                                                                         | reference recovery              | 9.782E-01              |
| 688                                                                                         |                                 |                        |
| 689                                                                                         |                                 |                        |
| 690                                                                                         | £ipac                           |                        |

~

.

. .

|                                                                           | 1.000E+00,<br>3.719E-01,<br>3.060E+00,<br>-1.000E+00,<br>2.157E-01,                                                   | 3.811E+00,<br>1.001E+00,<br>1.789E-01,                                                                                                                                                                         |                       |                   |                  |                  |            |                                             |                 |                                     |                        |                                                               |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------|------------------|------------------|------------|---------------------------------------------|-----------------|-------------------------------------|------------------------|---------------------------------------------------------------|
|                                                                           | ala0=<br>cda=<br>thetad=<br>xlipth=<br>cda=                                                                           | thetae=<br>ptblpe=<br>cdref=                                                                                                                                                                                   |                       |                   |                  |                  |            |                                             |                 |                                     |                        |                                                               |
|                                                                           | 1.000E+00,<br>9.992E-01,<br>9.483E-01,<br>9.992E-01,<br>9.992E-01,                                                    | 2.080E-01,<br>1.131E-02,<br>1.131E-02,<br>2.080E-01,<br>3.132E+01,                                                                                                                                             |                       |                   |                  |                  |            |                                             |                 |                                     |                        |                                                               |
|                                                                           | ptlpt0=<br>ptlpt0=<br>pt2pt0=<br>pthpt0=<br>pt1pt0=                                                                   | cdspl=<br>cdbld=<br>cdbld=<br>cdspl=<br>w2=                                                                                                                                                                    |                       |                   |                  |                  |            |                                             |                 |                                     |                        |                                                               |
|                                                                           | 10= 1.000E+00,<br>11= 3.845E-01,<br>18= 1.360E+00,<br>18= 1.360E+00,<br>18= 1.000E+00,<br>11= 4.981E-01,              | <pre>.s= 7.676E-03,<br/>.g=2)<br/>ed= 1.500E-02,<br/>ed= 1.500E-02,<br/>t= 2.193E-01,<br/>t= 2.193E-01,<br/>t= 3.014E+01,<br/>g= 3.014E+01,</pre>                                                              |                       |                   |                  |                  | total      | 2.453E+03<br>5.805E+02                      |                 |                                     |                        |                                                               |
|                                                                           | 200E+00, xmlr<br>000E-01, xmach<br>962E-01, xmac<br>933E-01, nishc<br>112E-01, nishc                                  | 789E-01,<br>112E-01, cl<br>bld (errf1<br>112E-01, blee<br>112E-01, blee<br>112E-01, cdtc<br>962E-01, w2cer                                                                                                     | se                    |                   | <b>1.200E+00</b> | <b>1.906E+04</b> | ambient    | 1.012E+03<br>4.507E+02<br>1.020E+03         |                 | 1.000E+00<br>1.000E+00<br>1.000E+00 |                        | 6.112E-01<br>3.888E-01<br>1.500E-02<br>5.962E-01<br>0.000E-01 |
|                                                                           | 00, xmach0= 1.<br>00, a0iac= 5.<br>00, a0ac= 5.<br>01, athac= 5.<br>00, a0iac= 6.                                     | -00, cdwav= 1.<br>-00, a0iac= 6.<br>am segment cd<br>-00, a0iac= 6.<br>-00, a0iac= 6.<br>-00, a0iac= 5.<br>-00, a0enac= 5.                                                                                     | let Example Ca        |                   |                  | (ft)             |            | (lbf/ft**2)<br>(R)<br>(lbf/ft**2)           |                 |                                     |                        |                                                               |
| <pre>xmach0=1.2, figure=0,<br/>xtrans=0.5,<br/>thetac=0.0,<br/>kend</pre> | <pre>forebd: xmachx= 1.200E+ cdaxi: xmach0= 1.200E+ ptrcv: xmach0= 1.200E+ xmth= 8.370E- cdaxi: xmach0= 1.200E+</pre> | cdwave: xmach0= 1.200E+<br>clsuc: xmach0= 1.200E+<br>*** error *** in progr<br>cdbld: xmach0= 1.200E+<br>: xmach0= 1.200E+<br>: xmach0= 1.200E+<br>: xmach0= 1.200E+<br>: xmach0= 1.200E+<br>: xmach0= 1.200E+ | IPAC Axisymmetric Inl | Flight Conditions | Mach number      | altitude         |            | pressure<br>temperature<br>dynamic pressure | Vehicle Effects | ML/MO<br>PTL/PTO<br>AL/AO           | Inlet Mass Flow Ratios | A01/AC<br>A0SPL/AC<br>A0BLD/AC<br>A0BLD/AC<br>A0AYP/AC        |
| 691<br>692<br>693<br>102                                                  | 696<br>696<br>698<br>698<br>700<br>700                                                                                | 701<br>702<br>705<br>705<br>707<br>707<br>707                                                                                                                                                                  | 017<br>017            | 712 1             | 217<br>14        | 914<br>914       | 718<br>718 | 721<br>721<br>722<br>722                    | 724             | 725<br>727<br>728                   | 0.00                   | 731<br>732<br>734<br>735<br>735                               |

|          |                        |         |                    |                      |                   |                      |         |         |               |                                |               |               |               |               |                               |                |                                 |               |                    |                                                                     | 0= 1.000E+00, ala0= 1.000E+00<br>0= 9.490E-01,thetad= 3.060E+00<br>0= 1.000E+00,xlipth=-1.000E+00 |
|----------|------------------------|---------|--------------------|----------------------|-------------------|----------------------|---------|---------|---------------|--------------------------------|---------------|---------------|---------------|---------------|-------------------------------|----------------|---------------------------------|---------------|--------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| -01      |                        | - 01    | +00<br>-01         | +00<br>- 01          | 00+               |                      | 00+     | D (lbf) | -01 2.121E+02 | -02 1.153E+01<br>-01 0.000E-01 | -01 1.824E+02 | -01 4.060E+02 | -01 1.824E+02 | -01 2.236E+02 | led installed                 | -01 -4.060E+02 | -01 -0.000E-01<br>-01 3 132E+01 | +01 3.014E+01 | -01                |                                                                     | <pre>xmlm0= 1.000E+00, ptlpt( xmns= 1.360E+00, pt2pt( nishck=-1.000E+00, pthpt()</pre>            |
| 5.962E   |                        | 9.483E  | 1.000E<br>9.992E   | 1.000E<br>9.490E     | 1.000             |                      | 1.000   | Ð       | 2.080E        | 1.131E<br>0.000E               | 1.7895        | 3.982E        | 1.789E        | 2.193E        | uninstal                      | 0.000E         |                                 | 3.014E        | 9.915E             |                                                                     | 1.000E+00,<br>5.791E-01,<br>5.933E-01,                                                            |
|          | ecoveries              |         |                    |                      |                   |                      | (ft**2) |         |               |                                |               |               |               |               | Ø                             | (1bf)          | (lbm/hr/lbf<br>(lbm/a)          | (1bm/s)       |                    |                                                                     | +00, xmach0=<br>+00, a0ac=<br>-01, athac=                                                         |
| A0ENG/AC | Inlet Total Pressure R | PT2/PT0 | PTL/PTO<br>PT1/PT0 | PTTH/PT1<br>PT2/PTTH | PTx/PTY           | Inlet Drag Breakdown | AC      |         | spillage      | Dleed<br>bypagg                | cowl          | total         | reference     | power setting | <b>Bngine Performance Dat</b> | net thrust     | SFC                             | corrected W2  | reference recovery | &ipac<br>xmach0=1.0,figure=0,<br>xtrans=0.5,<br>thetac=0.0,<br>&end | <pre>forebd: xmachx= 1.000E ptrcv: xmach0= 1.000E xmth= 8.370E</pre>                              |
| 737      | 739                    | 741     | 142<br>743<br>744  | 745<br>746           | 747<br>748<br>740 | 750                  | 752     | 754     | 756           | 757                            | 759           | 760           | 761           | 762           | 764<br>765                    | 766            | 767<br>768                      | 769           | 171                | 772<br>774<br>775<br>776<br>7778<br>7778                            | 780<br>781<br>782                                                                                 |

.

.

| <pre>1.000E+00, a0iac= 5.866E-01, xmach1= 4.898E-01, pt1pt0= 1.000E+00, cda= 1.518E-01 1.000E+00, a0iac= 5.866E-01, cls= 0.000E-01, cdsp1= 1.518E-01, thetae= 3.811E+00 n program segment cdbld (errf1g=2) 1.000E+00, a0iac= 5.866E-01, bleed= 7.500E-03, cdbld= 4.803E-03, ptb1pe= 1.001E+00 1.000E+00, a0iac= 5.866E-01, bleed= 7.500E-03, cdbld= 4.803E-03, cdref= 0.000E-01 1.000E+00, a0iac= 5.866E-01, cdtot= 1.567E-01, cdsp1= 1.518E-01, cdref= 0.000E-01 1.000E+00, a0enac= 5.791E-01, w2c= 3.014E+01, w2= 3.474E+01, 1.000E+00, a0enac= 5.791E-01, w2c= 3.014E+01, w2= 3.474E+01,</pre> | ric Inlet Example Case | 15             | 1.000E+00   | :itude (ft) 1.040E+04 | ambient total | ssure (lbf/ft**2) 1.433E+03 2.712E+03<br>cature (R) 4.816E+02 5.779E+02<br>ssure (lbf/ft**2) 1.003E+03 |              | ML/MO 1.000E+00<br>FL/PTO 1.000E+00<br>AL/AO 1.000E+00 | Ratios              | AOI/AC 5.866E-01 |          | BYP/AC 0.000E-01 | ENG/AC 5.791E-01 | ssure Recoveries       | T2/PT0 9.490E-01 | TL/PTO 1.000E+00<br>T1/PTL 1.000E+00<br>T1/PTL 1.000E+00 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------|-------------|-----------------------|---------------|--------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------|---------------------|------------------|----------|------------------|------------------|------------------------|------------------|----------------------------------------------------------|
| <pre>axi: xmach0= 1.000E+00 suc: xmach0= 1.000E+00 error *** in program old: xmach0= 1.000E+00 : xmach0= 1.000E+00 : xmach0= 1.000E+00 : xmach0= 1.000E+00 : xmach0= 1.000E+00</pre>                                                                                                                                                                                                                                                                                                                                                                                                              | c Axisymmetric Inlet   | ght Conditions | Mach number | altitude (f           |               | pressure (1<br>temperature (R<br>dynamic pressure (1                                                   | icle Effects | ML/MO<br>PTL/PT0<br>AL/AO                              | et Mass Flow Ratios | A01/AC           | AOSPL/AC | AOBYP/AC         | A0ENG/AC         | et Total Pressure Recc | PT2/PT0          | PTL/PTO<br>PT1/PTL<br>PTC                                |

.

|            |                      |     |            |            |     |                     |                                            |                     |                                            |                     |                     |                         |                                              |                     |                     |                    |       |                                 |             |             | lpt0= 1.000E+00, ala0= 1.000E+00,  | 2pt0= 9.490E-01, thetad= 3.060E+00, | hptO= 1.000Е+00,xlipth=-1.000Е+00,<br>1ptO= 1 000Е+00 · сda= 8 446Е-02 | dspl= 7.890E-02, thetae= 3.811E+00, | dbld= 1 100E-00 ×+blxo= 1 001E.00                | dbld= 1.109E-09, pcdipe= 1.001E700, | <pre>dspl= 7.890E-02, cdref= 0.000E-01,<br/>w2= 4.107E+01,</pre>        |                                    |                       |
|------------|----------------------|-----|------------|------------|-----|---------------------|--------------------------------------------|---------------------|--------------------------------------------|---------------------|---------------------|-------------------------|----------------------------------------------|---------------------|---------------------|--------------------|-------|---------------------------------|-------------|-------------|------------------------------------|-------------------------------------|------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------|------------------------------------|-----------------------|
| 1.000E+00  |                      |     | 1.000E+00  | CD D (1bf) |     | 1.518E-01 1.523E+02 | 4.803E-03 4.818E+00<br>6 666E 63 6 666E 65 | 0.000E-01 0.000E-01 | 1 5675-01 1 5718-01<br>1 5675-01 1 5718-02 | 0.000E-01 0.000E-01 | 1.567E-01 1.571E+02 | uninstalled installed   | 0.000E-01 -1.571E+02<br>0.000E-01 -0.000E-01 | 0.000E-01 3.474E+01 | 3.014E+01 3.014E+01 | 1.000E+00          |       |                                 |             |             | 000E-01, xmlm0= 1.000E+00,pt       | 012E-01, xmns= 1.360E+00, pt        | 933E-U1,N1EACK=-1.000E+00,Pt<br>012E-01.xmach1= 4.788E-01.nt           | 012E-01, cls= 5.559E-03, c          | old (errflg=2)<br>012E-01 bleed- 2 310E-09 c     | 012E-01, bleed= 2.310E-09, c        | <b>J12E-01, cdtot= 7.890E-02, c</b><br><b>J12E-01, w2c= 3.014E+01</b> , | <b>012E-01,w2ceng= 3.014E+01</b> , | äe                    |
|            |                      |     | (IC**2)    |            |     |                     |                                            |                     |                                            |                     |                     | _                       | (1bf)<br>(1bm/hr/1bf)                        | (1bm/s)             | (lbm/s)             |                    |       |                                 |             |             | 01, xmach0= 8.                     | 01, a0ac= 6.                        | о <b>1, аспас= 5.</b><br>01, а0іас= 6.                                 | 01, a0iac= 6.                       | am segment cd                                    | 01, a0iac= 6.                       | 01, a0iac= 6.<br>01,a0enac= 6.                                          | 01,a0enac= 6.                      | et Example Ca         |
| PTx/PTY    | Inlet Drag Breakdown |     | AC         |            |     | Bpillage            | Deeta                                      | UYPass              | 1011<br>1012                               | reference           | power setting       | Engine Performance Data | net thrust<br>SFC                            | W2                  | corrected W2        | reference recovery | kipac | <pre>xmach0=0.8,figure-0,</pre> | thetac=0.0, | <b>kend</b> | <pre>forebd: xmachx= 8.000E-</pre> | ptrcv: xmach0= 8.000E-              | cdaxi: xmach0= 8.000E-                                                 | clsuc: xmach0= 8.000E-              | *** error *** in progr<br>cdbld: xmach0= 8.000E- | : xmach0= 8.000E-                   | : xmach0= 8.000E-<br>: xmach0= 8.000E-                                  | : Xmachx= 8.000E-                  | IPAC Axisymmetric Inl |
| 829<br>830 | 331<br>331           | 833 | 335<br>835 | 336        | 337 | 828                 | 200                                        | 241                 | 342                                        | 343                 | 344<br>245          | 846<br>846              | 349<br>349                                   | 150                 | 151<br>152          | 54                 | 56    | 157                             | 69          | ۲<br>وو     | 1                                  | 63                                  | 65                                                                     | 66                                  | 67                                               | 69                                  | 70<br>71                                                                | 72                                 | 74 I                  |

•

| 75<br>76     | Flight Conditions               |                    |                        |           |
|--------------|---------------------------------|--------------------|------------------------|-----------|
| 22           |                                 |                    |                        |           |
| 78           | Mach number                     |                    | 8.000E-01              |           |
| 80<br>80     | altitude                        | (ft)               | 0.000E-01              |           |
| 81           |                                 |                    | ambient                | total     |
| 83<br>84     | pressure                        | (1bf/ft**2)        | <b>2.116E+03</b>       | 3.226E+03 |
| 85<br>86     | temperature<br>dymamic pressure | (R)<br>(lbf/ft**2) | 5.187E+02<br>9.481E+02 | 5.851E+02 |
| 87           | ajmante preserte                |                    |                        |           |
| 886          | Vehicle Effects                 |                    |                        |           |
| 9 0 0<br>0 0 | ML/M0                           |                    | 1.000E+00              |           |
| 91<br>92     | PTL/PT0<br>AL/A0                |                    | 1.000E+00<br>1.000E+00 |           |
| 93<br>94     | Inlet Mass Flow Ratios          |                    |                        |           |
| 95<br>96     |                                 |                    | 6 012E-01              |           |
| 97           | AOSPL/AC                        |                    | 3.9886-01              |           |
| 86           | AOBLD/AC                        |                    | 2.310E-09<br>6 012E-01 |           |
| 2 0<br>0 0   | AO/AC<br>AOBYP/AC               |                    | 0.000E-01              |           |
| 10           | AOENG/AC                        |                    | 6.012E-01              |           |
| 03           | Inlet Total Pressure Re         | coveries           |                        |           |
| 4 0<br>4 0   | PT2/PT0                         |                    | 9.490E-01              |           |
| 06           |                                 |                    |                        |           |
| 07           | PTL/PT0<br>THC/ FHC             |                    | 1.000E+00              |           |
| 8 G<br>0 0   | LTT/HTTY                        |                    | 1.000E+00              |           |
| 10           | PT2/PTTH                        |                    | 9.490E-01              |           |
|              | ртх/рту                         |                    | 1.000E+00              |           |
| 13           | Inlet Drag Breakdown            |                    |                        |           |
| 15<br>16     | AC                              | (ft**2)            | 1.000E+00              |           |
| 18           |                                 |                    | Ð                      | D (1bf)   |
| 19           | spillage                        |                    | 7.890E-02              | 7.480E+01 |

.

. .

