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Summary

Dynamic animation of stresses and displacements, which
complement each other, can be a useful tool in the analysis and
design of structural components. At the present time only
displacement-mode animation is available through the popular
stiffness formulation. This paper attempts to complete this
valuable visualization tool by augmenting the existing art with
stress mode animation. The reformulated method of forces,
which in the literature is known as the integrated force method
(IFM), became the analyzer of choice for the development of
stress mode animation because stresses are the pri-
mary unknowns of  its dynamic analysis. Animation of stresses
and displacements, which have been developed successfully
through the IFM analyzers, is illustrated in several examples
along with a brief introduction to IFM dynamic analysis. The
usefulness of animation in design optimization is illustrated
considering the spacer structure component of the International
Space Station as an example. An overview of the integrated
force method analysis code (IFM/ANALYZERS) is provided
in the appendix.

Introduction

Animation of displacement modes, which provides an over-
all visualization of the deformations, is an elegant tool for the
examination of the dynamic behavior of a structure. The field
of animation, however, can be improved by an augmentation in
the existing art with stress mode animation. Stress and displace-
ment animations, which complement each other, can together
provide a comprehensive visual behavior of a structure. Con-
sider, for example, a cantilevered beam. Its displacement
animation depicts the motion of the beam with the maximum
amplitude occurring at its free end. Fundamental stress-mode
animation, on the other hand, shows peak stress response at its
built-in end where displacements are suppressed. Both stress
and displacement animations can be useful for design, fatigue,
and fracture studies of the beam.

Displacement animation can be obtained by coupling the
popular MSC/NASTRAN stiffness code (ref. 1) with the
“Insight” animation feature of the Patran software (ref. 2).
Several other commercial codes (ASKA, ANSYS, ABACUS,
etc.) (refs. 3 to 5) can also be used for displacement animation.
Displacement formulation, as the basis of these codes, can pose
difficulty for stress field animation because stresses are not the
primary unknowns of its dynamic eigenvalue analysis. Further-
more, stress prediction by the stiffness method can be liable to
accuracy deficiency, and as it turns out, dynamic animation of
stresses has yet to be attempted through the displacement
formulation. At this juncture, the reformulated method of
forces, which in the literature is known as the integrated force
method (IFM) (refs. 6 to 8), becomes a valuable alternate tool
for animation of the stress fields especially because stresses are
the primary unknowns of its dynamic analysis. The IFM, which
produces accurate stresses and displacements (refs. 6 and 7),
has been extended to include the dynamic animation of both
stress and displacement fields. Additionally, animation has
been used in design optimization to generate simpler structures
which can facilitate fabrication.

This paper, which discusses stress and displacement anima-
tions and their use in design optimization, is divided into five
subsequent sections. Section 2 includes the IFM equations,
dual formulation, an illustrative example, and animation proce-
dure. Numerical examples are presented in section 3. Section 4
provides a brief summary of the use of animation in design
optimization, followed by conclusions in section 5. An over-
view of the IFM/ANALYZERS is given in the appendix.

Equations of the Integrated Force Method

In the integrated force method (IFM), a discretized structure
for analysis, is designated by two attributes n and m. The
number of unknown forces or force degrees of freedom (fof) is
n. Likewise, the displacement degrees of freedom (dof) is m.
If fof = dof, then the structure is determinate (r = n – m = 0) and
its analysis is trivial. For indeterminate structures, fof exceeds
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dof and the degree of indeterminacy of the structure is
r = fof – dof = n – m > 0.  The governing IFM equations are
obtained by coupling m equilibrium equations and r compat-
ibility conditions. The equations of the integrated force method
are summarized next (refs. 6 and 7).

Static analysis equations of the IFM are as follows:
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where [B] is the (m × n) equilibrium matrix, [C] is the (r × n)
compatibility matrix, [G] is the concatenated symmetrical
flexibility matrix of dimension (n × n),   

r
P is the m component

load vector, δ  
r
R is the r component effective initial deformation

vector, and in the absence of initial deformations it is a null
vector {δ  

r
R} =   { }

r
0 , and [S] is the (n × n) governing the IFM

matrix. The matrices [B], [C], [G], and [S] are banded and have
full row ranks of m, r, n, and n, respectively. The solution of
equation (1) yields the n forces   

r
F . Forces, in other words,

can be determined without any reference to displacements
provided the structure is kinematically stable. The m displace-
ments  

r
X , if required, can be obtained from forces by

backsubstitution as:

  
r r
X J G F= [ ][ ] ( )2

Here, [J] is the m × n deformation coefficient matrix defined as:

[ ]J m rows of S
T

= [ ]−[ ] ( )1 3

The frequency analysis equation of the IFM without damping
is as follows:
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where [M] is the (m × m) mass matrix, ω is the circular
frequency, and  

r
F  is the force mode shape of the eigenvalue

problem.
Forces are the unknowns of the IFM vibration analysis.

Displacement modes in IFM, if required, can be backcalculated
from forces  

r
F using equation (2). In other words, the IFM

provides one set of equations to determine forces (eq. (1) for
static or eq. (2) for vibration analysis), and another set for the
calculation of displacements (eq. (2)).

The dual integrated force method (IFMD) is obtained by
mapping forces into displacements (ref. 7). The basic equations
of the dual formulation neglecting initial deformations and
damping are summarized next.

Static analysis equations of the IFMD are as follows:

  [ ] ( )D X P
r r

= 5

Forces can be obtained from displacements using the following
formulae:

  
r r
F G B XT= −[ ] [ ] ( )1 6

Dynamic analysis equations of the IFMD are as follows:

  
[ ] [ ] ( )D M X−[ ] =ω2 0 7

r

where the (m × m) symmetrical matrix [ ] [ ][ ] [ ]D B G B T=( )−1 ,
is assembled at element level.

