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As a significant industrial pollutank cadmium is implicated as the cause of itai-itai disease. For

biological detection of cadmium toxicity, an assay device has been developed using the motile

response of the protozoa species, Tetrahymena pyriformis. This mobile protozoa measures 50 #m in

diameter, swims at 10 body lengths per second, and aggregates into macroscopically visible patterns
at high organism concentrations. The assay demonstrates a Cd +2 sensitivity better than 1 ,aM and a

toxicity threshold to 5 #M, thus encouraging the study of these microbial cultures as viable

pollution detectors. Using two-dimensional diffraction patterns within a Tetrahvmena culture, the
scattered light intensity varies with different organism densities (population counts). The resulting

density profile correlates strongly with the toxic effects at very low dosages for cadmium (<5 ppm)

and then for poison protection directly (with nickel and copper antagonists competing with cadmium

absorption). In particular, copper dosages as low as 0.1-0.5 mM Cu have shown protective

antagonism against cadmium, have enhanced density variability for cultures containing 1 mM Cd +2,

and therefore have demonstrated the sensitivity of the optical detection system. In this way, such

microbial diffraction patterns give a responsive optical measure of biological culture changes and

toxicity determination in aqueous samples of heavy metals and industrial pollutants. © 1996
American Institute of Physics. [S0034-6748(96)05102-9]
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I. INTRODUCTION

Heavy metal pollutants represent a major aqueous pol-

lutant not only because of their high toxicity, but also be-

cause of their ready accumulation in natural sediments (lakes

and rivers). Once soil storage begins, rapid amplification of

pollutant concentrations begins to appear in higher food
chains.l-5 For cadmium, the causative agent in itai-itai dis-

ease, the rapid formation of protein-cadmium complexes

gives very long half-lives for escape from mammalian and

human bodies. Once challenged in vivo, the organism suffers

largely without clinically acceptable treatment because buff-

ering alkali and trace metals complicate excretion via biliary
action. 6,7

The present work targets cadmium poisoning as a pol-
lutant of environmental concern. A novel bioassay e'9 for

rapid screening of cadmium dosages is developed which uses
motile cells of Tetrahymena, monitors their swimming ac-

tion, then quantifies chemical toxicity based on scattering

intensity for two-dimensional Fourier patterns. These Fourier

patterns arise directly from the aggregation and density dif-
ferences observed in this microbe; the optical diffraction is a

variant of scattering from a grating or other barrier of differ-

ent refractive indices. The principal advantage of this method

is its potential for very sensitive detection of otherwise subtle

biological changes (swimming behavior). Because of its en-

hanced cadmium detection, the diffraction technique offers

an automated scoring of new antipoisoning agents, ml
Previous work 12'L_has characterized the swimming ag-

gregation behavior of motile Tetrahymena cells in response
to increasing dosages of cadmium, 8 calcium as protection

against cadmium, and other heavy metals such as nickel and

copper 9 for antagonizing the biological activity of cadmium

in vivo. While the effects of effluent levels on biological

function have distinct structural correlates (such as cell size

or shape changes), the function of swimming itself drives the

observable behavior in dense cultures. In this way, this sys-

tematic toxicological study of cadmium poisoning undertook

to examine a statistically predictable mosaic of high and low

densities (pattern formation) in spontaneously inhomoge-

neous Tetrahymena cultures. As a measure of cadmium tox-

icity, the bioassay supplies an accessible monitor linked to a

biologically well-characterized organism change.

To quantify behavioral changes as a function of dosage,
the formation of effective density differences or "optical

gratings" of high and low cell counts give results for image

analysis in the rapidly expanding field called statistical

crystallography, s'9'14 The present work furthers this effort by

characterizing the optical diffraction quality of the inhomo-

geneous Tetrahymena culture. With success, a simpler bio-

logical detector of cadmium activity can potentially automate

the screening of protective agents or heavy metal antago-
nists.

II. MATERIALS AND METHODS

To perform the optical diffraction assay, stock cultures of

the protozoa, Tetrahymena pyriformis (American Tissue Cul-

ture Collection, ATCC), were grown axenically in autoclaved

proteose peptone/yeast (PPY) medium, as described
elsewhere. 8 To summarize the recipe, a fresh 100 mL growth
medium was innoculated with 1 mL of cells harvested from

stock at a stationary growth phase. After 2 days, when these

cultures passed early logarithmic growth, they were divided

into equal 100 mL portions and supplemented with cadmium

chloride (CDC2×2.5 H20) in a fresh 100 mL of medium.

828 RevoSci. Instrum. 67 (3), March 1996 0034-6748/96/67(3)/828/5/$10.00 © 1996 American Institute of Physics

https://ntrs.nasa.gov/search.jsp?R=19970026030 2020-06-16T01:19:59+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/42773401?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Culture Density and Temporal Growth

120(300"

-_ I O00OO '

8oooo

 roooo

g _.oooo̧
=,

°
-20000 ¸

Cadmium com,'ntratuln

Low Dose Cadmium

and Reduced Wavelength

E

Cadmium Concentration

and Delayed Pattern Formation
Times

140

120

loo

_ 80

_ 40

_ 2o

2O 40 6O 8O 0 2 4 6 8

Time (hn) Wavelenglh {mm)

(a) (b) (c)

1 2 3

Cadmium concentration (pg/mL)

FIG. 1. The effects of cadmium on the (a) population density, (b) characteristic wavelength of pattern formation, and (c) pattern formation time after manual

mixing. The results show a marked effect of cadmium on biologically relevant pattern formation.

