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1 Introduction

Thanks to MPI [9], writing portable message passing parallel programs is almost a reality.

One of the remaining problems is file I/O. Although parallel file systems support similar

interfaces, the lack of a standard makes developing a truly portable program impossible.

Further, the closest thing to a standard, the UNIX file interface, is ill-suited to parallel

computing.

Working together, IBM Research and NASA Ames have drafted MPI-IO, a proposal to

address the portable parallel I/O problem. In a nutshell, this proposal is based on the idea

that I/O can be modeled as message passing: writing to a file is like sending a message, and

reading from a file is like receiving a message. MPI-IO intends to leverage the relatively

wide acceptance of the MPI interface in order to create a similar I/O interface.

The above approach can be materialized in different ways. The current proposal repre-

sents the result of extensive discussions (and arguments), but is by no means finished. Many

changes can be expected as additional participants join the effort to define an interface for

portable I/O.

This document is organized as follows. The remainder of this section includes a dis-

cussion of some issues that have shaped the style of the interface. Section 2 presents an

overview of MPI-IO as it is currently defined. It specifies what the interface currently sup-

ports and states what would need to be added to the current proposal to make the interface

more complete and robust. The next seven sections contain the interface definition itself.

Section 3 presents definitions and conventions. Section 4 contains functions for file control,

most notably open. Section 5 includes functions for independent I/O, both blocking and

nonblocking. Section 6 includes functions for collective I/O, both blocking and nonblock-

ing. Section 7 presents functions to support system-maintained file pointers, and shared

file pointers. Section 8 presents constructors that can be used to define useful filetypes (the

role of filetypes is explained in Section 2 below). Section 9 presents how the error handling

mechanism of MPI is supported by the MPI-IO interface. All this is followed by a set of

appendices, which contain information about issues that have not been totally resolved yet,

and about design considerations. The reader can find there the motivation behind some

of our design choices. More information on this would definitely be welcome and will be

included in a further release of this document. The first appendix contains a description of

MPI-IO's "hints" structure which is used when opening a file. Appendix B is a discussion of

various issues in the support for file pointers. Appendix C explains what we mean in talking

about atomic access. Appendix D provides detailed examples of filetype constructors, and

Appendix E contains a collection of arguments for and against various design decisions.

1.1 Background

The main deficiency of Unix I/0 in the context of parallel computing is that Unix is designed

first and foremost for an environment where files are not shared by multiple processes at

once (with the exception of pipes and their restricted access possibilities). In a parallel

environment, simultaneous access by multiple processes is the rule rather than the exception.

Moreover, parallel processes often access the file in an interleaved manner, where each

process accesses a fragmented subset of the file, while other processes access the parts that

the first process does not access [8]. Unix file operations provide no support for such access,

and in particular, do not allow access to multiple non-contiguous parts of the file in a single

operation.
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Parallelfile systemsandprogrammingenvironmentshave typically solved this problem

by introducing file modes. The different modes specify the semantics of simultaneous opera-

tions by multiple processes. Once a mode is defined, conventional read and write operations

are used to access the data, and their semantics are determined by the mode. The most

common modes are [10, 7, 6, 1]:

mode

broadcast

reduce

scatter

gather

shared

offset

independent

description examples

all processes collectively Express singl

access the same data PFS global mode

CMMD sync-broadcast

all processes collectively

access a sequence of data

blocks, in rank order

processes operate independently

but share a common file pointer

allows programmer complete
freedom

Express multi
CFS modes 2 and 3

PFS sync & record

CMMD sync-sequential
CFS mode 1

PFS log mode

Express async
CFS mode 0

PFS Unix mode

CMMD local & independent

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

The common denominator of those modes that actually attempt to capture useful I/O

patterns and help the programmer is that they define how data is partitioned among the

processes. Some systems do this explicitly without using modes, and allow the programmer

to define the partitioning directly. Examples include Vesta [3] and the nCUBE system

software [4]. Recent studies show that various simple partitioning schemes do indeed account

for most of observed parallel I/O patterns [8]. MPI-IO also has the goal of supporting such
common patterns.

1.2 Design Goals

The goal of the MPI-IO interface is to provide a widely used standard for describing parallel
I/O operations within an MPI message-passing application. The interface should establish

a flexible, portable, and efficient standard for describing independent and collective file I/O
operations by processes in a parallel application. The MPI-IO interface is intended to be

submitted as a proposal for an extension of the MPI standard in support of parallel file I/O.
The need for such an extension arises from three main reasons. First, the MPI standard does

not cover file I/O. Second, not all parallel machines support the same parallel or concurrent

file system interface. Finally, the traditional Unix file system interface is ill-suited to parallel
computing.

The MPI I/O interface was designed with the following goals:

1. It was targeted primarily for scientific applications, though it may be useful for other
applications as well.

2. MPI-IO favors common usage patterns over obscure ones. It tries to support 90% of

parallel programs easily at the expense of making things more difficult in the other
10%.
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. MPI-IO features are intended to correspond to real world requirements, not just arbi-

trary usage patterns. New features were only added when they were useful for some
real world need.

4. MPI-IO allows the programmer to specify high level information about I/O to the
system rather than low-level system dependent information.

5. The design favors performance over functionality.

The following, however, were not goals of MPI-IO:

1. Support for message passing environments other than MPI.

2. Compatibility with the UNIX file interface.

3. Support for transaction processing.

4. Support for FORTRAN record oriented I/O.

1.3 History

This work is an outgrowth of the original proposal from IBM [11], but it is significantly

different. The main difference is the use of file types to express partitioning in an MPI-

like style, rather than using special Vesta functions. In addition, file types are now used to

express various access patterns such as scatter/gather, rather than having explicit functions
for the different patterns.

Version 0.2 is the one presented at the Supercomputing '94 birds-of-a-feather session,

with new functions and constants prefixed by "MPIO_" rather than "MPI_" to emphasize

the fact that they are not part of the MPI standard.

Version 0.3 accounts for comments received as of December 31, 1994. It states more

precisely what the current MPI-IO proposal covers and what it does not address (yet) (see
Section 2.5). Error handling is now supported (see Section 9). Permission modes are not

specified any longer when opening a file (see Section 4.1). Users can now inquire the current

size of a file (see Section 4.3). The semantics for updating file pointers has been changed

and is identical for both individual and shared file pointers, and for both blocking and
nonblocking operations (see Section 7).

2 Overview of MPI-IO

Emphasis has been put in keeping MPI-IO as MPI-friendly as possible. When opening a file,

a communicator is specified to determine which group of tasks can get access to the file in

subsequent I/O operations. Accesses to a file can be independent (no coordination between

tasks takes place) or collective (each task of the group associated with the communicator

must participate to the collective access). MPI derived datatypes are used for expressing the

data layout in the file as well as the partitioning of the file data among the communicator

tasks. In addition, each read/write access operates on a number of MPI objects which can

be of any MPI basic or derived datatypes.
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2.1 Data Partitioning in MPI-IO

Instead of defining file access modes in MPI-IO to express the common patterns for access-

ing a shared file (broadcast, reduction, scatter, gather), we chose another approazh which

consists of expressing the data partitioning via MPI derived datatypes. Compared to a lim-

ited set of pre-defined access patterns, this approach has the advantage of added flexibility

and expressiveness.

MPI derived datatypes are used in MPI to describe how data is laid out in the user's
buffer. We extend this use to describe how the data is laid out in the file as well. Thus we

distinguish between two (potentially different) derived datatypes that are used: the filetype,

which describes the layout in the file, and the buftype, which describes the layout in the

user's buffer. In addition, both filetype and buftype are derived from a third MPI datatype,

referred to as the elementary datatype etype. The purpose of the elementary datatype is to

ensure consistency between the type signatures of filetype and buftype. Offsets for accessing

data within the file are expressed as an integral number of etype items.

The filetype defines a data pattern that is replicated throughout the file (or part of the

file -- see the concept of displacement below) to tile the file data. It should be noted that

MPI derived datatypes consist of fields of data that are located at specified offsets. This

can leave "holes" between the fields, that do not contain any data. In the context of tiling

the file with the filetype, the task can only access the file data that matches items in the

filetype. It cannot access file data that falls under holes (see Figure 1).

otyoo

flletype

tiling a file with the filetype:

I [ii!::!ii::!iil!!::iii::i::ii]I fi_::_::i::::l::i_i_i_i:::;::tI fi::i::ii::::::iillii!i::i_ililt [i_ii_;!_::_::_:J I :::::::::::::::::::::::::::::::::::I

accesible datm -r

QO0

Figure 1: Tiling a file using a filetype

Data which resides in holes can be accessed by other tasks which use complementary

filetypes (see Figure 2). Thus, file data can be distributed among parallel tasks in dis-

joint chunks. MPI-IO provides filetype constructors to help the user create complementary

filetypes for common distribution patterns, such as broadcast/reduce, scatter/gather, and

HPF distributions (see Section 8).

etype []

processt fi,_t_Iiiiiiiiii!ti!i!iiii:_] I

process 2 filetype ] E_I ]

process 3 filetype [

tiling a file with the filetypes:

Figure 2: Partitioning a file among parallel tasks

In order to better illustrate these concepts, let us consider a 2-D matrix, stored in row
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major order in a file, that is to be transposed and partitioned among a group of three tasks

(see Figure 3). The matrix is to be distributed among the parallel tasks in a row cyclic

manner. Each task wants to store in its own memory the transposed portion of the matrix

which is assigned to it. Using appropriate filetypes and buftypes allows the user to perform

that task very easily. In addition, the elementary datatype allows one to have a very generic

code that applies to any type of 2-D matrix. The corresponding MPI-IO code example is

given in Appendix D.

logical view: partition file in row cydlo pattern and transpose

file structure

process 1 buffer

prooess 2 buffer

process 3 buffer

implementation using etype, filetypas, and buftypes

etype []

process I flletype I:::_i:i_:::::l:::_ii::ii:::[:i:::_i:i_ilii_i_iii_::l_::_::_i_i_::jl

process 2 fiJetype I _ I

process 3 file(ype I J

actuaJ layout in the file:

[iiiiiiiiii_ii_ii_[_i!_!_i_i_!i_i_ii!_i_i_:_ii_i!_jii_i_ii_ijii_!ii_iii]_i_iii_iii_iii_i_i__`_:__i_ii_!_i_!_ii!iiii_i_iii_iii_i!!iiiiii_jii!_i_ii_• • •

bufl_(allprocesses)l))i))i::))i]lii::i))ii::)ll_))ii))):=)|)))))))::)::())i))i)))i(I

Figure 3: Transposing and partitioning a 2-D matrix

Note that using MPI derived datatypes leads to the possibility of very flexible patterns.

For example, the filetypes need not distribute the data in rank order. In addition, there can

be overlaps between the data items that are accessed by different processes. The extreme

case of full overlap is the broadcast/reduce pattern.

Using the filetype allows a certain access pattern to be established. But it is conceivable

that a single pattern would not be suitable for the whole file. The MPI-IO solution is to

define a displacement from the beginning of the file, and have the access pattern start from

that displacement. Thus if a file has two segments that need to be accessed in different

patterns, the displacement for the second pattern will skip over the whole first segment.

This mechanism is also particularly useful for handling files with some header information at

the beginning (see Figure 4). Use of file headers could allow the support of heterogeneous
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environments by storing a "standard" codification of the data representations and data

types of the file data.

firsttiling liiiiiii_:iiiiiil_iiii_:ilililiR_:iiiiiiiii_ii_iiii_iii_iiiiiiiiiiiiili_l

secondtiling _i_!i_;iii_;i;;iiii;!;_!_!!!i_i!!_=!!!!i!!___;i;iii!i;i;_;_;_;_;_i;iii;i;_ii;_;_i_!!i!!ii_

Figure 4: Displacements

000

2.2 MPI-IO Data Access Functions

As noted above, we have elected not to define specific calls for the different access patterns.

However, there are different calls for the different synchronization behaviors which are

desired, and for different ways to specify the offset in the file. The following table summarizes
these calls:

offset

explicit
offset

independent

file pointer

synchronization II

blocking

(synchronous)

nonblocking

(asynchronous)

blocking

(synchronous)

independent

MPIO_Read

MPIO_Write

collective

M P IO _Read _all

MPIO_Write_all

MPIOAread MPIOAread_all

MPIO_Iwrite MPIO Awrite_all

MPIO_Read_next

MPIO_Write_next

M P I0 -Read _next _all

MPIO _Write_next _all

nonblocking MPIO_Iread_next MPIOAread_next_all

(asynchronous) MPIO_Iwrite-next MPIO_Iwrite_next_all

shared blocking MPIO-Read_shared -

file pointer (synchronous) MPIO_Write_shaxed -
MPIO_Iread_shared

MPIO_Iwrite_shared
nonblocking

(asynchronous)

The independent calls with explicit offsets are described in Section 5, and the col-

lective ones in Section 6. Independent calls do not imply any coordination among the

calling processes. On the other hand, collective calls imply that all tasks belonging to the

communicator associated with the opened file must participate. However, as in MPI, no

synchronization pattern between those tasks is enforced by the MPI-IO definition. Any re-

quired synchronization may depend upon a specific implementation. Collective calls can be

used to achieve certain semantics, as in a scatter-gather operation, but they are also useful

to advise the system of a set of independent accesses that may be optimized if combined.