From the displacement modes, force mode shapes can be
backcalculated using equation (6). Like IFM, the dual IFMD,
which treats displacements as the primary variables, has one
equation to calculate displacements (eq. (5) for static or eq. (7)
for dynamic analysis), and one equation for the determination
of forces from displacements (eq. (6)). Both IFM and IFMD
provide identical solution for stresses, displacements, and
frequencies. For design and sensitivity analysis, the primal
IFM, however, has some advantage over the dual IFMD
(refs. 9 and 10).

The IFM for dynamic analysis was introduced for simple
examples well over a decade ago (ref. 8). Since then, several
improvements have been incorporated into the reformulated
method of forces such as the generation of compatibility
conditions (ref. 11), development of the dual formulation
(ref. 7), and design sensitivity calculations (ref. 9), just to
mention a few. To familiarize the reader with the IFM/IFMD
solution process, the example of a cantilevered beam is dis-
cussed in brief. The beam is 12 in. long, 2 in. deep, and 1/4 in.
thick. It is made of steel with Young’s modulus E = 30 000 ksi,
Poisson’s ratio ν = 0.3. The beam, which is considered massless
for dynamic analysis, has two lumped masses of weight 5 lb
each, as shown in figure 1. For the purpose of illustration,  the
beam is discretized by two QD04_05 membrane elements of
IFM/ANALYZERS (see the appendix) as shown in figure 1.
The QD04_05 is a four-node quadrilateral element and its
dof = 8 and fof = 5. The beam discretized by the two elements
has dof = 8 and fof = 10 and it is a two-degree indeterminate
structure.
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X

Figure 1.—Cantilevered beam idealized by two QD04_05 membrane elements of IFM/ANALYZERS.
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The frequency equations for the beam, explicitly written for
IFM, IFMD, and the stiffness method, are presented next. In
the IFM/ANALYZERS code, which is introduced in the
appendix, the stiffness method has been included for the pur-
pose of comparison of numerical results.

The IFM frequency equation
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for the cantilevered beam depicted in figure 1 has  explicit form
of equation (8).
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The last two rows in the [S] matrix are small numbers which in
equation (8) are rounded up, for example, 5* = 4.8×10-7 and
2* = –1.6×10-6, etc. Also, εa = 0.0066.

The IFM eigenvalue problem for the beam is an unsym-
metrical (10 × 10) set of equations. The first eight equations
(see eq. (8)) represent the equilibrium conditions, whereas the
last two equations are the compatibility conditions. The four

cies obtained for the problem are given in table I. The funda-
mental force mode shape along with the displacement mode
shape calculated by backsubstitution using equation (2) are
shown in table II.

The IFMD frequency equation 
  
[ ] [ ]D M X−[ ] =ω2 0

r
for the

two-element cantilevered beam depicted in figure 1 has the
explicit form of equation (9).

nonzero rows in the mass matrix represent the participation of
lumped masses which are located at nodes 3 and 4. Participa-
tion of all 10 fof  is essential for the determination of correct
frequency and force mode shapes (refs. 7, 8, and 10). A correct
dynamic analysis formulation cannot be obtained through any
elaborate manipulation of the equations of the classical force
method (ref. 12), because this approach does not consider the
mass or the inertia for redundant members. The four frequen-
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There are eight equations for the dual method. The four nonzero
entries in the diagonal mass matrix in equation (9) correspond
to the lumped masses. The structure of the IFMD eigenvalue
equation appears similar to standard stiffness equations. The
differences between IFMD and the stiffness equations is exam-
ined later in this paper.  The frequencies obtained by IFMD are
given in table I. The fundamental displacement mode shape

TABLE I.—FREQUENCIES FOR A CANTILEVERED
BEAM WITH LUMPED MASS

Frequency
numbers

Frequencies in Hz

IFM IFMD Stiffness
 method

Analytical
solution

Frequency, Hz
1

2

3

4

170.629

2031.261

2534.278

9298.475

170.629

2031.261

2534.278

9298.475

 353.073

2032.188

4874.846

9599.293

168.32

1052.00

2950.38

5786.00

TABLE II.—FORCE AND DISPLACEMENT MODE SHAPES FOR
FUNDAMENTAL FREQUENCY OF CANTILEVERED BEAM

IFM IFMD Stiffness methoda

Force mode
shape

Displacement
mode shape

Force mode
shape

Displacement
mode shape

Displacement
mode shape

  0.0
  0.0
–3.65×10 –2

  1.0
  0.0
  0.0
  0.0
–3.65×10– 2

  0.343
  0.0

  9.78×10– 2

  0.303
  0.131
  1.0
–0.131
  1.0
–9.78×10– 2

  0.303
 – – – – – –
 – – – – – –

  0.0
  0.0
–3.65 ×10– 2

  1.0
  0.0
  0.0
  0.0
–3.65 ×10– 2

  0.343
  0.0

  9.78 ×10– 2

  0.303
  0.131
  1.0
–0.131
  1.0
–9.78 ×10– 2    
 0.303
– – – – – –
– – – – – –

  9.17 ×10– 2

  0.315
  0.123
  1.0
–0.123
  1.0
–9.18 ×10– 2

  0.315
 – – – – – –
– – – – – –

aForce mode shape cannot be determined.

along with the force mode, backcalculated using equation 6,
are shown in table II. Notice that the frequencies obtained as
solutions to IFM equation (4) and IFMD equation (7) agreed
with each other. Both force and displacement mode shapes
given in table II also agreed for IFM and IFMD. Henceforth, no
distinction will be made for results generated either by IFM or
IFMD.
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The IFM equations are unsymmetrical while those for dual
are symmetrical. Either set of equations can be used to obtain
frequency, stress, and displacement mode shapes. The sym-
metrical form can use popular eigenvalue solution routines
(such as DSPGV) which is readily available in the LAPACK
public domain library (ref. 13). For unsymmetrical eigenvalue
analysis, LAPACK routine DGEGV is used (ref. 13). For
static analysis, the Harwell library routines (MA28AD,
MA28CD, MA29BD, MA29CD, MA47AD, MA47BD,
MA47CD, MA47ID) are used (ref. 14). However, it is observed
that the unsymmetrical IFM version can be more useful than
IFMD in design and sensitivity analysis (ref. 10). Furthermore,
the IFM solution which provides r = n – m number of zero
frequencies and associated eigenvectors corresponding to the
r number of compatibility conditions can be used to verify
solution accuracy.

