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Abstract

In order to quantify the effects of convection on segregation, HgosCdoxTe crystals were grown by the vertical

Bridgman-Stockbarger method in the presence of an applied axial magnetic field of 50 kG. The influence of convection, by

magneto-hydrodynamic damping, on mass transfer in the melt and segregation at the solid-liquid interface was investigated

by measuring the axial and radial compositional variations in the grown samples. The reduction of convective mixing in the

melt through the application of the magnetic field is found to decrease radial segregation to the diffusion-limited regime. It

was also found that the suppression of the convective cell near the solid-liquid interface results in an increase in the slope of

the diffusion-controlled solute boundary layer, which can lead to constitutional supercooling.

1. Introduction

For nearly four decades, the usefulness of applied

magnetic fields in crystal growth from the melt has

been recognized. The fundamental basis for the inter-

action between magnetic fields and convection was

first discussed in Refs. [1-5]. The basic mechanism

for the interaction of an applied magnetic field and a

molten semiconductor involves the electrical currents

induced by the movement of a conductor in the

presence of a magnetic field. Early experiments by

Utech and Flemings [6,7] investigated the effects of a

magnetic field on tellurium-doped indium anti-

monide grown in a horizontal furnace by directional

solidification. Their results indicated that vertical

" Corresponding author.

magnetic fields of 1300 and 1750 G were sufficient

to suppress turbulence in the melt. This eliminated

the temperature fluctuations which caused melting

and resolidification of the growth interface and an

associated fluctuation in the dopant concentration in

the crystal grown in zero field.

Temperature and solutal gradients in the melt

during growth almost always result in buoyancy-

driven convection. Frequently, this convective flow

is oscillatory [8] and gives rise to a fluctuating rate

of crystal growth, which, in turn, produces a micro-

scopically non-uniform distribution of dopant in the

crystal. The universal effect of an applied magnetic

field is the damping of the convective turbulence in

the melt, which produces a more homogenous dopant

distribution [9-13].

The majority of the experimental studies with

magnetic fields has been focused on the growth of

GaAs, Si and Ge by the Czochralski growth process.

0022-0248/96/$15.00 Copyright ;t: 1996 Elsevier Science B.V. All rights reserved
I'll S0022-0248196)00279-5





D.A. Watring, S.L Lehoc;kv / Journal O!Crystal Growth 167 (/996) 47S 4S7 47 t)

In these systems, small (2-5 kG) fields were applied

to suppress turbulent convection. Limited work

[6,12-16] has been conducted on the magnetic ef-

fects of crystal growth in a vertical Bridgman-

Stockbarger configuration and out of these experi-

ments only two involved the II-VI compounds of

HgCdTe and HgZnTe.

The Hg-based II-VI semiconductor compounds

are important for application of infrared detection

and imaging applications for a broad range of wave-

lengths from 0.8 #m to the far-infrared spectrum

beyond 30 /._m. The crystal growth of these Hg-based

II-VI systems is characterized by a destabilizing

horizontal temperature gradient due to a difference in

the thermal conducti'+'ities of the melt and the crystal

at the growth interface in the presence of a contain-

ing crucible and the release of latent heat. Addition-

ally, a stabilizing vertical solutal gradient is pro-

duced by the rejection of the denser constituent

(HgTe in the case of HgCdTe) into the melt. These

phenomena, coupled with a large solutal-to-thermal

expansion coefficient ratio ( fl<Q/fltAT.. = 100) and

a large thermal-to-solutal diffusion coefficient ratio

(C_T/D k = 200), give rise to double diffusive con-

vection during the growth of these binary semicon-

ductors, where AT, is the radial temperature differ-

ence, Co is the starting composition, /3< and /3t are,

respectively, the solutal and thermal expansion coef-

ficients and o_T and D L are the thermal and solutal

diffusion coefficients, respectively. If this

buoyancy-induced convection is large as compared

to the solidification velocity, it can interfere with

segregation near the solid-liquid interface resulting

in a non-homogenous crystal. It is believed that the

reduction of convection should be advantageous in

maintaining the solid-liquid interface shape required

to minimize the crystal defect densities while mini-

mizing compositional variation trans'+,erse to the

crystal growth direction.

