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Solution-Adaptive Cartesian Cell Approach
for Viscous and Inviscid Flows

William J. Coirier*

NASA Lewis Research Center, Cleveland, Ohio 44135

and

Kenneth G. Powell t

University of Michigan, Ann Arbor, Michigan 48109-2118

A Cartesian cell-based approach for adaptively refined solutions of the Euler and Navier-Stokes equations in
two dimensions is presented. Grids about geometrically complicated bodies ace generated automatically, by the
recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells

intersect bodies, polygonal cut cells are created using modified polygou-clipping algorithms. The grid is stored in a
binary tree data structure that provides a natural means of obtaining cell-to-cell connectivity and of carrying out
solution-adaptive mesh refinement. The Euler and Navier-Stokes equations are solved on the resulting grids using a
finite volume formulation. The convective terms are upwinded: A linear reconstruction of the primitive variables is

performed, providing input states to an approximate Riemann solver for computing the fluxes between neighboring
cells. The results of a study comparing the accuracy and positivity of two classes of cell-centered, viscous gradient

reconstruction procedures is briefly summarized. Adaptively refined solutions of the Navier-Stokes equations are
shown using the more robust of these gradient reconstruction procedures, where the results computed by the
Cartesian approach are compared to theory, experiment, and other accepted computational results for a series of
low and moderate Reynolds number flows.

I. Introduction

OR complicated geometries, unstructured grids can be easier togenerate than structured grids, which is directly responsible for
their increasing popularity. Traditionally unstructured grids, with

volume grids comprising triangles in two dimensions and tetrahe-
dra in three dimensions, are typically generated by first discretizing
the bounding surfaces and then filling the volume grid by, say, an
advancing front method 1'2 or by point insertion procedures where

the site insertion and resulting triangulations are subject to certain

geometric constraints. 3'4 (A thorough review of current unstruc-
tured mesh generation and flow solution algorithms is available in
Refs. 5 and 6.) The volume mesh generation for these approaches
is constrained by the boundary surface discretization: Boundary
cells are required to have faces that exactly match the discretized
boundary surface. In the Cartesian approach considered here, the
volume grid and surface description are not coupled in this manner.
The computational boundaries are described functionally, and are
cut out of the automatically generated, Cartesian cell-based volume

grid, yielding polygonal cells near the boundaries, with a geomet-
ric, subcell resolution of the boundary. This gives a smooth grid

away from boundaries, comprising mostly square, unit aspect ra-
tio (Cartesian) conservation volumes and a nonsmooth grid near

computational boundaries, where the cell cutting has faithfully pre-
served the geometry. The ease in grid generation has come at the cost

of grid nonsmoothness near computational boundaries that neces-
sitates special care in the treatment of the cut cells and cell-to-cell
refinement boundaries.

The Cartesian cell-based approach has been used for solving a
variety of problems, and variants of the approach have proven to
be quite useful for computing both unsteady 7-_3 and steady 14-2°
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adaptively refined solutions to the Euler equations and for solutions
to the transonic full potential equation. 2_ Recently, the usefulness of

the automated gridding and adaptive mesh refinement capabilities of

the solver have been demonstrated for adaptively refined solutions

of the Euler equations about large aircraft configurations 22'23 and

for store separation problems. 24 The Cartesian cell-based approach

has been coupled with a prismatic mesh approach in Ref. 25 and

recently demonstrated for the Euler equations, 26 where a cursory

demonstration for solving the Navier-Stokes equations was also

made. In Ref. 9, the approach was also demonstrated for solving the

Navier-Stokes equations, but the results there were only shown for

a few geometrically simple cases. In Ref. 27 a more structured-like

grid approach was taken for both the grid and underlying numer-
ics, where the results indicated a sensitivity to grid smoothness.