-

.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        |                    |                                                                             | +00, alao= 1.000E+00,<br>-01,thetad= 3.060E+00,<br>+00,xlipth=-1.000E+00,<br>+00, cda= 4.333E-02,<br>-02,thetae= 3.811E+00,<br>-02, cdref= 0.000E-01,<br>+01,                                                      |                                              |                                  |            |            |                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------|------------|------------|---------------------------------------------|
| 855555<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                    |                                                                             | E+00, ptlpt0= 1.000E4<br>E+00, pt2pt0= 9.490E7<br>E+00, pthpt0= 1.000E4<br>E-01, ptlpt0= 1.000E4<br>E-01, ptlpt0= 1.000E4<br>E-02, cdspl= 4.013E7<br>E+01, w2= 3.525E4<br>E+01,                                    |                                              |                                  |            |            | εQ                                          |
| 10.052E-0<br>10.005E-0<br>11.0.000E-0<br>12.7.480E+0<br>11.0.000E-0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+0<br>11.7.480E+ | 1 -7.480E+0<br>1 -0.000E-0<br>1 4.107E+0<br>1 3.014E+0 | o                  |                                                                             | mlm0= 1.000<br>xmns= 1.360<br>shck=-1.000<br>ach1= 4.284<br>cls= 3.203<br>dtot= 4.013<br>w2c= 3.014<br>ceng= 3.014                                                                                                 |                                              | н                                | н          | total      | 3 2.699E+0.<br>2 5.560E+0.<br>2             |
| 1.109E-0<br>0.000E-0<br>0.000E-0<br>7.890E-0<br>0.000E-0<br>7.890E-0<br>7.890E-0<br>uninstalle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000E-0<br>0.000E-0<br>0.000E-0<br>3.014E+0           | 1.000E+0           |                                                                             |                                                                                                                                                                                                                    | ase                                          | б.000Е-0                         | 0.000E-0   | ambient    | 2.116E+0<br>5.187E+0<br>5.333E+0            |
| ę                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1bf)<br>(1bm/hr/1bf)<br>(1bm/s)<br>(1bm/s)            |                    |                                                                             | -01, xmach0= 6<br>-01, a0ac= 6<br>-01, athac=<br>-01, a0iac= 6<br>-01, a0iac= 6<br>-01, a0iac= 6<br>-01, a0enac= 6<br>-01, a0enac= 6                                                                               | let Example C                                |                                  | (ft)       |            | (lbf/ft**2)<br>(R)<br>(lbf/ft**2)           |
| bleed<br>bypass<br>bypass<br>cowl<br>total<br>reference<br>power setting<br>Engine Performance Dat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | net thrust<br>SFC<br>W2<br>corrected W2                | reference recovery | <pre>&amp;ipac xmach0=0.6,figure=0, xtrans=0.0, thetac=0.0, &amp;eend</pre> | <pre>forebd: xmachx= 6.000E ptrcv: xmach0= 6.000E xmach= 8.370E cdaxi: xmach0= 6.000E clsuc: xmach0= 6.000E clsuc: xmach0= 6.000E xmach0= 6.000E xmach0= 6.000E xmach0= 6.000E xmach0= 6.000E xmach0= 6.000E</pre> | IPAC Axisymmetric In                         | Filgue conditions<br>Mach number | altitude   |            | pressure<br>temperature<br>dynamic pressure |
| 922<br>922<br>925<br>926<br>928<br>928<br>928<br>928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                  |                    | 99999999999999999999999999999999999999                                      | 00000000000000000000000000000000000000                                                                                                                                                                             | 1000<br>1000<br>1004<br>1004<br>1004<br>1000 | 956                              | 959<br>959 | 961<br>962 | 963<br>964<br>965                           |

| 1.000E+00              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.000E+00<br>1.000E+00 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6.880E-01              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.120E-01              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6.880E-01              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.000E-01              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6.880E-01              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9.490E-01              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.000E+00              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.000E+00<br>9.490E-01 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.000E+00              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.000E+00              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ð                      | D (lbf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>4.013E-02</b>       | 2.140E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.000E-01              | 0.000E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.000E-01              | 0.000E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.000E-01              | 0.000E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4.013E-02              | 2.140E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.000E-01              | 0.000E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4.013E-02              | <b>2.140E+01</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| uninstalled            | installed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.000E-01              | -2.140E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| f) 0.000E-01           | -0.000E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3.014E+01              | 3.014E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| g                      | 1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+01<br>6.880E-01<br>6.880E-01<br>6.880E-01<br>6.880E-01<br>6.880E-01<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>0.000E+00<br>1.000E+00<br>1.000E+00<br>1.000E+00<br>0.000E+00<br>1.000E+00<br>1.000E+00<br>0.000E+00<br>1.000E+00<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01<br>0.000E-01 |

,

•

-

.

|                      |                                                                            | +00, ptlpt0= 1.000E+00, ala0= 1.000E+00,<br>+00, pt2pt0= 9.486E-01, thetad= 3.060E+00,<br>+00, pthpt0= 9.996E-01, xlipth=-1.000E+00,<br>-01, ptlpt0= 1.000E+00, cda= 0.000E-01,<br>-01, cdspl= 0.000E-01, cdref= 0.000E-01,<br>+01, w2= 3.144E+01, |                      |                   |              |              |         |                         |                  |                 |                  |                   |                        |      |           |           |           |                        |
|----------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------|--------------|--------------|---------|-------------------------|------------------|-----------------|------------------|-------------------|------------------------|------|-----------|-----------|-----------|------------------------|
|                      |                                                                            | m0= 1.000E<br>ns= 1.360E<br>ck=-1.000E<br>h1= 0.281E<br>h1= 0.281E<br>cf= 0.000E<br>cf= 3.014E                                                                                                                                                     |                      |                   |              |              | total   | 2.363E+03<br>E 2525-02  | 20+3000.0        |                 |                  |                   |                        |      |           |           |           |                        |
| 1.000E+00            |                                                                            | 000E-01, xml<br>204E-01, xm<br>933E-01,nish<br>204E-01,xmc<br>204E-01,xmc<br>204E-01, cdt                                                                                                                                                          | ase                  |                   | 4.000E-01    | 0.000E-01    | ambient | 2.116E+03<br>5 1075-03  | 2.370E+02        |                 | <b>1.000E+00</b> | 1.000E+00         |                        |      | 9.204E-01 | 0.000E-01 | 9.204E-01 | 0.000E-01<br>9.204E-01 |
|                      |                                                                            | -01, xmach0= 4<br>-01, adac= 5<br>-01, athac= 5<br>-01, adiac= 9<br>-01, adiac= 9<br>-01, adenac= 9                                                                                                                                                | let Example C        |                   |              | (ft)         |         | (1bf/ft**2)<br>(p)      | (1bf/ft**2)      |                 |                  |                   |                        |      |           |           |           |                        |
| reference recovery   | <pre>&amp;ipac xmach0=0.4,figure=0, xtrans=0.0, thetac=0.0, &amp;end</pre> | <pre>forebd: xmachx= 4.000E ptrcv: xmach0= 4.000E xmth= 8.370E cdaxi: xmach0= 4.000E : xmach0= 4.000E : xmach0= 4.000E : xmach0= 4.000E</pre>                                                                                                      | IPAC Axisymmetric In | Flight Conditions | Mach number  | altitude     |         | pressure<br>temperature | dynamic pressure | Vehicle Effects | ML/MO            | PTL/PT0<br>A1./A0 | Inlet Mass Flow Ratios |      | AUL/AC    | AOSED/AC  | A0/AC     | AOBYP/AC<br>AOENG/AC   |
| 1013<br>1014<br>1015 | 1016<br>1017<br>1018<br>1019<br>1020<br>1021                               | 1022<br>1022<br>1025<br>1025<br>1026<br>1028                                                                                                                                                                                                       | 1031                 | 1032<br>1033      | 1035<br>1035 | 1030<br>1037 | 1039    | 1041<br>1041            | 1043             | 1045            | 1047             | 1048<br>1049      | 1051                   | 1052 | 1054      | 1055      | 1056      | 1057<br>1058           |

| •         |                        |           |           |                  |                      |                  |         | 1         | 1         | 1         |           | 1                          | D                       |                     |                    | 1            |                    | -     |                                          |             |      | E+00,ptlpt0= 1.000E+00, ala0= 1.000E+( | E+00,pt2pt0= 9.223E-01,thetad= 3.060E+( |
|-----------|------------------------|-----------|-----------|------------------|----------------------|------------------|---------|-----------|-----------|-----------|-----------|----------------------------|-------------------------|---------------------|--------------------|--------------|--------------------|-------|------------------------------------------|-------------|------|----------------------------------------|-----------------------------------------|
|           |                        |           |           |                  |                      |                  | D (lbf) | 0.000E-0  | 0.000E-0  | 0.000E-0  | 0.000E-0  | 0.000E-0                   | installe                | 0.000E-0            | 3.144E+0           | 3.014E+0     |                    |       |                                          |             |      | .m0= 1.000                             | ms = 1.360                              |
| 9.486E-01 | 1.000E+00<br>1.000E+00 | 9.996E-01 | 9.490E-01 | <b>1.000E+00</b> |                      | <b>1.000E+00</b> | G       | 0.000E-01 | 0.000E-01 | 0.000E-01 | 0.000E-01 | 0.000E-01                  | uninstalled             | 0.000E-01           | 0.000E-01          | 3.014E+01    | 1.000E+00          |       |                                          |             |      | .000E-01, xml                          | .668E+00, XN<br>022E 01 242E            |
|           |                        |           |           |                  |                      | (£t**2)          |         |           |           |           |           |                            | rci.                    | (1bf)<br>(1b-//1bf) | (1bm/s)<br>(1bm/s) | (lbm/s)      |                    |       |                                          |             |      | -01, xmach0= 2.                        | -01, a0ac= 1.                           |
| PT2/PT0   | РТL/РТ0<br>РТ1/РТ1,    | LTT/HTT   | PT2/PTH   | РТХ/РТУ          | Inlet Drag Breakdown | AC               |         | spillage  | bunaga    | cowl      | total     | reference<br>nower setting | Engine Performance Data | net thrust          | W2<br>W2           | corrected W2 | reference recovery | kipac | <pre>xmach0=0.2,figure=0, xtrang_0</pre> | thetac=0.0, | kend | forebd: xmachx= 2.000E-                | ptrcv: xmach0= 2.000E-                  |

•

•

.

| 1105<br>1106<br>1107 | : xmach0= 2.000E<br>: xmach0= 2.000E<br>: xmachx= 2.000E | -01, a0iac= 1<br>-01,a0enac= 1<br>-01,a0enac= 1 | .668E+00, cdt<br>.668E+00, w<br>.668E+00, w2ce | ot= 0.000E-01,<br>2c= 3.014E+01,<br>ng= 3.014E+01, | cdspl= 0.000E-01,<br>w2= 2.848E+01, | cdref= 0.000E-01, |
|----------------------|----------------------------------------------------------|-------------------------------------------------|------------------------------------------------|----------------------------------------------------|-------------------------------------|-------------------|
| 1109<br>1109         | IPAC Axisymmetric In.                                    | let Example C                                   | аве                                            |                                                    |                                     |                   |
|                      | Flight Conditions                                        |                                                 |                                                |                                                    |                                     |                   |
| 1113                 | Mach number                                              |                                                 | 2.000E-01                                      |                                                    |                                     |                   |
| 1115<br>1115         | altitude                                                 | (ft)                                            | 0.000E-01                                      |                                                    |                                     |                   |
| 1117<br>1118         |                                                          |                                                 | ambient                                        | total                                              |                                     |                   |
|                      | pressure<br>temperature<br>dynamic pressure              | (lbf/ft**2)<br>(R)<br>(lbf/ft**2)               | 2.116E+03<br>5.187E+02<br>5.925E+01            | 2.176E+03<br>5.228E+02                             |                                     |                   |
| 1123                 | Vehicle Effects                                          |                                                 |                                                |                                                    |                                     |                   |
| 1125<br>1125<br>1126 | ML/MO<br>PTL/PTO<br>AL/AO                                |                                                 | 1.000E+00<br>1.000E+00<br>1.000E+00            |                                                    |                                     |                   |
| 1129                 | Inlet Mass Flow Ratios                                   |                                                 |                                                |                                                    |                                     |                   |
| 1131<br>1132<br>1133 | AOI/AC<br>AOSPL/AC<br>AORLD/AC                           |                                                 | 1.668E+00<br>-6.676E-01<br>0.000E-01           |                                                    |                                     |                   |
| 1134<br>1135<br>1136 | A0/AC<br>A0BYP/AC<br>A0ENG/AC                            |                                                 | 1.668E+00<br>1.668E+00<br>1.668E+00            |                                                    | Ţ                                   |                   |
| 1137<br>1138         | Inlet Total Pressure Re                                  | coveries                                        |                                                |                                                    |                                     |                   |
| 1140                 | PT2/PT0                                                  |                                                 | 9.223E-01                                      |                                                    |                                     |                   |
| 1142<br>1143         | РТ <b>Г/РТО</b><br>РТ1 /РТГ.                             |                                                 | 1.000E+00                                      |                                                    |                                     |                   |
| 1144                 | PTTH/PT1<br>PT2/PTTH                                     |                                                 | 9.490E-01                                      |                                                    |                                     |                   |
| 1140<br>1147         | PTX/PTY                                                  |                                                 | <b>1.000E+00</b>                               |                                                    |                                     |                   |
| 1149<br>1150         | Inlet Drag Breakdown                                     |                                                 |                                                |                                                    |                                     |                   |

| AC (ft+*2) 1.000E+00<br>CD D (lbf)<br>CD D (lbf)<br>splilage 0.000E-01 0.000E-01<br>bypass 0.000E-01 0.000E-01<br>bypass 0.000E-01 0.000E-01<br>cowl 0.000E-01 0.000E-01<br>power setting 0.000E-01 0.000E-01 0.000E-01<br>power setting 0.000E-01 0.000E-01 0.000E-01<br>power setting 0.000E-01 0.000E-01 0.000E-01<br>power setting 0.000E-01 0.000E-01 0.000E-01<br>prover smache= 1.000E-02, and 0.000E-01, and 0.000E-02, and 0.000E-02, and 0.000E-01, and 0.000E-02, and 0.                                                                                                                                    |                  |       |           |             |             |             |             |             |               |                        |                         |           |              |           |                    |       |                       |             |             |      | - 1.000E+00, alau= 1.000E+0      | = 8.60/E-U1, CNECAQE 3.000E+U<br>0 0000 01 01350+b-31 000010 |                                      | 0 000E 01 2dx2f= 0 000E-0 | = 0.0006-01, сцісі= 0.0006-0 |                                      |                       |                      |                   |             |           |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------|-----------|-------------|-------------|-------------|-------------|-------------|---------------|------------------------|-------------------------|-----------|--------------|-----------|--------------------|-------|-----------------------|-------------|-------------|------|----------------------------------|--------------------------------------------------------------|--------------------------------------|---------------------------|------------------------------|--------------------------------------|-----------------------|----------------------|-------------------|-------------|-----------|--|
| AC (ft.*2) 1.000E+00<br>CD I<br>CD I<br>spillage 0.000E-01 0<br>bypass 0.000E-01 0.000E-01 0<br>coul reference 0.000E-01 0.000E-02 0.000E-01 0.000E-02 0.000E-02 0.000E-02 0.000E-02 0.000E-02 0.000E-02 0.000E-02 0.000E-01 0.000E-02 0.000E-01 0.000E-01 0.000E-01 0.000E-01 0.000E-02 0.000E-01 0.000E-02 0.000E-01 0.000E-02 0.000E-01 0.000E-02 0.000E-01 0.000E-02 0.000E-02 0.000E-02 0.000E-02 0.000E-02 0.000E-02 0.000E-01 0.000E-02 0.000E-02 0.000E-02 0.000E-02 0.000E-02 0.000E-02 0.000E-01 0.000E-02 0.000E-02 0.000E-01 0.000E-02 0.000E-01 0.000E-02 0.000E-01 0.000E-02 0.000E-01 0.000E-02 0.000E-01 0.000E-02                                                                                                                                                                             |                  | (1bf) |           |             | 0.000E-01   | .000E-01    | .000E-01    |             | ).000E-01     | Installed              | 0.000E-01               | 2.848E+01 | 8.014E+01    |           |                    |       |                       |             |             |      | <pre>D= 1.000E+00, pt1pt0=</pre> | s= 1.360E+00, pt2pt0=<br>                                    | X=- I. UUUE+UU, prupru=<br>0.0000 01 | A= 0.000E-01,<br>         | C= 0.0006-01, Caspie<br>     | C= 3.014E+01, W2=<br>3= 3.014E+01,   |                       |                      |                   |             |           |  |
| AC (ft**2)<br>AC (ft**2)<br>spillage<br>bleed<br>bypass<br>cowl<br>total<br>reference<br>power setting<br>Engine Performance Data<br>net thrust (lbf)<br>sFC (lbm/hr/lbf<br>sFC (lbm/hr/lbf<br>sFC (lbm/s)<br>corrected W2 (lbm/s)<br>corrected W2 (lbm/s)<br>reference recovery<br>reference recovery<br>fipac<br>xmach0=0.01, figure=0,<br>xtrans=0.0<br>thetac=0.0,<br>thetac=0.0,<br>thetac=0.0,<br>thetac=0.0,<br>thetac=0,<br>thetac=0,<br>thetac=0,<br>thetac=0,<br>thetac=0.0,<br>fipure=0,<br>thetac=0.0,<br>thetac=0.0,<br>thetac=0.0,<br>thetac=0.0,<br>thetac=0.0,<br>thetac=0.0,<br>thetac=0.0,<br>thetac=0.0,<br>thetac=1.000E-02, aoiac=<br>: xmach0=1.000E-02, aoiac=<br>: xmach1=1.000E-02, aoiac=<br>: xmach1=1.000E-02, aoiac=<br>: xmach1=1.000E-02, aoiac=<br>: xmach1=1.000E-02, aoiac=<br>: xmach1=1.000E-02, aoiac=<br>: xmach | <b>1.000E+00</b> | CD    | 0.000E-01 | 0.000E-01 (   | uninstalled            | 0.000E-01               | 0.000E-01 | 3.014E+01    | 1 0005100 | 00+9000 T          |       |                       |             |             |      | 1.000E-02, xmlm                  | 3.039E+01, xmn                                               | 5.933E-01, nianc                     | 3.039E+01, cd             | 3.039E+01, CATO              | 3.039E+01, w2<br>3.039E+01.w2cen     |                       | Case                 |                   | 1.000E-02   | 0.000E-01 |  |
| AC<br>spillage<br>bleed<br>bypass<br>cowi<br>total<br>reference<br>power setting<br>reference Dat<br>net thrust<br>net thrust<br>sFC<br>corrected W2<br>reference recovery<br>reference recovery<br>krans=0.0, figure=0,<br>xtrans=0.0, figure=0,<br>xtrans=0.0, figure=1.000E<br>ptrcv: xmach0= 1.000E<br>ptrcv: thetac=0.0, figure=0, thetac=0.0, thetac=0.                                                                                                 | (ft**2)          |       |           |             |             |             |             |             |               | ď                      | (1bf)<br>(1tm /tm /1tf) | (lbm/s)   | (1bm/s)      |           |                    |       |                       |             |             |      | 1-02, xmach0=                    | 1-02, a0ac=                                                  | I-01, athac=                         | 1-02, a0iac=              | 1-02, a0iac=                 | s-02,a0enac=<br>s-02_a0enac=         |                       | let Example          |                   |             | (ft)      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AC               |       | spillage  | bleed       | bypass      | cowl        | total       | reference   | power setting | Engine Performance Dat | net thrust              | W2        | corrected W2 |           | reference recovery | neria | xmach0=0.01,fiqure=0, | xtrans=0.0, | thetac=0.0, | &end | forebd: xmachx= 1.000E           | ptrcv: xmach0= 1.000E                                        | xmth= 8.370E                         | : xmach0= 1.000E          | : xmach0= 1.000E             | : XMACH0= 1.000E<br>· YMACHY- 1 000E | 1000 · T - VIIDONIV : | IPAC Axisymmetric Ir | Flight Conditions | Mach number | altitude  |  |

-

•

|               |                         | 107773/371/                        |                         |                        |
|---------------|-------------------------|------------------------------------|-------------------------|------------------------|
| 1198          | temperature             | (LDL/LC**2)<br>(R)<br>(1166/64443) | Z. 1105+U3<br>5.187E+02 | 2.110E+03<br>5.187E+02 |
| 1200          | aynamic pressure        | (TDT/TC7)                          | TO-9707.T               |                        |
| 1201          | Vehicle Effects         |                                    |                         |                        |
| 1203<br>1203  | ML/MO                   |                                    | <b>1.000E+00</b>        |                        |
| 1204          | PTL/PT0                 |                                    | <b>1.000E+00</b>        |                        |
| 1205<br>1206  | AL/A0                   |                                    | <b>1.000E+00</b>        |                        |
| 1207          | Inlet Mass Flow Ratios  |                                    |                         |                        |
| 1208          |                         |                                    |                         |                        |
| 1209          | A01/AC                  |                                    | 3.039E+01               |                        |
| 1210          | AOSPL/AC                |                                    | -2.939E+01              |                        |
| 1212          |                         |                                    | 0.000E-01<br>3.039E+01  |                        |
| 1213          | AOBYP/AC                |                                    | 0.000E-01               |                        |
| 1214          | AOENG/AC                |                                    | 3.039E+01               |                        |
| 21216<br>1216 | Inlet Total Pressure R  | ecoveri es                         |                         |                        |
| 1217          |                         | 2)11)                              |                         |                        |
| 1218          | PT2/PT0                 |                                    | 8.607E-01               |                        |
| 1219          |                         |                                    |                         |                        |
| 1220          | PTL/PT0                 |                                    | 1.000E+00               |                        |
|               | гшц/ лшшц<br>Птд/ттд    |                                    | и обот от               |                        |
| 1223<br>1223  | HLL4/ LL4               |                                    | 9.490E-01               |                        |
| 1224          |                         |                                    |                         |                        |
| 1225          | PTx/PTY                 |                                    | <b>1.000E+00</b>        |                        |
| 1226          |                         |                                    |                         |                        |
| 1227          | Inlet Drag Breakdown    |                                    |                         |                        |
| 1228          | ί<br>μ                  | (6+++)                             | 1 0005100               |                        |
| 1230          | 20                      | 17                                 | T. 00044000             |                        |
| 1231          |                         |                                    | 8                       | D (1bf)                |
| 1232          |                         |                                    |                         |                        |
| 1233          | spillage                |                                    | 0.000E-01               | 0.000E-01              |
| 1234          | bleed                   |                                    | 0.000E-01               | 0.000E-01              |
| 1235          | pypass                  |                                    | 0.000E-01               | 0.000E-01              |
| 1236<br>1237  |                         |                                    | 0.000E-01               | 0.000E-01              |
| 1238          | reference               |                                    | 0.0008-01               |                        |
| 1239          | power setting           |                                    | 0.000E-01               | 0.000E-01              |
| 1240          | 1                       |                                    |                         |                        |
| 1241          | Engine Performance Data | æ                                  | uninstalled             | installed              |
| 1242          |                         |                                    |                         |                        |

· •

| 1243                 | net thrust         | (1bf)        | 0.000E-01 | 0.000E-01 |
|----------------------|--------------------|--------------|-----------|-----------|
| 1244                 | SFC                | (1bm/hr/1bf) | 0.000E-01 | 0.000E-01 |
| 1245                 | W2                 | (1bm/s)      | 0.000E-01 | 2.595E+01 |
| 1245                 | corrected W2       | (1bm/s)      | 3.014E+01 | 3.014E+01 |
| 1240<br>1248<br>1250 | reference recovery |              | 1.000E+00 |           |

. .