For the purpose of comparison, the stiffness analysis is also
provided for the beam. The element used for the stiffness
analysis has four nodes and eight displacement degrees of
freedom. The stiffness element uses displacement fields iden-
tical to the IFM/IFMD element QD04_05. In IFM/ANALYZ-
ERS (see the appendix) this stiffness element is also referred to
as QD04_05. The IFM/ANALYZERS, in other words, retains
the same element name for different analysis methods such as
the IFM, IFMD, and stiffness methods. The analysis method is
specified through a set of executive control keywords, which
can be IFM!, IFMD!, or STIFF!, for primal, dual, or stiffness
analysis, respectively. Generation of all elemental matrices of
the IFM, IFMD, and stiffness methods use identical numerical
integration and are programmed in the Fortran 77 language.
For the problems, the IFM, IFMD, and stiffness elements used
are considered equivalent. All numerical results have been
obtained on the Cray-YMP 8E/8128 supercomputer at the
NASA Lewis Research Center.

The stiffness method frequency equations [[K] – ω2 [M]]
  
r
X  = 0 for the cantilever beam depicted in figure 1 have the
explicit form of equation (10). Frequency and displacement
modes obtained are presented in tables I and II.  Calculation of
stress mode shapes is not readily available in the stiffness
method.
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Comparison of IFM, IFMD, and
Stiffness Results

From the solution of the cantilevered beam, the following
observations can be made for the IFM, IFMD, and stiffness
methods.

Both the primal IFM and the dual IFMD provide identical
solutions for frequencies, stress, and displacement mode shapes
(see tables I and III).

Results for the integrated force method are more accurate
than those for the stiffness method. For IFM, the two-element
model of the beam produced accurate fundamental frequency
with an error of about one percent. The error in the fundamental
frequency for the stiffness method, however, is about 110 per-
cent. The higher modal frequencies given in table I are in error
because of the crude two-element model and are not further
discussed. Force and displacement mode shapes obtained by
IFM and IFMD agreed as expected (see table II). The stiffness
method displacement mode exhibits some error even for this
modest example (see table II).

The cause of higher fundamental frequency in the stiffness
method can be observed from a comparison of equation  (9) for
IFMD and equation (10) for the stiffness method. Mass matri-
ces for both stiffness and IFMD (eqs. (9) and (10)) are identi-
cal. The coefficient of the [K] matrix in stiffness equation (10)
differs from that of the [D] matrix in IFMD equation (9). For
this problem, all eight diagonal elements in matrix [K] are
bigger than the corresponding entries in the matrix [D]. In other
words, a higher frequency for the stiffness method was antici-
pated because the stiffness equation (eq. (10)) is stiffer than the
IFMD equation (eq. (9)).
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Dynamic Animation of Stress Mode Shape

Stress is a second-order tensor with six components at every
point of a solid continuum. Thus, the solid modeler solution of
the IFM/ANALYZERS has six stress components at each
node. Animations of a second-order tensor quantity is a cum-
bersome proposition, and it can also be difficult to visualize.
Fortunately, however, failure in a structure can be attributed to
a single quantity such as von-Mises stress, which is a scalar
function of the six stress components and can be written as:

σ σ σ σ σ σ σ τ τ τvon M x y y z z x yz zx xy− = −( ) + −( ) + −( )





+ + +( )1

2
3 11

2 2 2 2 2 2 ( )

Stress animation, in other words, represents animations of
the von-Mises stress given by equation (11). Von-Mises stress
animation is consistent with the animation of the scalar dis-
placement magnitude in the stiffness method that is available at
the present time. Equivalent von-Mises stress is calculated for
the force eigenvector obtained from the solution of IFM
dynamic equation (4) or equation (7) for IFMD. Dynamic
animation for stress and displacement modes is obtained by
supplementing the “Insight” tool of the P3/Patran software with
force mode solutions through Patran neutral files. For example,
the animation of stress modes requires the preparation of two
neutral files. The first file should include the finite element data,
which contains the nodal coordinates and element connectivities
in the model. The second file should contain the von-Mises
stress for each node and the frequency.

The determination of von-Mises stress for three-dimensional
solid elements (of IFM/ANALYZERS), which are represented
by complete polynomials, can be quite tedious but it is easy to
calculate in a computer. The IFM/ANALYZERS provides both
displacement and stresses (including von-Mises stresses) at the
grid points and other specified locations. For completeness,
von-Mises stress calculation is illustrated for a simple rectan-
gular membrane element QD04_05 used in example 1. The
three stress components for this membrane element can be
obtained as:

σ

σ

τ

x

y

xy

F

t

F

t
y a

F

t

F

t
x b

F

t

= +

= +

=

1 2

3 4

5

2

2 12

( )

( ) ( )

/

/

where (σx, σy, τxy) are membrane stresses, (F1, F2, ..., F5) are
force mode shapes for element QD04_05, t is the element
thickness, and a and b are the dimension of the QD04_05
element along the x and y coordinates, respectively. For the
membrane element, the von-Mises stress given in equation (11)
can be calculated by substituting (σx, σy, and τxy) from equation
(12) and setting (σz = τzx = τzy = 0).