Final cadmium concentration varied between 1 and 5 /zM.

Cultures were incubated at 28 °C constant temperature. The

growth of Tetrahymena was monitored by microscope (10×)

and manual cell counting using a hemacytometer. Solutions
were made from 200/zM CdC12 stock and solutions of nickel

and copper buffered stock (in PPY media), seeded with 5 mL

Tetrahymena stock, then brought up to 200 mL final volume.

Within 2-3 days following a culture reaching its expo-

nential growth phase, bioconvective patterns were induced

by first concentrating the cultures. This was accomplished in

200 mL portions, wherein the cells were harvested by hydro-

static filtration through a 0.2 /zm mesh. Each culture was
filtered to a 10 mL total volume, thus yielding a maximum

organism density of approximately 106 mL -1. The assay was

carried out in Petri dishes, with a culture and media volume

measured at 4.8 cm in diameter and 0.8 mm in depth. Mul-

tiple 10 mL lots of concentrated cultures (media plus cells)

were transferred from filters to dishes using 5 mL plastic

pipettes.

Protozoan growth was assessed quantitatively by digitiz-

ing (512×512 pixel resolution) the macroscopic patterns of

high and low Tetrahymena concentrations, then taking the

optical diffraction image (two-dimensional fast Fourier trans-

form). The density difference between high and low organ-
ism counts was measured as a factor between 10 and 20. The

transformed images were evaluated for peak intensity and

angular spread.

III. RESULTS AND DISCUSSION

The cadmium toxicity itself was tested by examining the

effects of cadmium concentrations between I and 5 /_M

CdCI 2, without protective buffering or antagonism with cop-

per or nickel. Compared to previous tests using mammalian

cultures, swimming Tetrahymena cells display a remarkably
similar correspondence to the lowest observable toxic thresh-

olds (1 /zM Cd+2). This similarity lends credence to a com-

parable biological action of cadmium on both single cells

and whole organisms.

Pattern Changes as a Function of Space
and Chemical Concentration (Cd)

Slice through Chemical-Axis

Pattern Changes

FIG. 2. Effect of cadmium on the growth of Tetrahymena pyriformis population. The cultures were supplemented with cadmium. Control cells are grown in

PPY media and pattern formation is calibrated to 100% on PPY media without cadmium treated cells. Cd concentrations= 1-5 /zM. (a) Spatial dimensions

represent two axes in a plane and (b) vertically represented cadmium concentration for otherwise identical test cultures.
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FIG. 3. The effects of time on the real-space and Fourier-transformed pat-

terns of aggregation. (a) shows the pattern I h following initial organism

concentrations of 10 organism/mL; and (b) shows the same culture 12 h
afterward.

The effect of cadmium addition on a culture was seen in

its ability to change the observable patterns of organism ag-

gregation. Figure i shows three such patterns with increasing

cadmium concentrations. Pattern formation disappears en-
tirely above 7 ppm cadmium.

Each cadmium dilution inhibited growth sharply over a

narrow range (Fig. 2) and in agreement with previous
work. 8'9 The median inhibitory (control) concentration was

estimated to be between 5 and 7 #M Cd +2. The

concentration-dependent development of cadmium toxicity
affects three elements of the detection system: ( 1) the density

of viable organisms surviving [populations count: Fig. l(a)];

(2) the characteristic wavelength (3-9 mm) of the aggrega-

tion pattern in the culture [Fig. l(b)], and (3) the typical time

for an aggregation pattern to form (20-120 s) following stir-

ring or mixing of the sample [Fig. 1(c)]. The latter effect is a

direct and macroscopic measure of the robustness of the cul-

ture, the swimming speed of its constituent cells, organism

count, and overall biological metabolism in the presence of

heavy metal pollutants. The generalization of these subtle

changes in biological activity are scored presently using op-

tical diffraction from the density differences in such sponta-

neously inhomogeneous cultures.

The effects of time on a culture's pattern forming ability

is illustrated in Fig. 3. In general the effects of time are small

if the culture is harvested after its logarithmic growth period

(2-3 days following seeding) and monitored over a rela-

tively shorter (2-3 h) observation period. Some cultures

have maintained static patterns which change relatively

slowly over the course of days to even a week. Figure 3

compares a culture at ! h after concentration to 105

organisms/mL [Fig. 3(a)] to the same culture 12 h afterward

[Fig. 3(b)]. The typical wavelength of the pattern has de-

creased by a factor of 3.2 and the Fourier pattern of optical

diffraction has become randomized without the symmetry

axes shown in Fig. 3(a). This change furthermore shows the

potential for applying the optical diffraction method, since

the real space patterns are distinguishable only by changes in
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FIG. 5. Laser illuminated density pattern from density differences during solution growth of cadmium-doped cultures of Tetrahymena. Cadmium concentration

equals I #M. The He-Ne laser produced 50 mW at 632.8 nm wavelengths. (a) shows the digitized trace from a pattern which is illuminated and (b) (right)

shows the direct illumination pattern from the cell culture density scattering itself.

characteristic wavelength, while the Fourier space patterns

gives a better measure for distinguishing changes in pattern

orientation (e.g., randomized patterns).