## Appendix IV











Total Pressure Recoveries















Figure IV.5 Corrected Airflows

| Ţ                 | Ceci:3           |                             |                |                          |                |                    |            |             |                      |                        |                                 |          |               |                      |                |
|-------------------|------------------|-----------------------------|----------------|--------------------------|----------------|--------------------|------------|-------------|----------------------|------------------------|---------------------------------|----------|---------------|----------------------|----------------|
| 4 01 17           | title=<br>acho=1 | '2-D Inlet                  | : Examp.       | le Case',<br>0 20 iont-  | -<br>-<br>-    | r                  |            |             |                      |                        |                                 |          |               |                      |                |
| ) 4 L             | xmach0           | -=5.0,alt=-                 | -1000,1        | gas=1,                   | +              | •                  |            |             |                      |                        |                                 |          |               |                      |                |
| וטח               | ramps=           | , ac=1.0, ar<br>3, theta=5, | c≡1,<br>5,5,rl | eng=0,0,0,0,             |                |                    |            |             |                      |                        |                                 |          |               |                      |                |
| - 8               | rclip=           | 0,ycow1=1,<br>0.0,thetac    | 1≡-5.          |                          |                |                    |            |             |                      |                        |                                 |          |               |                      |                |
| 6                 | cowls=           | 2, cowlth=7                 | 7, -7, 00      | wlx1=2,6,                |                |                    |            |             |                      |                        |                                 |          |               |                      |                |
| 9 F               | a2ac=0           | .6,xldd2=6                  | 5.5, hub       | tip=0.3,c]<br>hrk1       | .off=0         | .6,                |            |             |                      |                        |                                 |          |               |                      |                |
| 17                | athac=           | -1,                         | 2411/2.5       | 17                       |                |                    |            |             |                      |                        |                                 |          |               |                      |                |
| 13                | w2cor=           | -1,                         |                |                          |                |                    |            |             |                      |                        |                                 |          |               |                      |                |
| 14<br>154         | bleed=<br>&end   | -1,pblpt0=                  | ±-1,           |                          |                |                    |            |             |                      |                        |                                 |          |               |                      |                |
| 16                |                  |                             |                |                          |                |                    |            |             |                      |                        |                                 |          |               |                      |                |
| 17                | forebd:          | xmachx= 5                   | 5.000E+        | 00, xmach0=              | = 5.00         | 0E+00,             | xmlm0=     | н<br>г      | 00E+00               | ,ptlpt0=               | <b>1.000E</b>                   | ;00+5    | ala0=         | 1.000                | E+00,          |
| 18                | cd2d:            | xmach0= 5                   | 5.000E+        | 00, adiac=               | . 9.98         | 5E-01,             | xmach1=    | ς<br>       | 594E+00              | , pt1pt0=              | 9.528E                          | 8-01,    | cda=          | 2.723                | E-04,          |
| р с<br>С          | ca2a:            | xmach0= 5                   | - 000E+        | 00, a0iac=               | 79.9.          | 5E-01,<br>5E-01,   | xmach1=    | 4.0         | 136E-01              | , ptlpt0=              | 1.716E                          | -01,     | cda=          | 1.604<br>2.202       | Е-03,<br>В-03, |
| ) r<br>v r        | burcy:           |                             |                | uu, auac=<br>oo othoc=   | 24.0           | 10-11,<br>10-11,   | -tototo    | 9 U<br>14 U |                      | ,ptzptu=<br>           | 170T.0                          |          | necau=<br>1 4 | 2011<br>2011<br>2011 | 100'E          |
| 77                | cd2d :           | xmach0= 5                   | 1.23054        | oo, aniac=<br>oo, aniac= | 14.4           | 18-07,<br>58-01,   | xmarb1=    |             | 0012400              | , pumpuu=<br>. ntlnt0= | 9 528F                          | X 10-2   | =uodrr        | 4.00 Y               | 西+00,<br>西-04, |
| 5 I<br>1 0<br>1 0 | cdwave:          | xmach0= 5                   | · · 000E+      | 00, cdwav=               | 1.74           | 6E-02.             |            | ,<br>,      |                      | ークンダーンダー               |                                 |          | 555           |                      | 1              |
| 24                | cdbld:           | xmach0= 5                   | 5.000E+        | 00, a0iac=               | 9.98           | 5E-01,             | bleed=     |             | 375E-01              | , cdbld=               | <b>1.477</b> E                  | 3-01, p. | tblpe=        | 2.408                | E+01,          |
| 25                | ••               | xmach0= 5                   | 5.000E+        | 00, a0iac=               | 9.98           | 5E-01,             | bleed=     |             | 575E-01              | , cdbld=               | 1.477E                          | 3-01,    | ı             |                      | •              |
| 26                | ••               | xmach0= 5                   | 5.000E+        | 00, a0iac=               | 9.98           | 5E-01,             | cdtot=     |             | 80E-01               | , cdspl=               | 2.723E                          | 3-04,    | cdref=        | 1.746                | E-02,          |
| 27                | calimp:          | xmachx= 5                   | +3000 ·        | 00, gama=                | - 1.40         | 0E+00,             | pratio=    | ດ.<br>ເ     | 074E-01              | , tratio=              | 1.066E                          | s+00, a: | ratio=        | 1.117                | E+00'          |
| 0 0<br>7 7        | •• •             | xmachv= 5                   | - 000E+        | 00.a0enac≡<br>00.a0enac≡ | . 8.41<br>8.41 | 0E-01,             | w2ceng=    | 20          | 100+3881<br>100+3881 | = 7 M ,                | <b>H</b> 00 <b>T</b> . <b>T</b> | (TOT)    |               |                      |                |
| 30                | •                |                             |                |                          | 1 F . O        | 1 - 0 - 20         | - 61100.94 | 4           | 0019000              |                        |                                 |          |               |                      |                |
| 31                | IPAC             | 2-D Inlet                   | Exampl         | e Case                   |                |                    |            |             |                      |                        |                                 |          |               |                      |                |
| 3 3<br>3 3<br>3 3 | Flight (         | Conditions                  |                |                          |                |                    |            |             |                      |                        |                                 |          |               |                      |                |
| 34                | )                |                             |                |                          |                |                    |            |             |                      |                        |                                 |          |               |                      |                |
| ы<br>С            |                  | Mach nu                     | umber          |                          |                | 5.000E             | 00+        |             |                      |                        |                                 |          |               |                      |                |
| 3 0<br>2 0        |                  | alti                        | tude           | (ft)                     |                | 8.047E             | +04        |             |                      |                        |                                 | •        |               |                      |                |
| 38                |                  |                             |                |                          |                | <br> <br> <br>     | 1          |             |                      |                        |                                 |          |               |                      |                |
| 39                |                  |                             |                |                          |                | ambie              | nt         | tota        | L                    |                        |                                 |          |               |                      |                |
| - C               |                  |                             | 0.55           | (175/241)                | -              |                    |            | 10 - 0      |                      |                        |                                 |          |               |                      |                |
| 47<br>42          |                  | pres<br>tempera             | ssure          | (LDI/IC**2<br>(R)        |                | З, 979E<br>3, 979E | +01 3.     | 310E        | +04                  |                        |                                 |          |               |                      |                |
| 43                | dy               | namic pres                  | Bure           | (1bf/ft**2               | -              | 9.935E             | +02        |             |                      |                        |                                 |          |               |                      |                |
| 4 I<br>7 I        |                  |                             |                |                          |                |                    |            |             |                      |                        |                                 |          |               |                      |                |
| 46                | ACIITCTE         | ELLECUS                     |                |                          |                |                    |            |             |                      |                        |                                 |          |               |                      |                |

•

|                                     |                        |                        |            |                        |                         |           |                                                  |                     |                      |           | D (1bf) | 2.706E-01<br>1 467E+02 | 0.000E-01       | 1.734E+01<br>1.643E+02 | <b>1.734E+01</b> | 1.470E+02        | installed               | -1.643E+02 | 1.100E+01               | <b>2.888E+00</b> |                    |
|-------------------------------------|------------------------|------------------------|------------|------------------------|-------------------------|-----------|--------------------------------------------------|---------------------|----------------------|-----------|---------|------------------------|-----------------|------------------------|------------------|------------------|-------------------------|------------|-------------------------|------------------|--------------------|
| 1.000E+00<br>1.000E+00<br>1.000E+00 |                        | 9.985E-01<br>1.457E-03 | 8.410E-01  | 0.000E-01<br>8.410E-01 |                         | 5.151E-01 | 1.000E+00<br>9.528E-01<br>8.535E-01<br>6.335E-01 | 7.209E-01           |                      | 1.000E+00 | Ð       | 2.723E-04              | 0.000E-01       | 1.746E-02<br>1.654E-01 | <b>1.746E-02</b> | <b>1.480E-01</b> | uninstalled             | 0.000E-01  | 0.000E-01               | 2.888E+00        | 5.126E-01          |
|                                     |                        |                        |            |                        | ecoveries               |           |                                                  |                     |                      | (ft**2)   |         |                        |                 |                        |                  |                  | ď                       | (1bf)      | (1Dm/nr/1D1)<br>(1Dm/s) | (lbm/s)          |                    |
| ML/MO<br>PTL/PTO<br>AL/AO           | Inlet Mass Flow Ratios | AOI/AC<br>AOSPL/AC     |            | AOBYP/AC<br>AOENG/AC   | Inlet Total Pressure Re | PT2/PT0   | PTL/PTO<br>PT1/PTL<br>PTTH/PT1<br>PT2/PTTH       | PTx/PTY             | Inlet Drag Breakdown | AC        |         | spillage<br>blood      | breed<br>bypass | cowl<br>total          | reference        | power setting    | Engine Performance Date | net thrust | SFC<br>W2               | corrected W2     | reference recovery |
| 4441<br>C 8 6 0                     | 2 T C                  | 2 62 72<br>7 67 72     | 2 Q<br>2 Q | 53<br>58               | 0 0 0<br>0 0 0          | 2 7 F     | 6654<br>6651<br>70                               | 6 8<br>9 6 6<br>6 6 | 225                  | 100       | 4 C C   | 0/1                    | 8/              | 80<br>81               | 82               | 83               | * 10 V                  | 87<br>87   | 8 8<br>8 8              | 90               | 91<br>92           |

٠

- •

-

•

| Inlet Flow Properties                |                         | free<br>stream                                                             | inlet<br>local                                                             | cowl<br>lip      | throat           | engine<br>face  |
|--------------------------------------|-------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------|------------------|-----------------|
| station                              |                         | 0                                                                          | ц                                                                          | Ч                | ΗT               | 7               |
| flow area                            | (ft**2)                 | 9.985E-01                                                                  | 9.985E-01                                                                  | 3.406E-01        | 4.411E-02        | 6.000E-0        |
| Mach number                          |                         | 5.000E+00                                                                  | 5.000E+00                                                                  | <b>3.694E+00</b> | <b>1.296E+00</b> | 5.546E-0        |
| pressure                             | (lbf/ft**2)             | 5.677E+01                                                                  | 5.677E+01                                                                  | 2.858E+02        | 8.868E+03        | 1.544E+0        |
| temperature                          | (R)                     | З.979Е+02                                                                  | 3.979E+02                                                                  | 6.403E+02        | 1.788E+03        | <b>2.386E+0</b> |
| density                              | (slg/ft**3)             | 8.313E-05                                                                  | 8.313E-05                                                                  | 2.601E-04        | 2.891E-03        | 3.770E-0        |
| velocity                             | (ft/s)                  | <b>4.889E+03</b>                                                           | <b>4.889E+03</b>                                                           | 4.582E+03        | 2.685E+03        | 1.328E+0        |
| total pressure                       | (lbf/ft**2)             | 3.310E+04                                                                  | 3.310E+04                                                                  | 3.154E+04        | 2.692E+04        | 1.705E+0        |
| total temperature                    | (R)                     | 2.240E+03                                                                  | 2.240E+03                                                                  | <b>2.240E+03</b> | 2.240E+03        | 2.240E+0        |
| weight flow                          | (1bm/s)                 | <b>1.308E+01</b>                                                           | 1.308E+01                                                                  | 1.306E+01        | 1.100E+01        | <b>1.100E+0</b> |
| corrected weight flow                | (lbm/s)                 | <b>1.737E+00</b>                                                           | 1.737E+00                                                                  | 1.820E+00        | <b>1.796E+00</b> | 2.835E+0        |
| Geometry Data for 2-D                | Inlet                   |                                                                            |                                                                            |                  |                  |                 |
| inlet capture, AC<br>width<br>height | (ft**2)<br>(ft)<br>(ft) | 1.000E+00<br>1.000E+00<br>1.000E+00                                        |                                                                            |                  |                  |                 |
| engine face, A2<br>diameter<br>H/T   | (ft*2)<br>(ft)          | 6.000E-01<br>9.162E-01<br>3.000E-01                                        |                                                                            |                  |                  |                 |
| Figure Data for Inlet                | Geometry                |                                                                            |                                                                            |                  |                  |                 |
| internal cowl surface                | (ft)                    | x                                                                          | Y                                                                          |                  |                  |                 |
|                                      |                         | 3.715E+00<br>5.424E+00<br>5.424E+00<br>5.738E+00<br>6.051E+00<br>6.365E+00 | 1.000E+00<br>1.150E+00<br>1.150E+00<br>1.149E+00<br>1.149E+00<br>1.147E+00 |                  |                  |                 |

٠

| 001           |            |      |         |         | E ETREADO        | 1.1398+00        |
|---------------|------------|------|---------|---------|------------------|------------------|
|               |            |      |         |         | COLUCION 2       | 1 134E+00        |
| ) r<br>r<br>r |            |      |         |         | 7.3058+00        | 1.128E+00        |
| 147           |            |      |         |         | 7.619E+00        | 1.121E+00        |
| 143           |            |      |         |         | 7.932E+00        | 1.115E+00        |
| 144           |            |      |         |         | 8.245E+00        | <b>1.107E+00</b> |
| 145           |            |      |         |         | 8.559E+00        | <b>1.100E+00</b> |
| 146           |            |      |         |         | 8.872E+00        | <b>1.093E+00</b> |
| 147           |            |      |         |         | 9.186E+00        | <b>1.086E+00</b> |
| 148           |            |      |         |         | 9.499E+00        | <b>1.080E+00</b> |
| 149           |            |      |         |         | 9.813E+00        | <b>1.074E+00</b> |
| 150           |            |      |         |         | <b>1.013E+01</b> | <b>1.069E+00</b> |
| 151           |            |      |         |         | 1.044E+01        | <b>1.064E+00</b> |
| 152           |            |      |         |         | <b>1.075E+01</b> | <b>1.061E+00</b> |
| 153           |            |      |         |         | 1.107E+01        | 1.059E+00        |
| 154           |            |      |         |         | 1.138E+01        | <b>1.058E+00</b> |
| 155           | 1          | [    |         | ( + + ) | X                | >                |
| 157           | CALCELLIAL |      | SULLAND | (77)    | •                | •                |
| 158           |            |      |         |         | <b>3.715E+00</b> | <b>1.000E+00</b> |
| 159           |            |      |         |         | 5.715E+00        | <b>1.246E+00</b> |
| 160           |            |      |         |         | 1.172E+01        | <b>1.246E+00</b> |
| 161           |            |      |         |         |                  | -                |
| 162           | 2-D        | ramp | surface | (ft)    | X                | Х                |
| 163           |            |      |         |         |                  | 10 8000 0        |
| 164           |            |      |         |         | 0.000E-01        | TO-3000.0        |
| 165           |            |      |         |         | L.494E+00        | TO-9/09.T        |
| 166           |            |      |         |         | Z.350E+00        | 2.816E-UL        |
| 167           |            |      |         |         | 5.4245+00        | 00+990T.T        |
| 168           |            |      |         |         | 5.424E+00        | 1.105E+00        |
| 169           |            |      |         |         | 5.738E+00        | 1.098E+00        |
| 170           |            |      |         |         | 6.051E+00        | 1.076E+00        |
| 171           |            |      |         |         | 6.365E+00        | 1.041E+00        |
| 172           |            |      |         |         | 6.678E+00        | 9.953E-01        |
| 173           |            |      |         |         | 6.992E+00        | 9.404E-01        |
| 174           |            |      |         |         | 7.305E+00        | 8.779E-01        |
| 175           |            |      |         |         | 7.619E+00        | 8.094E-01        |
| 176           |            |      |         |         | 7.932E+00        | 7.368E-01        |
| 177           |            |      |         |         | 8.245E+00        | 6.617E-01        |
| 178           |            |      |         |         | 8.559E+00        | 5.857E-01        |
| 179           |            |      |         |         | <b>8.872E+00</b> | 5.105E-01        |
| 180           |            |      |         |         | 9.186E+00        | 4.379E-01        |
| 181           |            |      |         |         | 9.499E+00        | 3.695E-01        |
| 182           |            |      |         |         | <b>9.813E+00</b> | 3.069E-01        |
| 183           |            |      |         |         | 1.013E+01        | 2.520E-01        |
| 184           |            |      |         |         | 1.044E+01        | 2.064E-01        |