Two features of P3/Patran fringe plotting and modal animat-
ing, which control time and space, are used to display the
animation results. Animations can be viewed best by using an
audio-video VCR system. A videotape, which contains the
stress and displacement animation for several examples
(ref. 15), is available and can be sent on request. In this paper,
however, only a single-frame animation depicting maximum
response can be presented. A single animation frame is
obtained by pausing the setup to approximately correspond to
peak response regime and then taking a “snap-shot”, which is
available in the Silicon Graphics Indy Unix workstation used
for the purpose. Displacement animation is obtained by replac-
ing stress results in favor of displacement mode shapes.

TABLE III.—RESULTS FOR AN ISOTROPIC
CANTILEVERED BEAM

Model IFM/IFMD Stiffness
method

MSC/NASTRAN a

Frequency,b  Hz (1,3)

CB_Model_1
Six/HX08_18

 1.005
 1.043

 1.637
 1.640

 1.637
 1.640

CB_Model_2
Six/HX20_90

 1.007
 0.983

 1.014
 0.995

 1.014
 0.995

CB_Model_3
Three/HX08_18

 1.021
 1.274

 2.672
 1.862

 2.672
 1.862

CB_Model_4
Three/HX20_90

 1.025
 1.069

 1.041
 1.091

 1.041
 1.091

CB_Model_5
Three/HX08_18
(irregular mesh)

 1.014
 1.516

 2.335
 1.887

 2.335
 1.887

aEquivalent MSC/NASTRAN elements (CHEXA with 8 nodes or
    CHEXA with 20 nodes) are used.
 bFrequencies are normalized with respect to strength of material
    formulae.
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Numerical Examples

Results for three examples, a cantilevered beam (example 2),
an L_Beam (example 3), and a turboprop blade (example 4)
obtained with IFM/ANALYZERS, are summarized next.
The material used for all the examples is steel with pro-
perties identical to that of example 1 with mass density
ρ = 0.289 lb/cu in. The frequency results were obtained for
distributed self-mass of the structure using a consistent mass
matrix formulation. The structures were discretized using an
eight-node solid element HX08_18 and a twenty-node solid
element HX20_90. The structures with principal dimensions
are depicted in figure 2. Again, solutions are obtained by using
IFM, IFMD, and the stiffness method. Results obtained by
the MSC/NASTRAN analyzer using comparable elements are
also given. For each example, a single frame from the dynamic
animation depicting the peak stress and displacement modes is
included.

Example 2: Cantilevered Beam

Results for the cantilevered beam, shown in figure 3,
obtained using IFM, IFMD, and the stiffness method, are
depicted in table III. Five finite element models are used for this
example. CB_Model_1 has six, eight-node, HX08_18 solid
elements. CB_ Model_2 has six, twenty-node, HX20_90 solid
elements. CB_Model_3 is similar to CB_Model_1 but only
three elements are used. Likewise, CB_Model_4 has three
elements but is otherwise similar to CB_Model_2. CB_Model_5
has a total of three elements, one small element near the support
and two other elements. For MSC/NASTRAN analysis, the
same models are used but IFM/ANALYZERS elements
HX08_18 and HX20_90 are replaced by equivalent elements.
That is, IFM/ANALYZERS elements HX08_18 and HX20_90
are replaced by equivalent MSC/NASTRAN elements (CHEXA
with eight nodes and CHEXA with twenty nodes, respectively).
First and third frequencies for the beam, obtained by different
methods, are given in table III (second frequency is identical to
the fundamental mode due to symmetry). Results are normal-
ized with respect to the strength of material beam solutions. The
beam solutions are quite accurate; however, there can be some
difference in the results due to three-dimensional elasticity and
boundary restraint effects. For example, a beam model uses one
material constant, which is Young’s modulus, whereas a three-
dimensional elasticity solution uses Poison’s ratios in addition.

For this problem, IFM/IFMD results for the fundamental
frequency are found to be quite accurate. The six-element
models CB_Model_1 and CB_Model_2 have a margin of error
of 0.5 percent and 0.7 percent, respectively. The crude three-
element models CB_Model_3 and CB_Model_4 exhibit
somewhat higher margins of error. More error is noticed for the
third mode, as anticipated, because the finite element
discretization represents a coarse mesh. Results obtained by
using the stiffness method and MSC/NASTRAN software
agreed since both are based on displacement formulation. For
the fundamental frequency, a higher order MSC/NASTRAN
element (CHEXA with twenty nodes) which is equivalent to
IFM/ANALYZERS element HX20_90 produced acceptable
results (see results for CB_Model_2 and CB_Model_4 in
table III). The solution obtaind by the normal eight-node
element of the stiffness method and the eight-node CHEXA
MSC/NASTRAN element provide a poor comparison with
the eight-node IFM/ANALYZERS HX08_18 element.

For this example, von-Mises stress and displacement
animation have been obtained by using IFM/ANALYZERS
and Patran software. A single-frame animation picture for
fundamental displacement and stress modes is depicted in
figure 4 for CB_Model_2. In figure 4, the neutral axis of the
beam is clearly visible and maximum von-Mises stress occurs
near the support. Von-Mises stress is symmetrical with respect
to the neutral plane, which at times can be color-camouflaged.