The recent philosophy of treating the Cartesian approach in a more
unstructured-like manner, or the preferred hierarchically structured

manner for the Euler equations, has proven to alleviate some of the

problems found from a more traditional, structured-like grid ap-

proach. A hierarchically based data structure, as implemented here,

allows adaptive mesh refinement by cell enrichment and is also

used to determine cell-to-cell connectivity. This more modern ap-

proach has demonstrated the ability to compute adaptively refined
solutions of the Euler equations with minimal user intervention and

has provided an impetus for the work reported here. In this paper,
the hierarchically structured, Cartesian cell-based methodology is

investigated for obtaining adaptively refined solutions to the Euler

and Navier-Stokes equations.

II. Grid Generation Procedure

The grid is generated by the recursive subdivision of a single cell,
and during the creation of the grid, the hierarchical relation between
newly created cells and their parents is stored in a binary tree data
structure. The cut cells, which are the background Cartesian cells
cut into polygons, are created automatically using many concepts
borrowed from computer graphics applications. Since they are hi-

erarchically related to their Cartesian parents, the cut cells are also
stored in the tree. This procedure of cell cutting is a subject unto itself
and its robustness is absolutely crucial for the utility of the approach.
The cell cutting methodology used here is based on a polygon clip-
ping algorithm, 2s where a subject polygon (the body of interest) is



COIRIER AND POWELL 939

clipped against a convex clipping polygon, which for this case is the

Cartesian cell. The subject polygon can be formulated to include

arbitrary functional descriptions of the boundary faces by the use

of general basis functions defined between fixed control points, as

is implemented here. This particular clipping operation yields the

Boolean intersection between the clipping polygon and the subject

polygon. The clipping operation will yield the correct cells when the

subject polygon describes the outer boundary of a flow domain, but

needs to be modi fled slightly when the subject polygon describes an

inner boundary. When this is the case, the region needed is recov-

ered from the clipping operation using a list directed vertex insertion

procedure. Details behind the grid generation are presented in more

detail in Ref. 29. Once a suitable geometric description of the com-

putational boundaries is made, the grid generation is automatic, and

since the procedure is recursive and tree based, it is also efficient.

The use of this particular grid and data structure easily allows

adaptive mesh refinement and, away from bodies, yields smooth

grids. The binary tree data structure provides a logical means of

finding cell-to-cell connectivity by logic-based tree traversals and

allows a straightforward means to perform mesh refinement and

coarsening via tree branch growth and pruning. There are many

niceties afforded by this data structure and grid setup. The grid

hierarchy is amenable to multigrid 3° and provides a natural means

of domain decomposition that may be well suited for coarse grain

parallel computations.

III. Solution of the Euler and Navier-Stokes Equations

Using a Cartesian, Cell-Based Approach

The compressible Euler and Navier-Stokes equations are solved

using a cell-centered, finite volume approach. The laws describing

the conservation of mass, momentum, and energy in two dimensions
tot a control volume of area _ with boundaries ¢3_ whose outward

pointing unit normals are hi, (written in tensoral notation) is

Ot + F0hj d(_2) = 0 (1)
f_

The vector of conserved variables is q = (p, pu, pv, pE), and the

flux tensor is split into purely convective and diffusive components,

F,j = F_j + F[_. The convective contributions to the conservation
laws are

I pu ) pv

pu 2 + P puv + P

F_ = _ puv F_= Pv 2 (2)

\ pull pvH

and the diffusive components are

(0) (0)F¢'=
rxy "ryy

Urx, + vrxy - q, uryx + 1)Zyv -- qy

(3)

where the shear stress tensor and heat flux vector are

3u 2 (au av_
= - 3" \a. + E/

r,.,, = ryx = # \ Oy + _-_xl qx = -k-_x (4)

The equations are closed by providing a thermodynamic equation

of state relating the conserved variables to the pressure, P = (y -

1)pe, and Sutherland's law to relate the laminar viscosity and the

thermal conductivity to the temperature. Only laminar solutions are
considered here.

IV. Solution Adaptive Mesh Refinement

Each level of adaptive mesh refinement comprises two stages.