This paper focuses on the influence of the mag-

netic field on mass transfer in the melt and radial

segregation at the solid-liquid interface. We begin

with a description of the charge crucible configura-

tion, followed by a brief discussion of the Bridg-

man-Stockbarger growth system used for the experi-

ments. Results of the axial and radial compositional

distributions with and without the presence of the

magnetic field are, then, described.

2. Experimental procedure

2.1. Sample prepa_ttion

The starting materials were triple-distilled instru-

ment grade Hg from Bethlehem Apparatus and six

nines grade Cd and Te from Johnson Matlhey. The

ampoules were made from 8 nnn ID X 12 mm OD

commercial grade. T08, fused silica quartz. A ta-

pered section was lo.-med on the quartz ampoule to

enhance the probability of single crystal growth. An

iriternal layer of graphite ,aas formed on the ampoule

as described in Rcf. [Ib] to prevent the adhesion of

HgCdTe to the ampoule walls. The elemetlts `,`,crc

weighed out for Hg I ,Cd,Te (x= 0.2). loaded into

the ampoules and sealed off under a I('1 -i Torr

vacuum. The Hg, sCd._,Te ingots were compourlded

by a homogenization process that has been described

in detail elsewhere [16]. The formed ingots were 14

crn long and wei,.zhed approximatel\' 47 <,

2.2. Directional solidilh'ation growth xvstem

The ingots were regro'+`,'n by' directional solidifica-

tion in the presence of a stationary axially aligned

magnetic field as shown schematicall3 in Fig. la.

The Bridgrnan-Stockbarger crystal growth systcn-i

consisted of five heated zones with the booster and

cold zone separated by, a 2 cm adiabatic zone. A 0.3

cm thick heat extraction phlte was phiced bel,acen

the adiabatic zone and cold zone to produce high

axial gradients. The ampoule ,,,+'as suflported by an

inconel 625 cartridge assembly shown in Fig. Ib and

remained stationary during crystal grm`,'th. Translat-

ing the furnace instead of the cartridge mininfized

any movenaenl and vibrations ol + the sample and

allowed the crystallization Io take place in the ho-

nlogenous region of the nlagnelic field. The super-

conducting magnet is inanually set to the desired

field strength (up to 50 kG) and is held constant

during the entire growth process. The therinal profile

was chosen in order to produce a gradient of approx-

imately 80°C/cm on the ampoule wall at the posi-

tion of 706_'C, the solidus ten-_pel'ature for the

steady-state growth [17]. The thernlal profile `,\as

translated at a relatively slow rate of 0.2 ttln/s in

order to avoid constitutional supercooling [I 8].
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2.3. Characterization

The effect of convection on segregation was de-

termined by measuring radial and axial composi-

tional variations in the grown crystals. For this study,
the average x values (x is the mole fraction of

CdTe) of wafers cut transverse to the growth direc-

tion were determined by high precision density de-
terminations and the values of the crystal lattice

constant published by Woolley and Ray [19] as

described in detail elsewhere [20,21].

For x values of 0.18 or larger, the radial mi-

crodistribution of cadmium telluride was quantita-

tively determined from the transmission edge of the

IR transmission spectrum. The details of this highly
automated transmission-edge mapping technique are

described in Ref. [22]. Briefly, the hardware consists

of a Fourier transform spectrometer specially

equipped with a software controllable xy stage driven

by stepper motors. The stage can position the sample

throughout a 2.54 cm square in 50/zm steps. Spectra

are then analyzed to obtain the cut-on wavelength

LN 2 Fill Port

LHe Fill Port

1 (a)

LN 2 Dewar

Bridgman-Stockbarger
Superconducting Growth System
Magnet

1 (b) Alumina lower ampoule support Alumina upper ampoule support

Cartridge / t Threaded interface

Quartz ampoule uartz tube

!
HgCdTe _

Thermocouple type K

Fig. 1. (a) Schematic representation of the magnetic Bridgman-Stockbarger growth system. (b) Containment cartridge utilized for the

magnetically stabilized growth of HgCdTe.
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and the mole fractions of CdTe are calculated from

the compositional dependence of the energy bandgap.