Y

X

Figure 2.—Overall geometrical dimensions of examples. 
   (a) Example 2: Cantilevered beam idealized by six solid 
   elements. (b) Example 3: Cantilevered L_beam idealized
   by nine solid elements. (c) Example 4: Turboprop blade 
   idealized by 240 solid elements.
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Figure 3.—Cantilevered beam idealized by six HX20_90 solid elments. (a) Enlarged view of the twenty-node element.
   (b) Full beam view.
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Figure 4.—First mode animation of cantilevered beam. (a) Stress mode. (b) Displacement mode.
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The displacement animation frame shows maximum displace-
ment at the free end of the cantilever. The displacement
animation using the stiffness method or MSC/NASTRAN
code, are found to be similar to IFM/ANALYZERS results. As
stated earlier, stress field animation can not be obtained by the
displacement method.

Example 3: L_Beam

Analysis of an L_beam, shown in figure 2(b) is carried out by
four different methods (IFM, IFMD, stiffness, and MSC/
NASTRAN) for four finite element models. LB_Model_1 has
nine, eight-node HX08_18 solid elements; LB_Model_2 has
nine, twenty-node HX20_90 solid elements; LB_Model_3 is
similar to LB_Model_1 except only five elements are used, and
LB_Model_4, likewise, has five elements but is otherwise
similar to LB_Model_2. The finite element model 2 for the
L_beam is shown in figure 5. First and third frequencies
obtained by IFM/IFMD, the stiffness method, and MSC/
NASTRAN are presented in table IV. Results are normalized
with respect to the IFM/IFMD solution for LB_Model_2. For
this problem it is observed that the IFM/IFMD results for the
fundamental frequency are accurate with a maximum error of
3.8 percent for LB_Model_4 (with five HX20_90 elements).
IFM/IFMD results for the third mode are acceptable with
somewhat higher error margins. Results for the stiffness method
and MSC/NASTRAN agreed. However, frequency results
obtained using the stiffness method and MSC/NASTRAN
software are poorer than corresponding IFM solutions. MSC/
NASTRAN and stiffness method performance is considered
acceptable when higher order, twenty-node CHEXA elements
are used for frequency analysis.

Stress and displacement animation using IFM/IFMD are
obtained for the L_Beam, for LB_Model_2 with nine HX20_90
elements. A single animation frame, which corresponds to peak
response for von-Mises stress mode and displacement mode, is
shown in figure 6. The displacement mode for the first funda-
mental frequency of the L_Beam represents motion in the plane
defined by its two legs. This motion cannot be visualized
through a frame taken along the L_Beam plane. The motion
can, however, be observed when a picture is taken perpendicu-
lar to the L_Beam plane as depicted in figure 6(b). The
displacement animations for LB_Model_2 generated by IFM

element HX20_90, compared well with the stiffness method
results when higher order 20-node CHEXA elements were
used. The von-Mises stress animation obtained for the IFM/
ANALYZERS element HX20_90 is shown in figure 6(a). The
stress animation depicts a neutral plane along the width of the
beam which corresponds to its in-plane motion. Maximum
von-Mises stress occurs at the restrained boundary, which is
shown in red. The free end is stress-free and is shown in blue.
Variation of von-Mises stress along the beam, which peaks at
the restrained end, and is null at its free end, can be seen in
figure 6(a).

Example 4: Turboprop Blade

The turboprop blade is considered as the final example. The
blade, shown in figure 7, is discretized using eight-node solid
elements HX08_18.  The blade has a total of 240 elements with
dof = 1620 and fof = 4320. The first eight frequencies of the
blade, obtained by IFM/IFMD, the stiffness method, and MSC/
NASTRAN analyzers, are given in table V. The fundamental
frequency of the blade, obtained by the IFM/IFMD analyzer, is
41.532 Hz. The fundamental frequency obtained by the stiff-
ness and MSC/NASTRAN analyzers agreed; however, both
methods produced higher frequencies at 76.731 Hz. The other
seven frequencies obtained by the stiffness and MSC/
NASTRAN analyzers are higher than the IFM/IFMD analyzers
by about 15 to 75 percent.

Figure 5.—L_Beam idealized by nine solid elements.

Z

X
Y

1 2 3 4 5 6

7

8

9

TABLE IV. —RESULTS FOR AN ISOTROPIC L_BEAM
Model IFM/IFMD Stiffness

method
MSC/NASTRAN a

Frequency,b  Hz (1,3)
LB_Model_1
Nine/HX08_18

 0.999
 1.009

 1.451
  1.165

 1.451
 1.165

LB_Model_2
Nine/HX20_90

 1.000
 1.000

 1.006
 1.003

 1.006
 1.003

LB_Model_3
Five/HX08_18

 1.024
 1.003

 1.720
 1.341

 1.720
 1.341

LB_Model_4
Five/HX20_90

 1.038
   1.016 

 1.046
 1.020

 1.046
 1.020

aEquivalent MSC/NASTRAN element (CHEXA with 8 nodes or
    CHEXA with 20 nodes) is used.
bFrequencies are normalized with respect to IFM LB_Model_2.



10 NASA TM–4729

Animation is carried out only for IFM/ANALYZERS solu-
tions, since the stiffness and MSC/NASTRAN results for the
blade exhibited higher margins of error. A single-frame anima-
tion for stress and displacement modes for the blades is shown
in figure 8. The blade response in the fundamental mode
represents flexure and torsion coupled motion, as can be seen
in figure 8(a). The flexure and torsion coupled response does
not depict a neutral zone. The maximum displacement ampli-
tude occurs at the free end of the blade which also exhibits
considerable torsional motion (see fig. 8(b)). Von-Mises stress
amplitude reduces to zero at the free end from its peak value at
the built-in boundary. Stress peaks at the support of the turbo-
prop blade while the free ends are stress free, as can be seen in
figure 8(a).

Determination of displacement and frequencies can be car-
ried out by the displacement method, which can also be verified
by dynamic testing. Such procedures, however, do not provide
a stress state in the structure. Thus, the stress animation via the
method of forces becomes a viable tool to examine the dynamic
behavior of the structure, especially for stress response at stress
concentration regions. The stress animation tool complements
the existing displacement animation, thereby, improving the
existing visualization technique.