In the first stage, refinement criteria are constructed for all cells

on the mesh, and then in the second stage, cells are tagged for

refinement or coarsening based on this criteria. After the mesh is

enriched, a new calculation is made, converging the solution to a

steady and hopefully more accurate solution. This process of refining

the grid and converging the solution on the new grid is repeated in

an automated fashion, a set number of times, until a given level of
refinement is achieved.

The refinement criteria and grading procedure is based on that
presented in Refs. 18 and 31, and is briefly shown here. The proce-

dure of refinement and coarsening of the cells relies upon a statistical

description of the cell size weighted velocity divergence and curl.
The local velocity divergence is used to detect compressive phe-

nomena, whereas the velocity curl is used to detect shear. Each of

these is weighted by the local cell size so that smaller cells con-

tribute less to the overall weighting, as suggested in Ref. 32. That

is, for a cell with a characteristic dimension h, the compressibility
and shear detectors are

rc = IV • ulh_ r R : IV x ulh_ (5)

Cells are refined or coarsened if the variance of the compressibility

and rotationality detectors about zero is above or below a specified
threshold. Cells are refined if

rR > err or rc > Crc and h > hmi. (6)

where a minimum cell size hmi n is a user specified constant, and they
are coarsened if

rc < (Crc/10) and rt¢ < (crk/10) (7)

By using the binary tree data structure, cell refinement and coarsen-
ing is accomplished by performing growth and pruning operations,

respectively, on the tree.

V. Convective Flux Discretization

The convective flux terms are discretized using an upwind for-

mulation. A linear reconstruction of cell-averaged data is used to

provide input states to a numerical flux function, yielding the flux

through cell-to-cell interfaces. The numerical fluxes are computed

in an upwind fashion using an appropriate approximate Riemann

solver. These fluxes are then used to perform a flux balance on the
conservation volume that is then used to advance the conserved vari-

ables in time. The procedure follows standard practice for a finite

volume scheme. The solution procedure can be broken up into three

stages; reconstruction, flux construction, and evolution.

The variation of the cell primitive variables in each cell is re-

constructed using a linear reconstruction procedure, in the spirit of

MUSCL interpolation, based on the minimum-energy reconstruc-
tion presented by Barth and Fredrickson. 33 The minimum-energy
reconstruction minimizes the Frobenius norm of the differences be-

tween the cell averages of the reconstructing polynomial and the
cell averages of the support set. This reconstruction procedure is

K-exact, in the sense that if a polynomial is cell averaged on the

mesh, the reconstruction procedure reconstructs the same polyno-
mial. For a cell averaging operator defined as

f fda
A(f) -- (8)

f dA

the procedure minimizes the norm S,

S=Zwn[An(uK-u,1)] 2 (9)
n

with respect to the expansion about the object cell using zero mean

polynomials,

u x = fi + _eOqJj(.,:, Y) (10)

)
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where the cell averages of the zero mean polynomials qJj are, by
definition, identically zero. This results in a linear system for the

unknowns Lijot j = bi, where

Lij = ___w. An(_i)An(qJj)
n

bi = _-'_ w,(fi. - u)A.(qJi)

(11)

n

The Lij is dependent only on the geometry, so it can be inverted
beforehand. For the linear reconstructions used here, this results in

a symmetric 2 x 2 matrix, constructed from the zero mean polyno-

mials qJ = [(x - £), (y - 9)]- For the calculations shown here, no

gradient limiting is performed.

The inviscid numerical fuxes may be computed using a variety

of approximate Riemann solvers: it is a simple matter to supply
a different numerical flux function by replacing the approximate

Riemann solver in the flow solver. For the work shown here, most of

the computations have been performed using the advective upstream

splitting method (AUSM) scheme of Liou and Steffen. 34 This novel

flux function combines the efficiency of flux vector splitting with

the accuracy of flux difference splitting. The derivation and use of
this flux function is available in Ref. 34.