For those samples with a cadmium telluride content
of less than x = 0.18, the radial compositional varia-

tions were determined by energy dispersive X-ray

spectroscopy analysis (EDX) using pseudo-binary
solid solutions as standards [23].

3. Results and discussions

3.1. Axial compositional distributions

Fig. 2 shows the limiting axial compositional
distributions for directional solidified HgCdTe. The

two experimental curves [21], illustrate the effects of

varying translation rates. The translation rates for
ingots MCT-L6 and MCT-L7 were 0.310 and 0.068

/zm/s, respectively. Solidification at the slower rate

results in the build up of a much longer solute

boundary layer. Hence, the stabilizing solutal forces

are expected to be less during the growth. This

reduced stabilizing force can lead to the increase of

natural convective mixing, which results in a more

uniform radial segregation. However, the axial corn-

positional profile never reaches a steady-state value.

Therefore, improved radial segregation is gained at
the expense of less uniform axial composition. If the

translation rate is increased, as in MCT-L6, shorter

transients result in steady-state axial compositional

distribution, but radial segregation increases by two

orders of magnitude. These results are in qualitative

agreement with the numerical calculations of Mo-

takef [24,25]. His results indicate that radial segrega-

tion increases initially with decreasing Peclet mass

transfer number reflecting the reduction in the mix-

ing of the melt, which results in increased non-uni-

formity of melt composition at the growth interface.

This suggests that improved material compositional
uniformity requires sufficiently fast growth rates to

produce short initial transients and a simultaneous

reduction of radial segregation caused by convective
effects.

Fig. 3 shows the axial compositional distribution

profiles for two crystals: curve MCT-D2 was ob-

tained for growth without a magnetic field and curve

MCT-4 for growth with melt stabilization by a 50

kG axial magnetic field. The theoretical curve based
on a one-dimensional diffusion equation is also
shown.

0.6

0.5

f-_ 0.4

C9

.o
0.3

r_

I/

:_ 0.2

0.1

\
A,

MCT-LT, R = 0.068

_ gm/_

.... A-- MCT-L6, R = 0.310

\\ _ .am/see

N
,, "'\ _ -- Pfann's Equation

Cra d = 0.0008 y,/

I I I I I I I I I ' -- '
Crad = 0'1500 _ _'

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Axial Dislance (cm)

Fig. 2. Axial compositional limRs of directional solidification for HgCdTe.
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0.6

0.5 ] -- I-D Diffusion (Model)

/t MCT-D2 no field

* MCT--4, 50 kG field
0.4

\ © IR, MCT-.4, 50 kG field

_ 03

02

Ol

0 2 4 6 8 10 12 14

Axial Distance (em)

Fig. 3. Comparison of the experimental axial compositional distribution to the one-dimensional diffusion model.

no magnetic field

,'A

t.z) ",

Co

Furnace temperature, TA, is larger

than meh temperature, T M . Stable

growth occurs.

applied magnetic field

g,.[-

Cd rich areas fonn due to

homogeneous nucleation. These

Cd rich areas, being less dense than

surrounding environment rise to top

of ampoule. Where they remeh and

remain until thc end of growth.

This resuls in a Cd rich band at end

of boule.

5

constitutionally

supercooled

region

(from M. Flemings)

Fig. 4, Schematic representation of the c,,)n',,rectivc melt flows and solute botmdary layer configurations for directional solidification growth

of Hg{'dTc v, ith and ',_ithout magnetic stabilization.
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The curve for MCT-D2 indicates that, as ex-

pected, during solidification in zero field the distribu-

tion of CdTe undergoes an initial transient, then a

steady-state region followed by a final transient. This

compares well with the curve calculated from an
exact numerical solution to the one-dimensional dif-

fusion equation for an x = 0.2 alloy [26,27]. The
curve for MCT-4 (50 kG field) shows a similar

initial transient and steady-state section. However, a

sharp increase in the CdTe content is observed near

the last-to-freeze end just before the final transient.
To ensure that this rise was not due to measurement

error, IR compositional measurements were taken at

various axial locations. There was excellent agree-

ment between the two measurement techniques, see

Fig. 3. This rise in CdTe content may be explained

by constitutional supercooling ahead of the interface.