When several independent data accesses involve multiple overlapping data blocks, it

may be desirable to guarantee the atomicity of each access, as provided by Unix (see Ap-

pendix C). In this case, it is possible to enable the MPIO_CAUTIOUS access mode for the file.

Note that the cautious mode does not guarantee atomicity of accesses between two different

MPI applications accessing the same file data, even if they both specify the MPIO_CAUTIOUS
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mode. Its effect is limited to the confines of the MPI_COMM_WORLD communicator group

of the processes that opened the file, typically all the processes in the job. The default

access mode, referred to as MPIO_RECKLESS mode in MPI-IO, does not guarantee atomicity

between concurrent accesses of the same file data by two parallel tasks of the same MPI

application.

2.3 Offsets and File Pointers

Part of the problem with the Unix interface when used by multiple processes is that there is

no atomicity of seek and read/write operations. MPI-IO rectifies this problem by including

an explicit offset argument in the first set of read and write calls. This offset can be absolute,

which means that it ignores the file partitioning pattern, or relative, which means that only

the data accessible by this process is counted, excluding the holes of the filetype associated

with the task (see Figure 5). In both cases, offsets are expressed as an integral number of

elementary datatype items. As absolute offsets can point to anywhere in the file, they can

also point to an item that is unaccessible by this process. In this case, the offset will be

advanced automatically to the next accessible item. Therefore specifying any offset in a hole

is functionally equivalent to specifying the offset of the first item after the hole. Absolute

offsets may be easier to understand if accesses to arbitrary random locations are combined

with partitioning the file among processes using filetypes. If such random accesses are not

used, relative offsets are better. If the file is not partitioned, absolute and relative offsets
are the same.

etype

process I filetype

process 2 filetype

[]
iiiiiiiiiiiiliiiiiiiiiiiilii!iii!i!iiiiiiiiii!iii!iiiiiiiiiiii] I

I __

labS 2 labS 7 equiv |abs 14

process 1 offsets: _ rel 2 Ito...al_...lO _ rel 9

I dis _ iii!!iii iii!iiiiiiiiiiiiiiii:i:i:i:i:i:i:i:i:i:i:i:i: :::::: :::::;::";:::::::::;:::::::::::::::::::::: '_ " _ - - :::::_:;::':::':::::::::':::::":'::: : ::: •::::::::::::::::::::::::::::::::::::_:Mi_.__:_:_:_i;i_i_i_i_i_i_i:i_i:i_i_i_i_i_i!_m__:_i:i:i_1_!!I_ii_t_i__ihii_!_._ * **

, ooe 2o,ssts: ? s
/

/ tel 3 / rel 5
/

Figure 5: Absolute and relative offsets

It should be noted that the offset is a required argument in the explicit offset functions.

Processes must maintain their offsets into all files by themselves. A separate set of functions,

described in Section 7, provide the service of doing the next access where the previous one

left off. This is especially convenient for sequential access patterns (or partitioned-sequential

patterns), which are very common in scientific computing [8]. Likewise, shared file pointers

are also supported. This allows for the creation of a log file with no prior coordination

among the processes, and also supports self-scheduled reading of data. However, there are

no collective functions using shared offsets. This issue is discussed in Appendix B.

2.4 End of File

Unlike Unix files, the end of file is not absolute and identical for all processes accessing the

file. It depends on the filetype used to access the file and is defined for a given process

as the location of the byte following the last elementary datatype item accessible by that
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process (excluding the holes). It may happen that data is located beyond the end of file for

a given process. This data is accessible only by other processes.

2.5 Current Proposal and Future Extensions

The current proposal is not final and will evolve. Additions to it are definitely required to

make the interface more complete and robust.

Currently, the problem of heterogeneity of data representations across machine archi-

tectures is not addressed. As stated above, filetypes are used to partition file data. Their

purpose is not to ensure type consistency between file data accessed and user's buffer data,

nor are they intended to handle type conversion between file data and user's buffer data.

Therefore, file data can be currently considered as untyped data and has no data representa-

tion associated with it. Research must be carried out in order to come up with a standard

for storing persistent data in a machine independent format and for encoding in the file

metadata type information of the file data (a file header could be used as a repository for

these metadata).

The error handling mechanism (see Section 9) is currently primitive, built on top of

the MPI error handling mechanism. Further investigation is required in order to verify if

this approach is appropriate and robust enough.

No real support for accessing MPI-IO files from a non MPI-IO application is currently

provided. Additional functions should enable the transfer of MPI-IO files to other file

systems, as well as the importation of external files into the MPI-IO environment. However,

the user can easily provide the import functionality for a given external file system (eg Unix)

by writing a single process program as follows:

int fd;

int nread;

char buffer [40963 ;

MPIO_File fh;

MPIO_offset offset ;

MPIO_Status status ;

fd = open("source_file", O_RDONLY);

MPIO_Open(MPI_COMM_WORLD, "target_file", MPIO_CREATEIIMPIO_WRONLY,

MPIO_OFFSET_ZERO, MPI_BYTE, MPI_BYTE, MPIO_OFFSET_ABSOLUTE,

NULL, &fh);

offset = MPIO_OFFSET_ZERO;

while ((nread = read(fd, buffer, 4096)) != O) {

MPIO_Write(fh, offset, buffer, MPI_BYTE, nread, astatus);

offset += nread;

}

close(fd);

MPIO_Close(fh);

A very similar program could be written to export an MPI-IO file.

Let us also stress that nothing currently prevents the user from creating an MPI-IO file

with a given number of processes and accessing it later with a different number of processes.

This can be achieved by reopening the file with the appropriate filetypes.
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The current proposal also lacks availability of status information about MPI-IO files.

The user currently has no way of inquiring any information about a non opened MPI-IO

file, nor has (s)he the possibility of inquiring the identity of the file owner, the dates and

times of the creation/last modification of the file, or the access permissions to the file.

These issues are only some of the main issues that need to be addressed by a real

standard for parallel I/O. They will be incorporated into our proposal incrementally, as

time permits. Our emphasis has been to first define the basic functions a standard for

parallel I/O should provide to allow concurrent access to shared file data in a user-friendly

and efficient way. This initial set composing the current interface is designed in such a way

that extensions to it can be introduced easily and progressively.

3 Interface Definitions and Conventions

3.1 Independent vs. Collective

An independent I/O request is a request which is executed individually by any of the pro-

cesses within a comunicator group. A collective I/O request is a request which is executed

by all processes within a communicator group. The completion of an independent call only

depends on the activity of the calling process. On the other hand, collective calls can (but

are not required to) return as soon as their participation in the collective operation is com-

pleted. The completion of the call, however, does not indicate that other processes have

completed or even started the I/O operation. Thus, a collective call may, or may not, have

the effect of synchronizing all calling processes. Collective calls may require that all pro-

cesses, involved in the collective operation, pass the same value for an argument. We will

indicate it with the "[SAME]" annotation in the function definition, llke in the following

example:

M PIO_CLOSE(_)

IN [SAME] Valid file handle (handle)

Advice to users. It is dangerous to rely on synchronization side-effects of the collective

I/O operations for program correctness. However, a correct program must be aware

of the fact that a synchronization may occur. (End of advice to users.)

Advice to implementors. While vendors may write optimized collective I/O oper-

ations, all collective I/O operations can be written entirely using independent I/O

operations. (End of advice to implementors.)

3.2 Blocking vs. Nonblocking

One can improve performance by overlapping computation and I/O. A blocking I/O call

will block until the I/O request is completed. A nonblocking I/O call only initiates an

I/O operation, but does not wait for it to complete. A nonblocking call may return before

the data has been read/written out of the user's buffer. A separate request complete call

(MPl_Wait or MPl_Test) is needed to complete the I/O request, i.e., to certify that data has

been read/written out of the user's buffer. With suitable hardware, the transfer of data

out/in the user's buffer may proceed concurrently with computation.
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Advice to users. The fact that a blocking or nonblocking I/O request completed does

not indicate that data has been stored on permanent storage. It only indicates that

it is safe to access the user's buffer. (End of advice to users.)

3.3 Etype, Filetype, Buftype, and Offset Relation

The etype argument is the elementary datatype associated with a file. etype is used to

express the filetype, buftype and offset arguments. The filetype and buftype datatypes must

be directly constructed (i.e. derived datatype) from etype, or their type signatures must be

a multiple of the etype signature. Complete flexibility can be achieved by setting etype to

MPI_BYTE. The offset argument used in the read/write interfaces will be expressed in units

of the elementary datatype etype.

3.4 Displacement and offset types

In FORTRAN, displacements and offsets are expressed as 64 bit integers. In case 64 bit

integers are not supported by a specific machine, this does not preclude the use of MPI-IO,

but restricts displacements to 2 billion bytes and offsets to 2 billion elementary datatype

items (substituting INTEGER*8 variables with INTEGER*4 variables). In C, a new type,

MPIO_Offset, is introduced and can be seen as a long long int, if supported, or as a long int
otherwise.

3.5 Return Code and Status

All the MPI-IO Fortran interfaces return a success or a failure code in the IERROR return

argument. All MPI-IO C functions also return a success or a failure code. The success

return code is MPI_SUEEESS. Failure return codes are implementation dependent.

If the end of file is reached during a read operation, the error MPIO_ERR_EOF is returned

(either by the blocking read operation or by the function MPl_Test or MPl_Wait apphed to

the request returned by the nonblocking read operation). The user may write his/her own

error handler and associate it with the file handle (see Section 9) in order to process this
error.

The number of items actually read/written is stored in the status argument. The

M Pl_Get_count or M Pl_Get_elernent MPI functions can be used to extract from status (opaque

object), the actual number of elements read/written either in etype, filetype or buftype units.

3.6 Interrupts

Like MPI, MPI-IO should be interrupt safe. In other words, MPI-IO calls suspended by

the occurrence of a signal should resume and complete after the signal is handled. In case

the handling of the signal has an impact on the MPI-IO operation taking place, the MPI-

IO implementation should behave appropriately for that situation and very likely an error

message should be returned to the user and the relevant error handling take place (see

Section 9).
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4 File Control

4.1 Opening a File (Collective)

MPIO_OPEN(comm, filename, amode, disp, etype, filetype, moffset, hints, fh)

IN comm

IN filename

IN amode

IN disp

IN etype

IN filetype

IN rnoflFset

IN hints

OUT fh

[SAME] Communicator that opens the file (handle)

[SAME] Name of file to be opened (string)

[SAME] File access mode (integer)

Absolute displacement (nonnegative offset)

[SAME] Elementary datatype (handle)

Filetype (handle)

Relative/Absolute offset flag (integer)

Hints to the file system (array of integer)

Returned file handle (handle)

int MPIO_Open(MPI_Comm comm, char *filename, MPIO_Mode amode,

MPIO_Offset disp, MPI_Datatype etype, MPI_Data_ype file_ype,

MPIO_Offset_mode moffset, MPIO_Hints *hints, MPIO_File *fh)

MPIO_OPEN(COMM, FILENAME, AMODE, DISP, ETYPE, FILETYPE, MOFFSET, HINTS, FH,

IERROR)

CHARACTER FILENAME(*)

INTEGER COMM, AMDDE, ETYPE, FILETYPE, MOFFSET,

INTEGER HINTS(MPIO_HINTS_SIZE), FH, IERROR

INTEGER*8 DISP

MPlO_Open opens the file identified by the file name filename, with the access mode

amode.

The following access modes are supported:

• MPIO_RDONLY - reading only

• MPIO_RDWR - reading and writing

• MPIO_WRONLY - writing only

• MPIO_CREATE - creating file

• MPIO_DELETE - deleting on close

These can be combined using the bitwise OR operator. Note that the Unix append mode is

not supported. This mode can be emulated by requesting the current file size (see Section

4.3) and seeking to the end of file before each write operation.

The disp displacement argument specifies the position (absolute offset in bytes from the

beginning of the file), where the file is to be opened. This is used to skip headers, and when

the file includes a sequence of data segments that are to be accessed in different patterns.



12 Draft Document of the MPI-IO Interface, January 30, 1995

The etype argument specifies the elementary datatype used to construct the filetype,
and also the buftype type used in the read/write. Offsets into the file are measured in units

of etype. The filetype argument describes what part of the data in the file is being accessed.

Conceptually, the file starting from disp is tiled by repeated copies of filetype, until the end.

If filetype has holes in it, then the data in the holes is inaccessible by this process. However,

the disp, etype and filetype arguments can be changed later to access a different part of the
file.

The argument moffset specifies how offset values must be interpreted, moil:set can have
two values:

* MPIO_OFFSET_ABSOLUTE - as absolute offsets (count holes in filetype)

• MPIO_OFFSET_RELATIVE - as relative offsets (ignore holes in filetype)

Absolute offsets are interpreted relative to the full extent of the filetype. However, offsets

that point to a hole in the filetype will actually access the data immediately following the

hole. Relative offsets are interpreted relative to the accessible data only (ignoring the holes
in the filetype).

The hints argument gives user's file access patterns, and file system specifics (see Ap-
pendix A).