For simplicity, the semidiscrete form of the equations are ad-

vanced in time using a multistage scheme. A spatially varying time

step is used, with a blending of inviscid and viscous time-step con-
straints. These are necessary since there is typically a many order
variation in cell size across the mesh due to cell refinement and cut-

ting, and a number of cut cells are viscous time step limited. The

time step is formulated as

At = C, All + Atv J

where the inviscid and viscous time step restrictions are obtained

by evaluation of model equations for the convective and diffusive

processes. For an arbitrary cell of area f2, where each face has an

outward pointing unit normal h and face length of AS, the inviscid

time step is found by

Atl 1
(13)

_2 ff-_faees(lUhx at-Vnyt q- a)ASface

The viscous time step is represented as

Ato Kv
(14)

[2 --cto(f2/z/pRe_)

The K, in Eq. (14), inspired by Ref. 35, is taken to he Kv = 0.25.
The term m_ is the coefficient for the object cell in the discrete
Laplacian obtained using the viscous gradient reconstruction pro-
cedure (See. VII). For the Green-Gauss-based reconstruction of the

viscous gradients described in Sec. VII, the resulting coefficient of
the object cell for the Laplacian stencil is

1 _ (ASf) 2do = -_--_ . _2.., (15)

where the vertex weightings contributions to the ceo have been ne-

glected, ASf is the length of the face, and _aux is the area of the

integration covolume.

A generic three-stage multistage scheme with stage coefficients

(0.18, 0.5, 1.0) is used to advance the solution from the nth to the

(n + 1)th time level.

VI. Validation and Demonstration of the Euler Solver

The Cartesian, cell-based approach has been demonstrated exten-
sively for a wide variety ofinviscid flows, 14-2°'22 and has been care-
fully assessed for accuracy. 36 In Ref. 36, the approach was shown to
compute transonic flows with a global second-order accuracy and
a local accuracy between first- and second-order. The adaptively
refined solution about a subcritical, multicomponent airfoil is com-
puted here, demonstrating the adaptive-mesh refinement and mesh
generation capability.

.................. Iltl .....
_llll .............

• I I I I [ _ I HHH',I',Id_HH

Fig. 1 Grid and pressure contours, Suddhoo-Hall airfoil.
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Fig. 2 Computed and exact pressure coefficients.

This four-element airfoil has been included in a series of test cases

at the 1994 Institute for Computer Applications in Science and En-

gineering/NASA Langley Research Center Workshop on Adaptive

Grid Methods. The geometry corresponds to that obtained by a con-
formal mapping technique by Suddhoo and Hall, 37 which has also

yielded surface pressure data. The airfoil geometry has been curve

fit using a cubic spline and made available on the world wide web by

the workshop organizers. The freestream conditions corresponding

to this case are M_ --- 0.2 and _ -- 0 deg. The mesh is generated

automatically and adaptive-mesh refinement is performed for three

levels beyond the base grid. A closeup of the final grid and the pres-

sure contours are shown in Fig. 1, whereas the comparison with the

analytical solution is shown in Fig. 2.

VII. Viscous Flux Discretization

The essence of the cell-centered viscous flux formulation is the

reconstruction of the gradients of the velocity and temperature at
the cell interfaces from the cell-averaged data of the cells around it.
Once this has been completed, a numerical quadrature is performed
over the cell faces, yielding the desired viscous fluxes through the

interfaces. For cell-centered schemes, there are prevalently two sep-
arate classes of the viscous gradient reconstructions that have been

analyzed in the Cartesian mesh framework in Ref. 29. The first
and most widely used class is based on an application of the diver-
gence theorem to a covolume surrounding the face where the flux
is desired. These types of reconstructions are classified as Green-

Gauss type reconstructions. Four reconstructions of this type have

been analyzed in Ref. 29 and are delineated amongst themselves

by the reconstruction covolumes and the procedures used to obtain
the data at the vertices of the covolumes. A different class of gra-
dient reconstructions based on expanding a polynomial about the

face midpoint and then differentiating the polynomial to obtain the
gradients has been proposed by Mitchell and Waiters. 38 Linear and

quadratic reconstructing polynomials are found using a Lagrangian
type of interpolation and are also examined in detail in Ref. 29.