Figure 6.—First mode animation of L_Beam. (a) Stress mode. (b) Displacement mode.

Y

X

Z

(b)

(a)

Neutral plane

TABLE V.—FREQUENCIES FOR AN ISOTROPIC
TURBOPROP BLADE IDEALIZED BY

240 (HX08_18) SOLID ELEMENTS

Mode
numbers

IFM/IFMD Stiffness
method

MSC/NASTRAN a

    1
   

    2

    3

    4

    5

    6

    7

    8

       41.532

      217.396

      396.692

      541.273

      809.480

      970.508

     1369.698

     1596.059

    76.371
    (1.839) b

   386.223
    (1.777)
   410.118
    (1.150)
   785.971
    (1.452)
  1148.448
    (1.419)
  1465.579
    (1.510)
  2094.299
    (1.529)
  2801.503
    (1.755)

    76.371
    (1.839)
   386.223
    (1.777)
   410.119
    (1.150)
   785.971
    (1.452)
  1148.448
    (1.419)
  1465.579
    (1.510)
  2094.300
    (1.529)
  2801.504
    (1.755)

aEquivalent MSC/NASTRAN element (CHEXA with
    8 nodes) is used.
bQuantities in parenthesis are normalized with respect to
    IFM solution.
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Y

X

Figure 7.—Turboprop blade idealized by 240 HX08_18 solid elements.

Z

Figure 8.—First mode animation of turboprop blade. (a) Stress mode. (b) Displacement mode.
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Animation in Design Optimization

In the design of complex industrial structures with many
variables and constraints, the optimization process can quite
often be bogged down and confused, resulting in a design which
cannot be easily fabricated (ref. 16). Such deficiency can be
alleviated, to some extent, through cumbersome constraint
manipulation schemes, which require repetition of several
optimization cycles. Alleviation of the deficiency can be
attempted by coupling animation to the optimization processes.
Dynamic animation has been incorporated into the design tool
called CometBoards (ref. 17) (which is an acronym for
Comparative Evaluation Test Bed of Optimization and

Analysis Routines for the Design of Structures). The combined
animation and optimization tool has been used to generate
optimum designs for a number of industrial structural compo-
nents.  The usefulness of animation and optimization in design
can be illustrated by considering the simple example of a spacer
structure of the International Space Station in figure 9. The
initial configuration of the spacer structure, which has 14 joints,
41 members, and weighs 500 lb, is shown in figure 9(a).

Design optimization was carried out using a finite-element
model with 307 nodes and 1835 dof (which corresponds to
8 beam elements per frame member and 2 beam elements for
the trunion (ref. 18)). This structure was designed for a number
of pseudo-static and emergency-landing load conditions. The

Keel
trunnion

Longeron
trunnion

Longeron
trunnion

Location of lumped mass
(weight in lb)

135.5

77.9

101.5

x

y

z

49.41
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6.5712

6.57 2

6.57
1

6.575

6.5710
6.5711
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6.57 7

6.57
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14
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3

6.57 9

6

13

77.9

101.5

x

y

z

8

12

2

1

5

10

11

4
7

3
9

6

13

135.5

(a) (b)
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Figure 9.— Optimization and animation coupled tool produced a lighter design for the spacer structure. (a) Manual design
   has 14 joints, 41 members, and weight of 500 lb. (b) Optimum design has 13 joints, 32 members, and weight of 316.63 lb.
   (c) Dynamic animation of the manual design. Notice excessive deformation for shaded member. (d) Dynamic animation of
   modified configuration with open face. Notice excessive deformation for open face. (e) Dynamic animation with bracing.
   The deformations of the open face are reduced.
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constraints considered were: stresses for all members, displace-
ment limitations at the exterior nodes of the spacer structure for
the shuttle dynamic envelope, buckling, and frequency limita-
tions. The design was cast as a nonlinear mathematical pro-
gramming problem and was solved using two optimizers (the
Sequential Unconstrained Minimization Technique SUMT and
the Sequential Quadratic Programming technique of the IMSL
library available in CometBoards). Observations of the
dynamic animation of the optimum design indicated that some
members are much more flexible than others. A single anima-
tion frame for the optimum structure is shown in figure 9(c).
Even from this single frame it can be seen that the member
connecting nodes 1 and 10 suffer relatively large deformations
compared to other members. A modified configuration, shown
in figure 9(b), with fewer members (41 members of the original
design were reduced to 32 members) and fewer joints (13
instead of 14 in the original configuration), was obtained
through an examination of the dynamic animation of the
component. The optimum design of the spacer was obtained,
again, using the design tool CometBoards. The animation of the
optimum design of the modified configuration indicated unac-
ceptable excessive distortion for an open face connecting joints
(2, 4, 11, 10) shown in figure 9(d). The open face is a functional
on-orbit requirement for the integration of the spacer structure
to the other modules of the International Space Station. This
face, however, can be temporarily braced in the space shuttle
during launch by a pair of turn-buckles, which weigh 2.5 lb. The
bracing can be removed on orbit to allow its integration with the
space station. The modified configuration, with turn-buckle
bracing, was optimized again, and a single-frame animation of
the braced structure is shown in figure 9(e). By comparing
figure 9(d) with 9(e), it can be observed that the open face does
not suffer excessive deformation. The final optimum design
has a weight of 316.63 lb, which is 36 percent lighter than the
manual design of 500 lb. The optimum structure has fewer
members and nodes which facilitates its manufacturability. The
fundamental mode of the final design is a breathing type of
mode in which the entire structure participates as a single unit.
In other words, the load path is well distributed amongst all
members of the spacer structure. Without the use of animation,
the generation of a lighter manufacturable optimum structure
would have been difficult if not impossible. The animation and
optimization combined tool has successfully generated an
optimum manufacturable design for the spacer structure.