Files are opened by default in the M PIO_RECKLESS read/write atomic semantics mode.

Each process may pass different values for the disp, filetype, moffset and hints arguments.

However, the filename, comm, amode and etype argument values must be the same.

The file handle returned, fh, can be subsequently used to access the file.

Access permissions are not specified when opening a file. If the file is being created,

operating system defaults apply (eg Unix command umask).

Advice to users. Each process can open a file independently of other processes by
using the MP{_COMM_SFI_F communicator.

If two different MPI applications open the same file, the behavior and atomicity of
the file accesses are implementation dependent. The MP{O_CAUT{OUS mode enforces

read/write atomicity in the MP{_COMM_WORI_D communicator group only. (End of
advice to users.)

4.2 Closing a file (Collective)

M PIO_C LOS E(fh)

IN fh [SAME] Valid file handle (handle)

int MPIO_Close(MPIO_File fh)

MPIO_CLOSE(FH, IERROR)

INTEGER FH, IERROR

M PIO_Close closes the file associated with fh. If the file was opened with MPIO_DELETE,

the file is deleted. If there are other processes currently accessing the file, the status of the

file and the behavior of future accesses are implementation dependent. After closing, the
content of the file handle fh is destroyed. All future use of fh will cause an error.
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Advice to implementors. If the file is to be deleted and is opened by other processes,

file data may still be accessible by these processes until they close the file or until they

exit. (End of advice to implementors.)

4.3 File Control (Independent/Collective)

MPIO_FILE_CONTROL(fh, size, cmd, arg)

IN fh

IN size

IN cmd

IN/OUT arg

[SAME] Valid file handle (handle)

[SAME] Numbers of command passed (integer)

[SAME] Command arguments (array of integer)

Arguments or return values to the command requests

int MPIO_File_control(MPIO_File fh, int size, int *cmd, void *arg)

MPI0_FILE_CONTROL(FH, SIZE, CMD, ARG, IERROR)

INTEGER FH, SIZE, CMD(*), IERROR, ARG(*)

MPIO_File_Control gets or sets file information about the file associated with the file

handle fh. Multiple commands can be issued in one call, with the restriction that it is not

allowed to mix collective and independent commands. The commands available are:

• (independent)

- MPIO_GETCOMM: Get the communicator associated with the file.

- MPIO_GETNAME: Get the filename.

- MPIO_GETAMODE: Get the file access mode associated with the file.

- MPIO_GETDISP: Get the displacement.

- MPIO_GETETYPE: Get the elementary datatype.

- MPIO_GETFILETYPE: Get the filetype.

- MPIO_GETHINTS: Get the hints associated with the file.

- MPIO_GETATOM: Get the current read/write atomic semantics enforced mode.

- MPIO_GETINDIVIDUALPOINTER: Get the current offset of the individual file pointer

associated with the file (number of elementary datatype items within the file after

the displacement position).

- MPIO_GETSHAREDPOINTER: Get the current offset of the shared file pointer as-

sociated with the file (number of elementary datatype items within the file after

the displacement position).

• (Collective)

- MPIO-SETAMODE: Set the file access mode using the arg argument, arg must be
a valid amode.

- MPIO_SETDISP: Set new displacement.

- MPIO_SETETYPE: Set the elementary datatype associated with the file.
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- MPIO_SETFILETYPE: Set the filetype associated with the file.

- MPIO.SETATOM: Set the read/write atomic semantics enforced mode. arg can be

either MPIO_RECKLESS or MPIO_CAUTIOUS.

- MPIO_GETSIZE: Get the current file size.

For collective commands, all processes in the communicator group that opened the file

must issue the same command. In the cases of MPIO_SETAMODE and MPIO.SETATOM, the

arguments must a/so be identical.

4.4 Deleting a file (Independent)

M PlO_DELETE(filename)

IN filename Name of the file to be deleted (string)

in¢ MPIO_Delete(char *filename)

MPI0_DELETE(FILENAME, IERROR)

CHARACTER FILENAME(,)

INTEGER IERROR

MPlO_Delete deletes a file. If the file exists it is removed. If there are other processes

currently accessing the file, the status of the file and the behavior of future accesses are

implementation dependent. If the file does not exist, M PlO_Delete returns a warning error

code.

Advice to implementors. If the file to be deleted is opened by other processes, file

data may still be accessible by these processes until they close the file or until they

exit. (End of advice to implementors.)

4.5 Resizing a file (Collective)

MPIO_RESIZE(MPIO_File fh, MPlO_Offset disp)

IN • [SAME] Valid file handle (handle)

IN disp [SAME] Displacement which the file is to be truncated

at or expanded to (nonnegative offset)

in_ MPlO_Resize(MPlO_File fh, MPlO_Offset disp)

MPIO_RESIZE(FH, DISP, IERROR)

INTEGER FH, IERROR

INTEGER*8 DISP

MPlO_Resize resizes the file associated with the file handle fh. If disp is smaller than

the current file size, the file is truncated at the position defined by disp (from the beginning

of the file and measured in bytes). File blocks located beyond that position are deallocated.
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If disp is larger than the current file size, additional file blocks are allocated and the file

size becomes disp. All processes in the communicator group must call MPlO_Resize with

the same displacement.

4.5 File Sync (Collective)

M PIO_FILE_SYN C(fh)

IN fh [SAME]Valid file handle (handle)

int MPIO_File_sync(MPIO_File fh)

MPIO_FILE_YNC (FH, IERROR)

INTEGER FH, IERROR

MPlO_File_sync causes the contents of the file referenced by fh to be flushed to perma-

nent storage. All processes in the communicator group associated with the file handle fh

must call MPlO_File_sync. The MPIO_File_sync call returns after all processes in the com-

municator group have flushed to permanent storage the data they have been accessing since

they opened the file.

Advice to users. MPlO_File_sync guarantees that all completed I/O requests have

been flushed to permanent storage. Pending nonblocking I/O requests that have not

completed are not guaranteed to be flushed. (End of advice to users.)

5 Independent I/O

5.1 MPIO_Read

MPIO_READ(fh, offset, buff, buftype, bufcount, status)

IN fh

I N offset

OUT buff

IN buftype

IN bufcount

OUT status

Valid file handle (handle)

File offset (nonnegative offset)

Initial address of the user's buffer (integer)

User's buffer datatype (handle)

Number of buftype elements (integer)

Status information (Status)

int MPIO_Read(MPIO2ile fh, MPIO_ffset offset, void *buff,

MPI_Datatype buftype, int bufcount, MPI_tatus *status)

MPIO_READ(FH, OFFSET, BUFF, BUFTYPE, BUFCOUNT, STATUS, IERROR)

<type> BUFF(*)

INTEGER FH, BUFTYPE, BUFCOUNT, STATUS(MPI_STATUS_IZE), IERROR

INTEGER*8 OFFSET
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MPlO_Read attempts to read from the file associated with fh (at the offset position)

a total number of bufcount data items having buftype datatype into the user's buffer buff.

The data is taken out of those parts of the file specified by filetype. MPlO_Read stores the

number of buftype elements actually read in status.

5.2 M PlO_Write

MPIO_WRITE(fh, offset, buff, buftype, bufcount, status)

IN fh

I N offset

IN buff

IN buftype

IN bufcount

OUT status

Valid file handle (handle)

File offset (nonnegative offset)

Initial address of the user's buffer (integer)

User's buffer datatype (handle)

Number of buftype elements (integer)

Status information (Status)

int MPIO_Write(NPIO_File fh, MPIO_Offset offset, void *buff,

MPI_Datatype buftype, int bufcount, MPI_Status *status)

MPIO_WRITE(FH, OFFSET, BUFF, BUFTYPE, BUFCOUNT, STATUS, IERROR)

<type> BUFF(*)

INTEGER FH, BUFTYPE, BUFCOUNT, STATUS(MPI_STATUS_SIZE), IERROR

INTEGER*8 OFFSET

M PlO_Write attempts to write into the file associated with fh (at the offset position)

a total number of bufcount data items having buftype datatype from the user's buffer buff.

The data is written into those parts of the file specified by filetype. MPl0_Write stores tile

number of buftype elements actually written in status.

5.3 MPlO_lread

MPIO_IREAD(fh, offset, buff, buftype, bufcount, request)

IN fh

IN offset

OUT buff

IN buftype

I N bufcount

OUT request

Valid file handle (handle)

File Offset (nonnegative offset)

Initial address of the user's buffer (integer)

User's buffer datatype (handle)

Number of buftype elements (nonnegative integer)

Read request handle (handle)

int MPIO_Iread(MPIO_File fh, MPIO_ffset offset, void *buff,

MPI_Datatype buftype, int bufcount, MPI_Request *request)

MPIO_IREAD(FH, OFFSET, BUFF, BUFTYPE, BUFCOUNT, REQUEST, IERROR)
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<type> BUFF(*)

INTEGER FH, BUFTYPE, BUFCOUNT, REQUEST,
INTEGER*8 OFFSET

IERROR

M PlO_lread is a nonblocking version of the M PlO_Read interface. MPlO_lread associates

a request handle request with the I/O request. The request handle can be used later to query

the status of the read request, using the MPI function MPl_Test, or wait for its completion,

using the function M Pl_Wait.

The nonblocking read call indicates that the system can start to read data into the

supphed buffer. The user should not access any part of the receiving buffer after a non-

blocking read is posted, until the read completes (as indicated by MPl_Test or M Pl_Wait).

MPlO_lread attempts to read from the file associated with fh (at the offset position) a total

number of bufcount data items having buftype type into the user's buffer buff. The number

of buftype elements actually read can be extracted from the MPl_Test or MPl_Wait return

status.

5.4 MPlO_lwrite

MPIO_IWRITE(fh, offset, buff, buftype, bufcount, request)

IN fh

IN offset

IN buff

IN buftype

IN bufcount

OUT request

Valid file handle (handle)

File Offset (nonnegative offset)

Initial address of the user's buffer (integer)

User's buffer datatype (handle)

Number of buftype elements (nonnegative integer)

Write request handle (handle)

int MPIO_Iwrite(MPIO_File fh, MPIO_Offset offset, void *buff,

MPI_Datatype buftype, int bufcount, MPI_Request *request)

MPIO_IWRITE(FH, OFFSET, BUFF, BUFTYPE, BUFCOUNT, REQUEST, IERROK)

<type> BUFF(*)

INTEGER FH, BUFTYPE, BUFCOUNT, REQUEST, IERROR

INTEGER*8 OFFSET

M PlO_lwrite is a nonblocking version of the MPlO_Write interface. MPlO_lwrite asso-

ciates a request handle request with the I/O request. The request handle can be used later

to query the status of the write request, using the MPI function MPl_Test, or wait for its

completion, using MPl_Wait.

The nonblocking write call indicates that the system can start to write data from the

supplied buffer. The user should not access any part of the buffer after the nonblocking write

is called, until the write completes (as indicated by MPl_Test or MPl_Wait). MPlO_lwrite

attempts to write into the file associated with fh (at the offset position), a total number of

bufcount data items having buftype type from the user's buffer buff. The number of buftype

elements actually written can be extracted from the MPl_Test or MPl_Wait return status.
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6 Collective I/O

6.1 M PlO_Read_all

MPIO_READ_ALL(fh, offset, buff, buftype,

IN fh

I N offset

OUT buff

IN buftype

IN bufcount

OUT status

bufcount, status)

[SAME] Valid file handle (handle)

File offset (nonnegative offset)

Initial address of the user's buffer (integer)

User's buffer datatype (handle)

Number of buftype elements (nonnegative integer)

Status information (Status)

int MPIO_Read_all(MPIO3ile fh, MPIO_Offset offset, void *buff,

MPI_Datatype buftype, int bufcount, MPI_Status *status)

MPIO_READALL(FH, OFFSET, BUFF, BUFTYPE, BUFCOUNT, STATUS, IERROR)

<type> BUFF(*)

INTEGER FH, BUFTYPE, BUFCOUNT, STATUS (MPI_TATUS_SIZE), IERROR

INTEGER*8 OFFSET

M PIO_Read_all is a collective version of the blocking M PIO_Read interface. All processes

in the communicator group associated with the file handle fh must call M PlO_Read_all. Each

process may pass different argument values for the offset, buftype, and bufcount arguments.

For each process, MPIO_Read_all attempts to read, from the file associated with fh (at the

offset position), a total number of bufcount data items having buftype type into the user's

buffer buff. MPIO_Read_all stores the number of buftype elements actually read in status.

6.2 M PlO_Write_all

MPIO_WRITE_ALL(fh, offset, buff, buftype, bufcount, status)

IN fh

IN offset

IN buff

I N buftype

IN bufcou nt

0 UT status

[SAME] Valid file handle (handle)

File offset (nonnegative offset)

Initial address of the user's buffer (integer)

User's buffer datatype (handle)

Number of buftype elements (nonnegative integer)

Status information (Status)

int MPIO_Write_all(MPIO_File fh, MPIO_Offset offset, void *buff,

MPI_Datatype buftype, int bufcount, MPI_tatus *status)

MPI0_WRITEALL(FH, OFFSET, BUFF, BUFTYPE, BUFCOUNT, STATUS, IERROR)

<type> BUFF(*)
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INTEGER FH, BUFTYPE, BUFCOUNT, STATUS(MPI -_TATUS_IZE), IERROR

INTEGER*8 OFFSET

MPlO_Write_all is a collective version of the blocking MPlO_Write interface. All pro-

cesses in the communicator group associated with the file handle fh must call M PlO_Write_all.