In Ref. 29, these six schemes were analyzed for quality and pos-

itivity by local Taylor-series expansions of the stencils created for
the Laplace equation on grids representative of the Cartesian ap-
proach. The importance of the Kexactness of the interface gradient
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reconstructions was shown. The analysis indicated that for arbitrar-

ily distorted grids the only means to obtain a conservative, first-order

accurate discretization requires that the gradients be found from

quadratically preserving functions. It was also shown that if the gra-
dient reconstruction procedure is not at least linearity preserving,

stencils can be obtained that preclude grid convergence and will

actually have an error that increases with mesh refinement, termed

here as being mesh divergent. The robustness of all of the schemes

on the distorted meshes caused by mesh refinement was gauged us-
ing a positivity analysis. Nonpositivity of a viscous reconstruction

scheme can inhibit convergence and violates the discrete interpre-

tation of the continuous maximum principle entertained by elliptic
solutions.

The Taylor-series-based analysis in Ref. 29 presented no clear

choice as to the best procedure of the two classes of reconstruc-

tions: divergence or polynomial based. None of the divergence-

based schemes gave first-order accurate Laplacians on all of the

model meshes and all created stencils that tended to be nonpositive.

The quadratic-polynomial-based approach yielded first-order accu-

rate stencils on all of the model meshes, yet these stencils tended

to be more nonpositive and, hence, more destabilizing, when com-
pared to the divergence-based approach. To determine which of

the two viscous reconstruction schemes was better suited, the bet-

ter of the divergence-based schemes and the quadratic-polynomial

type scheme were both used to actually compute a series of low to

moderate Reynolds number, adaptively refined solutions using the
Cartesian approach.

The linearity preserving, diamond path scheme was chosen to

represent the divergence-based schemes. This reconstruction is fre-

quently referred to as a diamond path scheme since in two dimen-
sions the path formed for the reconstruction covolume is in the

shape of a diamond and is formed by joining the cell centers and

face endpoints. Referring to Fig. 3, the data at the centroids L and

R are known exactly, whereas the data at the vertices must be ob-

tained by some interpolation procedure. In Ref. 39 a linearity pre-

serving interpolation procedure is shown that finds the data at a

vertex based on data surrounding it and is typically referred to as

a linearity preserving Laplacian weighting. This procedure is nec-

essary to ensure the viscous gradient reconstruction itself is also
linearity preserving, by providing data at the vertices of the re-

construction covolume in a linearly exact manner. As indicated by
the analysis, 29 although neither scheme guaranteed positive sten-

cils, the diamond path scheme could be viewed as representing the
more positive, yet less accurate of the two. In Ref. 29, a discrete

accuracy and positivity analysis on the grids showed that the in-
consistency incurred by the diamond path schemes is low whereas

the computed results from both schemes were nearly identical. The

inconsistency incurred by the diamond-path scheme is small, in a

global sense, due to the regularity of the Cartesian grids, where the

reconstruction procedure yields the desired stencils on most of the

cells. The quadratic-polynomial-based scheme guaranteed consis-

tency, which was also shown computationally in the discrete ac-

curacy analysis, but yielded the most nonpositive stencils, which

made the quadratic scheme the least robust. For arbitrarily cut cells,
neither scheme was as robust as would be desired, but the diamond-

path scheme was shown to be the more positive. Based on these

conclusions, the linearity preserving, divergence-theorem based

viscous reconstruction procedure is chosen as the most suitable

approach.

vertex I

ceoi / )ce r
L ve] rex 2

id

Fig. 3
mesh.

Sample diamond path integration for a locally refined Cartesian

VIII. Viscous Computations

The adaptively refined, Cartesian approach is demonstrated in the

following sections for low and moderate Reynolds number flows

and is compared to theory, experiment, and accepted computational
results. All computations shown here were performed using the non-
limited, least-squares type reconstruction, the AUSM inviscid flux

function, and the linearity-preserving, divergence-based viscous re-
construction.