Usefulness of Animation in Analysis and
Design

During the qualification of industrial products through pro-
totype testing, failures quite often occur even though modern
analysis and test methods have reduced the number of such

occurrances. Review of the failure data can identify the critical
region which can then be redesigned and retested. Identifica-
tion of a failure-prone region, which at times can elude existing
techniques, is important both from financial as well as project
schedule aspects. The dynamic animation of stress modes,
which has been discussed in this paper, complements the
existing techniques in identifying the failure-prone regions in
complex structures. Dynamic animation should be carried out
for the fundamental mode as well as for higher and other local
modes to identify high-stress regions. To isolate those critical
failure-prone regions in a structure, only the integrated force
method dynamic analysis results and a computer workstation
are required.

In design optimization, the modification of the configuration
of a complex structure can be improved in more ways than
merely changing its sizing variables. A variety of potential
configuration modifications can quickly be discovered through
an examination of the dynamic animation of the structure.
Scrutiny of such candidate configurations can be useful in
designing an optimum structure for both configurational and
sizing variables. In other words, optimization augmented with
animation can be a viable design tool.

Overall, the art of animation discussed in this paper can be
useful both in the analysis and in the design of complex
structures.

Concluding Remarks

Both stress and displacement animation, which complement
each other, provide a comprehensive visual behavior of a
structure. Thus far, only displacement animation was available
through the stiffness method. The field of animation has now
been improved through the development of stress mode anima-
tion using the integrated force method of structural analysis.
IFM/ANALYZERS is the appropriate analysis tool for stress
animation because stress modes are the primary variables of its
eigenvalue analysis. Both stress and displacement animation,
obtained for a number of examples, clearly depict stress and
displacement responses, which peak at different locations in the
structure. Augmentation of animation into the design tool
CometBoards has successfully generated manufacturable
optimum designs for a number of industrial structural
components.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, October 31, 1996
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The integrated force method of structural analysis, which
parallels the completed Beltrami-Michell formulation in elas-
ticity, has been established for both finite-element discrete
analysis  and analysis of elastic continua such as plates and
shells (refs. 19 and 20). The internal forces (or stress parameters
for continua) are considered as the primary unknowns of this
method. The unknown forces are determined by solving a set of
simultaneous equations which are obtained by augmenting the
rectangular set of equilibrium equations with another rectangu-
lar system of equations expressed in terms of the same un-
known forces. The augmenting system represents the strain
compatibility conditions. Displacements, if required, can be
obtained from forces by backcalculations. The variational
formulation for the integrated force method has been com-
pleted. A dual to the primary IFM has also been formulated by
mapping stresses into displacements.  The dual integrated force
method (IFMD), at the equation solution stage, considers
displacements as its primary unknowns. Both IFM and IFMD
have two separate equation sets; one for the determination of
stress parameters and another for the calculation of displace-

ments (see eqs. (1) to (7)). Both IFM and IFMD provide
identical solutions for all examples that have been solved thus
far.

A finite-element structural analysis code which incorporates
both the primal and the dual force methods, along with the
regular stiffness formulation, has been developed especially for
the analysis of airbreathing propulsion engine components.
This structural analysis code, IFM/ANALYZERS, bestows
simultaneous emphasis on stress equilibrium and strain com-
patibility conditions. The code has a modular organization, and
it is written in Fortran 77 language for both sequential as well
as parallel computational platforms. The IFM/ANALYZERS
currently performs linear elastic analysis of structures for
thermal and mechanical loads as well as free vibration analysis.
The element library contains over a dozen different types of
elements, some with mid-side nodes.  Elements in this library
can model a continuous number of arbitrary shapes such as
airbreathing engine components.  The numerical analysis seg-
ment of the code utilizes sparse unsymmetrical equation solv-
ers of the Harwell subroutine library or, alternatively for

Figure 10.—Organization of IFM/ANALYZERS and its element library.
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Appendix—The Integrated Force Method Analysis Code (IFM/Analyzers)
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modest problems, utilizes dense solvers of the public domain
LAPACK library. IFM/ANALYZERS is developed as an analy-
sis testbed to examine the full potential of the integrated force
methods since they hold promise of spawning new structural
analysis tools especially for engine structure applications that
can provide accurate solutions with fewer elements in the
model.

Equilibrium matrix, flexibility matrix, mass matrix, thermal
loads, and equivalent mechanical loads for each element are
developed by discretizing potential, complementary, kinetic
energies, thermal and mechanical work terms, respectively.
Interpolation based on the standard stiffness method is used to

approximate displacement fields. A general formulation for
stress tensor interpolation has been developed on the basis of
stress function approach. The stress polynomials thus gener-
ated represent a complete set that is free from spurious zero
energy modes and satisfies equilibrium in the element field.
The element matrices are not sensitive to the orientation of the
local coordinate systems. All elements of this library pass the
“patch tests”. The organization of IFM/ANALYZERS and its
element library are depicted in figure 10 and table VI. An
element name (for example HX20_90) in IFM/ANALYZERS
provides the following information: The first two letters (HX)
describe the geometry (HX stands for hexahedral solid ele-
ment).  The second two numbers (20) represent the number of
nodes, here a twenty-node hexahedral element with sixty
displacement degrees of freedom.  The last two numbers (90)
represent the force degrees of freedom of the element. The IFM/
ANALYZERS retains the same element name for different
analysis methods, such as IFM, IFMD or the stiffness method.
The analysis method is specified through executive control
keywords such as IFM!, IFMD!, or STIFF! for primal, dual, or
stiffness analysis, respectively.