Fig. 4, shows a schematic of the convective melt

flows and solute boundary layer configurations for
the no-field and field cases. In the no-field case, a

region with intense convection (as compared to the

growth rate) caused by radial thermal gradients is
assumed to occur between a bulk of diffusion-con-

trolled melt and the growth interface as proposed by

Kim and Brown [28] to explain axial segregation

patterns seen in HgCdTe crystal growth experiments

by Szofran and Lehoczky [29]. Hence, the axial

temperature gradient in the melt is sufficient to avoid

constitutional supercooling due to the flatness of the

compositional profile and normal solidification pro-
ceeds. In the case of growth in the presence of a

stabilizing magnetic field, the elimination or reduc-

tion of convection allows for the build up of the

diffusion-controlled solute boundary layer closer to

the solid-liquid interface. As the axial temperature

gradient is held constant, this stiffer solutal boundary

layer produces a region in the liquid ahead of the
interface that is at an actual temperature below its

equilibrium liquidus temperature. Accordingly, this
can lead to homogeneous nucleation of solid-phase

particles, richer in Cd (higher x) than the bulk melt,
which float upwards because their densities are less

than those of the melts. This phenomenon of buoyant

rising of solid particles, or Stokes migration, has

been observed during vertical Bridgman-Stock-

barger growth experiments of HgCdTe [30,31] and
HgCdSe [32] and is consistent with the results from

the growth of the MCT-4 ingot. Conclusive evidence

rich precipitates Ihnl

have risen Io lop of boule

due to consfilutional

supercooling

Fig. 5. Back-scatter micrograph of t_ quenched HgZnT¢ ingol

showing Zn-rich precipitates lll_tl have migrated to Ihe I(_l'_ of the

boule due Io Stokes illigratioi1 brought about b} cotlslitttlh+l_tl]

supercooling [33].

of this phenomenon is demonstrated in Fig. 5. which
illustrates a back-scattering electron micrograph of a

quenched HgZnTe ingot grown by Lehoczky et al.

[33]. It clearly shows Zn-rich precipitates Ih;al h_tve

migrated to the top of the boule due to Stokes

migration resulting from constitutional supercooling.

3.2. Ra_fial coml_ositioJud distribution,s"

3.2.1. Radial segregation." initial trallsients

Fig. 6 shows the radial compositional variations

for wafers 2.5 cm from the first-to-freeze portion of

ingots MCT-D2 (zero field) and MCT-4 (50 kG

field) as determined by IR transmission-edge mea-

surements. The pattern of low Cd content al the
center (high Hg content) and high Cd content along

the edge of wafer #2.2, prepared from the MCT-D2

ingot, is consistent with other results obtained prc_i-

ously in the absence of a magnetic field. As noted
earlier, the vertical directional solidification of Hg-

based II-VI systems is characterized by double dif-
fusive convection and a concave (toward the solid)

growth interface. Thus, the denser Hg-rich melt tends
to accumulate at the center of the crucible resulting

in the radial compositional profile shown in Fig. 6a.
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Fig. 6b shows the radial profile for growth in the
presence of the stabilizing magnetic field. The order

of magnitude improvement in radial homogeneity

clearly indicates that the magnetic field was effica-

cious in suppressing convective effects on segrega-

tion. Fig. 6c shows the composition variation across

the diameter of the two samples. Compositional vari-

ations in other wafers in the initial transient region
show similar behavior.

3.2.2. Radial segregation: steady-state region

In an effort to quantify the effects of the magnetic

field on the radial segregation, the experimental re-

sults were compared to the analysis of the lateral

solute segregation associated with a curved solid-

liquid interface during steady-state unidirectional so-

lidification of a binary alloy as derived by Coriell
and Sekerka and described in detail in Ref. [34].