A. Laminar Driven Cavity Flow

The laminar flow inside a square, driven cavity is computed and
compared to the computed results of Ghia et al. 4° In Ref. 40, an

incompressible formulation of the Navier-Stokes equations was

solved using an implicit multigrid method. To compare with these
incompressible results, the Mach number used here is taken to be

M,a = 0.1. The flow corresponding to two Reynolds numbers,
based on lid velocity and cavity depth, were computed and com-
pared to the tabulated results.

1. Re = I00

A uniform base grid of 1024 cells (32 x 32) is generated, and

three levels of adaptive mesh refinement beyond the base grid are

obtained. Adaptive mesh refinement improves the solution slightly,

but the initial solution is quite good. Figure 4 shows the computed

u- and v-velocity profiles along vertical and horizontal lines through
the geometric center of the cavity. Although not shown h_re, there

are secondary vortices predicted in the lower corners of the cavity:

these vortices are not isolated by the refinement strategy, but rather,

the large gradients of the velocity in the upper corners are refined.

Overall though, the solution is predicted well with the initial grid.

2. Re = 400

This case is similar to the previous, although the Reynolds number

is now 400. A coarse base grid is generated, and three levcls of

adaptive mesh refinement are performed beyond the base level. A
comparison to the computational data of Ghia et al. 4° is shown

for the u and v velocities on lines through the geometric center

in Fig. 5. Here, the solution on the coarse, base grid is poor, and
the solution is improved through the adaptive mesh refinement. The

solution obtained is good on the final grids, and the mesh refinement
is shown to have improved the solution.

B. Laminar Flow over a Backward Facing Step
The laminar flow over a backward facing step at two Reynolds

numbers is next computed. The computed results are compared to
the experimental data of Armaly et al.4n at the laminar Reynolds

numbers. A parabolic velocity profile is specified at the inflow, and
the exit pressure is specified. This ensures that the proper pres-
sure gradient and mass flow is imposed on the flow. The results are

qualitatively similar for both Reynolds numbers, although the higher

X/Llid

0,00 0.25 0.50 0.75 1.00
1.0 • , .

7 _Q=_-""_......_% _

FI. °/ \
\!/Y/Llid u(y)
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• Ghia, etal [ 1 03
\ AMR Level 0 (1024)1 " "

0.2 _ AMR Level 1 (1651)1 0 4
AMR Level2 (2968)] " '
AMR Level3/5458) I

0.0 • o-- ..... -0.5
-0.5 0.0 0.5 1.0

u/Vii d

Fig. 4 Computed u- and v-velocity profiles through cavity eentroid:
Re = 100.
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Fig. 5 Computed

Re = 400.
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Fig. 6 Computed and experimental u velocities at a location 2.55 step

heights downstream of back step, Re = 100.
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Fig. 7 Computed and experimental u velocities at a location 2.55 step

heights downstream of back step, Re = 389.

Reynolds number flow indicates a mild separation on the upper wall.

The computations for both Reynolds numbers begins with a very

coarse mesh of 968 cells. Adaptive mesh refinement is performed

for three levels beyond the initial mesh. Figures 6 and 7 compare

the u-velocity profiles through refinement for both Reynolds num-

bers. As is seen from the figures, the initial solutions are poor, due

to the coarse grids, but the adaptive mesh refinement automatically

improves the solution quality. Although not shown here, the com-

puted skin friction is quite oscillatory and is too noisy to discern an

exact reattachment point.

C. Developing Laminar Flow over a Flat Plate

The developing, laminar flow over a fiat plate that is aligned with

the freestream is computed and compared to the theoretical solution.

I

] I l I I I I I 1 I 1 I I I I I I I I I]
I I I I I I I I 1 ',',: I ',U,',',: ; ',', ; I ', ',',; : ',', : ;; ;;;; ; ',', ',',', ',H ',[ ',',[ ',

_ ......... '" " ';: '::;; ; ::: ;i H', ;H :',;; H H',; HH',[ H', H '.]H '.H

Fig. 8 Closeup initial grid for axis-aligned case.
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u/uoo

Fig. 9 Computed u velocity, axis-aligned plate.