Each process may pass different argument values for the offset, buftype and bufcount argu-

ments. For each process, M PlO_Write_all attempts to write, into the file associated with

fb (at the offset position), a total number of bufcount data items having buftype type.

M PIO_Write_all stores the number of buftype elements actually written in status.

6.3 M PlO_lread_all

MPIOJREAD_ALL(fh, offset, buff, buftype, bufcount, request)

IN t'h

IN offset

OUT buff

IN buftype

IN bufcount

0 U T req uest

[SAME] Valid file handle (handle)

File Offset (nonnegative offset)

Initial address of the user's buffer (integer)

User's buffer datatype (handle)

Number of buftype elements (nonnegative integer)

Read request handle (handle)

int MPIO_Iread_all(MPIO_File fh, MPIO_Offset offset, void *buff,

MPI_Datatype bufrype, int bufcount, MPI_Reques% *request)

MPIO_IREADALL(FH, OFFSET, BUFF, BUFTYPE, BUFCOUNT, REQUEST, IERROR)

<type> BUFF(*)

INTEGER FH, BUFTYPE, BUFCOUNT, REQUEST, IERROR

INTEGER*8 OFFSET

M PlO_lread_all is a collective version of the nonblocking M PlOdread interface. All pro-

cesses in the communicator group associated with the file handle fh must call M PIO_lread_all.

Each process may pass different argument values for the offset, buftype and bufcount ar-

guments. For each process in the group, M PlO_lread_all attempts to read, from the file

associated with fh (at the offset position), a total number of bufcount data items having

buftype type into the user's buffer buff. MPIOJread_all associates an individual request han-

dle request to the I/O request for each process. The request handle can be used later by a

process to query the status of its individual read request or wait for its completion. On each

process, M PIOJread_all completes when the individual request has completed (i.e. a process

does not have to wait for all other processes to complete). The user should not access any

part of the receiving buffer after a nonblocking read is called, until the read completes.
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0.4 MPlO_lwrite_all

MPIO_IWRITE_ALL(fh, offset, buff, buftype, bufcount, request)

IN fh

IN offset

IN buff

IN buftype

IN bufcount

0 UT request

[SAME] Valid file handle (handle)

File Offset (nonnegative offset)

Initial address of the user's buffer (integer)

User's buffer datatype (handle)

Number of buftype elements (nonnegative integer)

Write request handle (handle)

int MPlO_write_all(MPIO_File fh, MPl01ffset offset, void *buff,

MPI_Datatype buftype, int bufcount, MPI_Request *request)

MPI0_WRITE_ALL(FH, OFFSET, BUFF, BUFTYPE, BUFCOUNT, REQUEST, IEKKOR)

<type> BUFF(*)

INTEGER FH, BUFTYPE, BUFCOUNT, REQUEST, IERROR

INTEGER*8 OFFSET

M PlO_lwrite_all is a collective version of the nonblocking M PlO_lwrite interface. All pro-
cesses in the communicator group associated with the file handle fh must call M PI0_lwrite_all.

Each process may pass different argument values for the offset, buftype and bufcount argu-
ments. For each process in the group, M PI0_lwrite_all attempts to write, into the file asso-

ciated with t'h (at the offset position), a total number of bufcount data items having buftype

type. MPI0Jwrite_all also associates an individual request handle request to the I/O request

for each process. The request handle can be used later by a process to query the status

of its individual write request or walt for its completion. On each process, MPIO_lwrite_all

completes when the individual write request has completed (i.e. a process does not have

to wait for all other processes to complete). The user should not access any part of the

supplied buffer after a nonblocking write is called, until the write completes.

7 File pointers

7.1 Introduction

When a file is opened in MPI-IO, the system creates a set of file pointers to keep track of

the current file position. One is a global file pointer which is shared by all the processes in

the communicator group. The others are individual file pointers local to each process in the

communicator group, and can be updated independently.

All the I/O functions described above in Sections 5 and 6 require an explicit offset to be

passed as an argument. Those functions do not use the system-maintained file pointers, nor

do those functions update the system maintained file pointers. In this section we describe

an alternative set of functions that use the system maintained file pointers. Actually there

are two sets: one using the individual pointers, and the other using the shared pointer. The

main difference from the previous function is that an offset argument is not required. In

order to allow the offset to be set, seek functions are provided.
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The main semantics issue with system-maintained file pointers is how they are updated

by I/O operations. In general, each I/O operation leaves the pointer pointing to the next

data item after the last one that was accessed. This principle applies to both types of

offsets (MPIO_OFFSET_ABSOLUTE and MPIO_OFFSET_RELATIVE), to both types of pointers

(individual and shared), and to all types of I/O operations (read and write, blocking and

nonblocking). The details, however, may be slightly different.

When absolute offsets are used, the pointer is left pointing to the next etype after the

last one that was accessed. This etype may be accessible to the process, or it may not be

accessible (see the discussion in Section 2). If it is not, then the next I/O operation will

automatically advance the pointer to the next accessible etype. With relative offsets, only

accessible etypes are counted. Therefore it is possible to formalize the update procedure as
follows:

size(buftype) x bufcount
new_file_position = old_position +

size( etype )

In all cases (blocking or nonblocking operation, individual or shared file pointer, ab-

solute or relative offset), the file pointer is updated when the operation is initiated (see

Appendix B.2 for the reasons behind this design choice), in other words before the access
is performed.

Advice to users. This update reflects the amount of data that is requested by the

access, not the amount that will be actually accessed. Typically, these two values

will be the same, but they can differ in certain cases (e.g. a read request that reaches

EOF). This differs from the usual Unix semantics, and the user is encouraged to check

for EOF occurrence in order to account for the fact that the file pointer may point

beyond the end of file. In rare cases (e.g. a nonblocking read reaching EOF followed

by a write), this can cause problems (e.g. creation of holes in the file). (End of advice

to users.)

7.2 Shared File Pointer I/0 Functions

These flmctions use and update the global current file position maintained by the system.

The individual file pointers are not used nor updated. Note that only independent functions

are currently defined. It is debatable whether or not collective functions are required as

well. This issue is addressed in Appendix B.3.

Advice to users. A shared file pointer only makes sense if all the processes can access

the same dataset. This means that all the processes should use the same filetype when

opening the file. (End of advice to users.)
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7.2.1 MPlO_Read_shared (independent)

MPIO_READ_SHARED(fh, buff, buftype, bufcount, status)

IN fh

OUT buff

IN buftype

IN bufcount

OUT status

Valid file handle (handle)

Initial address of the user's buffer (integer)

User's buffer datatype (handle)

Number of buftype elements (nonnegative integer)

Status information (Status)

int MPI0_Read_shared(MPI0_File fh, void *buff, MPI_Datatype buftype, int

bufcount, MPI_Status *status)

MPI0_READ_SHARED (FH, BUFF, BUFTYPE, BUFCOUNT, STATUS, IERROR)

<type> BUFF(*)

INTEGER FH, BUFTYPE, BUFCOUNT, STATUS(MPI.STATUS_SIZE), IERROR

MPlO_Read_shared has the same semantics as MPlO_Read with offset set to the global

current position maintained by the system.

If multiple processes within the communicator group issue M Pl0_Read_shared calls, the

data returned by the MPlO_Read_shared calls will be as if the calls were serialized; that is

the processes will not have read the same data. The ordering is not deterministic. The user

needs to use other synchronization means to enforce a specific order.

After the read operation is initiated, the shared file pointer is updated to point to the

next data item after the last one requested.

7.2.2 MPlO_Write_shared (independent)

MPIO_WRITE_SHARED(fh, buff, buftype, bufcount, status)

IN fh

IN buff

IN buftype

IN bufcount

OUT status

Valid file handle (handle)

Initial address of the user's buffer (integer)

User's buffer datatype (handle)

Number of buftype elements (nonnegative integer)

Status information (Status)

int MPIO_Write_shared(MPI0_File fh, void *buff, MPI_Datatype buftype, int

bufcount, MPI_Status *status)

MPI0_WRITE_SHARED(FH, BUFF, BUFTYPE, BUFCOUNT, STATUS, IERROR)

<type> BUFF(*)

INTEGER FH, BUFTYPE, BUFC0UNT, STATUS(MPI_STATUS_SIZE), IERROR

MP)O_Write_shared has the same semantics as MPIO_Write with offsetset to the global

current position maintained by the system.
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If multiple processes within the communicator group issue M PlO_Write.shared calls, the

data will be written as if the MPI0_W6te_shared calls were serialized; that is the processes

will not overwrite each other's data. The ordering is not deterministic. The user needs to

use other synchronization means to enforce a specific order.

After the write operation is initiated, the current global file pointer is updated to point

to the next data item after the last one requested.

7.2.3 MPlO_lread_shared (independent)

MPIO_IREAD_SHARED(fh, buff, buftype, bufcount, request)

IN fh

OUT buff

IN buftype

IN bufcount

OUT request

Valid file handle (handle)

Initial address of the user's buffer (integer)

User's buffer datatype (handle)

Number of buftype elements (nonnegative integer)

Read request handle (handle)

int MPI0_Iread_shared(MPI0_File fh, void *buff, MPI_Datatype buftype,

int bufcount, MPl_Request *request)

MPI0_IREAD_SHARED(FH, BUFF, BUFTYPE, BUFC0UNT, REQUEST, IERROR)

<type> BUFF(*)

INTEGER FH, BUFTYPE, BUFC0UNT, REQUEST, IERROR

M PlO_lread_shared is a nonblocking version of the M PlO_Read_shared interface.

MPI0_lread_shared associates a request handle request with the I/O request. The request

handle can be used later to query the status of the read request, using the MPI function

MPl_Test, or wait for its completion, using the function MPl_Wait.

If multiple processes within the communicator group issue MPI0_lread_shared calls, the

data returned by the MPI0_lread_shared calls will be as if the calls were serialized; that is

the processes will not have read the same data. The ordering is not deterministic. The user

needs to use other synchronization means to enforce a specific order.

After the read operation is successfully initiated, the shared file pointer is updated to

point to the next data item after the last one requested.
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7.2.4 MPlO_lwrite_shared (independent)

MPIO_IWRITE_SHARED(fh, buff, buftype, bufcount, request)

IN fh

IN buff

IN buftype

IN bufcount

0 U T req uest

Valid file handle (handle)

Initial address of the user's buffer (integer)

User's buffer datatype (handle)

Number of buftype elements (nonnegative integer)

Write request handle (handle)

int MPIO_Iwrite_shared(MPI0_File fh, void *buff, MPI_Datatype buftype,

int bufcount, MPI_Request *request)

MPI0_IWRITE_SHARED(FH, BUFF, BUFTYPE, BUFCOUNT, REQUEST, IERROR)

<type> BUFF(*)

INTEGER FH, BUFTYPE, BUFCOUNT, REQUEST, IERROR

M PlO_lwrite_shared is a nonblocking version of the M PlO_Write_shared interface.

M PI0_lwrite_shared associates a request handle request with the I/O request. The request

handle can be used later to query the status of the write request, using the MPI function

M Pl_Test, or wait for its completion, using M Pl_Wait.

If multiple processes within the communicator group issue M PlOJwrite_shared calls, the

data will be written as if the MPI0_lwrite_shared calls were serialized; that is the processes

will not overwrite each other's data. The ordering is not deterministic. The user needs to

use other synchronization means to enforce a specific order.

After the write operation is successfully initiated, the current global file pointer is

updated to point to the next data item after the last one requested.

7.3 Individual File Pointer Blocking I/0 Functions

These functions only use and update the individual current file position maintained by the

system. They do not use nor update the shared global file pointer.

In general, these functions have the same semantics as the blocking functions described

in Sections 5 and 6, with the offset argument set to the current value of the system-

maintained individual file pointer. This file pointer is updated at the time the I/O is

initiated and points to the next data item after the last one requested. For collective I/O,

each individual file pointer is updated independently.
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7.3.1 MPlO_Read_next (independent)

M PIO_READ_NEXT(fh, buff, buftype, bufcount, status)

IN fh

OUT buff

IN buftype

IN bufcount

OUT status

Valid file handle (handle)

Initial address of the user's buffer (integer)

User's buffer datatype (handle)

Number of buftype elements (nonnegative integer)

Status information (Status)

int MPIO_Read_next(MPIO_File fh, void *buff, MPI_Datatype buftype,

int bufcount, MPI_Status *status)

MPI0..READ_NEXT(FH, BUFF, BUFTYPE, BUFCOUNT, STATUS, IERROR)

<type> BUFF(*)

INTEGER FH, BUFTYPE, BUFCOUNT, STATUS(MPI_STATUS_SIZE), IERROR

M PIO_Read_next attempts to read from the fileassociated with i_ (at the system main-

tained current fileposition) a total number of bufcount data items having buftype datatype

into the user's buffer buff. The data is taken out of those parts of the filespecified by

filetype. MPIO_Read_next returns the number of buftype elements read in status. The file

pointer isupdated by the amount of data requested.

