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Case Studies for SeaWiFS Calibration and Validation, Part 4

PREFACE

he scope of the Sea-viewing Wide Field-of-viewSensor (SeaWiFS) Calibrationand Validation Program
encompasses a broad varietyoftopics,as evidenced by the contentsofthree previouscase studiesvolumes

in the SeaWiFS TechnicalReport Series---Volumes13, 19, and 27. Each case studiesvolume contains several

chapters discussingtopicsgermane tothe Calibrationand ValidationProgram. Volume 41,the fourthcollection

of case studies,furtherdemonstrates both the breadth and complexity of the issuesthat the Program must

address,and provides furtherjustificationfora comprehensive calibrationand validationeffort.

The chapters in this volume present discussions of the:

a) Calibration and characterization of the GSFC sphere;

b) Revised SeaWiFS algorithm for the diffuse attenuation coefficient K(490);

c) Simplified out-of-band correction algorithm for SeaWiFS; and

d) Stray light correction algorithm implementation.

Greenbelt, Maryland
June 1997

--C. R. McClain



_p • _ • _, ........ _i_o_1-rl_ i _ ........ j_ h_ •



F.,-n.Yeh, R.A. Barnes, M. Dm'zi,L. Kumar, E.A. Early,B.C. Johnson, J.L. MueUer, and C.C. Trees

Table of Contents

Prok_ ...oo........,...............o0.. ............... 0 ................................................ 1

1. Calibration sad Characterization of the GSFC Sphere .............................................. 3
1.1 Introduction ....................................................................................... 3

1.2 Aperture Uniformity ............................................................................... 4

1.3 SpectralRadiance ................................................................................11

I.S.I Experimental Procedures .........................................................................II
1.8.2 Rmult_ ........................................................................................... 13

1.4 AncillarySXR Measurements .....................................................................15
1.5 Concltmiom .......................................................................................17

2, Revised SeaWiFS Algorithm for the Diffuse Attenuation Coefficient K(490) ........................ 18
2.1 Introduction ...................................................................................... 18

2.2 Data sad Methods ................................................................................ 19

2.8 RmultJ ...........................................................................................19

2.4 Discussion ........................................................................................ 21

8. Simplified Out-of-Band Correction Algorithm for SeaWiFS ........................................ 22
3.1 Introduction ...................................................................................... 22

8.2 The out.bandsub Algorithm ...................................................................... 22

4. SeaWiFS Stray Light Correction Algorithm ........................................................ 24
4.1 Introduction ...................................................................................... 24

4.2 LAC Correction .................................................................................. 24

4.8 GAC Correction .................................................................................. 30

4.4 Stray Light Mssking .............................................................................. 30

GLOSSARY ............................................................................................... 31

SYMBOLS ................................................................................................ 31

REPUtBN(_BS ............................................................................................ 32
THE SEAWIFS TECHNICAL REPORT SERIES ............................................................ 33

iii





E-n.Yeh,R.A.Barnes,M.Darzi,L. Kumar,E.A.Early,B.C.Johnson,J.L.Mueller,andC.C.Trees

ABSTRACT

This document provides brief reports, or case studies, on a number of investigations sponsored by the Calibration

and Validation Team (CVT) within the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Project. Chapter 1
describes the calibration and characterization of the GSFC sphere, which was used in the recent recalibration of

the SeaWiFS instrument. Chapter 2 presents a revision of the diffuse attenuation coefficient, K(490), algorithm

based on the SeaWiFS wavelengths. Chapter 3 provides an implementation scheme for an algorithm to remove

out-of-band radiance when using a sensor calibration based on a finite width (truncated) spectral response

function, e.g., between the 1% transmission points. Chapter 4 describes the implementation schemes for the
stray light quality flag (local area coverage [LAC] and global area coverage [GAC]) and the LAC stray light
correction.

Prologue

The purposes of the Sea-viewing Wide Field-of-view

Sensor (SeaWiFS) Project is to obtain valid ocean color
data of the world ocean for a five-year period, to process

that data in conjunction with ancillary data to meaning-

ful biological parameters, and to make that data readily
available to researchers. The National Aeronautics and

Space Administration (NASA) Goddard Space Flight Cen-
ter (GSFC) will develop a data processing and archiv-

ing system in conjunction with the Earth Observing Sys-

tem Data and Information System (EOSDIS), which in-
cludes a ground receiving system. In addition, the Sea-

WiFS Project will oversee a calibration and validation ef-

fort which is designed to ensure the integrity of the final

products.