-

|                                              |                                                                                                                                                           |                                                                                                                                                      | E+00, ptlpt0= 1.000E+00, ala0= 1.000E+00,<br>E+00, ptlpt0= 9.753E-01, cda= 2.687E-02,<br>E-01, ptlpt0= 3.010E-01, cda= 2.791E-02,<br>E+00, ptlpt0= 6.427E-01, thetad= 3.069E+00,<br>E+00, ptlpt0= 8.978E-01, xlipth= 1.494E+00,<br>E+00, ptlpt0= 9.753E-01, cda= 2.687E-02,<br>E-01, cdbld= 9.915E-02, ptblpe= 8.449E+00,<br>E-01, cdspl= 2.687E-02, cdref= 2.061E-02,<br>E-01, cdspl= 2.687E-02, cdref= 2.061E-02,<br>E-01, cdspl= 2.687E-02, cdref= 2.061E-02,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -01 1.717E-0<br>-01 1.496E-0<br>-01 1.419E-0 | Y<br>-01 -4.626E-0<br>-01 -4.647E-0<br>-01 -4.709E-0<br>-01 -4.9476-0<br>-01 -5.117E-0<br>-01 -5.313E-0<br>-01 -5.30E-0<br>-01 -5.761E-0<br>-01 -5.000E-0 | 01 -6.239E-0<br>-01 -6.239E-0<br>-01 -6.470E-0<br>-01 -6.687E-0<br>-01 -7.053E-0<br>-01 -7.190E-0<br>-01 -7.291E-0<br>-01 -7.374E-0<br>-01 -7.374E-0 | <pre>xmlm0= 1.000 mach1= 3.072 mach1= 4.705 xmms= 1.800 ishck= 4.000 mach1= 3.072 mach1= 1.200 bleed= 1.200 bleed= 1.200 cdtot= 1.200 ration= 9.500</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.075E+<br>1.107E+<br>1.138E+                | X<br>1.1366<br>1.13367<br>1.13367<br>1.13367<br>1.12367<br>1.12567<br>1.12567<br>1.12567                                                                  | 1.1246+<br>1.1256+<br>1.1256+<br>1.1266+<br>1.1316+<br>1.1336+<br>1.1386+<br>1.1386+                                                                 | ,<br>4.000E+00,<br>8.215E-01,X<br>8.207E-01,X<br>7.015E-01,X<br>7.709E-01,X<br>8.215E-01,X<br>8.215E-01,X<br>8.215E-01,X<br>8.215E-01,0<br>1.4007+00,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                              | ft)                                                                                                                                                       |                                                                                                                                                      | <pre>t=1,1,0,C t=1,1,0,C t=1,1,0,C t=0, a0iac= t=0, athac= t=0, at</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              | pinner (                                                                                                                                                  |                                                                                                                                                      | <pre>lrte=0, iou<br/>lth=-1,<br/>2=-1,<br/>4.000E+0<br/>4.000E+0<br/>4.000E+0<br/>4.000E+0<br/>4.000E+0<br/>4.000E+0<br/>4.000E+0<br/>4.000E+0<br/>4.000E+0<br/>4.000E+0</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                              | e fa<br>ca<br>g                                                                                                                                           |                                                                                                                                                      | <pre>=4.0,figu<br/>1.3,xlipt<br/>5.5,4.4,<br/>5,5,4.4,<br/>.8,<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0=<br/>xmach0&gt;<br/>xmach0&gt;<br/>xmach0=<br/>xmach0=<br/>xmach0=</pre>                                                                                                                                                                                                                                                                                                                                                   |
|                                              | engin                                                                                                                                                     |                                                                                                                                                      | <pre>&amp;ipac<br/>xmach0<br/>xmth=-<br/>bypass:<br/>theta=!<br/>xmns=1<br/>&amp;end<br/>forebd:<br/>cd2d:<br/>cd2d:<br/>ptrcv:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d:<br/>cd2d</pre> |
| 185<br>186<br>187<br>188                     | 189<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998                                                                                               | 201<br>202<br>203<br>206<br>206<br>210<br>2208<br>210<br>2208<br>2208<br>2209<br>2209<br>2209<br>2209<br>2209<br>220                                 | 22222222222222222222222222222222222222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

,

.

-

-

| : xmachx= 4.000E                            |                                   |                                     |                        |
|---------------------------------------------|-----------------------------------|-------------------------------------|------------------------|
| IPAC 2-D Inlet Examp                        | le Case                           |                                     |                        |
| Flight Conditions                           |                                   |                                     |                        |
| Mach number                                 |                                   | <b>4</b> .000E+00                   |                        |
| altitude                                    | (ft)                              | 7.125E+04                           |                        |
|                                             |                                   | ambient                             | total                  |
| pressure<br>temperature<br>dynamic pressure | (lbf/ft**2)<br>(R)<br>(lbf/ft**2) | 8.839E+01<br>3.929E+02<br>9.899E+02 | 1.389E+04<br>1.598E+03 |
| Vehicle Effects                             |                                   |                                     |                        |
| OM/IM                                       |                                   | 1.000E+00                           |                        |
| AL/A0                                       |                                   | 1.000E+00                           |                        |
| Inlet Mass Flow Ratios                      |                                   |                                     |                        |
| A01/AC                                      |                                   | 8.215E-01                           |                        |
| AOSPL/AC                                    |                                   | 1.785E-01<br>1 200F-01              |                        |
| AUBLU/AC<br>A0/AC                           |                                   | 7.015E-01                           |                        |
| AOBYP/AC                                    |                                   | 1.450E-01                           |                        |
| A0ENG/AC                                    |                                   | 5.566E-01                           |                        |
| Inlet Total Pressure R                      | ecoveries                         |                                     |                        |
| PT2/PT0                                     |                                   | 6.427E-01                           |                        |
|                                             |                                   | 1 0008+00                           |                        |
| <u>ЕТШ/ЕТО</u><br>РТ1 / РТ1,                |                                   | 9.753E-01                           |                        |
| LTT/TTT                                     |                                   | 9.205E-01                           |                        |
| PT2/PTTH                                    |                                   | 7.159E-01                           |                        |
| PTX/PTY                                     |                                   | <b>B.127E-01</b>                    |                        |
| Inlet Drag Breakdown                        |                                   |                                     | · ·                    |

•

.

,

| 277<br>278 |            | AC             | (ft**2)      | 1.000E+00               |                        |            |                    |           |                   |
|------------|------------|----------------|--------------|-------------------------|------------------------|------------|--------------------|-----------|-------------------|
| 279<br>280 |            |                |              | Ð                       | D (1bf)                |            |                    |           |                   |
| 281        |            |                |              |                         |                        |            |                    |           |                   |
| 282        |            | spillage       |              | 2.687E-02               | <b>2.660E+01</b>       |            |                    |           |                   |
| 283        |            | bleed          |              | 9.915E-02               | <b>9.815E+01</b>       |            |                    |           |                   |
| 284        |            | bypass         |              | 1.178E-01               | <b>1.166E+02</b>       |            |                    |           |                   |
| 285        |            | cowl           |              | 2.061E-02               | 2.040E+01              |            |                    |           |                   |
| 286        |            | total          |              | 2.644E-01               | <b>2.618E+02</b>       |            |                    |           |                   |
| 287        |            | reference      |              | 2.061E-02               | 2.040E+01              |            |                    |           |                   |
| 288        | ođ         | ower setting   |              | 2.438E-01               | <b>2.414E+02</b>       |            |                    |           |                   |
| 289        |            |                |              |                         |                        |            |                    |           |                   |
| 290        | Engine Per | formance Data  | e            | uninstalled             | installed              |            |                    |           |                   |
| 291        |            |                |              |                         |                        |            |                    |           |                   |
| 292        |            | net thrust     | (1bf)        | 0.000E-01               | -2.618E+02             |            |                    |           |                   |
| 293        |            | SFC            | (lbm/hr/lbf  | ) 0.000E-01             | -0.000E-01             |            |                    |           |                   |
| 294        |            | W2             | (1  bm/s)    | 0.000E-01               | <b>9.122E+00</b>       |            |                    |           |                   |
| 295<br>201 | U          | corrected W2   | (lbm/s)      | 3.839E+00               | 3.839E+00              |            |                    |           |                   |
| 296        |            |                |              | 10 1107 7               |                        |            |                    |           |                   |
| 1000       | rereren    | ice recovery   |              | Т0-ДСК9.9               |                        |            |                    |           |                   |
| 000        |            |                |              |                         |                        |            |                    |           |                   |
| 000        | £ipac      |                |              |                         |                        |            |                    |           |                   |
| 301        | xmach0=3.  | 0,figure=0,    |              |                         |                        |            |                    |           |                   |
| 302        | theta=5,5  | 5,2.9,         |              |                         |                        |            |                    |           |                   |
| 303        | xmns=1.6,  |                |              |                         |                        |            |                    |           |                   |
| 304        | &end       |                |              |                         |                        |            |                    |           |                   |
| 305        |            |                |              |                         |                        |            |                    |           |                   |
| 306        | forebd: xm | achx= 3.000E.  | +00, xmach0= | 3.000E+00, xm           | <b>lm0= 1.000E+0</b> ( | ),ptlpt0=  | <b>1.000E+00</b> , | ala0= 1   | <b>1.000E+00,</b> |
| 307        | cd2d: xm   | ach0= 3.000E-  | +00, a0iac=  | 6.905E-01, xma          | ch1= 2.399E+0(         | ),pt1pt0=  | 9.897E-01,         | cda=      | 5.196E-02,        |
| 308        | cd2d: xm   | nach0= 3.000E- | +00, a0iac=  | 6.898E-01, xma          | ch1= 5.225E-01         | L, pt1pt0= | 5.351E-01,         | cda=      | 5.271E-02,        |
| 309        | ptrcv: xm  | nach0= 3.000E  | +00, a0ac=   | 6.080E-01, xu           | mns= 1.600E+0(         | ),pt2pt0=  | 7.876E-01,         | thetad= 1 | 2.483E+00,        |
| 310        |            | xmth= 1.314E   | +00, athac=  | 1.598E-01, nis)         | hck= 3.000E+0(         | 0,pthpt0=  | 9.637E-01,         | xlipth= 1 | 1.377E+00,        |
| 311        | cd2d: xm   | nach0= 3.000E- | +00, a0iac=  | 6.905E-01, xma          | ch1= 2.399E+0(         | ), ptlpt0= | 9.897E-01.         | cda=      | 5.196E-02,        |
| 312        | cdwave: xm | ach0= 3.000E4  | +00, cdwav=  | 2.632E-02,              |                        |            |                    |           |                   |
| 313        | cdbld: xm  | ach0= 3.000E4  | +00, a0iac=  | 6.905E-01, bl           | eed= 8.250E-02         | 2, cdbld=  | 6.451E-02,]        | ptblpe= 1 | 2.782E+00,        |
| 314        | шх :       | ach0= 3.000E+  | +00, a0iac=  | 6.905E-01, bl           | eed= 8.250E-02         | 2, cdbld=  | 6.451E-02,         | ł         |                   |
| 315        |            | ach0= 3.000E+  | +00, a0iac=  | 6.905E-01, cd           | tot= 1.165E-01         | l, cdspl=  | 5.196E-02,         | cdref= 2  | 2.632E-02,        |
| 316        | calimp: xm | achx= 3.000E+  | +00, gama=   | <b>1.400E+00, pra</b> t | tio= 9.936E-01         | l, tratio= | 1.009E+00,         | aratio= 1 | 1.007E+00,        |
| 317        | cdbyp: xm  | ach0= 3.000E4  | +00, aŭiac=  | 6.905E-01, byp;         | ass= 2.794E-01         | L, cdbyp=  | 1.792E-01,1        | ptbppe= ] | 1.019E+01,        |
| 318        | шХ :<br>-  | ach0= 3.000E+  | +00, a0iac=  | 6.905E-01, cdi          | tot= 3.220E-01         | L, pt2pt0= | 7.876E-01,         | 1         |                   |
| 319        | шх :       | ach0= 3.000E+  | +00, a0enac= | 3.286E-01, 1            | w2c= 4.834E+0(         | ), w2=     | 7.172E+00,         |           |                   |
| 320        | шХ :       | achx= 3.000E   | +00, a0enac= | 3.286E-01, w2c          | eng= 4.834E+0(         | ,          |                    |           |                   |
| 321        |            |                | ;            |                         |                        |            |                    |           |                   |
| 322        | IPAC 2-D   | ) Inlet Examp  | le Case      |                         |                        |            |                    |           |                   |

•

|                   |             |           | total   | 5.780E+03   |                                         |                         |                  |                        |                        |           |            |           |           |                        |     |                        |                   |     |                        |           |           |           |                  |                      |     |                  | D (1bf)    |     | <b>11101101</b> |
|-------------------|-------------|-----------|---------|-------------|-----------------------------------------|-------------------------|------------------|------------------------|------------------------|-----------|------------|-----------|-----------|------------------------|-----|------------------------|-------------------|-----|------------------------|-----------|-----------|-----------|------------------|----------------------|-----|------------------|------------|-----|-----------------|
|                   | 3.000E+00   | 5.922E+04 | ambient | 1.563E+02   | 9.849E+02                               |                         | <b>1.000E+00</b> | 1.000E+00<br>1.000E+00 |                        | 6.905E-01 | 3.095E-01  | 8.250E-02 | 6.080E-01 | 2./345-01<br>3.286E-01 |     |                        | 7.876E-01         |     | L.UUUE+UU<br>9.897E-01 | 9.737E-01 | 8.1726-01 | 8 957F-01 | TO-3766.0        |                      |     | <b>1.000E+00</b> | 8          |     | 5.196E-U2       |
|                   |             | (ft)      |         | (1bf/ft**2) | (K)<br>(lbf/ft**2)                      |                         |                  |                        |                        |           |            |           |           |                        |     | SCOVELLES              |                   |     |                        |           |           |           |                  |                      |     | (ft**2)          |            |     |                 |
| Flight Conditions | Mach number | altitude  |         | pressure    | temperature<br>dynamic pressure         | Vehicle Effects         | ML/MO            | PTL/PT0<br>AL/A0       | Inlet Mass Flow Ratios |           | AOSPL/AC   | AOBLD/AC  | A0/AC     | AOBYP/AC<br>AOENG/AC   |     | Inlet Total Fressure K | PT2/PT0           |     | PTL/PTU<br>PT1/PTL     | PTTH/PT1  | PT2/PTTH  |           | <u> Кта /хла</u> | Inlet Drag Breakdown |     | AC               |            |     | spillage        |
| 223               | 26          | 328       | 330     | 331<br>332  | 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 1 0 1<br>7 0 1<br>7 0 1 | 337<br>338       | 339<br>340             | 341<br>342             | 343       | 245<br>245 | 346       | 347       | 348<br>349             | 350 | 351<br>252             | 252<br>353<br>353 | 354 | 355<br>256             | 357       | 358       | 359       | 360<br>361       | 362<br>362           | 363 | 364              | 365<br>266 | 367 | 368             |

. . **.** 

-

٠

| bleed 6.451E-02 6.353E+01<br>bypass 1.792E-01 1.765E+02<br>cowl 2.632E-02 2.593E+01<br>total 3.220E-01 3.172E+02<br>reference 2.632E-02 2.593E+01<br>sr setting 2.957E-01 2.913E+02 | ormance Data uninstalled installed | <pre>net thrust (lbf) 0.000E-01 -3.172E+02     SFC (lbm/hr/lbf) 0.000E-01 -0.000E-01     W2 (lbm/s) 0.000E-01 7.172E+00     rrected W2 (lbm/s) 4.834E+00 4.834E+00</pre> | e recovery 8.088E-01 | ,figure=0,<br>9,1.5, | chx= 2.500E+00, xmach0= 2.500E+00, xmlm0= 1.000E+00, E<br>ch0= 2.500E+00, a0iac= 6.516E-01, xmach1= 2.045E+00, E | спи= z.suuE+UU, aulac= b.suyE-UL,Xmacnl= 5.689E-UL,F<br>ch0= 2.500E+00, a0ac= 5.878E-01, xmms= 1.400E+00,F<br>mth= 1 224E+00 athac= 2 442E-01 vichot= 2 000E+00,F | mcut 1.3415700, acutace 2.11350501, misucon 3.0005700,<br>2008 2.5005400, acitace 6.516501, xmach1= 2.0455400,<br>2009 2.5005000 - 2000100 - 2.11500 | cide 2.500E+00, cuwave 3.144E-02,<br>ch0= 2.500E+00, a0iac= 6.516E-01, bleed= 6.375E-02,<br>ch0= 2.500E+00, a0iac= 6.516E-01, bleed= 6.375E-02, | ch0= 2.500E+00, a0iac= 6.516E-01, cdtot= 1.162E-01, | сих= ∠.500Е+00, gama= 1.400Е+00,pratio= 9.985Е-01,t<br>ch0= 2.500Е+00, a0iac= 6.516Е-01,bypass= 3.120Е-01, | ch0= 2.500E+00, a0iac= 6.516E-01, cdtot= 3.180E-01,<br>ch0= 2.500E+00.a0enac= 2.759E-01, w2c= 5.884E+00. | chx= 2.500E+00,a0enac= 2.759E-01,w2ceng= 5.884E+00, | Inlet Example Case | itions | ach number 2.500E+00 |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------|--------|----------------------|--|
|                                                                                                                                                                                     |                                    |                                                                                                                                                                          |                      |                      | pt1pt0= 1.000E+00, ala0= 1.000E+00<br>pt1pt0= 9.939E-01, cda= 6.234E-02                                          | , מודער 12, 2014 - 10, ממש 6.2938-02<br>, מידער 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                                                                            | pumpus y.oz/b-01, cda= 6.234E-02                                                                                                                     | <pre>, cdbld= 5.382E-02,ptblpe= 1.619E+00</pre>                                                                                                 | cdspl= 6.234E-02, cdref= 3.144E-02                  | , cratio= 1.003E+00, aratio= 1.002E+00<br>, cdbyp= 1.704E-01, ptbppe= 5.668E+00                            | pt2pt0= 8.761E-01,<br>w2= 7.237E+00                                                                      |                                                     |                    |        |                      |  |