The dosage results for the optical diffraction method
(Fig. 4) paralleled previous growth studies 1"8"9but with

greater sensitivity in the 1-5 p.M Cd ÷2 range. Cadmium

concentrations as low as 1 ppm gave a distinct signature on

the Fourier transformed images of Tetrahymena swimming

and aggregation behavior. Since above 5 ppm cadmium in-

hibits pattern formation altogether, the disappearance of scat-

tered light is easily detectable as the loss of the angular

spread in the output signal (due to diffraction from culture

density differences shown in Fig. 4). In this way the input

signal is attenuated or simply becomes a scintillation detec-

tor. The ability to distinguish subtle differences in the Fourier

space patterns of Fig. 4(a) is a well-known crystallographic
practice, but for the present analysis, it is sufficient to de-

scribe simple changes in symmetry properties comparing

otherwise identical cultures except for cadmium concentra-
tion. Inset to each real and Fourier space pattern is the line

profile across each real space pattern. The line profile high-

lights the inhomogeneity of these spontaneous aggregation

patterns and offers the quantitative characterization using, for

example, fractal dimension of the line profile or other spec-

tral analyses.
Both the angular distribution of scattering centers and

their maximum (peak) intensity differed visibly between the

cases of 0, !, and 3 ppm. Nickel alone showed no consistent

effect on patterns at these low dosages and variations shown

give a measure of statistical and optical noise [Fig. 4(b)].

Pattern responses for cadmium in the presence of copper

antagonism, however, did show distinct diffraction patterns

(0-2 mM Cu) as summarized in Fig. 4(b). The real space

pattern of the copper protected cell cultures (2 mM Cu)

shows a mean wavelength of 3.3 mm which is distinguish-

able from the 9 mm wavelength characteristic for cadmium-

poisoned samples and consistent with the 3.1 mm average

wavelength for undoped cultures.
An alternative means was investigated for generating the

Fourier space pattern. Unlike the previous results derived

from optically illuminating the digitized trace of pattern in-
homogeneities, a He-Ne laser was used to illuminate the cell
cultures in real time. The results are shown in Fig. 5(a) for

the digitized pattern trace and in Fig. 5(b) for the real-time
cell culture. While the fine-scale resolution of the digitized

version is not apparent, the real-time diffraction spot does

reveal the generally random spatial orientation of the density

inhomogeneities.
Quantitative pattern analysis for cadmium in the pres-

ence of chelators was undertaken previously using tech-

niques of statistical crystallography) 4 These have been re-

viewed generally for random patterns and particularly for
bioconvective assays, s'9 For different cadmium levels, com-

parison of polygonal patterns can be aided by a statistical set

characterized by, for example, the size and polygonal shape

of two-dimensional patterns. In this way, the mosaic formed

by cell swimming and aggregation can become a quantifiable

measurement tool for scoring environmental toxicants.

Depending on the bioassay preparation (e.g., antagoniz-
ing agent, cadmium concentration, etc.) the favored Tetrahy-

mena mosaic pattern should affect the area and polygonal

sidedness distribution (Fig. 2). These lopsided distributions
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give a measure of disorder and can be appropriately called a

crystallographic defect•

The metabolic action of metal binding on cell mem-

branes has received considerable discussion, wherein poison

inhibition (by nickel or copper) can arise if metal uptake

competes with cadmium or otherwise cannot pass cadmium

successfully either from extracellular fluid or directly into
cell membranes. 7 The solution of cadmium does not readily

pass into the cell. In animal tissues, c_idmium becomes

bound to proteins soon after incorporation into the cell, so
inorganic inhibitors of toxicity such as nickel and copper

most probably act extracellularly and prior to membrane
penetration, i5 A nuclear study of cadfiaium's biological action

has yet to be undertaken•

The primary result of the optical diffraction system is a

highly quantitative means for identifying otherwise closely

matched and highly disordered cell networks. Such defect

generation and disorder in bioassay networks are observable

using an optical diffraction system of scattered intensities

from inhomogeneous cell densities and can distinguish efflu-
ent concentrations as low as I ppm in a biologically well-

characterized organism.

By supplying a superior optical diffraction method, the

rapid screening of cadmium interaction in vivo, along with

appropriate design of antagonists, can proceed with im-

proved reliability and efficacy. The dose-response curves for

cadmium and buffers confirm results from cell cultures,

while providing a novel response and quantitative display for

comparing toxicity limits. Future work will automate the op-

tical image process for purposes of speed, cost, and remote
access to the environmentally threatening pollutant, cad-
mium.
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