7.3.2 M PlO_Write_next(independent)

M PIO_WRITE_N £XT(fh, buff, buftype, bufcount, status)

IN fh

IN buff

I N buftype

I N bufcount

OUT status

Valid file handle (handle)

Initial address of the user's buffer (integer)

User's buffer datatype (handle)

Number of buftype elements (nonnegative integer)

Status information (Status)

int MPI0_Write_next(MPI0_File fh, void *buff, MPI_Datatype buftype,

int bufcount, MPI_Status *status)

MPI0_WRITE_NEXT(FH, BUFF, BUFTYPE, BUFCOUNT, STATUS, IERROR)

<type> BUFF(*)

INTEGER FH, BUFTYPE, BUFCOUNT, STATUS(MPI_TATUS_SIZE), IERROR

M PI0_Write_next attempts to write into the file associated with fh (at the system main-

tained current file position) a total number of bufcount data items having buftype datatype

from the user's buffer buff. The data is written into those parts of the file specified by

filetype. MPlO_Write_next returns the number of buftype elements written in status. The

file pointer is updated by the amount of data requested.
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7.3.3 MPIO_Read_next_all (collective)

M PIO_READ_NEXT_ALL(fh, buff, buftype, bufcount, status)

IN fh

OUT buff

IN buffype

IN bufcount

OUT status

[SAME] Valid file handle (handle)

Initial address of the user's buffer (integer)

User's buffer datatype (handle)

Number of buftype elements (nonnegative integer)

Status information (Status)

int MPI0_Read-next_all(MPIO_File fh, void *buff, MPI_Datatype buftype,

inr bufcount, MPI_Status *status)

MPIO.-READ..NEXT..ALL(FH, BUFF, BUFTYPE, BUFCOUNT, STATUS, IERROR)

<¢ype> BUFF(*)

INTEGER FH, BUFTYPE, BUFCOUNT, STATUS(HPI_STATUS.3IZE), IERROR
18

MPIO_Read_next_all is a collective version of the MPIO_Read_next interface. All pro- 19

cesses in the communicator group associated with the file handle fh must ca]] M PlO_Read_next_all._0

Each process may pass different argument values for the buftype, and bufcount arguments.

For each process, M PlO_Read_next_all attempts to read, from the file associated with fh (at

the system maintained current file position), a total number of bufcount data items having

buftype type into the user's buffer buff. MPI0_Read_next_all returns the number of buftype

elements read in status. The file pointer of each process is updated by the amount of data

requested by that process.

7.3.4 MPIO_Write_next_all (collective)

MPIO_WRITE_NEXT_ALL(fh, buff, buftype, bufcount, status)

IN fh

I N buff

IN buftype

IN bufcount

OUT status

[SAME] Valid file handle (handle)

Initial address of the user's buffer (integer)

User's buffer datatype (handle)

Number of buftype elements (nonnegative integer)

Status information (Status)

int MPIO_Write_next_all(MPI0_File fh, void *buff, MPI_Datatype buftype,

int bufcount, MPI_Starus *status)

MPI0_WRITE_NEXT_ALL(FH, BUFF, BUFTYPE, BUFCOUNT, STATUS, IERROR)

<type> BUFF(*)

INTEGER FH, BUF_PE, BUFCOUNT, STAI_JS(MPI_TA_S_SIZE), IERROR

MPIO_Write_next_all is a collectiveversion of the blocking MPIO_Write_next interface.

All processes in the communicator group associated with the filehandle fh must calJ
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MPlO_Write_next_all. Each process may pass different argument values for the buftype and

bufcount arguments. For each process, MPlO_Write_next_all attempts to write, into the file

associated with fh (at the system maintained current file position), a total number of buf-

count data items having buftype type. MPlO_Write_next_all returns the number of buftype

elements written in status. The file pointer of each process is updated by the amount of
data requested by that process.

7.4 Individual File Pointer Nonblocking I/0 Functions

Like the functions described in Section 7.3, these functions only use and update the individ-

ual current file position maintained by the system. They do not use nor update the shared
global file pointer.

In general, these functions have the same semantics as the nonblocking functions de-

scribed in Sections 5 and 6, with the offset argument set to the current value of the system-

maintained individual file pointer. This file pointer is updated when the I/O is initiated

and reflects the amount of data requested. For collective I/O, each individual file pointer
is updated independently.

7.4.1 MPlO_lread_next (independent)

MPIO_IREAD_NEXT(fh, buff, buftype, bufcount, request)

IN fh

OUT buff

IN buftype

I N bufcount

OUT request

Valid file handle (handle)

Initial address of the user's buffer (integer)

User's buffer datatype (handle)

Number of buftype elements (nonnegative integer)

Read request handle (handle)

int MPI0_Iread_next(MPI0_File fh, void *buff, MPI_Datatype buftype,

int bufcount, MPI_Request *request)

MPI0_IKEhD_NEXT(FH, BUFF, BUFTYPE, BUFCOUNT, REQUEST, IERROR)

<type> BUFF(*)

INTEGER FH, BUFTYPE, BUFCOUNT, REQUEST, IERROR

M PIO_Iread_next is a nonblocking version of the M PIO_Read_next interface.

MPIO_Iread_next associates a request handle request with the I/O request. The request

handle can be used later to query the status of the read request, using the MPI function

MPl_Test, or wait for its completion, using the function MPl_Wait. The pointer is updated
by the amount of data requested.
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7.4.2 MPIO_lwrite-next (independent)

MPIO_IWRITE_NEXT(fh, buff, buftype, bufcount, request)

IN th

IN buff

IN buftype

IN bufcount

OUT request

Valid file handle (handle)

Initial address of the user's buffer (integer)

User's buffer datatype (handle)

Number of buftype elements (nonnegative integer)

Write request handle (handle)

int MPI0_Iwrite_next(MPI0_File fh, void *buff, MPI_Datatype buf_ype,

int bufcount, MPl_Kequest *request)

MPIO_IW_ITE_HEXT(FH, BUFF, BUFTYPE, BUFCOUNT, REQUEST, IERROR)

<type> BUFF(*)

INTEGER FH, BUFTYPE, BUFCOUNT, I%E_UEST, IERRDR

M P1OJw6te_next isa nonblocking version of the M PlO_W6te_next interface.

M PiOJwrite_next associates a request handle request with the I/O request. The request

handle can be used later to query the status of the write request, using the MPI function

M PLTest, or wait for itscompletion, using MPLWait. The pointer isupdated by the amount

of data requested.

7.4.3 MPIO_lread_next_all (collective)

M PIO_IREAD_N EXT_ALL(fh, buff, buftype, bufcount, request)

IN fh

OUT buff

IN buftype

IN bufcou nt

OUT request

[SAME] Valid file handle (handle)

Initial address of the user's buffer (integer)

User's buffer datatype (handle)

Number of buftype elements (nonnegative integer)

Read request handle (handle)

int MPIO_Iread_next_all(RPIO_File fh, void *buff, MPI_Datatype buftype,

int bufcount, MPl_Request *request)

MPIO_IREAD_NEXT_ALL(FH, BUFF, BUFTYPE, BUFCOUNT, REQUEST, IERl%OR)

<type> BUFF(*)

INTEGER FH, BUFTYPE, BUFCOUNT, REQUEST, IERROR

MPiOJread_next_ail is a collectiveversion of the nonblocking MP]OJread_next inter-

face. All processes in the communicator group associated with the filehandle _ must call

MPlO_lread_next_all. Each process may pass different argument values for the buftype and

bufcount arguments. For each process in the group, MPlO_lread_next_all attempts to read,

from the file associated with fh (at the system maintained current file position), a total num-

ber of bufcount data items having buftype type into the user's buffer buff. M PlO_lread_next_all
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associates an individual request handle request to the I/O request for each process. The

request handle can be used later by a process to query the status of its individual read

request or wait for its completion. On each process, MP{0_mread_next_al{ completes when

the individual request has completed (i.e. a process does not have to wait for all other

processes to complete). The user should not access any part of the receiving buffer after a

nonblocking read is called, until the read completes. The pointer is updated by the amount

of data requested.

7.4.4 MPlO_lwrite_next_all (collective)

MPIO_IWRITE_N EXT_ALL(fh, buff, buftype, bufcount, request)

IN fh

IN buff

IN buftype

IN bufcount

OUT request

[SAME] Valid file handle (handle)

Initial address of the user's buffer (integer)

User's buffer datatype (handle)

Number of buftype elements (nonnegative integer)

Write request handle (handle)

int MPI0_Iwrite_next_all(MPI0_File fh, void *buff, MPI_Datatype buftype,

int bufcotmt, MPI_Kequest *request)

MPI0_IWRITE_NEXT_ALL(FH. BUFF, BUFTYPE, BUFCOUNT. REQUEST, IERROR)

<type> BUFF(*)

INTEGER FH, BUFTYPE, BUFCOUNT, REQUEST, IERROR

MPl0_lwrite_next_all is a collective version of the nonblocking M Pl0_lwrite_next inter-

face. All processes in the communicator group associated with the file handle fh must call

MPl0_lwrite_next_all. Each process may pass different argument values for the buftype and

bufcount arguments. For each process in the group, M Pl0_lwrite_next_all attempts to write,

into the file associated with fh (at the system maintained file position), a total number of

bufcount data items having buftype type. M PlO_lwrite_next_all also associates an individual

request handle request to the I/O request for each process. The request handle can be used

later by a process to query the status of its individual write request or wait for its com-

pletion. On each process, M Pl0_lwrite_next_all completes when the individual write request

has completed (i.e. a process does not have to wait for all other processes to complete). The

user should not access any part of the supplied buffer after a nonblocking write is called,

until the write is completed. The pointer is updated by the amount of data requested.
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7.5 File Pointer Manipulation Functions

7.5.1 MPIO_Seek (independent)

MPIO_SEEK(_, offset, whence)

IN

IN offset

IN whence

Valid file handle (handle)

File offset (offset)

Update mode (integer)

int MPIO_Seek(MPIO_File fh, MPIO_Offset offset, MPIO_Whence whence)

MPIO_SEEK(FH, OFFSET, WHENCE)

INTEGER FH, WHENCE

INTEGER*8 OFFSET

M PlO_Seek updates the individual file pointer according to whence, which could have

the following possible values:

• MPIO_SEEK_SET: the pointer is set to offset

• MPIO_SEEK_CUR: the pointer is set to the current file position plus offset

• MPIO_SEEK_END: the pointer is set to the end of the file plus offset

The interpretation of offset depends on the value of moffset given when the file was

opened. If it was MPIO_OFFSET_ABSOLUTE, then offset is relative to the displacement,

regardless of what the filetype is. If it is MPIO_OFFSET_RELATIVE, then offset is relative

to the filetype (not counting holes). In either case, it is in units of etype.

7.5.2 MPlO_Seek_shared (collective)

MPIO_SEEK_SHARED(_, offset, whence)

IN fh

IN offset

IN whence

[SAME] Valid file handle (handle)

[SAME] File offset (offset)

[SAME] Update mode (integer)

int MPIO_Seek_shared(MPIO_File fh, MPIO_Offse_ offset, MPIO_Whence whence)

MPIO_EEK_HAEED(FH, OFFSET, WHENCE)

INTEGER FH, WHENCE

INTEGER*8 OFFSET

MPIO_Seek.ahared updates the global shared file pointer according to whence, which

could have the following possible values:

• MPIO_SEEK_SET: the pointer is set to offset

, MPIO.SEEK_CUR: the pointer is set to the current file position plus offset
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• MPIO_SEEK_END: the pointer is set to the end of the file plus offset

All the processes in the communicator group associated with the file handle fh must

call M PIO_Seek_shared with the same offset and whence. All processes in the communicator

group are synchronized with a barrier before the global file pointer is updated.

The interpretation of offset depends on the value of moffset given when the file was

opened. If it was MPIO_OFFSET.ABSOLOTE, then offset is relative to the displacement,

regardless of what the filetype is. If it is MPIO_OFFSET_RE[.ATIVE, then offset is relative

to the filetype (not counting holes). In either case, it is in units of etype.

8 Filetype Constructors

8.1 Introduction

Common I/O operations (e.g., broadcast read, rank-ordered blocks, etc.) are easily ex-

pressed in MPI-IO using the previously defined read/write operations and carefully defined

filetypes. In order to simplify generation of common filetypes, MPI-IO provides the follow-

ing MPI datatype constructors.

Although it is possible to implement these type constructors as local operations, in order

to facilitate efficient implementations of file I/O operations, all of the filetype constructors

have been defined to be collective operations. (Recall that a collective operation does not

imply a barrier synchronization.)

The set of datatypes created by a single (collective) filetype constructor should be used

together in collective I/O operations, with identical offsets, and such that the same number

of etype elements is read/written by each process.

Advice to users. The user is not required to adhere to this expected usage; however,

the outcome of such operations, although well-defined, will likely be very confusing.
(End of advice to users.)

Each new datatype created newtype consists of zero or more copies of the base type

oldtype, possibly separated by holes. The extent of the new datatype is a nonnegative

integer multiple of the extent of the base type. All datatype constructors return a success
or failure code.