•
| <b>415</b><br>416                       |                              | ambie         | ent                | total     |
|-----------------------------------------|------------------------------|---------------|--------------------|-----------|
| 417<br>418                              | pressure (lbf/               | ft**2) 2.255E | 3+02<br>00         | 3.859E+03 |
| 419                                     | temperature (R)              | 3.900E        | 0 + 0 7<br>0 + 0 7 | 8.744E+02 |
| 420                                     | dynamic pressure (1DI/       | IC**2) 9.800E | 101                |           |
| 422                                     | Vehicle Effects              |               |                    |           |
| 423<br>474                              | MI./MO                       | 1.000E        | 3+00               |           |
| F 0 F 0 F 0 F 0 F 0 F 0 F 0 F 0 F 0 F 0 | PTL/PT0                      | 1.000E        | 00+8               |           |
| 426                                     | AL/AO                        | 1.000         | 00+8               |           |
| 427                                     |                              |               |                    |           |
| 428                                     | INLEC MASS FIOW KALLUS       |               |                    |           |
| 420<br>420                              | A01/AC                       | 6.516F        | E-01               |           |
| 221                                     | AOSPL/AC                     | 3.484I        | E-01               |           |
| 432                                     | AOBLD/AC                     | 6.3751        | E-02               |           |
| 433                                     | A0/AC                        | 5.8781        | E-01               |           |
| 434                                     | AOBYP/AC                     | 3.1201        | E-01               |           |
| 435                                     | AOENG/AC                     | 2.7591        | E-01               |           |
| 436<br>437                              | Inlet Total Pressure Recover | ries          |                    |           |
| 438                                     |                              |               |                    |           |
| 439                                     | PT2/PT0                      | 8.7611        | E-01               |           |
| 440                                     | 0 TU / TUG                   | 1000 1        | R+00               |           |
| 441<br>442                              | F1L/F10<br>DT1 /DT1.         | 9.9391        | E-01               |           |
| 442<br>443                              | LLd/HLLd                     | 9.887         | E-01               |           |
| 444                                     | PT2/PTTH                     | 8.9151        | E-01               |           |
| 445                                     |                              |               | č                  |           |
| 446<br>445                              | PTx/PTY                      | 9.582         | T 0 - 1            |           |
| 447<br>448                              | Inlet Drag Breakdown         |               |                    |           |
| 449                                     |                              |               |                    |           |
| 450                                     | AC (ft**                     | 1.000         | 日+00               |           |
| 451                                     |                              | 1             |                    |           |
| 452                                     |                              | 3             |                    | (10T) n   |
| 0 -<br>1 -                              | end []ace                    | 6.234         | E-02               | 6.150E+01 |
| 404<br>407                              | bliced                       | 5.382         | E-02               | 5.310E+01 |
| 456                                     | bvpags                       | 1.704         | E-01               | 1.681E+02 |
| 457                                     | COWL                         | 3.144         | E-02               | 3.102E+01 |
| 458                                     | total                        | 3.180         | E-01               | 3.137E+02 |
| 459                                     | reference                    | 3.144         | 臣-02               | 3.102E+01 |
| 460                                     | power setting                | 2.866         | E-01               | 2.8275+02 |

•

• •

| 461<br>462<br>463                                                                                | Engine                            | Performance Dat                                    | ŋ                                                  | uninstalled                                      | installed                                                                                                                                               |
|--------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------|----------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 40444<br>4065<br>4065                                                                            |                                   | net thrust<br>SFC<br>W2<br>corrected W2            | (lbf)<br>(lbm/hr/lbf)<br>(lbm/s)<br>(lbm/s)        | 0.000E-01<br>0.000E-01<br>0.000E-01<br>5.884E+00 | -3.137E+02<br>-0.000E-01<br>7.237E+00<br>5.884E+00                                                                                                      |
| 468<br>469<br>470<br>- 10                                                                        | refe                              | rence recovery                                     |                                                    | <b>8.703E-01</b>                                 |                                                                                                                                                         |
| 1 4 4 4 4 4<br>7 7 4 7 4<br>7 7 9 7 9<br>7 9<br>7 9<br>7 9<br>7 9<br>7 9<br>7 9<br>7 9<br>7      | &ipac<br>xmach0<br>theta=<br>&end | =2.0,figure=0,i<br>5,2.5,1.5,                      | gas=0,                                             |                                                  |                                                                                                                                                         |
| 477<br>478                                                                                       | forebd:<br>cd2d:                  | xmachx= 2.000E<br>xmach0= 2.000E                   | +00, xmach0= 2.<br>+00, a0iac= 6.                  | 000E+00, xmlr<br>796E-01,xmacl                   | n0= 1.000E+00,ptlpt0= 1.000E+00, ala0= 1.000E+00,<br>a1= 1.684E+00,ptlpt0= 9.976E-01, cda= 5.461E-02.                                                   |
| 479<br>480                                                                                       | cd2d:<br>ptrcv:                   | xmach0= 2.000E<br>xmach0= 2.000E                   | +00, a0iac= 6.<br>+00, a0ac= 6.                    | 789E-01, xmac)<br>346E-01, xm                    | <pre>al= 6.436E-01.ptlpt0= 8.604E-01, cda= 5.503E-02,<br/>as= 1.400E+00.pt2pt0= 9.158E-01.thetad= 1.312E+00,</pre>                                      |
| 481<br>482                                                                                       | cd2d:                             | xmth= 1.3655<br>xmach0= 2.0005                     | +00, athac= 4.<br>+00, a0iac= 6.                   | 140E-01, nish(<br>796E-01, xmach                 | ck= 2.000E+00,pthpt0= 9.960E-01,xlipth= 1.139E+00,<br>11= 1.684E+00,ptlpt0= 9.976E-01, cda= 5.461E-02,                                                  |
| 4 4 8<br>4 8 4<br>8 5 4<br>8 5                                                                   | cdwave:<br>cdbld:                 | xmach0= 2.000E<br>xmach0= 2.000E<br>xmach0= 2.000E | +00, cdwav= 4.<br>+00, a0iac= 6.<br>+00, a0iac= 6. | 051E-02,<br>796E-01, blee<br>796E-01 blee        | ed= 4.500E-02, cdbld= 4.195E-02,ptblpe= 1.093E+00,<br>ad= 4.500E-02, cdbld= 4.195E-02,ptblpe= 1.093E+00,                                                |
| 486                                                                                              | :<br>cdbyp:                       | xmach0= 2.000E<br>xmach0= 2.000E                   | +00, a0iac= 6.                                     | 796E-01, cdto<br>796E-01, bypas                  | <pre>&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;</pre> |
| 4 4 4 4 4<br>8 8 9 6 4<br>8 9 0 5                                                                |                                   | xmach0= 2.000E<br>xmach0= 2.000E<br>xmachx= 2.000E | +00, a0iac= 6.<br>+00,a0enac= 2.<br>+00,a0enac= 2. | 796E-01, cdtc<br>378E-01, w2<br>378E-01,w2cer    | Dt= 3.318E-01,pt2pt0= 9.158E-01,<br>2c= 7.602E+00,     w2= 7.920E+00,<br>1g= 7.602E+00,                                                                 |
| 4<br>4<br>4<br>4<br>2<br>4<br>2<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 | IPAC                              | 2-D Inlet Examp                                    | le Case                                            |                                                  |                                                                                                                                                         |
| 494<br>495                                                                                       | Flight (                          | Conditions                                         |                                                    |                                                  |                                                                                                                                                         |
| 496<br>497                                                                                       |                                   | Mach number                                        |                                                    | <b>2.000E+00</b>                                 |                                                                                                                                                         |
| 498<br>499                                                                                       |                                   | altitude                                           | (ft)                                               | <b>4.189E+04</b>                                 | -                                                                                                                                                       |
| 500                                                                                              |                                   |                                                    |                                                    | ambient                                          | total                                                                                                                                                   |
| 503<br>504<br>505                                                                                | đyr                               | pressure<br>temperature<br>lamic pressure          | (lbf/ft**2)<br>(R)<br>(lbf/ft**2)                  | 3.578E+02<br>3.900E+02<br>1.002E+03              | 2.800E+03<br>7.019E+02                                                                                                                                  |
| 506                                                                                              | Vehicle                           | Effects                                            |                                                    |                                                  |                                                                                                                                                         |

146

-

|                                                     |                                                                            |                                                                                  | D (1bf)                                                                      | 5.471E+01<br>4.202E+01<br>1.951E+02<br>4.058E+01<br>3.324E+01<br>3.324E+02<br>4.058E+01<br>2.919E+02 | <pre>installed<br/>-3.324E+02<br/>-0.000E-01<br/>7.920E+00<br/>7.602E+00</pre> |
|-----------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 1.000E+00<br>1.000E+00<br>1.000E+00                 | 6.796E-01<br>3.204E-01<br>4.500E-02<br>6.346E-01<br>3.968E-01<br>3.968E-01 | 9.158E-01<br>1.000E+00<br>9.976E-01<br>9.984E-01                                 | 9.582E-01<br>1.000E+00<br>CD                                                 | 5.461E-02<br>4.195E-02<br>1.948E-01<br>4.051E-02<br>3.318E-01<br>4.051E-02<br>2.913E-01              | uninstalled<br>0.000E-01<br>0.000E-01<br>7.602E+00                             |
|                                                     |                                                                            | coveries                                                                         | (ft**2)                                                                      |                                                                                                      | a<br>(lbf)<br>(lbm/hr/lbf)<br>(lbm/s)<br>(lbm/s)                               |
| ML/M0<br>PTL/PT0<br>AL/A0<br>Inlet Mass Flow Ratios | A01/AC<br>A0SPL/AC<br>A0BLD/AC<br>A0/AC<br>A0/AC<br>A0BYP/AC<br>A0ENG/AC   | Inlet Total Pressure Re<br>PT2/PT0<br>PTL/PT0<br>PT1/PTL<br>PTTH/PT1<br>PT2/PTTH | PTx/PTy<br>Inlet Drag Breakdown<br>AC                                        | spillage<br>bleed<br>bypass<br>cowl<br>total<br>reference<br>power setting                           | Engine Performance Data<br>net thrust<br>SFC<br>W2<br>corrected W2             |
| 507<br>508<br>510<br>512<br>512                     | 513<br>515<br>515<br>516<br>518<br>518<br>519                              | 520<br>522<br>522<br>522<br>522<br>522<br>522<br>522<br>522<br>522               | 5229<br>5331<br>5332<br>5334<br>5334<br>5334<br>5334<br>5334<br>5334<br>5334 | 55555555555555555555555555555555555555                                                               | ,                                                                              |

٠

• •

| 9         anicho=         a oliac=         a thac=         a oliac=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +00, xmlm0= 1.000E+(<br>-01, xmach1= 4.128E-(<br>-01, xmns= 0.000E-(<br>-01, nishck=-1.000E+(<br>-01, nishck=-1.000E+( | -01, Aumacuit = 3.30/6-0<br>-02, cls= 3.6376-0<br>-01, bleed= 4.5006-0<br>-01, bleed= 4.5006-0 | -01, bleed= 4.500b-02<br>-01, cdtot= 9.653E-02<br>-01,bypass= 3.673E-01<br>-01, cdtot= 3.283E-01<br>-01, w2c= 7.602E+00<br>-01.w2cend= 7.602E+00 | )       | 000E+00 | 189E+04 | nbient total | 578E+02 2.800E+03<br>900E+02 7.019E+02<br>902E+03 | 000E+00<br>000E+00<br>000E+00 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|--------------|---------------------------------------------------|-------------------------------|
| (1) F | +00, xmach0= 2.000E<br>+00, a0iac= 5.000E<br>+00, a0ac= 5.790E<br>+00, athac= 4.140E<br>+00, a0iac= 6.240E             | +00, adiace 6.240E<br>+00, adiace 6.240E<br>+00, adiace 6.240E                                 | +00, a01ac= 0.240E<br>+00, a01ac= 6.240E<br>+00, a01ac= 6.240E<br>+00, a01ac= 6.240E<br>+00, a0enac= 2.117E<br>+00, a0enac= 2.117E               | le Case | 2.      | (ft) 4. | 3            | (lbf/ft**2) 3.<br>(R) 3.<br>(lbf/ft**2) 1.        |                               |

| A01/AC<br>A0SPL/AC<br>A0BLD/AC<br>A0/AC<br>A0BYP/AC<br>A0BYP/AC |                         | 6.240E-01<br>3.760E-01<br>4.500E-02<br>5.790E-01<br>3.673E-01<br>2.117E-01 |                         |                 |               |
|-----------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------|-------------------------|-----------------|---------------|
| Inlet Total Pressure                                            | Recoveries              |                                                                            |                         |                 |               |
| PT2/PT0                                                         |                         | 8.153E-01                                                                  |                         |                 |               |
| PTL/PTC<br>PT1/PTL<br>PTTH/PT1<br>PT2/PTTH                      |                         | 1.000E+00<br>8.604E-01<br>1.000E+00<br>9.476E-01                           |                         |                 |               |
| ртх/рту                                                         |                         | 1.000E+00                                                                  |                         |                 |               |
| Inlet Drag Breakdown                                            |                         |                                                                            |                         |                 |               |
| AC                                                              | (ft**2)                 | 1.000E+00                                                                  |                         |                 |               |
|                                                                 |                         | ₿                                                                          | D (1bf)                 |                 |               |
| spillage                                                        |                         | 5.458E-02                                                                  | 5.468E+01               |                 |               |
| bleed                                                           |                         | 4.195E-02                                                                  | 4.202E+01<br>1 016E+03  |                 |               |
| cowl<br>cowl                                                    |                         | 4.051E-02                                                                  | 4.058E+01               |                 |               |
| total                                                           |                         | 3.283E-01                                                                  | 3.289E+02               |                 |               |
| reference<br>power setting                                      |                         | 4.051E-02<br>2.877E-01                                                     | 4.058E+01<br>2.883E+02  |                 |               |
| Engine Performance Da                                           | га                      | uninstalled                                                                | installed               |                 |               |
| net thrust                                                      | (1bf)<br>(1 bf)         | 0.000E-01                                                                  | -3.289E+02              |                 |               |
| SFC<br>W2                                                       | (lbm/hr/lbt)<br>(lbm/g) | 0.000E-01                                                                  | -0.000E-01<br>7.050E+00 |                 |               |
| corrected W2                                                    | (1bm/s)                 | 7.602E+00                                                                  | 7.602E+00               |                 |               |
| reference recovery                                              |                         | 9.250E-01                                                                  |                         |                 |               |
| &ipac xmach0=1.8,fig                                            | ure=0, &end             |                                                                            |                         |                 |               |
| forebd: xmachx= 1.800                                           | E+00, xmach0= 1         | .800E+00, xm]                                                              | m0= 1.000E+00, pt]      | pt0= 1.000E+00, | ala0= 1.000E+ |
| cd2d: xmach0= 1.800                                             | E+00, a0iac= 5          | .000E-01, xmac                                                             | hl= 4.580E-01, pt1      | pt0= 9.303E-01, | cda= 1.795E-  |

,

-

•

ţ

| <pre>cv: xmach0= 1.800E+00, a01<br/>2d: xmach0= 1.800E+00, a01<br/>ve: xmach0= 1.800E+00, a01<br/>ic: xmach0= 1.800E+00, a01<br/>i xmach0= 1.800E+00, a01<br/>dynamic pressure (1)<br/>i ft/ft<br/>dynamic pressure (1)<br/>i ft/ft<br/>dynamic pressure (1)<br/>i ft/ft<br/>a11, p10<br/>a1, p10<br/>i ft/ft<br/>dynamic pressure (1)<br/>i ft/ft<br/>dynamic pressure (1)<br/>i ft/ft<br/>a01/AC<br/>A08ED/AC<br/>A08ED/AC<br/>A08ED/AC<br/>A08ED/AC<br/>A08ED/AC<br/>A08ED/AC<br/>A08ED/AC<br/>A08ED/AC<br/>A08ED/AC<br/>A08ED/AC</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ac= 5.339E-01, xmns= 0.000E-01,pt2pt0= 8.816E-01,thetad= 1.312E+00,<br>ac= 4.140E-01,nishck=-1.000E+00,pthpt0= 9.303E-01,xlipth=-1.000E+00,<br>ac= 5.714E-01,xmach1= 5.527E-01,pt1pt0= 9.303E-01, cda= 1.253E-01,<br>av= 4.670E-02. | ac= 5.714E-01, cls= 3.838E-02, cdspl= 8.688E-02, thetae= 5.412E+00,<br>ac= 5.714E-01, bleed= 3.750E-02, cdbld= 3.344E-02, ptblpe= 1.082E+00,<br>ac= 5.714E-01, bleed= 3.750E-02, cdbld= 3.344E-02,<br>ac= 5.714E-01, bleed= 3.750E-01, cdspl= 8.688E-02, cdref= 4.670E-02,<br>ac= 5.714E-01, bypass= 3.231E-01, cdbyp= 1.561E-01, ptbppe= 2.238E+00,<br>ac= 5.714E-01, cdtot= 3.232E-01, cdbyp= 1.561E-01, ptbppe= 2.238E+00,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ac= 5./14E-01, catot= 3.232E-01,pt2pt0= 8.816E-01,<br>ac= 2.108E-01, w2c= 8.206E+00, w2= 7.880E+00,<br>ac= 2.108E-01,w2ceng= 8.206E+00,<br>ac= 2.108E-01,w2ceng= 8.206E+00, | 1.800E+00   | 3.729E+04<br>ambient total | **2) 4.464E+02 2.565E+03<br>3.900E+02 6.427E+02<br>**2) 1.012E+03 | 1.000E+00<br>1.000E+00<br>1.000E+00  | 5.7148-01                | 4.286E-01<br>3.750E-02<br>5.339E-01<br>3.231E-01 | 2. LOSE-UI |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------|-------------------------------------------------------------------|--------------------------------------|--------------------------|--------------------------------------------------|------------|
| <pre>cv: xmach0= 1.800E+G<br/>2d: xmach0= 1.800E+G<br/>ve: xmach0= 1.800E+G<br/>ce: xmach0= 1.800E+G<br/>i xmach0= 1.800E+G</pre> | 00, auac= 5.<br>01, athac= 4.<br>00, a0iac= 5.<br>00, cdwav= 4.                                                                                                                                                                     | 00, a0iac= 5.<br>00, a0iac= 5.<br>00, a0iac= 5.<br>00, a0iac= 5.<br>00, a0iac= 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00, autac= 5.<br>00, a0enac= 2.<br>00, a0enac= 2.<br>: Case                                                                                                                 | Ĩ           | ft)                        | lbf/ft**2)<br>R)<br>lbf/ft**2)                                    |                                      |                          |                                                  | overies    |
| dyni 1 dyni 2 dyni 1 dy                                                                                                                                                                                                                                                                                                                                                                                                                                              | <pre>Xmacnu= 1.800E+( Xmach0= 8.000E-( Xmach0= 1.800E+( xmach0= 1.800E+( xmach0= 1.800E+()</pre>                                                                                                                                    | <pre>xmach0= 1.800E+( xmach0= 1.800E+( x</pre> | xmachue 1.800E+(<br>xmachue 1.800E+(<br>xmachx= 1.800E+(<br>-D Inlet Example<br>onditions                                                                                   | Mach number | altitude                   | pressure (<br>temperature (<br>amic pressure (                    | Effects<br>ML/M0<br>PTL/PT0<br>AL/A0 | ss Flow Ratios<br>A01/AC | AOSPL/AC<br>AOBLD/AC<br>AO/AC<br>AOBYP/AC        | aveaut ac  |
| ptr<br>cdisi<br>cdb:<br>cdb:<br>cdb<br>Fligh<br>Fligh<br>Inlet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | purcv:<br>cd2d:<br>cdwave: 2                                                                                                                                                                                                        | clauc:<br>cdbld:<br>cdby:<br>cdby:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IPAC 2.<br>Flight C                                                                                                                                                         |             |                            | dyné                                                              | Vehicle l                            | Inlet Ma£                |                                                  | Inlet Tot  |