To bring out the effect of cell cutting, two different sets of grids are
used, where in the first (axis-aligned) case, the base axes of the grid

are aligned with the plate, whereas in the second, the plate has been
rotated 30 deg with respect to the x-axis. A uniform flow, aligned

with the plate surface, is imposed ahead of the plate, and the flow

is allowed to develop along the plate. Conditions are set so that

the Reynolds number based on plate length is 10,000. The Mach
number is taken to be M_ = 0.2, which eliminates the need for any

compressibility transformation to compare to theory.

I. Axis-Aligned Plate

Figure 8 shows the closeup of a base grid near the leading edge

where the initial resolution of the grid is made according to an es-

timated normal velocity scale variation deduced from theory. Two

levels of adaptive mesh refinement are made beyond the base grid

shown in Fig. 8, and the computed velocity component parallel to

the plate and the skin friction is shown in Figs. 9 and 10, respec-

tively. The quality of the computed results and the smoothness of

the skin friction in Fig. 10 is due to the smoothness of the grid and

to the adequate initial resolution given on the base grid. Since the

root cell of the grid system has been located so that no cut cells are

introduced along the surface of the flat plate, the only nonsmooth-
ness is introduced near cell refinement boundaries. As seen in the

figures, the mean flow quantities are predicted well by the proposed

approach.

2. Nonaxis-Aligned Plate

Here, the plate is rotated 30 dog about the base axes and the iden-

tical flow is computed, bringing to light the effect of introducing cut

cells along the plate boundary. The initial grid is shown in Fig. 11. To

obtain a converged solution, it proved necessary to zero the weights

of the linearity-preserving vertex weightings for all cut cells and
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their neighbors, resulting in a less accurate near-wall treatment of

the viscous fluxes. Regardless of this reduction in accuracy of the
near-wall viscous discretization, the mean flow quantities are pre-

dicted well, as shown in Fig. 12. The skin friction is shown to be

very oscillatory (Fig. 13), where the use of a higher-order reconstruc-
tion for only boundary faces smooths the skin friction somewhat,

although it is still extremely nonmonotone? 9

D. Laminar Flow Through a Branched Duct with Cooling Fins
To demonstrate the approach for complex geometries, the flow in

a stylized duct is computed. This duct geometry corresponds to an
experiment conducted at the NASA Lewis Research Center designed
to simulate, in a simplified manner, the flow in the cooling passages
of a turbine blade. 42 The calculations shown here in no way try to

Fig. 14 Adapted grid, branched duct case.

0.0251

Fig. 15 Total velocity contours on adapted grid; numbers indicate con-
tour levels.

simulate the experiment: the experimental conditions correspond to

a three-dimensional, turbulent flow, whereas the calculations shown

here are laminar. The single, entrance flow path branches into two

passages, a primary and secondary passage, where there are 14 cir-
cular pin fins providing blockage in the secondary passage.

A fully developed profile is introduced at the inflow, and the flow is
diverted into the primary passage by the blockage introduced by the

pin fins in the secondary passage. Two different Reynolds numbers

based on pin diameter and maximum velocity in the fully developed

inflow profile were computed in Ref. 29. Only the lower Reynolds
number results are shown here for brevity, where the Reynolds

number based on maximum inflow velocity and pin fin diameter

is Re = 25. Only one level of adaptive mesh refinement beyond the

base grid level was obtained, due to stability problems in the second
refinement level, even with the cut cell viscous flux modifications

described in Sec. VIII.C. The final adapted grid and contours of total

velocity are shown Figs. 14 and 15, respectively.