8.2 Broadcast-Read and Write-Reduce Constructors

8.2.1 M PIO_Type_read_bcast

MPIO_TYPE_READ_BCAST(comm, oldtype, newtype)

IN comm [SAME] communicator to be used in MPIO_Open (han-

dle)

IN oldtype [SAME] old datatype (handle)

OUT newtype new datatype (handle)

int MPIO_Type_read_bcast(MPI_Comm comm, MPI_Datatype oldtype,

MPI_Datatype *newtype)
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MPI0_TYPE_READ_BCAST(COMM, OLDTYPE, NEWTYPE, IEP_0R)

INTEGER CONM, 0LDTYPE, NENTYPE,IERRDR

MPlO_Type_read_bcast generates a set of new filetypes (one for each member of the

group) which, when passed to a collective read operation (with identical offsets), will broad-

cast the same data to all readers. Although semantically equivalent to M Pl_Type_contiguous(1,

oldtype, newtype), a good implementation may be able to optimize the broadcast read op-

eration by using the types generated by this call.

8.2.2 M PIO_Type_write_reduce

MPIO_TYPE_WRITE_REDUCE(comm, oldtype, newtype)

IN comm [SAME] communicator to be used in MPIO_Open (han-

dle)

IN oldtype [SAME] old datatype (handle)

OUT newtype new datatype (handle)

int MPI0_Type_write_reduce(MPI_Com comm, MPI_Datatype oldtype,

NPI_Dat atype *newtype)

MPI0_TYPE_WRITE_REDUCE(COMM, 0LDTYPE, NEWTYPE, IEKROR)

INTEGER COMM, 0LDTYPE, NEWTYPE, IERROR

MPlO_Type_write_reduce generates a set of new filetypes (one for each member of the

group) which, when passed to a collective write operation, will result in the data from

exactly one of the callers being written to the file. A write reduce operation is semantically

equivalent to passing the type generated by MPl_Type_contiguous(1, oldtype, newtype), to a

collective write operation (with identical offsets), with MPIO_CAUTIOUS mode enabled. A

good implementation may be able to optimize the write reduce operation by using the types
generated by this call.

Advice to implementors. The choice of which process actually performs the write

operation can either be always the same process (eg process with rank 0 in the process

group) or arbitrary (eg the first process issuing the call), since no checking of data

identity is to be performed. (End of advice to implementors,)
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8.3 Scatter / Gather Type Constructors

8.3.1 M PlO_Type_scatter_gather

MPIO_TYPE_SCATTER_GATHER(cornm, oldtype, newtype)

IN comm [SAME] communicator to be used in MPIO_Open (han-

dle)

IN oldtype [SAME] old datatype (handle)

OUT newtype new datatype (handle)

int MPI0_Type_scatterq_ather(MPI_Comm comm, MPI_Datatype oldtype,

MPI_Dat atype *newtype)

MPI0_TYPE_CATTER_GATHER(COMM, 0LDTYPE, NEWTYPE, IERROR)

INTEGER COMM, 0LDTYPE, NEWTYPE, IERROR

This type allows each process in the group to access a distinct block of the file in rank

order. The blocks are identical in size and datatype; each is of type oldtype.

To achieve the scatter or gather operation, the types returned should be passed to a

collective read or write operation, giving identical offsets. Generated newtypes will not be

identical, but will have the same extent.

8.3.2 M PlO_Type_scatterv_gatherv

MPIO_TYPE_SCATTERV_GATHERV(comm, count, oldtype, newtype)

IN comm [SAME] communicator to be used in MPIO_Open (han-

dle)

IN count number of elements of oldtype in this block (nonneg-

ative integer)

IN oldtype old datatype (handle)

OUT newtype new datatype (handle)

int MPI0_Type_scatterv_gatherv(MPI_Comm con, int count,

MPl_Datatype oldtype, MPl_Datatype *newtype)

MPI0_TYPE_CATTERV_GATHERV(COMM, COUNT, 0LDTYPE, NEWTYPE, IERROR)

INTEGER COMM, COUNT, 0LDTYPE, NEWTYPE, IERROR

This type allows each process in the group to access a distinct block of the file in rank

order. The block sizes and types may be different; each block is defined as count repeated

copies of the passed datatype oldtype (i.e. M Pl_Type_contiguous(count, oldtype, oldtype)).

To achieve the scatter or gather operation, the types returned should be passed to a

collective read or write operation, giving identical offsets.
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8.4 HPF Filetype Constructors

The HPF [5] filetype constructors create, for each process in a group, a (possibly different)

filetype. When used in a collective I/O operation (with identical offsets), this set of filetypes

defines the particular HPF distribution.

Each dimension of an array can be distributed in one of three ways:

• MPIO_HPF_BLOCK - Block distribution

• MPIO_HPF_CYCLIC- Cyclic distribution

• MPIO_HPF_NONE - Dimension not distributed

In order to specify a default distribution argument, the constant MPIO_HPF_DFLT_ARG
is used.

For example, ARRAY(CYCLIC(15)) corresponds to MPIO_HPF_CYCLIC with a distribution

argument of 15, and ARRAY(BLOCK) corresponds to MPIO_HPF_BLOCK with a distribution

argument of M PIO_H PF_DFLT_ARG.

8.4.1 M PlO_Type_hpf

HPF distribution of an N-dimensional array:

MPIO_TYPE_HPF(comm, ndim, dsize, distrib, darg, oldtype, newtype)

N com ITI

IN ndim

IN dsize

I N distrib

IN darg

I N oldtype

0 U T newtype

[SAME] communicator to be used in MPIO_Open (han-

dle)

[SAME] number of array dimensions (nonnegative in-

teger)

[SAME] size of dimension of distributee (array of non-

negative offset)

[SAME] HPF distribution of dimension (array of inte-

ger)

[SAME] distribution argument of dimension,

e.g. BLOCK(darg), CYCLlC(darg), or MPIO_HPF_NONE

(array of integer)

[SAME] old datatype (handle)

new datatype (handle)

int MPI0_Type_hpf(MPI_Comm comm, int ndim, MPI0_0ffset *dsize,

MPI0_Dtype *distrib, int *darg, MPI_Datatype oldtype,

MPI_Data_ype *newtype)

MPIO_TYPE_PF(C0MM, NDIM, DSIZE, DISTRIB, DARG, 0LDTYPE, NEWTYPE, IERROR)

INTEGER C0MM, NDIM, DSIZE(*),DISTRIB(*), DARG(*), 0LDTYPE, NEWTYPE,
IERROR

MPlO_Type_hpf generates a filetype corresponding to the HPF distribution of an ndim-

dimensional array of oldtype specified by the arguments.

For example, in order to generate the types corresponding to the HPF distribution:
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<oldtype> FILEARRAY(IO0, 200, 300)

MPI_COMM_SIZE(comm, size, ierror)

!HPF$ PROCESSORS PROCESSES(size)

!HPF$ DISTRIBUTE FILEARRAY(CYCLIC(IO), *, BLOCK) ONTO PROCESSES

The corresponding MPI-lO type would be created by the foHowing code:

ndim = 3;

dsize[O] = 100; distrib[O] = MPIO_HPF_CYCLIC;

dsize[1] = 200; distrib[1] = MPIO_HPF_NONE;

dsize[2] = 300; distrib[2] = MPIO_HPF_BLOCK;

darg[O] = 10;

darg[l] = O;

darg[2] = MPIO_HPF_DFLT_ARG;

MPlO_Type_hpf(comm, ndim, dsize, distrib, darg, oldtype, _newtype);

8.4.2 M PiO_Type_hpf_biock

HPF BLOCK distribution of a one-dimensional array:

M PIO_TYPE_H PF_BLOCK(comm, dsize, darg, oldtype, newtype)

IN comm [SAME] communicator to be used in MPIO_Open (han-

dle)

IN dsize [SAME] size of distributee (nonnegative offset)

IN darg [SAME] distribution argument, e.g. BLOCK(darg)

(integer)

IN oldtype [SAME] old datatype (handle)

OUT newtype new datatype (handle)

int MPl0_Type_hpf_block(MPl_Comm comm, MPl0_Offse% dsize, int darg,

MPl_Data_ype oldtype, MPl_Datatype *newtype)

MPI0_TYPE_HPF_BLOCK(COMM, DSIZE, DARG, 0LDTYPE, NEWTYPE, IERROR)

INTEGER COMM, DSIZE, DARG, 0LDTYPE, NEWTYPE, IERROR

M PlO_Type_hpf_block generates a filetypecorresponding to the HPF BLOCK distribution

of a one-dimensional dsize element array of oldtype.

This callisa shorthand for:

distrib = HPF_TYPE_BLOCK;

MPl0_Type_hpf(comm, I, dsize, distrib, darg, oldtype, anewtype);

8.4.3 M PlO_Type_hpf_cyclic

HPF CYCLIC distribution of a one-dimensional array:
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M PIO_TYPE_H PF_CYCLIC(comm, dsize, darg, oldtype, newtype)

IN comm [SAME] communicator to be used in MPIO_Open (han-

dle)

IN dsize [SAME] size of distributee (nonnegative offset)

IN darg [SAME] distribution argument, e.g. CYCLIC(darg)

(integer)

IN oldtype [SAME] old datatype (handle)

OUT newtype new datatype (handle)

in¢ MPID_Type_hpf_cyclic(MPI_Comm comm, MPI0_I]ffset dsize, int darg,

MPI.Datatype oldtype, MPI_Datatype *newtype)

MPI0_TYPE_HPF_CYCLIC(COMM, DSIZE, DARG, 0LDTYPE, NEWTYPE, IERROR)

INTEGER COMM, DSIZE, DARG, DLDTYPE, NEb_rYPE, IERROR)

M PIO_Type_hpf_cyclic generates a filetype corresponding to the HPF CYCLIC distribu-

tion of a one-dimensional dsize element array of oldtype.

This call is a shorthand for:

dis%rib = HPF_TYPE_CYCLIC;

MPIO_Type_hpf(comm, i, dsize, distrib, darg, oldtype, _newtype);

8.4.4 M PIO_Type_hpf_2d

HPF distribution of a two-dimensional array:

MPIO_TYPE_HPF_2D(comm, dsizel, distribl, dargl, dsize2, distrib2, darg2, oldtype,

type)

IN comm

IN dsizel

IN distribl

IN dargl

IN dsize2

IN distrib2

IN darg2

IN oldtype

OUT newtype

new-

[SAME] communicator to be used in MPIO_Open (han-

dle)

[SAME] size of distributee for first dim (nonnegative

offset)

[SAME] ttPF distribution for first dim (integer)

[SAME] distribution argument for first dim (integer)

[SAME] size of distributee for second dim (nonnega-

tire offset)

[SAME] ttPF distribution for second dim (integer)

[SAME] distribution argument for second dim (inte-

ger)

[SAME] old datatype (handle)

new datatype (handle)

int MPIO_Type_hpf2d(MPI_Comm comm,

int dargl, int dsize2

MPI_Da_atype oldtype,

MPIO_Offse_ dsizel, MPIO_Dtype distribl,

, MPIO_Dtype distrib2, in_ darg2,

MPI_atatype *new_ype)
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MPIO_TYPEJlPF_2D(COMM, DSIZEI, DISTRIBI, DARGI, DSIZE2, DISTRIB2, DARG2,

OLDTYPE, NEWTYPE, IERROR)

INTEGER COMM, DSIZEI, DISTRIBI, DARGI, DISIZE2, DISTRIB2, DARG2,

INTEGER OLDTYPE, NEWTYPE, IERROR

M PlO_Type_hpf_2d generates a filetype corresponding to the HPF (distribl(dargl), dis-

trib2(darg2)) distribution of a two-dimensional (dsizel,dsize2) element array of oldtype.

This call is a shorthand for:

dsize [0] =dsizel ;

distrib [0]=distribl ;

darg [0]=deurgl ;

dsize [i] =dsize2

distrib [I]=distrib2 ;

darg [I] =darg2 ;

MPIO_Type_hpf(comm, 2, dsize, distrib, darg, oldtype, &newtype);

9 Error Handling

The error handling mechanism of MPI-IO is based on that of MPI. Three new error classes,

called MPIO_ERR_UNRECOVERABLE, MPIO_ERR_RECOVERABLE and MPIO_ERR_EOF are intro-

duced. They respectively contain all unrecoverable I/O errors, all recoverable I/O errors,

and the error associated with a read operation beyond the end of file. Each implementation

will provide the user with a list of supported error codes, and their association with these

error classes.

Each file handle has an error handler associated with it when it is created. Three new

predefined error handlers are defined. MPIO_UNRECOVERABI.£ I=RRORS_ARE_FATAL consid-

ers all I/O errors of class MPIO_ERR_ONRECOVERABLE as fatal, and ignores all other I/O

errors. MPIO_ERRORS_RETORN ignores all I/O errors. And MPIO_£RRORSARE_FATAL con-

siders all I/O errors as fatal.