.

|                                                                                          |                                                                                                                                                                | <pre>1.000E+00, ala0= 1.000E+00,<br/>9.798E-01, cda= 1.812E-01,<br/>9.285E-01, thetad= 1.312E+00,<br/>9.798E-01, xlipth=-1.000E+00,<br/>9.798E-01, cda= 1.665E-01,<br/>1.262E-01, thetae= 5.412E+00,<br/>2.609E-02, ptblpe= 1.037E+00,<br/>2.609E-02, cdref= 5.652E-02,<br/>1.210E-01, ptbppe= 1.888E+00,<br/>9.285E-01, ptbppe= 1.888E+00,<br/>9.285E-01, ptbppe= 1.888E+00,<br/>9.285E-01, ptbppe= 1.888E+00,<br/>9.285E-01, ptbppe= 1.888E+00,</pre> |
|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                          | <pre>D (lbf) 8.796E+01 3.386E+01 3.386E+01 1.581E+02 4.728E+01 3.272E+02 4.728E+01 2.799E+02 installed -3.272E+02 -0.000E-01 7.880E+00 8.206E+00</pre>         | <pre>lm0= 1.000E+00,ptlpt0= 1 ch1= 5.173E-01,ptlpt0= 1 mns= 0.000E-01,pt2pt0= 2 hck=-1.000E+00,pthpt0= 2 ch1= 5.458E-01,ptlpt0= 2 cls= 4.035E-02, cdspl= 1 cls= 4.035E-02, cdspl= 1 cot= 1.523E-01, cdspl= 1 tot= 1.523E-01, cdspl= 1 tot= 3.397E-01, pt2pt0= 2 w2c= 8.555E+00, w2= 4</pre>                                                                                                                                                             |
| 1.000E+00<br>9.303E-01<br>1.000E+00<br>9.476E-01<br>1.000E+00                            | 1.000E+00<br>CD<br>8.688E-02<br>3.344E-02<br>1.561E-01<br>4.670E-02<br>3.232E-01<br>4.670E-02<br>2.765E-01<br>2.765E-01<br>0.000E-01<br>0.000E-01<br>8.206E+00 | .600E+00, xm<br>.000E-01, xm<br>.885E-01, xm<br>.140E-01, nis<br>.652E-01, xm<br>.185E-01, xm<br>.185E-01, bl<br>.185E-01, bl<br>.185E-01, bl<br>.185E-01, cd<br>.185E-01, cd<br>.185E-01, cd<br>.010E-01, bl                                                                                                                                                                                                                                           |
|                                                                                          | (ft**2)<br>a<br>(1bf)<br>(1bm/hr/1bf)<br>(1bm/s)<br>(1bm/s)                                                                                                    | re=0, &end<br>+00, xmach0= 1<br>+00, xmach0= 1<br>+00, a0iac= 5<br>+00, a0iac= 4<br>+00, a0iac= 5<br>+00, a0iac= 5                                                                                                                                                                                                                                |
| PTL/PT0<br>PT1/PTL<br>PTTH/PT1<br>PT2/PTTH<br>PTX/PTY<br>PTX/PTY<br>Inlet Drag Breakdown | AC<br>spillage<br>bleed<br>bypass<br>cowl<br>total<br>reference<br>power setting<br>Bngine Performance Dats<br>net thrust<br>SFC<br>vorrected W2               | <pre>&amp;ipac xmach0=1.6,figuu<br/>forebd: xmach0=1.6,figuu<br/>forebd: xmach0=1.600E<br/>cd2d: xmach0= 1.600E<br/>ptrcv: xmach0= 1.600E<br/>cd2d: xmach0= 1.600E<br/>cdwave: xmach0= 1.600E<br/>cdbld: xmach0= 1.600E<br/>cdbld: xmach0= 1.600E<br/>cdbld: xmach0= 1.600E<br/>cdbyp: xmach0= 1.600E<br/>: xmach0= 1.600E</pre>                                                                                                                        |
| 692<br>693<br>694<br>695<br>697<br>697<br>697                                            | 2012<br>2022<br>2022<br>2022<br>2022<br>2022<br>2022<br>2022                                                                                                   | 7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                             |

| ~ - | : xmachx= 1.600B                            | +00,a0enac= 2.0                   | 010E-01, w2ce                       | ng= 8.555E+00,         |
|-----|---------------------------------------------|-----------------------------------|-------------------------------------|------------------------|
|     | IPAC 2-D Inlet Examp                        | le Case                           |                                     |                        |
|     | Flight Conditions                           |                                   |                                     |                        |
|     | Mach number                                 |                                   | 1.600E+00                           |                        |
|     | altitude                                    | (ft)                              | 3.209E+04                           |                        |
|     |                                             |                                   | ambient                             | total                  |
|     | pressure<br>temperature<br>dynamic pressure | (lbf/ft**2)<br>(R)<br>(lbf/ft**2) | 5.706E+02<br>4.042E+02<br>1.023E+03 | 2.425E+03<br>6.112E+02 |
|     | Vehicle Effects                             |                                   |                                     |                        |
|     | ML/MO<br>PTL/PTO<br>AL/AO                   |                                   | 1.000E+00<br>1.000E+00<br>1.000E+00 |                        |
|     | Inlet Mass Flow Ratios                      |                                   |                                     |                        |
|     | AOI/AC<br>AOSPL/AC                          |                                   | 5.185E-01<br>4.815E-01              |                        |
|     | AOBLD/AC<br>A0/AC                           |                                   | 3.000E-02<br>4.885E-01              |                        |
|     | A0BYP/AC<br>A0ENG/AC                        |                                   | 2.875E-01<br>2.010E-01              |                        |
|     | Inlet Total Pressure Re                     | scoveries                         |                                     |                        |
|     | PT2/PT0                                     |                                   | 9.285E-01                           |                        |
|     | РТГ/РТО                                     |                                   | 1.000E+00                           |                        |
|     | PT1/PTL                                     |                                   | 9.798E-01                           |                        |
|     | РТТН/РТ1<br>РТ2/РТТН                        |                                   | 1.000E+00<br>9.476E-01              |                        |
|     | РТХ/РТУ                                     |                                   | 1.000E+00                           |                        |
|     | Inlet Drag Breakdown                        |                                   |                                     |                        |
|     | AC                                          | (ft**2)                           | 1.000E+00                           |                        |
|     |                                             |                                   |                                     |                        |

. .

| <pre>spillage     bleed     bypass     cowl     cowl     total     reference     power setting</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.262E-01 1.290E+02<br>2.609E-02 2.667E+01<br>1.310E-01 1.339E+02<br>5.652E-02 5.780E+01<br>3.397E-01 3.474E+02<br>5.652E-02 5.780E+01<br>2.832E-01 2.896E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <pre>ine Performance Data     net thrust (lbf)         SFC (lbm/hr/lbf)         W2 (lbm/s)         corrected W2 (lbm/s)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | uninstalled installed<br>0.000E-01 -3.474E+02<br>0.000E-01 -0.000E-01<br>0.000E-01 8.389E+00<br>8.555E+00 8.555E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                       |
| reference recovery<br>ac vmach0-1 4 figure=0 &end                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.624E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                       |
| <pre>cebd: xmachx= 1.400E+00, xmach0= 1.<br/>d2dd: xmach0= 1.400E+00, a0iac= 5.<br/>rrcv: xmach0= 1.400E+00, a0iac= 4.<br/>d2dd: xmach0= 1.400E+00, a0iac= 4.<br/>dave: xmach0= 1.400E+00, a0iac= 4.<br/>ave: xmach0= 1.400E+00, a0iac= 4.<br/>suc: xmach0= 1.400E+00, a0iac= 4.<br/>rerror *** in program segment co<br/>bld: xmach0= 1.400E+00, a0iac= 4.<br/>suc: xmach0= 1.400E+00, a0iac= 4.<br/>rerror *** in program segment co<br/>bld: xmach0= 1.400E+00, a0iac= 4.<br/>stmach0= 1.400E+00, a0iac= 4.<br/>i xmach0= 1.400E+00, a0iac= 4.<br/>rerror *** in program segment co<br/>lbyp: xmach0= 1.400E+00, a0iac= 4.<br/>i xmach0= 1.400E+00, a0iac= 4.<br/>for 2-D Inlet Example Case<br/>lght Conditions<br/>lght Conditions</pre> | <pre>400E+00, xmlm0= 1.000E+00, ptlpt0= 1.000E+00, a<br/>000E-01, xmach1= 6.001E-01, ptlpt0= 9.979E-01, the<br/>140E-01, nishck=-1.000E+00, pthpt0= 9.979E-01, xlli<br/>662E-01, xmach1= 5.376E-01, ptlpt0= 9.979E-01, xlli<br/>750E-02, cls= 4.214E-02, cdspl= 1.680E-01, the<br/>bld (errf1g=2)<br/>662E-01, bleed= 2.250E-02, cdbld= 1.884E-02, ptb<br/>662E-01, bleed= 2.250E-02, cdbld= 1.884E-02, ptb<br/>662E-01, bleed= 2.250E-02, cdbld= 1.884E-02, ptb<br/>662E-01, bleed= 2.250E-01, cdspl= 1.680E-01, cd<br/>byp (errf1g=2)<br/>byp (errf1g=2)<br/>836E-01, bytpass= 2.601E-01, pt2pt0= 9.456E-01,<br/>836E-01, w2ceng= 8.601E+00, w2= 8.565E+00,<br/>1.400E+00</pre> | ala0= 1.000E+00<br>cda= 1.899E-01<br>etad= 1.312E+00<br>ipth=-1.000E+00<br>cda= 2.102E-01<br>etae= 5.412E+00<br>blpe= 1.001E+00<br>dref= 7.750E-02<br>bppe= 1.553E+00 |

| 829                                                                                         |                               |              |                  |                        |  |
|---------------------------------------------------------------------------------------------|-------------------------------|--------------|------------------|------------------------|--|
| 830                                                                                         |                               | ambi         | ent              | total                  |  |
| 831                                                                                         |                               |              | 1                |                        |  |
| 832                                                                                         | pressure (lbf/:               | ft**2) 7.481 | 臣+02             | <b>2.381E+03</b>       |  |
| 833                                                                                         | temperature (R)               | 4.256        | E+02             | 5.924E+02              |  |
| 834                                                                                         | dynamic pressure (lbf/)       | ft**2) 1.026 | E+03             |                        |  |
| 835                                                                                         | 8                             |              |                  |                        |  |
| 836                                                                                         | Vehicle Effects               |              |                  |                        |  |
| 837                                                                                         |                               |              |                  |                        |  |
| 838                                                                                         | WL/M0                         | 1.000        | E+00             |                        |  |
| 839                                                                                         | PTL/PT0                       | 1.000        | 日+00             |                        |  |
| 840                                                                                         | AL/A0                         | 1.000        | 日+00             |                        |  |
| 841                                                                                         |                               |              |                  |                        |  |
| 842                                                                                         | Inlet Mass Flow Ratios        |              |                  |                        |  |
| 843                                                                                         |                               |              |                  |                        |  |
| 844                                                                                         | A01/AC                        | 4.662        | E-01             |                        |  |
| 845                                                                                         | AOSPL/AC                      | 5.338        | E-01             |                        |  |
| 846<br>645                                                                                  | AOBLD/AC                      | 2.250        | E-02             |                        |  |
| 847                                                                                         | AO/AC                         | 4.437        | E-01             |                        |  |
| 848                                                                                         | AOBYP/AC                      | 2.601        | E-01             |                        |  |
| 849<br>0 E 0                                                                                | A0ENG/AC                      | 1.836        | E-01             |                        |  |
|                                                                                             |                               |              |                  |                        |  |
| 851<br>852                                                                                  | Inlet Total Pressure Recoveri | ies          |                  |                        |  |
| 2 C<br>2 C<br>2 C                                                                           | 0mg/cmg                       |              | 5                |                        |  |
| 854                                                                                         | 5 7 7 / <i>E</i> 1 0          | 007**        | 101              |                        |  |
| 855                                                                                         | 000,700,000                   |              | 0010             |                        |  |
| 856                                                                                         | DT1 / DT1.                    |              |                  |                        |  |
| 857                                                                                         | ртт, 7 лл<br>ртт, 7 лл        | 1000 L       |                  |                        |  |
| 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | итта/ ста                     |              |                  |                        |  |
| 859                                                                                         | 5 7 % / E 7 7 U               | 7.4.10       | イ<br>つ<br>し<br>辺 |                        |  |
| 860                                                                                         | PTx/PTv                       | 1.000        | 00+3             |                        |  |
| 861                                                                                         | •                             |              |                  |                        |  |
| 862<br>222                                                                                  | Inlet Drag Breakdown          |              |                  |                        |  |
| 203                                                                                         |                               |              |                  |                        |  |
| 100<br>100<br>100                                                                           | AC (IL**2                     | z) I.0001    | 00+3             |                        |  |
| 202                                                                                         |                               | 1            |                  |                        |  |
| 867<br>867                                                                                  |                               | 8            |                  | D (1bf)                |  |
| 868                                                                                         | enillece                      |              | 5                |                        |  |
| 869                                                                                         | beeld<br>beeld                |              |                  | 1.02454U2              |  |
| 870                                                                                         | himage                        |              |                  | 10101000<br>1 10000    |  |
| 871                                                                                         | COWL                          | 1097.7       |                  | 1.1336+02<br>7 9556101 |  |
| 872                                                                                         | total                         | 3 8121       |                  | 3 910ELO2              |  |
| 873                                                                                         | reference                     | 7.7501       | - 03<br>- 02     | 7.955R±01              |  |
| 874                                                                                         | power setting                 | 3.0371       | -01<br>-01       | 3.117E+02              |  |

. .

|                   |           |           |                  |     |                        |     |           |            |                   |            |           |                                          |                        |           |     |                  |           |                      |           |                  |     |                      |           |     | D (1bf)    |     | 0.689E+02<br>1 1636+01                                                                      |            | 1.275E+02 | 8.079E+02 | 1.275E+02 | 6.804E+02     |            | installed               | -8.079E+02 | -0.000E-01<br>8.975E+00 |
|-------------------|-----------|-----------|------------------|-----|------------------------|-----|-----------|------------|-------------------|------------|-----------|------------------------------------------|------------------------|-----------|-----|------------------|-----------|----------------------|-----------|------------------|-----|----------------------|-----------|-----|------------|-----|---------------------------------------------------------------------------------------------|------------|-----------|-----------|-----------|---------------|------------|-------------------------|------------|-------------------------|
|                   | 1.000E+00 | 1.000E+00 | <b>1.000E+00</b> |     |                        |     | 1.858E-01 | 8.142E-UI  | 20-300C T         | TO 0008-01 | 1.708E-01 |                                          |                        | 9.538E-01 |     | <b>1.000E+00</b> | 9.928E-01 | 1.000E+00            | TO-9000'C | <b>1.000E+00</b> |     |                      | 1.000E+00 |     | 8          |     | 10-3005-0                                                                                   | 10 000E-01 | 1.251E-01 | 7.924E-01 | 1.251E-01 | 6.673E-01     |            | uninstalled             | 0.000E-01  | 0.000E-01<br>0.000E-01  |
|                   |           |           |                  |     |                        |     |           |            |                   |            |           | -                                        | ecoveries              |           |     |                  |           |                      |           |                  |     |                      | (ft**2)   |     |            |     |                                                                                             |            |           |           |           |               |            | æ                       | (JPf)      | (lbm/hr/lbf)<br>(lbm/s) |
| Vehicle Effects   | ML/M0     | PTL/PT0   | AL/A0            |     | Inlet Mass Flow Ratios |     | AUL/AC    |            |                   | AOBYP/AC   | AOENG/AC  | (<br> <br> <br> <br> <br> <br> <br> <br> | Inter Total Fressure K | PT2/PT0   |     | PTL/PT0          | PT1/PTL   | РТЧ/РТТЧ<br>Гта/рттч | 11112/212 | PTx/PTY          |     | unter urag breakdown | AC        |     |            |     | Apartuge<br>Apartuge                                                                        | bvnaga     | cow]      | total     | reference | power setting |            | Engine Performance Data | net thrust | SFC<br>W2               |
| 921<br>922<br>922 | 924       | 925       | 926              | 927 | 928                    | 929 | 0 r c 0   | 102<br>020 | 4 C<br>7 C<br>7 C | 934        | 935       | 936<br>936                               | 1 2 V<br>9 2 P         | 9.00      | 940 | 941              | 942       | 943<br>944           | 945       | 946              | 947 | 948<br>949           | 950       | 951 | 952<br>012 | 202 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 956        | 957       | 958       | 959       | 960           | 961<br>222 | 962<br>963              | 964        | 965<br>966              |

· •

.