The solution of a cantilevered beam, earlier used for anima-
tion as in example 2, using the IFM/ANALYZERS (HX20_90
element) as well as MSC/NASTRAN analyzer (twenty-node
CHEXA element), are given here for the purpose of illustration.
The beam geometry and discretizations are depicted in figure 3.
The cantilever beam is subjected to a concentrated load of 10 lb
which is distributed among the eight nodes at its free end.
Results obtained for two models (a three-element model and a
six-element model) are depicted in table VII. The closed form
strength of material solution for the beam is as follows:

Maximum displacement:δtip = 2.304×10–3 in.
Maximum stress: σsup = 720 psi
Fundamental frequency:f = 224.3 Hz

The tip displacement and frequency given by the strength of
material formulae are quite accurate. However, stresses
obtained by the beam formula and three-dimensional elasticity
analysis can differ for the problem because of boundary
restraints and the participation of Poisson’s ratio.

For this problem, the tip displacement for three- and six-
element models obtained by IFM/IFMD, the stiffness method,

TABLE VI.—ELEMENT LIBRARY FOR IFM/ANALYZERS

Element
name

Description Degrees of
freedom

(fof)

Degrees of
freedom

(dof)

HX08_18
HX08_33
HX08_48

   
HX20_57
HX20_60
HX20_90

   
TH04_06
TH04_18
TH04_21

TH10_36
TH10_39
TH10_48

   
QD04_05
QD04_07
QD04_12

   
QD08_13
QD08_15
QD08_18

TR03_03
TR03_05
TR03_07

TR06_09
TR06_11
TR06_12

TS02_01

Hexahedral solid element
with 8 nodes

Hexahedral solid element
with 20 nodes

Tetrahedral solid element
with 4 nodes

Tetrahedral solid element
with 10 nodes

Quadrilateral membrane
element with 4 nodes

Quadrilateral membrane
element with 8 nodes

Triangular membrane
element with 3 nodes

Triangular membrane
element with 6 nodes

Truss membrane element
with 2 nodes

18
33
48

57
60
90

 6
18
21

36
39
48

 5
 7
12

13
15
18

 3
 5
 7

 9
11
12

 1

24
24
24

60
60
60

12
12
12

30
30
30

12
12
12

24
24
24

 9
 9
 9

18
18
18

 6

TABLE VII.— ANALYSIS OF A CANTILEVER BEAM

Model IFM/IFMD Stiffness method MSC/NASTRAN

Maximum
von-Mises

stress,
psi

Maximum
displacement

in 10 - 3 in.

Frequency
in Hz,

(1st mode)

Maximum
displacement

in 10 -3 in.

Frequency
in Hz,

(1st mode)

Maximum
von-Mises

stress,
psi

Maximum
displacement

in 10 -3 in.

Frequency
in Hz,

(1st mode)

Six/HX20_90 629.7 2.270 226.339 2.245 228.031 355.9 2.250 228.031
Three/HX20_90 573.553 2.214 230.549 2.161 234.049 348.9 2.486 234.049
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and MSC/NASTRAN agreed well with an error of about 1.475,
2.56 and 2.343 percents, respectively.  Fundamental frequency
obtained by the three different analyzers also agreed within
one-percent error. There is a remarkable difference in stress
field accuracy between the force and displacement method
analyzers.  IFM/ANALYZERS stress converged to 629.7 psi
whereas MSC/NASTRAN provided a value of 355.9 psi for the
six HX20_90 elements model. Stresses by IFM/ANALYZERS
improved to 690 psi (corresponding to a 0.2 percent accuracy)
at a location 0.5 in. away from the restrained nodes when an
irregular model with seven elements was used. The von-Mises
stress contours obtained by IFM/ANALYZERS are depicted in
figure 11(a) and those obtained by MSC/NASTRAN are
depicted in figure 11(b).  From figure 11, we observe the
following:

(1) The neutral plane is well identified by both IFM and
MSC/NASTRAN analyzers.

(2) The stress patterns by IFM/IFMD and MSC/NASTRAN
also look similar along the entire volume of the beam.

(3) The peak stress value depicted by MSC/NASTRAN is
only 56.5 percent that of IFM/ANALYZERS.

(4) Only IFM/IFMD analyzers produce accurate stresses.
Stresses predicted by MSC/NASTRAN are too low.

All the analyzers (IFM/IFMD, stiffness, and MSC/
NASTRAN) can provide acceptable values for displacements
and frequencies. Stress accuracy is different between IFM/
ANALYZERS and MSC/NASTRAN analyzers. Only the IFM/
ANALYZERS can provide accurate stresses in addition to
correct displacements and frequencies.

Figure 11.—Von_Mises stresses for a cantilevered beam. (a) IFM/ANALYZERS: maximum svon_M = 629.7 psi with six 
   HX20_90 elements. (b) MSC/NASTRAN analyzer: maximum svon_M = 355.9 psi with six twenty-node CHEXA elements.
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Dynamic Analysis With Stress Mode Animation by the Integrated Force Method
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Dynamic animation of stresses and displacements, which complement each other, can be a useful tool in the analysis
and design of structural components. At the present time only displacement-mode animation is available through the
popular stiffness formulation. This paper attempts to complete this valuable visualization tool by augmenting stress mode
animation to the existing art. The reformulated method of forces, which in the literature is known as the integrated force
method (IFM), became the analyzer of choice for the development of stress mode animation because stresses are the
primary unknowns of  its dynamic analysis. Animation of stresses and displacements, which have been developed
successfully through the IFM analyzers, is illustrated in several examples along with a brief introduction to IFM dynamic
analysis. The usefulness of animation in design optimization is illustrated considering the spacer structure component
of the International Space Station as an example. An overview of the integrated force method analysis code (IFM/
ANALYZERS) is provided in the appendix.