Briefly, they solved the species continuity equation

for the radial solute concentration in the solid crystal

at the solid-liquid interface with the assumptions of

no convection in the liquid and that the solid-liquid

interface could be represented by a Fourier series.

Their work showed that in the limiting case, the

transverse segregation in the solid is proportional to

the deviation of the interface from planarity, the
proportionality factor being just the product of the

unperturbed concentration gradient and the distribu-

tion coefficient given by

ac/co = ( k- I)(R/DL)a_', (3._)

where AC is the difference in composition at the

edge and center of the wafer, k is the equilibrium
segregation coefficient, R is the translation rate and

A ( is the interface deflection. These calculations are

applicable for crystal growth in a stabilizing mag-

0,50
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netic field where the field strength is sufficient to

suppress convection. The solid-liquid interface de-

flection necessary for the calculations was deter-

mined experimentally by quenching samples with
and without a magnetic field. The quenched interface

obtained in the presence of a magnetic field was

symmetric about the growth axis and had a maxi-
mum deflection (concave toward the solid) of 1.1

ram, which was a factor of 3 less than that obtained

without the magnetic field. Similar effects on the

solid-liquid interface were found in gallium-doped

germanium grown in the presence of a 30 kG axial

magnetic field [35].

Fig. 7 shows a comparison of the experimental

and the calculated diffusion-limited radial segrega-

tion, where the diffusion-limited regime was deter-
mined by varying the translation rate in Eq. (3.1).

For this calculation, the steady-state equilibrium seg-

regation coefficient, k = 4.2, was determined experi-

mentally by measuring the compositional change

across a quenched interface in the steady-state region
of crystal growth. The mass diffusion coefficient,

D L = 5.5 X 10 -5 cm2/s, was determined by a best

fit of the experimental axial composition data to the

one-dimensional diffusion-limited model of Clayton
et al. [36] and is consistent with the value obtained

by Lehoczky et al. [21]. The figure summarizes

previous data for MCT-L6 and MCT-L7, as well as,

the data from MCT-D2 and MCT-4. The multiple

data points for MCT-L6 and MCT-L7 are for three

wafers analyzed in the steady-state region and are
described in Ref. [21]. The comparison of the various

experimental and calculated results strongly suggest
nearly diffusion-limited growth and, thus, signifi-
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cantly improved compositional homogeneity can be

obtained with magnetically stabilized Bridgman-

Stockbarger growth systems.

4. Conclusions

An axial magnetic field was applied during crystal

growth experiments in order to damp the velocity of

the melt via magneto-hydrodynamic interactions. The

resulting reduction in convection significantly altered

the overall mass transfer and redistribution process.

The primary influence of convection on mass trans-

fer in the melt and segregation at the solid-liquid
interface can be summarized as follows:

(1) The axial compositional distribution was rela-

tively unaffected during the initial transient and

steady-state growth portions of the solidification pro-

cess. An abrupt rise in the CdTe content was ob-

served near the end of the ingot and has been

attributed to constitutional supercooling brought

about by the magnetic suppression of convection
near the solid-liquid interface, which results in an

increase in the slope of the diffusion-controlled so-

lute boundary layer.

(2) In conventional growth, the Hg-based II-VI

systems are characterized by double diffusive con-

vection and a concave growth interface. This results

in the accumulation of Hg-rich material at the center

of the melt just ahead of the growth interface, which
in turn increases the interface curvature because of

the nature of the HgTe-CdTe pseudo-binary phase

diagram. These effects tend to enhance the radial

segregation.

(3) For growth in a 50 kG magnetic field, the

convection intensity was sufficiently damped, which

allowed the interface curvature and radial composi-

tion to approach diffusion-limited growth conditions.

It should be remarked that the present study indi-
cates that the interaction of the thermal, solutal and

momentum fields in HgCdTe systems are highly

coupled. The modification of these complex interac-

tions, through, for example, the application of a

magnetic field can significantly alter the interface

morphology and compositional homogeneity. There-

fore, any attempts at modeling these systems should

involve the fully coupled form of the governing
equations.
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