|                  |                                             |     | <pre>&gt;&gt;tlpt0= 1.000E+00, ala0= 1.000E+00,<br/>&gt;t2pt0= 9.608E-01,thetad= 2.204E+00,<br/>&gt;thpt0= 1.000E+00,xlipth=-1.000E+00,</pre> | рспрто= 1.000E+00, саа= 5.61УE-01,<br>cdspl= 4.797E-01,thetae= 5.412E+00, | cdbld= 4.803E-03,ptblpe= 1.001E+00,<br>cdbld= 4.803E-03,           | <pre>cdspl= 4.797E-01, cdref= 0.000E-01,<br/>w2= 1.002E+01,</pre> |                     |                      |                   |                  |            |            |                         |                                     |      |                  |           |                        |                        |                      |                        |
|------------------|---------------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------|---------------------|----------------------|-------------------|------------------|------------|------------|-------------------------|-------------------------------------|------|------------------|-----------|------------------------|------------------------|----------------------|------------------------|
| <b>8.585E+00</b> |                                             |     | 10= 1.000E+00,F<br>1s= 0.000E-01,F<br>1k=-1.000E+00,F                                                                                         | 11= 2.503E-01,F<br>.8= 8.218E-02,                                         | -9=2/<br>ed= 7.500E-03,<br>ed= 7.500E-03,                          | DE= 4.845E-01,<br>C= 8.585E+00,<br>C= 8.585E+00,                  | 19= 8.501±+00,      |                      |                   |                  |            | total      | 2.712E+03<br>5.779E+02  |                                     |      |                  |           |                        |                        |                      |                        |
| 8.601E+00        | 9.915E-01                                   |     | L.000E+00, xmln<br>L.670E-01, xmr<br>2.096E-01,nishc                                                                                          | L.745E-01, xmach<br>L.745E-01, c]                                         | cania (erri<br>1.745E-01, blee<br>1.745E-01, blee                  | L.745E-01, cdtc<br>L.670E-01, wi                                  | Г. 6 / ЛЕ-ИТ, WZCEI |                      |                   | <b>1.000E+00</b> | 1.040E+04  | ambient    | 1.433E+03<br>4.816E+02  | 00+4000 · T                         |      | 1.000E+00        | 1.000E+00 |                        | 1.745E-01<br>8 2555-01 | 7.500E-03            | 1.670E-01<br>0.000E-01 |
| (lbm/s)          | re=0, ƙend                                  |     | +00, xmach0= 1<br>+00, a0ac= 1<br>-01, athac= 2                                                                                               | +00, a0iac= 1<br>+00, a0iac= 1                                            | ram segment o<br>+00, a0iac= ]<br>+00 a0iac= ]                     | +00, a0iac= 1+00, a0enac=                                         | .+00, auenac= _     | le Case              |                   |                  | (ft)       |            | (1bf/ft**2)<br>(R)      | (TDT/TCz.7)                         |      |                  |           |                        |                        |                      |                        |
| corrected W2     | reference recovery<br>&inac xmach0=1.0.fiqu |     | <pre>forebd: xmachx= 1.000E ptrcv: xmach0= 1.000E xmth= 5.500E</pre>                                                                          | cd2d: xmach0= 1.000E<br>clsuc: xmach0= 1.000E                             | *** error *** in prog<br>cdbld: xmach0= 1.000E<br>· vmach0= 1.000E | : XMACHOE 1.000E<br>: XMACHOE 1.000E<br>: XMACHOE 1.000E          | : xmachx= 1.000E    | IPAC 2-D INLET Examp | Flight Conditions | Mach number      | altitude   |            | pressure<br>temperature | dynamic pressure<br>Vehicle Effects |      | ML/MO<br>PTL/PTO | AL/A0     | Inlet Mass Flow Ratios | A01/AC                 | AUSEL/AC<br>AOBLD/AC | A0/AC<br>A0BYP/AC      |
| 967              | 900<br>970<br>971<br>971                    | 973 | 974<br>975<br>976                                                                                                                             | 977<br>978                                                                | 979<br>980                                                         | 987<br>987<br>987                                                 | 984<br>985          | 986                  | - 886<br>886      | 066              | 992<br>992 | 993<br>994 | 995<br>996<br>799       | 999<br>999<br>000                   | 1001 | 1002<br>1003     | 1005      | 1006<br>1006           | 1008                   | 1010                 | 1011<br>1012           |

| 1013                 | A0ENG/AC                                        |                                   | 1.670E-01                      |                                                                                                        |                      |
|----------------------|-------------------------------------------------|-----------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------|----------------------|
| 1015                 | Inlet Total Pressure                            | Recoveries                        |                                |                                                                                                        |                      |
| 1017                 | PT2/PT0                                         |                                   | 9.608E-01                      |                                                                                                        |                      |
| 6101                 | PTL/PT0                                         |                                   | 1.000E+00                      |                                                                                                        |                      |
| 1020                 | PT1/PTL                                         |                                   | <b>1.000E+00</b>               |                                                                                                        |                      |
| 1022                 | нино/спо                                        |                                   | 1.000E+00                      |                                                                                                        |                      |
| 1023                 |                                                 |                                   |                                |                                                                                                        |                      |
| 1025                 | бла/хла                                         |                                   | 1.0006+00                      |                                                                                                        |                      |
| 1026                 | Inlet Drag Breakdown                            |                                   |                                |                                                                                                        |                      |
| 1028<br>1028         | AC                                              | (ft**2)                           | <b>1.000E+00</b>               |                                                                                                        |                      |
| 1030                 |                                                 |                                   | ₿                              | D (1bf)                                                                                                |                      |
| 1032                 | spillage                                        |                                   | <b>4.797E-01</b>               | 4.811E+02                                                                                              |                      |
| 1033                 | bleed                                           |                                   | 4.803E-03                      | 4.818E+00                                                                                              |                      |
| 1034                 | bypasa                                          |                                   | 0.000E-01                      | 0.000E-01                                                                                              |                      |
| 450T                 | COWL                                            |                                   | 0.000E-01                      | 0.000E-01                                                                                              |                      |
| 1037                 | reference                                       |                                   | 4.843E-01<br>0.000E-01         | 4.8335+UZ<br>0.000E-01                                                                                 |                      |
| 1038                 | power setting                                   |                                   | 4.845E-01                      | 4.859E+02                                                                                              |                      |
| 1040<br>1041         | Engine Performance Dat                          | с<br>Ц                            | uninstalled                    | installed                                                                                              |                      |
| 1042                 | net thrust                                      | (1bf)                             | 0.000E-01                      | -4.859E+02                                                                                             |                      |
| 1043                 | SFC                                             | (lbm/hr/lbf)                      | 0.000E-01                      | -0.000E-01                                                                                             |                      |
| 1044                 | W2<br>corrected W2                              | (1bm/s)<br>(1bm/s)                | 0.000E-01<br>8.601E+00         | 1.002E+01<br>8.585E+00                                                                                 |                      |
| 1046                 | reference recovery                              |                                   | <b>1.000E+00</b>               |                                                                                                        |                      |
| 1048<br>1049<br>1050 | &ipac xmach0=0.8,figu                           | tre=0, &end                       |                                |                                                                                                        |                      |
| 1051                 |                                                 |                                   |                                |                                                                                                        |                      |
| 1052<br>1053         | forebd: xmachx= 8.000E<br>ptrcv: xmach0= 8.000E | 8-01, xmach0= 8.                  | 000E-01, xml<br>734E-01, xm    | <pre>m0= 1.000E+00, ptlpt0= 1.000E+00, ala0= 1.<br/>ms= 0.000E-01, pt2pt0= 9.608E-01, thetad= 2.</pre> | 000E+00,<br>204E+00, |
| 1055                 | cd2d: xmach0= 8.000E                            | -01, athac= 2.<br>-01, a0iac= 1.  | 096E-01, nish<br>734E-01, xmac | юк=-1.000E+00,pthpt0= 1.000E+00,xlipth=-1.<br>hl= 2.33lE-01,ptlpt0= 1.000E+00, сda= 4.                 | 000E+00,<br>913E-01, |
| 1057<br>1057         | CISUC: XMACNO= 8.000E<br>*** error *** in proc  | 1-01, a0iac= 1.<br>ram segment cd | 734E-01, c<br>bld (errf        | :ls= 9.522E-02, cdspl= 3.961E-01,thetae= 5.<br>1g=2)                                                   | 412E+00,             |
| 1058                 | cdbld: xmach0= 8.000E                           | -01, a0iac= 1.                    | 734E-01, ble                   |                                                                                                        | 001E+00,             |

.

.

٠

-

| : xmachx= 8.000E-                           |                                   |                                     |                        |  |
|---------------------------------------------|-----------------------------------|-------------------------------------|------------------------|--|
| IPAC 2-D Inlet Exampl                       | e Case                            |                                     |                        |  |
| Flight Conditions                           |                                   |                                     |                        |  |
| Mach number                                 |                                   | 8.000E-01                           |                        |  |
| altitude                                    | (ft)                              | 0.000E-01                           |                        |  |
|                                             |                                   | ambient                             | total                  |  |
| pressure<br>temperature<br>dynamic pressure | (lbf/ft**2)<br>(R)<br>(lbf/ft**2) | 2.116E+03<br>5.187E+02<br>9.481E+02 | 3.226E+03<br>5.851E+02 |  |
| Vehicle Effects                             |                                   |                                     |                        |  |
| ML/MO<br>PTL/PTO<br>AL/AO                   |                                   | 1.000E+00<br>1.000E+00<br>1.000E+00 |                        |  |
| Inlet Mass Flow Ratios                      |                                   |                                     |                        |  |
| AOI/AC<br>AOSPL/AC<br>AOBLD/AC<br>AO/AC     |                                   | 1.734E-01<br>8.266E-01<br>2.310E-09 |                        |  |
| AOBYP/AC<br>AOENG/AC                        |                                   | 0.000E-01<br>1.734E-01              |                        |  |
| Inlet Total Pressure R                      | ecoveries                         |                                     |                        |  |
| PT2/PT0                                     |                                   | 9.608E-01                           |                        |  |
| PTL/PT0                                     |                                   | 1.000E+00                           |                        |  |
| РТ1/РТГ<br>РТН/РТ1                          |                                   | 1.000E+00                           |                        |  |
| PT2/PTTH                                    |                                   | 9.608E-01                           |                        |  |
| PTx/PTY                                     |                                   | 1.000E+00                           |                        |  |
|                                             |                                   |                                     |                        |  |

•

159

|              |              |      |           |                       |                  |           |           |           |                  |                         |                           |            |              |                        |                     |                    |                       | -00, ala0= 1.000E+00,              | 01, thetad= 2.204E+00, | +00, xlipth=-1.000E+00, | +00, cda= 3.932E-01, | -01,thetae= 5.412E+00, | -01, cdref= 0.000E-01, | .10,             |                  |                       |      | •••               |          |             |              |      |         |      |                                            |
|--------------|--------------|------|-----------|-----------------------|------------------|-----------|-----------|-----------|------------------|-------------------------|---------------------------|------------|--------------|------------------------|---------------------|--------------------|-----------------------|------------------------------------|------------------------|-------------------------|----------------------|------------------------|------------------------|------------------|------------------|-----------------------|------|-------------------|----------|-------------|--------------|------|---------|------|--------------------------------------------|
|              | ·            |      |           |                       |                  |           |           |           |                  |                         |                           |            |              |                        |                     |                    |                       | tlpt0= 1.000E+                     | t2pt0= 9.608E-         | thpt0= 1.000E+          | tlpt0= 1.000E+       | cdsp1= 3.159E-         | cdspl= 3.159E-         | WZ= 1.01/6+      |                  |                       |      |                   |          |             |              |      |         |      |                                            |
|              | D (1bf)      |      | 3.755E+02 | 90-97C0.T             | 0.000E-01        | 0.000E-01 | 3.755E+02 | 0.000E-01 | 3.755E+02        | incto]]od               | DATTORIT                  | -3.755E+02 | -0.000E-01   | 1.184E+01<br>8.585E+00 | <br> <br> <br> <br> |                    |                       | m0= 1.000E+00,p1                   | ns= 0.000E-01, pt      | ck=-1.000E+00, p        | h1 = 2.331E - 01, pt | Ls= 7.733E-02, 0       | ot= 3.159E-01, (       | 2C= 8.585E+00,   | ng= 8.601E+00,   |                       |      |                   |          |             |              |      | total   |      |                                            |
| 1.000E+00    | ₿            |      | 3.961E-01 | Т.ТUУБ-UУ<br>С.СССССС | <b>0.000E-01</b> | 0.000E-01 | 3.961E-01 | 0.000E-01 | <b>3.961E-01</b> | indtollod               | nittiscatten              | 0.000E-01  | 0.000E-01    | 0.000E-01<br>8.601E+00 |                     | <b>1.000E+00</b>   |                       | .000E-01, xml                      | .984E-01, xm           | .096E-01, nish          | .984E-01, xmac       | .984E-01, C            | .984E-01, cdt          | .984E-01, W      | .984E-01, w2ce   |                       |      |                   |          | TN-2000.0   | 0.000E-01    |      | ambient |      | < < · [] · · · · · · · · · · · · · · · · · |
| (ft**2)      |              |      |           |                       |                  |           |           |           |                  |                         | 5                         | (1bf)      | (lbm/hr/lbf) | (1bm/s)<br>(1bm/s)     |                     |                    | re=0, &end            | -01, xmach0= 6                     | -01, a0ac= 1.          | -01, athac= 2           | -01, a0iac= 1.       | -01, a01aC= 1          | -01, a0iac= 1.         | -ur, avenac= 1.  | -01, a0enac= 1.  | le Case               |      |                   |          |             | (ft)         |      |         |      | /1/2 /54440/                               |
| AC           |              |      | spillage  | Deeta.                | bypass           | COWL      | total     | reference | power setting    | Braine Dorformande Date | BURTHE FETTOTINATICE DALI | net thrust | SFC          | w2<br>corrected W2     |                     | reference recovery | kipac xmach0=0.6,figu | <pre>forebd: xmachx= 6.000E-</pre> | ptrcv: xmach0= 6.000E- | xmth= 5.500E            | cd2d: xmach0= 6.000E | Clsuc: xmach0= 6.000E  | : xmach0= 6.000E       | : xmacnu= 6.000E | : xmachx= 6.000E | IPAC 2-D INLET Exampl | •    | Flight Conditions | Na da su | MACH HUMMER | altitude     |      |         |      |                                            |
| 1105<br>1106 | 1107<br>1108 | 1109 | 1110      |                       | 1112             | 1113      | 1114      | 1115      | 1116             | 1117                    | 1119 U                    | 1120       | 1121         | 1122<br>1123           | 1124                | 1125<br>1126       | 1127<br>1128 č        | 1130                               | 1131                   | 1132                    | 1133                 | 1134                   | 1135                   | 1136             | 1137             | 1139                  | 1140 | 1141 1            | 1142     | 0211        | 1145<br>1145 | 1146 | 1147    | 1148 | 0711                                       |

. .

.

#" \

| 3E+02            |                 | 10E+00<br>10E+00<br>10E+00   |                        | 14E-01<br>6R-01 | 00E-01   | 54 E - 01            | 4E-01        |                        | <b>)8E-01</b> | 008+00                       | 00E+00       | 00E+00          | <b>)8E-01</b> | 00E+00       |      |                      | 00=+00       |      | (זמד) ה הי | 59E-01 1.685E+02 | <b>JOE-01 0.000E-01</b> | 00E-01 0.000E-01 | 00E-01 0.000E-01 | 99E-UL I.083E+UZ | 10E-01 0.000E-01<br>:05-01 1 6055-02 | 2019C00.T TO-960 | called installed       |      | JUE-01 -0.000E-01     |
|------------------|-----------------|------------------------------|------------------------|-----------------|----------|----------------------|--------------|------------------------|---------------|------------------------------|--------------|-----------------|---------------|--------------|------|----------------------|--------------|------|------------|------------------|-------------------------|------------------|------------------|------------------|--------------------------------------|------------------|------------------------|------|-----------------------|
| 5.33             |                 | 1.00<br>1.00<br>1.00         |                        | 1.98<br>1.01    | 0.0      | н. ч<br>1. ч<br>1. ч | 1.98         |                        | 9.60          | 1.00                         | 1.00         | 1.00            | 9.60          | 1.00         |      |                      | 1.00         | ,    | J          | 3.15             | 0.0                     | 0.0              | 0.0              | . T              | 0.0                                  |                  | uninst                 | č    | 0.0                   |
| (lbf/ft**2)      |                 |                              |                        |                 |          |                      |              | ecoveries              |               |                              |              |                 |               |              |      |                      | (ft**2)      |      |            |                  |                         |                  |                  |                  |                                      |                  | B                      |      | (1bf)<br>(1bm/hr/1bf) |
| dynamic pressure | Vehicle Effects | · ML/MO<br>PTL/PTO<br>AL/AO  | Inlet Mass Flow Ratios | A01/AC          | AOBLD/AC | AU/AC<br>AOBYP/AC    | A0ENG/AC     | Inlet Total Pressure R | PT2/PT0       | <u>рт.</u> / <del>р</del> т. | PT1/PT1      | <b>PTTH/PTT</b> | PT2/PTTH      | PT×/PTv      |      | Inlet Drag Breakdown | AC           |      |            | spillage         | bleed                   | bypass           | cowl             | total            | reterence                            | power securid    | Engine Performance Dat |      | net thrust<br>SFC     |
| 1151<br>1152     | 1153            | 1155<br>1155<br>1156<br>1156 | 1159<br>1159           | 1161<br>1161    | 1163     | 1164<br>1165         | 1166<br>1167 | 1168                   | 1169<br>1170  | 1171                         | 11/2<br>1173 | 1174            | 1175          | 1176<br>1177 | 1178 | 1179                 | 1180<br>1181 | 1182 | 1183       | 1185             | 1186                    | 1187             | 1188             | 1189             | 1190                                 | 1191             | 1193<br>1193           | 1194 | 1195<br>1196          |

.

۰.

.

,

. . **.** 

-

.

|                        |                    |                       | -00,ptlpt0= 1.000E+00, ala0= 1.000E+00,<br>01,pt2pt0= 9.608E-01,thetad= 2.204E+00, | 00,pthpt0= 1.000E+00,xlipth=-1.000E+00,<br>01.ptlpt0= 1.000E+00, cda= 2.407E-01. | 02, cdspl= 1.914E-01, thetae= 5.412E+00, | 01, cdspl= 1.914E-01, cdret= 0.000E-01,<br>00, w2= 9.069E+00, | .00,             |                      |                   |                  |           |         |             |                                 |                 |                  |           |              |                        |           |           |           |           |                      |       |
|------------------------|--------------------|-----------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------|------------------|----------------------|-------------------|------------------|-----------|---------|-------------|---------------------------------|-----------------|------------------|-----------|--------------|------------------------|-----------|-----------|-----------|-----------|----------------------|-------|
| 1.017E+01<br>8.585E+00 |                    |                       | m0= 1.000E+<br>ns= 0.000E-                                                         | ck = -1.000E + h1 = 2.331E -                                                     | 1s = 4.936E                              | ot= 1.914E-<br>2c= 8.585E+                                    | ng= 8.601E+      |                      |                   |                  |           | total   | 2.363E+03   | 5.353E+02                       |                 |                  |           |              |                        |           |           |           |           |                      |       |
| 0.000E-01<br>8.601E+00 | 1.000E+00          |                       | 4.000E-01, xml<br>2.655E-01, xm                                                    | 2.096E-01,nish<br>2.655E-01.xmac                                                 | 2.655E-01, C                             | 2.655E-01, cdt<br>2.655E-01, w                                | 2.655E-01,w2ce   |                      |                   | <b>4.000E-01</b> | 0.000E-01 | ambient | 2.116E+03   | 5.187E+02<br>2.370E+02          |                 | <b>1.000E+00</b> | 1.000E+00 | T.000E+00    |                        | 2.655E-01 | 7.345E-01 | 0.000E-01 | 2.655E-01 | 0.000E-01            | 1     |
| (1bm/s)<br>(1bm/s)     |                    | re=0, &end            | -01, xmach0= 4                                                                     | -01, athac= 1-01, a0iac= 2                                                       | -01, a0iac=                              | -01, a0iac=<br>-01,a0enac=                                    | -01, a0enac= 2   | le Case              |                   |                  | (ft)      |         | (1bf/ft**2) | (R)<br>(lbf/ft**2)              |                 |                  |           |              |                        |           |           |           |           |                      |       |
| W2<br>corrected W2     | reference recovery | &ipac xmach0=0.4,figu | <pre>forebd: xmachx= 4.000E ptrcv: xmach0= 4.000E</pre>                            | xmth= 5.500E<br>cd2d: xmach0= 4.000E                                             | clsuc: xmach0= 4.000E                    | : xmach0= 4.000E<br>: xmach0= 4.000E                          | : xmachx= 4.000E | IPAC 2-D Inlet Examp | Flight Conditions | Mach number      | altitude  |         | pressure    | temperature<br>dynamic pressure | Vehicle Effects | ML/M0            | PTL/PT0   | AL/AU        | Inlet Mass Flow Ratios | A01/AC    | AOSPL/AC  | AOBLD/AC  | A0/AC     | AUBIF/AC<br>AOENG/AC | • • • |
| 1197<br>1198           | 1200               | 1202                  | 1205<br>1206<br>1206                                                               | 1207<br>1208                                                                     | 1209                                     | 1210                                                          | 1212<br>1213     | 1214                 | 1216              | 1218             | 1220      | 1222    | 1224        | 1225                            | 1228            | 1229<br>1230     | 1231      | 1232<br>1233 | 1234                   | 1236      | 1237      | 1238      | 1239      | 1241                 | 1242  |