Advice to implementors. MPIO_UNRECOVERABLE_ERRORS.ARE_FATAL should be the

default error handier associated with each file handle at its creation. When a fatal

error (I/O related or not) occurs, open files should be closed (and optionally deleted if

they were opened with the MPIO_DELETE access mode), and all I/O buffers should

be flushed before all executing processes are aborted by the program. However, these

issues remain implementation dependent. (End of advice to implementors.)

New functions allow the user to create (function MPlO_Errhandler_create) new MPI-IO

error handlers, to associate (function M PlO_Errhandler_set) an error handler with an opened

file (through its file handle), and to inquire (function MPlO_Errhandler_get) which error

handier is currently associated with an opened file.

The attachment of error handlers to file handles is purely local: different processes may

attach different error handlers to the same file handle.
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9.1 MPIO_Errhandler_create (independent)

M PIO_ERRHAN DLER_CREATE(function, errhandhr)

IN function User-defined error handling function

OUT errhandler MPI error handler (handle)

int MPIO-Errhandler_create(MPIO_Handler_function function, MPI_Errhandler

*errhandler)

MPI0-ERRHANDLER_CREATE(FUNCTION, ERRHANDLER, IERRDR)
EXTERNAL FUNCTION

INTEGER ERRHANDLER, IERROR

M PJO_Frrhandter_setregistersthe userroutinefunctionforuse asan MPI errorhandler.

Returns inerrhandJera handle to the registerederrorhandler.

The userroutineshouldbe a C functionoftype M PlO_Handhr_function,which isdefined
as'-

typedef void (MPI0_Handler_function)(MPI0_File ,, int *, MPI_Datatype *,

int*, MPI_Status *, int *.... )

The first argument is the file handle in use, the second argument is the error code to

be returned by the MPI routine. The third argument is the buffer datatype associated with

the current access to the file (the current access to the file is either the current blocking

access to the file, or the current request MPI_tested or MPI_waited for, associated with a

nonblocking access to the file). The fourth argument is the number of such buffer datatype

items requested by the current access to the file. The fifth argument is the status returned

by the current access to the file. And the sixth argument is the request number associated

with the current access to the file (this number is relevant for nonblocking accesses only).

The number of additional arguments and their meanings are implementation dependent.

Addresses are used for all arguments so that the error handling function can be written in
FORTRAN.

9.2 MPlO_Errhandler_set (independent)

M PIO_ERRHAN DLER_SET(fh, errhandler)

IN fh

IN errhandler

Valid file handle (handle)

New MPI error handler for opened file (handle)

int MPI0_Errhandler_et(MPI0_File fh, MPI_Errhandler errhandler)

MPI0_ERRHANDLER_ET(FH, ERRHANDLER, IERROR)

INTEGER FH, ERRHANDLER, IERROR

MPlO_Errhandler_etassociates the new error handler errhandler with the file handle fl_

at the cMEng process. Note that an error handler is always associated with the file handle.
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9.3 MPlO_Errhandler_get (independent)

M PIO_ERRHAN DLER_GET(fh, errhandler)

IN fh Valid file handle (handle)

OUT errhandler MPI error handler currently associated with file han-

dle (handle)

int MPIO_Errhandler_get(MPIO_File fh, MPI_Errhandler *errhandler)

MPIO_ERRHANDLER_GET(FH, ERRHANDLER, IERROR)

INTEGER FH, ERRHANDLER, IERROR

M P[O_Errhandler_get returns in errhandler the error handler that is currently associated

with the filehandle fl_at the callingprocess.
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MPIO_TYPE_HPF_2D(COMM, DSIZEI, DISTRIBI, DARGI, DSIZE2, DISTRIB2, DARG2,

DLDTYPE, NEWTYPE, IERROR)

INTEGER COMM, DSIZEI, DISTRIBI, DARGI, DISIZE2, DISTRIB2, DARG2,

INTEGER OLDTYPE, NEWTYPE, IERROR

M PlO_Type_hpf_2d generates a filetypecorresponding to the HPF (distdbl(dargl), dis-

trib2(darg2)) distribution of a two-dimensional (dsizel,dsize2) element array of oldtype.
This call is a shorthand for:

dsize [0] =dsizel ;

distrib [03=distribl ;

darg [03 =dargl ;

dsize [i] =dsize2

distrib [i]=distrib2;

deurg[1] =darg2 ;

MPIO_Type_hpf(comm, 2, dsize, distrib, darg, oldtype, anewtype);

9 Error Handling

The error handling mechanism of MPI-IO is based on that of MPI. Three new error classes,

called MPIO_ERR_UNRECOVERABLE, MPIO_ERR_RECOVERABLE and MPIO_ERR_EOF are intro-

duced. They respectively contain all unrecoverable I/O errors, all recoverable I/O errors,

and the error associated with a read operation beyond the end of file. Each implementation

will provide the user with a list of supported error codes, and their association with these
error classes.

Each file handle has an error handler assodated with it when it is created. Three new

predefined error handlers are defined. MPIO_UNRECOVERABLE_ERRORS_ARE_FATAL consid-

ers all I/O errors of class MPIO_ERR_UNRECOVERABLE as fatal, and ignores all other I/O

errors. MPIO_ERRORS_RETURN ignores all I/O errors. And MPIO_ERRORS_ARE_FATAL con-

siders all I/O errors as fatal.

Advice to implementors. MPIO_UNRECOVERABLE_ERRORS_ARE_FATAL should be the

default error handler associated with each file handle at its creation. When a fatal

error (I/O related or not) occurs, open files should be closed (and optionally deleted if

they were opened with the MPIO_DELETE access mode), and all I/O buffers should

be flushed before all executing processes are aborted by the program. However, these

issues remain implementation dependent. (End of advice to implementors.)

New functions allow the user to create (function M PIO_Errhandler_create) new MPI-IO

error handlers, to associate (function M PIO_Errhandler_set) an error handler with an opened

file (through its file handle), and to inquire (function MPlO_Errhandler_get) which error

handler is currently associated with an opened file.

The attachment of error handlers to file handles is purely local: different processes may

attach different error handlers to the same file handle.
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interpret the hints in slightly different ways. For example, the following table outlines

possible interpretations for an MPI-IO implementation based on the Vesta parallel file
system:

hint interpretation

striping-unit

striping factor
IO-node-list

partitioning- pattern

BSU size

number of cells

base node

Vesta partitioning parameters

B System Support for File Pointers

B.1 Interface Style

The basic MPI-IO design calls for offsets to be passed explicitly in each read/write oper-

ation. This avoids issues of uncertain semantics when multiple processes are performing

I/O operations in parallel, especially mixed seek and read/write operations. It also reflects

current practices, where programmers often keep track of offsets themselves, rather than
using system-maintained offsets.

There are a number of ways to add support for system-maintained file pointers to the
interface:

o

.

Add a whence argument to each read/write call, to specify whether the given offset is

to be used directly or whether it is relative to the current system-maintained offset.

To just use the system-maintained offset, the offset argument should be set to 0.

Define certain special values for the offset argument. For example, -1 could mean

that the system maintained individual offset should be used, and -2 that the system-
maintained shared offset be used.

3. Define a separate set of functions with no offsetargument.

We have chosen the third approach for the following reasons. First, it saves overhead because

the system need not update offsets unless they are actually used. Second, it makes the

interface look more like a conventional Unix interface for users who use system-maintained

offsets. This is preferable over an interface with extra arguments that are not used.

B.2 File Pointer Update

Ill normal Unix I/O operations, the system-maintained file pointer is only updated when

the operation completes. At that stage, it is known exactly how much data was actually

accessed (which can be different from the amount requested), and the pointer is updated
by that amount.

When MPI-IO nonblocking accesses are made using an individual or the shared file

pointer, the update cannot be delayed until the operation completes, because additional

accesses can be initiated before that time by the same process (for both types of file pointers)

or by other processes (for the shared file pointer). Therefore the file pointer must be updated
at the outset, by the amount of data requested.

Similarly, when blocking accesses are made using the shared file pointer, updating the

file pointer at the completion of each access would have the same effect as serializing all
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blocking accesses to the file. In order to prevent this, the shared file pointer for blocking

accesses is updated at the beginning of each access by the amount of data requested.

For blocking accesses using an individual file pointer, updating the file pointer at the

completion of each access would be perfectly valid. However, in order to maintain the same

semantics for all types of accesses using file pointers, the update of the file pointer in this

case is also made at the beginning of the access by the amount of data requested.

This way of updating file pointers may lead to some problems in rare circumstances,

like in the following scenario:

MPIO_Read_Next(fh, buff, buftype, bufcount, &status);

MPIO_Nrite_Next(fh, buff, buftype, bufcount, _status);

If the first read reaches EOF, since the file pointer is incremented by the amount of

data requested, the write will occur beyond EOF, leaving a hole in the file. However, such a

problem only occurs if reads and writes are mixed with no checking, which is an uncommon

pattern.

B.3 Collective Operations with Shared File Pointers

The current definition of the MPI-IO interface only includes independent read and write

operations using shared file pointers. Collective calls are not included, because they seem

to be unnecessary. The main use of a shared pointer is to partition data among processes

on the fly, with no prior coordination. Collective operations imply coordinated access by
all the processes. These two approaches seem at odds with each other.

C Unix Read/Write Atomic Semantics

The Unix file system read/write interfaces provide atomic access to files. For example,

suppose process A writes a 64K block starting at offset 0, and process B writes a 32K block

starting at offset 32K (see Figure 6). With no synchronization, the resulting file will have

the 32K overlapping block (starting from offset 32K), either come from process A, or from

process B. The overlapping block will not be intermixed with data from both processes A
and B.

Similarly, if process A writes a 64K block starting at offset 0, and process B reads a

64K block starting at offset 32K, Process B will read the overlapping block, as either old

data, or as new data written by process A, but not mixed data. When files are declustered

on multiple storage servers, similar read/write atomicities need to be guaranteed. All data

of a single read that spans multiple parallel storage servers must be read entirely before

or after all data of a write to the same data has proceeded. A simple and inefficient

solution to enforce this semantics is to serialize all overlapped I/O. Actually, it is worse

than that, all I/O would need to be synchronized, and checked for overlap before they

could proceed. However, more efficient techniques are available to ensure correct ordering

of parallel point sourced reads and writes without resorting to full blown synchronization

and locking protocols. Some parallel file systems, like IBM Vesta [2], provide support to

implement such checking. If it is known, that no overlapping I/O operations will occur,

or the application is only reading the file, I/O can proceed in a reckless mode (i.e. no

checking). Reckless mode is the default mode when opening a file in MPI-IO. This implies

that users are responsible for writing correct programs (i.e. non-overlapping I/O requests
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Process A

Process B

i:i:i:i:-:!:i:i:::_;_:_i:!_2:_5)i_x:__.: ==========================================

i:_:_::_*_:.:_.:_*`._.:?.::_.:.:_*._:_J_:_:_*._:.:::.:.:_:.:.:_:*_._.::_

OR

::'_:i:-:i:i:i:i$i:!:_:!_:i:_:i:i:i:i!:_:_::?i:.::i_:i:i:_:_i:!:i:!:i:':-::i:'::::::_>.:_

NOT

Figure 6: Unix Atomic Semantics

or read only). MPI-IO also supports a cautious mode, that enforces read/write atomic

semantics. Be aware that this mode may lead to lower performance.

D Filetype Constructors: Sample Implementations and Examples

D.1 Support Routines

/*

* MPIO_Type_set_bounds - surround a type _ith holes

*/

int MPIO_Type_set_bounds(

int displacement,

int ub,

MPI_Datatype oldtype,

MPI_Datatype *newtype)

int blocklength[3] ;

MPI_Datatype type[3] ;

MPI_hint disp[3] ;

(increasing the extent)

/* Displacement from the lower bound */

/* Set the upper bound ,/

/* 01d datatype ,/

/* New datatype ,/

blocklength[O] = 1;

disp[O] = O;

type[O] = MPI_LB;

blocklength[l] = 1;

disp[1] = displacement;

type[l] = oldtype;

blocklength[2] = 1;

disp[2] = ub;

type[2] = MPI_UB;
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/*

* newtype =

* { (LB, 0), (oldZype, displacement), (UB, ub) }

*/

return MPI_Type_struct(3, blocklength, disp, type, newtype);

D.2 Sample Filetype Constructorlmplementations

D.2.1 MPIO_Type_catter_gather 5amplelmplementation

/*
* MPlO_Type_sca%%er_gather - generate scatter/gaZher datatype %0 access data

, block in rank order. Blocks are identical in size

*!

int MPIO_Type_scatZer_ga_her(

MPI_Comm comrn,

MPI_Datatype oldtype,

MPI_DaZatype *newtype)

{
int size, rank;

in¢ extent;

and datatype.