The basic flow features predicted here correspond to those in the

experiment, although some important features are grossly under-

resolved, such as the individual pin-fin wakes. The primary pas-

sage separation and reattachment along the splitter plate and the

separation anchored at the back step portion are both properly pre-

dicted, as well as the upstream influence of the pin blockage upon
the lower wall flow. Although many levels of refinement were not

achieved, the larger scale flow features were adequately predicted,

and their resolution was automatically improved by the mesh refine-

ment procedure.

IX. Conclusions

An adaptively refined, finite volume solution procedure for the

Euler and Navier-Stokes equations using a Cartesian, cell-based

approach has been presented. The grid generation procedure is au-
tomated and is able to generate grids about complicated geometries

with minimal user intervention. This strategy is based on the re-

cursive, isotropic subdivision of a Cartesian cell that encompasses

the domain. Where the resulting Cartesian cells span boundaries of

the domain, polygonal cells are cut out of the background Cartesian

mesh using a modified polygon-clipping algorithm. The hierarchy

of the grid generation process is stored in a binary tree that provides
a natural means of finding cell-to-cell connectivity and provides a

straightforward means of adaptively refining the grid. The utility of

the Cartesian approach has come about by sacrificing grid smooth-

ness near boundaries to achieve a near automation of the grid genera-

tion. Application of this approach for the Euler equations has shown

promise and has provided an impetus for evaluating the approach

for the Navier-Stokes equations.

A finite volume, upwind-based scheme has been selected for treat-
ment of the convective terms in the Euler/Navier-Stokes equations

and has been implemented in the Cartesian, cell-based framework.
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Extension of the Cartesian approach for solving the Navier-Stokes

equations has necessitated a careful investigation of candidate vis-

cous flux formulations, which has been summarized here. The two

viscous flux formulations that were investigated represent, respec-

tively, a divergence-theorem-based reconstruction procedure and

a quadratic-polynomial-based reconstruction procedure. Analysis

and practice indicated that the divergence-theorem-based procedure,

where data at the face vertices were found in a linearity-preserving

manner, was adequate and was also the more robust of the two,

although neither could guarantee positivity on arbitrarily distorted

meshes. The nonpositivity induced by the cut cells caused conver-

gence problems and yielded quantities derived from wall gradient

data, such as skin friction and heat transfer, for the most part unus-

able, although the mean values of these quantities were shown to be

adequate. The divergence-based scheme, commonly referred to as a

diamond path reconstruction using a linearity-preserving weighting,

has been used here to compute adaptively refined solutions to a vari-

ety of low and moderate Reynolds number flows. Comparisons were

made to accepted computational results, to experimental data and

to theory for a range of problems, where the Cartesian, cell-based

approach is shown capable to accurately predict these flows.

An important conclusion from this study is that current viscous

flux functions rely heavily upon grid smoothness and orthogonal-

ity to obtain accuracy and positivity, and that these two properties

are in direct competition with each other: it is difficult to get both

positive and accurate viscous stencils on nonorthogonal/nonsmooth

meshes. On the interior of the mesh, the majority of the cells pro-

duce accurate stencils, due to the regularity and orthogonality of the

Cartesian cells. These qualities do not hold at refinement bound-
aries and are violated near cut cells. The nonsmoothness of the cut

cells have negative implications for the smoothness of aerodynamic

parameters that rely on derivative quantities at walls, such as skin

friction and heat transfer, and can also have a detrimental effect on

convergence.

Another drawback of the approach is due to the anisotropy of the

Navier-Stokes equations at high Reynolds numbers and the isotropy

of the Cartesian ceils: stretched, anisotropic cells are needed for the

economic resolution of higher Reynolds number flows. A promising

approach currently under investigation 2_ hopes to alleviate these

shortcomings, by combining the Cartesian approach with locally

stretched, prismatic cells. This approach appears promising, in that

it can use the type of stretched, nearly orthogonal cells in viscous

layers and move the cut, Cartesian cells into a convection dominated

region. Regardless of these comparatively negative findings, the

approach shown here has proven to be useful and can give accurate,

automatically gridded, adaptively refined solutions of the Navier-

Stokes equations for low and moderate Reynolds number flows.
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