. ·

٠

÷

|        | PT2/PT0                           |                                | 9.608E-01              |                                         |                                      |
|--------|-----------------------------------|--------------------------------|------------------------|-----------------------------------------|--------------------------------------|
|        | PTL/PT0                           |                                | 1.000E+00              |                                         |                                      |
|        | PT1/PTL                           |                                | 1.000E+00              |                                         |                                      |
|        | PTTH/PTT<br>PT2/PTTH              |                                | L.000E+00<br>9.608E-01 |                                         |                                      |
|        | ртх/рту                           |                                | <b>1.000E+00</b>       |                                         |                                      |
| Inlet  | Drag Breakdown                    |                                |                        |                                         |                                      |
|        | AC                                | (ft**2)                        | <b>1.000E+00</b>       |                                         |                                      |
|        |                                   |                                | CD                     | D (lbf)                                 |                                      |
|        | enillace                          |                                | 1.914E-01              | 4.536E+01                               |                                      |
|        | bleed                             |                                | 0.000E-01              | 0.000E-01                               |                                      |
|        | bypass                            |                                | 0.000E-01              | 0.000E-01                               |                                      |
|        | COWL                              |                                | 0.000E-01              | 0.000E-01                               |                                      |
|        | total                             |                                | 1.914E-01              | 4.536E+01                               |                                      |
|        | reference<br>power setting        |                                | U.UUUE-U1<br>1.914E-01 | 0.0005-01<br>4.536E+01                  |                                      |
|        |                                   |                                |                        |                                         |                                      |
| Engin  | e Performance Data                | đ                              | uninstalled            | installed                               |                                      |
|        | net thrust                        | (1bf)                          | <b>0.000E-01</b>       | -4.536E+01                              |                                      |
|        | SFC                               | (lbm/hr/lbf)                   | 0.000E-01              | -0.000E-01                              |                                      |
|        | W2                                | (1bm/s)                        | 0.000E-01              | 9.069E+00                               |                                      |
|        | corrected W2                      | (lbm/s)                        | 8.601E+00              | 8.585E+00                               |                                      |
| re     | ference recovery                  |                                | <b>1.000E+00</b>       |                                         |                                      |
|        |                                   |                                |                        |                                         |                                      |
| &ipac  | : xmach0=0.2,figu                 | re=0, &end                     |                        |                                         |                                      |
| foret  | d: xmachx= 2.000E                 | -01, xmach0= 2                 | .000E-01, xm]          | .m0= 1.000E+00,ptlpt0= 1.000E+00,       | ala0= 1.000E+00                      |
| ptrc   | v: xmach0= 2.000E                 | -01, a0ac= 4                   | .945E-01, XU           | uns= 0.000E-01,pt2pt0= 9.601E-01,t1<br> | hetad= 2.204E+00<br>]inth=-1 000E+00 |
| C TU U | XMth= 5.500E<br>4. vmarh0- 2 000E | -UL, ACNAC= 2<br>-Ol, ADIAC= 4 | .09655-01,XMaG         | ihl= 2.329E-01, pt1pt0= 1.000E+00,      | cda = 0.000E-01                      |
|        | · xmach0= 2.000E                  | -01, a0iac= 4                  | .945E-01, cdt          | ot= 0.000E-01, cdspl= 0.000E-01,        | cdref= 0.000E-01                     |
|        | : xmach0= 2.000E                  | -01, a0enac= 4                 | .945E-01, V            | /2C= 8.585E+00, W2= 8.445E+00,          |                                      |
|        | : XMAChX= 2.000E                  | -UI, auenac= 4                 | . 24.56-UL, W2CE       | 0012100.8 = 6113                        |                                      |
| IPAC   | 2-D Inlet Examp                   | le Case                        |                        |                                         |                                      |

| 1289         |                           |                   |                        |           |
|--------------|---------------------------|-------------------|------------------------|-----------|
| 1290         | Flight Conditions         |                   |                        |           |
| 1291         |                           |                   |                        |           |
| 1292         | Mach number               |                   | 2.000E-01              |           |
| 1293         |                           |                   |                        |           |
| 1294         | altitude (                | [ft]              | 0.000E-01              |           |
| 1295         |                           |                   | -                      |           |
| 1296         |                           |                   | ambient                | total     |
| 1297         |                           |                   |                        |           |
| 7 2 2 8      | pressure                  | LDT/TT**2)        | 2.116E+03              | 2.176E+03 |
| 2200<br>1300 | dynamic presence (        | .R)<br>1hf/f+**2) | 5.187E+02<br>5.0255401 | 5.228E+02 |
| 1301         |                           |                   |                        |           |
| 1302         | Vehicle Effects           |                   |                        |           |
| 1303         |                           |                   |                        |           |
| 1304         | MLL/MO                    |                   | <b>1.000E+00</b>       |           |
| 1305         | PTL/PT0                   |                   | 1.000E+00              |           |
| 1305<br>1307 | AL/AU                     |                   | 1.000E+00              |           |
| 1308         | Inlet Magg Flow Ratios    |                   |                        |           |
| 1309         |                           |                   |                        |           |
| 1310         | A01/AC                    |                   | 4.945E-01              |           |
| 1311         | AOSPL/AC                  |                   | 5.055E-01              |           |
| 1312         | A0BLD/AC                  |                   | 0.000E-01              |           |
| 1313         | A0/AC                     |                   | 4.945E-01              |           |
| 1314         | A0BYP/AC                  |                   | 0.000E-01              |           |
| 1315         | A0ENG/AC                  |                   | 4.945E-01              |           |
| 0101         | Telot Motel Period        |                   |                        |           |
| 1318<br>1318 | Inter Toral Pressure Reco | overles           |                        |           |
| 1319         | PT2/PT0                   |                   | 9.601E-01              |           |
| 1320         |                           |                   |                        |           |
| 1321         | DLI/LLI                   |                   | <b>1.000E+00</b>       |           |
| 1322         | PT1/PTL                   |                   | <b>1.000E+00</b>       |           |
| 1323         | LT4/HTT4                  |                   | 9.993E-01              |           |
| 1324         | рт2/рттн                  |                   | 9.608E-01              |           |
| 1325         |                           |                   |                        |           |
| 1326<br>1377 | PTX/PTY                   |                   | <b>1.000E+00</b>       |           |
| 1328         | Inlet Drag Breakdown      |                   |                        |           |
| 1329         |                           |                   |                        |           |
| 1330         | AC (1                     | ft**2)            | <b>1.000E+00</b>       |           |
| 1332         |                           |                   | 8                      | D (lbf)   |
| 1333         |                           |                   |                        |           |
| 1334         | spillage                  |                   | 0.000E-01              | 0.000E-01 |

\*

.

|                        | 9.355E+00 | -8.355E+00<br>0 000E-01 | 9.355E+00 | 0.0005-01 | 9.355E+00 |                        | 9.300E-01 |             | 1.000E+00 | т. UUUE+UU<br>9 бвлё-D1 | 9.608E-01 | 1 0005100        | 1.000b+000    |                      |        | 00+3000 T | CD D (1bf) | 0.000E-01 0.000E-( | 2-2000 0 TO-2000 0 |     | uninstalled installe   |     | 0.000E-01 0.000E-(        | 0.0008-01 0.0008-01 0.0008-0 | 8.601E+00 8.585E+( |     | 1 0008400          |
|------------------------|-----------|-------------------------|-----------|-----------|-----------|------------------------|-----------|-------------|-----------|-------------------------|-----------|------------------|---------------|----------------------|--------|-----------|------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-----|------------------------|-----|---------------------------|------------------------------|--------------------|-----|--------------------|
|                        |           |                         |           |           |           | lecoveries             |           |             |           |                         |           |                  |               |                      | (++++) | (771)     |            |                    |                    |                    |                    |                    |                    |     | ,                      |     | (TDI)<br>/1 hm /hw /1 hf) | (1pm/a)<br>(1pm/a)           | (1bm/s)            |     |                    |
| Inlet Mass Flow Ratios | A01/AC    | A03PL/AC<br>A0RI:D/AC   | A0/AC     | AOBYP/AC  | A0ENG/AC  | Inlet Total Pressure F | PT2/PT0   |             | PTL/PTO   | цту/тту<br>цту/тту      | PT2/PTTH  | <u>рту</u> / рту | 5 T Y / Y T J | Inlet Drag Breakdown |        | AC        |            | spillage           | bleed              | bypass             | COWL               | Lotal              | nower setting      |     | Engine Performance Dat |     | DEL UNIUSC<br>SEC         | SFC<br>W2                    | corrected W2       | Ţ   | reference recoverv |
| 1381<br>1382           | 1384      | L385<br>1386            | 1387      | L388      | L389      | 1391<br>1392           | 1393      | 1074<br>101 | 295       | L397                    | 398       | 400              | 401           | 402                  | 403    | 405       | 406        | 408                | 409                | 410                | 411                | 217-<br>217-       | 014<br>414         | 415 | 416                    | 417 | 4 T 0                     | 420                          | 421                | 422 | 423                |

.

ņ

-

·

| REPORT                                                                                                                                                                                         | DOCUMENTATION P                                                                                                                                                                                 | AGE                                                                                                                                                          | Form Approved<br>OMB No. 0704-0188                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Public reporting burden for this collection of<br>gathering and maintaining the data needed,<br>collection of information, including suggestion<br>Davis Highway, Suite 1204, Arlington, VA 22 | information is estimated to average 1 hour per<br>and completing and reviewing the collection of<br>ns for reducing this burden, to Washington He<br>2202-4302, and to the Office of Management | r response, including the time for revi<br>information. Send comments regard<br>adquarters Services, Directorate for h<br>and Budget, Paperwork Reduction Pr | ewing instructions, searching existing data sources,<br>ting this burden estimate or any other aspect of this<br>formation Operations and Reports, 1215 Jefferson<br>oriect (0704-0188), Washington, DC, 20503 |
| 1. AGENCY USE ONLY (Leave blank                                                                                                                                                                | k) 2. REPORT DATE                                                                                                                                                                               | 3. REPORT TYPE AND                                                                                                                                           | DATES COVERED                                                                                                                                                                                                  |
|                                                                                                                                                                                                | July 1997                                                                                                                                                                                       | Fir                                                                                                                                                          | al Contractor Report                                                                                                                                                                                           |
| 4. TITLE AND SUBTITLE                                                                                                                                                                          |                                                                                                                                                                                                 |                                                                                                                                                              | 5. FUNDING NUMBERS                                                                                                                                                                                             |
| IPAC - Inlet Performance A                                                                                                                                                                     | Analysis Code                                                                                                                                                                                   |                                                                                                                                                              |                                                                                                                                                                                                                |
|                                                                                                                                                                                                |                                                                                                                                                                                                 |                                                                                                                                                              | NAL 500 41 40                                                                                                                                                                                                  |
| 6 AUTHOR(S)                                                                                                                                                                                    |                                                                                                                                                                                                 |                                                                                                                                                              | WU-522-41-43<br>C-NAS3-27186                                                                                                                                                                                   |
| Paul I Barnhart                                                                                                                                                                                |                                                                                                                                                                                                 |                                                                                                                                                              | C-NASJ-2/100                                                                                                                                                                                                   |
| i aui J. Datililait                                                                                                                                                                            |                                                                                                                                                                                                 |                                                                                                                                                              |                                                                                                                                                                                                                |
|                                                                                                                                                                                                |                                                                                                                                                                                                 |                                                                                                                                                              | -                                                                                                                                                                                                              |
| 7. PERFORMING ORGANIZATION N                                                                                                                                                                   | AME(S) AND ADDRESS(ES)                                                                                                                                                                          |                                                                                                                                                              | 8. PERFORMING ORGANIZATION                                                                                                                                                                                     |
| NYMA. Inc.                                                                                                                                                                                     |                                                                                                                                                                                                 |                                                                                                                                                              |                                                                                                                                                                                                                |
| 2001 Aerospace Parkway                                                                                                                                                                         |                                                                                                                                                                                                 |                                                                                                                                                              | E-10800                                                                                                                                                                                                        |
| Brook Park, Ohio 44142                                                                                                                                                                         |                                                                                                                                                                                                 |                                                                                                                                                              | <b>~</b> −10000                                                                                                                                                                                                |
|                                                                                                                                                                                                |                                                                                                                                                                                                 |                                                                                                                                                              |                                                                                                                                                                                                                |
| 9. SPONSORING/MONITORING AG                                                                                                                                                                    | ENCY NAME(S) AND ADDRESS(ES)                                                                                                                                                                    | 1                                                                                                                                                            | 0. SPONSORING/MONITORING                                                                                                                                                                                       |
|                                                                                                                                                                                                |                                                                                                                                                                                                 |                                                                                                                                                              | AGENCY REPORT NUMBER                                                                                                                                                                                           |
| National Aeronautics and S                                                                                                                                                                     | space Administration                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                |
| Cleveland Obio 44135 2                                                                                                                                                                         | 101                                                                                                                                                                                             |                                                                                                                                                              | NASA UK-204130                                                                                                                                                                                                 |
|                                                                                                                                                                                                | 191                                                                                                                                                                                             |                                                                                                                                                              |                                                                                                                                                                                                                |
| 11. SUPPLEMENTARY NOTES                                                                                                                                                                        | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                           |                                                                                                                                                              |                                                                                                                                                                                                                |
| Project Manager, Paul F. S                                                                                                                                                                     | enick. Propulsion Systems Anal                                                                                                                                                                  | vsis Office. NASA Lewis                                                                                                                                      | Research Center organization code                                                                                                                                                                              |
| 2400, (216) 433–7024.                                                                                                                                                                          |                                                                                                                                                                                                 | <i>Jub 011100, 14 1011 120413</i>                                                                                                                            | Resolution Contest, organization code                                                                                                                                                                          |
|                                                                                                                                                                                                |                                                                                                                                                                                                 |                                                                                                                                                              |                                                                                                                                                                                                                |
| 12a. DISTRIBUTION/AVAILABILITY                                                                                                                                                                 | STATEMENT                                                                                                                                                                                       | 1                                                                                                                                                            | 2b. DISTRIBUTION CODE                                                                                                                                                                                          |
| Inclose field Inlimited                                                                                                                                                                        |                                                                                                                                                                                                 |                                                                                                                                                              |                                                                                                                                                                                                                |
| Subject Category 07                                                                                                                                                                            |                                                                                                                                                                                                 |                                                                                                                                                              |                                                                                                                                                                                                                |
| Subject cutegory of                                                                                                                                                                            |                                                                                                                                                                                                 |                                                                                                                                                              |                                                                                                                                                                                                                |
| This publication is available fro                                                                                                                                                              | m the NASA Center for AeroSpace In                                                                                                                                                              | nformation, (301) 621-0390.                                                                                                                                  |                                                                                                                                                                                                                |
| 13. ABSTRACT (Maximum 200 word                                                                                                                                                                 | ds)                                                                                                                                                                                             |                                                                                                                                                              |                                                                                                                                                                                                                |
|                                                                                                                                                                                                |                                                                                                                                                                                                 |                                                                                                                                                              |                                                                                                                                                                                                                |
| A series of analyses have b                                                                                                                                                                    | een developed which permit the                                                                                                                                                                  | calculation of the perform                                                                                                                                   | nance of common inlet designs. The                                                                                                                                                                             |
| methods presented are used                                                                                                                                                                     | ful for determining the inlet weight                                                                                                                                                            | ght flows, total pressure re                                                                                                                                 | covery, and aerodynamic drag                                                                                                                                                                                   |
| coefficients for given inlet                                                                                                                                                                   | geometric designs. Limited geor                                                                                                                                                                 | metric input data is require                                                                                                                                 | ed to use this inlet performance                                                                                                                                                                               |
| prediction methodology. T                                                                                                                                                                      | he analyses presented here may                                                                                                                                                                  | also be used to perform in                                                                                                                                   | nlet preliminary design studies. The                                                                                                                                                                           |
| calculated inlet performance                                                                                                                                                                   | te parameters may be used in su                                                                                                                                                                 | bsequent engine cycle ana                                                                                                                                    | lyses or installed engine performance                                                                                                                                                                          |
| calculations for existing un                                                                                                                                                                   | inistaneo engine data.                                                                                                                                                                          |                                                                                                                                                              |                                                                                                                                                                                                                |
|                                                                                                                                                                                                |                                                                                                                                                                                                 |                                                                                                                                                              |                                                                                                                                                                                                                |
|                                                                                                                                                                                                |                                                                                                                                                                                                 |                                                                                                                                                              |                                                                                                                                                                                                                |
|                                                                                                                                                                                                |                                                                                                                                                                                                 |                                                                                                                                                              |                                                                                                                                                                                                                |
|                                                                                                                                                                                                |                                                                                                                                                                                                 |                                                                                                                                                              |                                                                                                                                                                                                                |
|                                                                                                                                                                                                |                                                                                                                                                                                                 |                                                                                                                                                              |                                                                                                                                                                                                                |
|                                                                                                                                                                                                |                                                                                                                                                                                                 |                                                                                                                                                              |                                                                                                                                                                                                                |
|                                                                                                                                                                                                |                                                                                                                                                                                                 |                                                                                                                                                              |                                                                                                                                                                                                                |
| 14. SUBJECT TERMS                                                                                                                                                                              |                                                                                                                                                                                                 |                                                                                                                                                              | 15. NUMBER OF PAGES                                                                                                                                                                                            |
|                                                                                                                                                                                                | tes encodernante due es                                                                                                                                                                         |                                                                                                                                                              | 168                                                                                                                                                                                                            |
| Total pressure recovery; In                                                                                                                                                                    | let aerodynamic drags                                                                                                                                                                           |                                                                                                                                                              | 100                                                                                                                                                                                                            |
| Total pressure recovery; In                                                                                                                                                                    | net aerodynamic drags                                                                                                                                                                           |                                                                                                                                                              | 16. PRICE CODE                                                                                                                                                                                                 |
| Total pressure recovery; In<br>17. SECURITY CLASSIFICATION                                                                                                                                     | 18. SECURITY CLASSIFICATION                                                                                                                                                                     | 19. SECURITY CLASSIFICAT                                                                                                                                     | 16. PRICE CODE<br>A09                                                                                                                                                                                          |
| Total pressure recovery; In<br>17. SECURITY CLASSIFICATION<br>OF REPORT                                                                                                                        | 18. SECURITY CLASSIFICATION<br>OF THIS PAGE                                                                                                                                                     | 19. SECURITY CLASSIFICAT<br>OF ABSTRACT                                                                                                                      | 16. PRICE CODE<br>A09<br>ION 20. LIMITATION OF ABSTRACT                                                                                                                                                        |
| Total pressure recovery; In<br>17. SECURITY CLASSIFICATION<br>OF REPORT<br>Unclassified                                                                                                        | 18. SECURITY CLASSIFICATION<br>OF THIS PAGE<br>Unclassified                                                                                                                                     | 19. SECURITY CLASSIFICAT<br>OF ABSTRACT<br>Unclassified                                                                                                      | 16. PRICE CODE<br>A09<br>ION 20. LIMITATION OF ABSTRACT                                                                                                                                                        |

•

. -

.

-