/, Communicator group

/* Block datazype

/* New datatype

*l
,1
,l

MPI_Type_extent(oldtype,&extent);

MPI_Comm_size(comm, &size)

MPI_Comm_rank(comm, &rank)

return MPlO_Type_set_bounds(rank*extent, size*extent, oldtype, newtype);

D.2.2 HPF BLOCK Sample Implementation

/*

* MPIO_Type_hpf_block - generate datatypes for a HPF BLOCK(darg) distribution

,/

int MPIO_Type_hpf_block(

MPI_Comm comm, /* Communicator group */

int dsize, /* Size of distributee */

int darg, /* Distribution argument */

MPl_DaZatype oldtype, /* Old daZatype */

MPI_Dazatype *newtype) /* New datatype */

{
int size, rank;

int extent;

inz beforeblocksize;

int myblocksize;

int nblocks;
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int is_partial_block;

MPI_Datatype blockl;

int rc;

MPI_Comm_size(comm, &size);

MPI_Comm_rank(comm, &rank);

MPI_Type_extenz(oldtype, Rextent);

* Compute and check distribution argument

*/

if (darg == MPIO_HPF_DFLT_ARG) /* [HPF, p.

darg = (dsize + size - I) / size;

if (darg * size < dsize) /* [HPF, p.

return MPIO_ERROR_ARG;

27, L37] */

27, L33] */

* Compute the sum of the sizes of the blocks of all processes

* ranked before me, and the size of my block

*/

nblocks = dsize / darg;

is_partial_block = (dsize _ darg )= 0);

if (nblocks < rank) {

beforeblocksize = dsize;

myblocksize = O;

} else if (nblocks == rank) {

beforeblocksize = nblocks * darg;

myblocksize = dsize _ darg;

} else {

beforeblocksize = rank * darg;

myblocksize = darg;

}

* Create filetype --- block with holes on either side

*/

if ((rc = MPI_Type_contiguous(myblocksize, oldtype, &blockl))

== MPI_SUCCESS) {

rc = MPIO_Type_set_bounds(beforeblocksize*extent, dsize*ex_ent,

block1, newtype));

MPI_Type_free(&blockl);

}

return rc;
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D.2.3 HPF CYCLIC 5amplelmplementation

/*

* MPIO_Type_hpf_cyclic - generate types for HPF CYCLIC(dar E) distribution;

* we assume here that dsize >= dar E * size; in other

*/

int MPIO_Type_hpf_cyclic(

MPI_Comm comm,

int dsize,

int darE,

MPI_Datatype oldtype,

MPI_Datatype *newtype)

{

words, we do not support degenerated cases where

some processes may not have any data assigned to them

/* Communicator group

/* Distributee size

/* Distribution argument

/* Old datatype

/* New datatype

int size, rank;

int extent;

MPI_Datatype block1, block2, block3;

int rc;

,/
,/
,/
,/
,/

MPI_Comm_size(comm, &size);

MPI_Comm_rank(comm, &rank);

MPI_Type_extent(oldtype, &extent);

/*

* Compute and check distribution argument

*/

if (dar E == MPIO_HPF_DFLT_ARG) /* [HPF, p.

dar E = 1;

27, L42] */

/*

* Take care of full blocks (contains darE*size oldtype items)

*/

nelem = dsize / (dar E * size);

it ((rc = MPI_Type_contiguous(darg, oldtype, ablockl) != MPI_SUCCESS)

it

return rc;

((rc = MPIO_Type_set_bounds(darg*rank*extent, darE*size*extent ,

blockl, &block2)) != MPI_SUCCESS) {

MPI_Type_free(&blockl);

return rc;

}

rc = MPI_Type_contiguous(nelem, block2, &block3);

MPI_Type_tree(Eblockl);

MPI_Type_free(&block2);

if (rc != MPI_SUCCESS)

return rc;
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/*

* Take care of residual block

*/

residue --dsize - nelem * (dar E * size);

if (residue > rank * darg) {

int last_block;

int b [2] ;

MPI_Aint d[2] ;

MPI_Datatype t [2] ;

MPI_Datatype block4, block5;

last_block = residue - rank * darg;

if (last_block > darg)

last_block = darg;

if ((rc = MPI_Type_contiguous(last_block, oldtype, _block4))

!= MPI_SUCCESS) {

MPI_Type_free(&blockS);

return rc;

}
if ((rc = MPIO_Type_set_bounds(darg*rank*extent, residue*extent,

block4, _block5)) != MPI_SUCCESS)

MPI_Type_free(&blockS);

MPI_Type_free(&block4);

return rc;

}

b[O] = I;

b[l] -- i;

d[O3 = o;

dill -- nelem * darg * size * extent;

t[O] -- blockS;

t[l] - blockS;

rc = MPl_Type_struct(2, b, d, t, newtype);

MPl_Type_free(&block4);

MPI_Type_free(&block5);

} else {

rc = MPlO_Type_set_bounds(O, dsize*extent, blockS, newtype);

}

MPI_Type_free(&block3);

return rc;

D.3 Example: Row block distribution of A[100, 100]

Consider an application (such as one generating visualization data) which saves a timestep

of a 2-dimensional array A[100][100] in standard C-order to a file. Say we have 10 nodes.

The array A is distributed among the nodes in a simple row block decomposition.

The array is distributed to nodes as (each number represents a 10xl0 block):
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1111111111

2222222222

3333333333

4444444444

5555555555

6666666666

7777777777

8888888888

9999999999

in other words:

Node 0 :

A[O, 0], A[O, I], h[O, 2] .... , A[O, 99],

All, 0], All, I], All, 2] ..... All, 99],

A[2, 0], h[2, I], A[2, 2] ..... A[2, 99],

. • •

A[9, 0], A[9, i], hi9, 2] ..... A[9, 99]

Node 1 :

A[IO, 0], A[IO, 1], A[IO, 23 ..... A[IO, 99],

All1, 0], All1, 1], A[II, 2] ..... All1, 99],

A[12, 0], A[12, 1], A[12, 2] ..... A[12, 99],

A[19, 0], A[19, I], A[19, 2] ..... A[19, 99]

Node 9 :

hiS0, 0], A[90, 1], A[90, 2] ..... A ISO, 99],

A[91, 0], A[91, 1], A[91, 2] ..... A[91, 99],

A[92, 0], A[92, 1], A[92, 2] ..... A[92, 99],

A[99, 0], A[99, 1], A[99, 2] .... , A[99, 99]

D.3.1 Intel CFS Implementation

The CFS code might look like:

double myA [I0] [i00] ;

int fd ;

fd = open(filename, O_WRONLY, 0644);

setiomode(fd, M_RECORD);

/* Compute new value of myA */

write(fd, amyA[O][O], sizeof(myA));
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D.3.2 MPI-IO Implementation

The equivalent MPI-IO code would be:

double myA [I0] [I00] ;

MPIO_Offset disp = MPIO_OFFSET_ZERO;

MPlO_Offset offset ;

MPI_Datatype myA_t, myA_ftype;

MPIO_File fh;

MPI_Status status ;

char fileneuae[255] ;

MPI_Type_contiguous(lO00, MPI_DOUBLE, _myA_t) ;

MPIO_Type_scatter_gather(MPI_COMM_WOKLD, myA_t, &myA_ftype) ;

MPI_Type_commit (_myA_t) ;

MPI_Type_commir (_myA_ftype) ;

MPIO_Open(MPI_COMM_WORLD, filename, MPID_WRONLY,

disp, MPI_DOUBLE, myA_ftype, MPIO_OFFSET_KELATIVE, O, Rfh) ;

/* Compute new value of myA */

offset = disp;

MPIO_Write_all(fh, offset, _myA[O][O], myA_t, I, &status);

D.4 Example: Column block distribution of A[IO0, I00]

Again, consider an application which saves a timestep of a 2-dimensional array A[100][100]

in standard C-order to a file, run on 10 nodes. For this example, the array A is distributed

among the nodes in a simple column block decomposition.

The array is distributed to nodes as (each number represents a 10xl0 block):

0123456789

0123456789

0123456789

0123456789

0123456789

0123456789

0123456789

0123456789

0123456789

0123456789

D.4.1 Intel CF5 Implementation

The CFS code might look like:

double myA[lO0] [i0];

int fd;

int i;
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fd = open(filename, O_WRONLY, 0644);

setiomode(fd, M_RECORD);

/* Compute new value of myA */

for (i = O; i < I00; i++)

write(fd, _myA[i][O], sizeof(myA)/lO0);

D.4.2 MPI-IO Implementation

The equivalent MPI-IO code would be:

double myA[lO0][lO];

MPIO_Offset disp = MPIO_OFFSET_ZERO;

MPIO_Offset offset;

MPI_Datatype subrow_t, row_t, myA_ftype;

MPIO_File fh;

MPI_Status status;

char filename[255];

MPI_Type_contiguous(lO, MPI_DOUBLE, &subrow_t);

MPIO_Type_scatter_gather(MPI_COMM_WORLD, subrow_t, &row_t);

MPI_Type_contiguous(lO0, row_t, &myA_ftype);

MPI_Type_commit(&myA_ftype);

MPI_Type_free(&subrow_t);

MPI_Type_free(&row_t);

MPIO_Open(MPI_COMM_WORLD, filename, MPIO_WRONLY,

disp, MPI_DOUBLE, myA_ftype, MPIO_OFFSET_RELATIVE, O, &fh);

/* Compute new value of A */

offset = disp;

MPIO_Write_all(fh, offset, &myA[O][O], MPI_DOUBLE, i000, &status);

D.5 Example: Transposing a 2-D Matrix in a Row-Cyclic Distribution

The following code implements the example depicted in Figure 3 in Section 2..A_ 2-D matrix

is to be transposed in a row-cychc distribution onto m processes. For the purpose of this

example, we assume that matrix A is a square matrix of size n and that each element of the

matrix is a double precision real number (etype is a MPI_DOUBLE).

int m;

int rank;

/* number of tasks in MPI_COMM_WORLD */

/* rank of the task within MPI_COMM_WORLD */

void *Aloc;

int n;

int nrow;

int sizeofAloc;

/* local matrix assigned to the task */

/* size (in etype) of global matrix A */

/* number of rows assigned to the task */

/* size (in bytes) of local matrix Aloc */
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char mat_A[10] = "file_A"; /* name of the file containing matrix h *J

/* the file is assumed to exist ,_

3

MPIO_Offset disp = MPIO_OFFSET_ZERO; /* file_A is supposed to have no header _

MPIO_Mode

MPI_Datatype

MPI_Datatype

int

MPIO_Hints

MPIO_File

MPIO_Offset

MPI_Datatype

5

amode; /* access mode */ 8

etype; /* elementary datatype */ 7

filetype; /* filetype associated .ith an HPF row_cyclic _/

/$ distribution $/ 9

moffset; /_ relative/absolute offset flag _/ 10

•hints; /_ hints _/ i,

fh; /* file handle */ n

offset; /* offset into file_A */ la

buftype; /_ buffer type used to read in the transposed local _

/* matrix _

bufcount; /* number of buftype items to read at once */

status; /* status information of read operation _/

/* temporary variables */

int sizeofetype;

MPI_Datatype column_t;

MPI_Comm_size (MPI_COMM_WORLD, m);

MPI_Comm_rank (MPI_CDMM_WORLD, rank);

/* Determine number of rows assigned to the task */

nrow = n / m;

if (rank < n _ m) nrow+÷;

amode = MPI0_RDONLY;

/* Aloc is a matrix of MPI_DOUBLE items */

etype = MPI_DOUBLE;

MPI_Type_extent (etype, &sizeofetype);

MPI0_Type_hpf_cyclic (MPI_CDMM_WORLD, n * n, n, etype, &filetype);

MPI_Type_commit (&filetype);

moffset = MPI0_0FFSET_RELATIVE; /* relative offsets will be used */

hints = NULL; /* hints are not fully implemented yet */

/* 0pen file containing matrix A */

MPIO_0pen (MPI_CDMM_WORLD, mat_A, amode, disp, etype,

filetype, moffset, hints, &fh);

/* Define buffer type that transposes each row of the matrix read in and */

/* concatenates the resulting columns _/
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MPI_Type_vector (n, 1, nrow, etype, &column_t);

MPI_Type_hvector (nrow, 1, sizeofetype, column_t, _buftype);

MPI_Type_commit (&buftype);

MPI_Type_free (&column_t);

/* Allocate memory for local matrix hloc */

MPI_Type_extent (buftype, &sizeofhloc);

Aloc = (void *) malloc (sizeofAloc);

/* Read in local matrix Aloc */

offset = disp;

bufcount = 1;

MPIO_Read (fh, offset, Aloc, buftype, bufcount, &status);

E Justifying Design Decisions

This section contains a haphazard collection of arguments for other designs and against the

one we chose, with explanations of why they were rejected.

Argument: Filetype should be defined in the read/write operation, not in the open call.

This is similar to having the sendtype and recvtype in MPI scatter/gather calls.

Answer: This is more cumbersome, especially since it is expected that filetypes will not be

changed often (if at all). Also, the filetype may be much larger than the buftype (or much

smaller), which makes it harder to understand how they are aligned. The MPI case does

not have this problem because the sizes must match.

Argument: Absolute offsets are confusing, no good, and nobody uses them.

Answer: OK, we'll have relative offsets too.

Argument: Relative offsets are confusing, no good, and nobody uses them.

Answer: OK, we'll have absolute offsets too.

Argument: MPI-like functions with informative names should be used, e.g. Read_Broadcast,

Write_Single, Read_Scatter, Write_Gather.

Answer: This causes confusion if the filetype is used as well, because the same effect can

be achieved in very different ways. The reason to prefer the filetype approach over the

specific-functions approach is that it is more flexible and provides a mechanism to express

additional new access patterns.