The Calibration and Validation Team (CVT) has three
main tasks:

1) Calibration and characterization of the SeaWiFS in-

strument;

2) Development and validation of the operational at-
mospheric correction algorithm; and

3) Development and validation of the derived product
algorithms, such as chlorophyll a concentration.

Some of this work will be done internally at GSFC, while

the remainder will be done externally at other institu-
tions. NASA and the Project place the highest priority

on ensuring the accuracy of derived water-leaving radi-

ances globally, and over the duration of the entire mission.

If these criteria are met, the development of global and
regional biogeochemical algorithms can proceed on many
fronts. These various activities are discussed in detail in

The SeaWiFS Calibration and Validation Plan (McClaln

et al. 1992).
Because many of the studies and other works under-

taken with the Calibration and Validation Program are

not extensive enough to require dedicated volumes of the
SeaWiFS Technical Report Series, the CVT has decided

to publish volumes composed of brief, but topically spe-

cific, chapters. Volume 13 is the first volume, and consists

primarily of contributions related to atmospheric correc-
tion methodologies, ancillary data sets required for level-2

processing of Coastal Zone Color Scanner (CZCS) and Sea-

WiFS data, laboratory techniques for instrument calibra-
tion relevant to calibration round-robins, and field obser-

vations designed for transferring the prelaunch calibration

to orbit, and in interpreting the on-orbit lunar calibration

data. The second case studies volume, Volume 19, con-

tains chapters on atmospheric and glint corrections; solar-,

lunar-, and integrating sphere optical measurements; data
format considerations; and the use of ancillary data (in-

cluding surface wind velocities) in SeaWiFS processing.
Volume 27 is the third in the set of such volumes and con-

tains chapters on measuring immersion coefficients, oxygen
absorption, solar calibration experiments, ship shadow ef-

fects on radiance and irradiance measurements, and the

definition of the SeaWiFS data day for level-3 data bin-

ning. Volume 41 is the fourth of the case studies volumes.

A short synopsis of each chapter in this volume is given
below.

1. Ca/ibration and Characterization of

the GSFC Sphere

A large integrating sphere source, which is owned and

maintained by the Sensor Development and Calibration
Branch at GSFC, was calibrated and characterized by the

Optical Technology Division at the National Institute of

Standards and Technology (NIST). This effort, in sup-

port of the GSFC SeaWiFS Project, is part of an inter-

agency agreement between NASA and NIST. The spec-
tral radiance was measured for four different lamp settings

of the sphere source from 370-1,100nm every 10nm us-

ing a NIST standard tungsten strip lamp and a prism-
grating monochromator which was equipped with a silicon

photodiode. The results are presented as a function of

wavelength with a relative standard uncertainty of 0.29-

2.6% (k=l), depending on the measurement conditions.
During these measurements, the SeaWiFS 2_ransfer Ra-

diometer (SXR) was used to determine the spectral ra-

diance of the sphere source at six fixed wavelengths. In
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a separate study, the SXR was used to measure the spa-

tial uniformity of the spectral radiance at the exit port
of the sphere source. The measurements were made at

three wavelengths and at the same four lamp settings for
the sphere. The radiance in the aperture was found to

be uniform to within 0.6-2.2% (peak-to-valley variability),

depending on the measurement conditions. This study was

motivated by the requirement that the sphere source per-
form post-environmental calibrations of the SeaWiFS in-

strument, as well as to compare the various radiometric

scales in use by the ocean color community which are all

NIST traceable. The measurements in this report were
made just before the fourth SeaWiFS Intercalibration

Round-Robin Experiment (SIRREX-4).

2. Revised Sea WiFS Prelaunch Aigorithm

for the Diffuse Attenuation Coefficient K(490)

The algorithm relating the diffuse attenuation coeffi-

cient K(490) at 490 nm to the ratio of water-leaving radi-

ances Lw(443)/Lw(555) is evaluated through regression

analysis of radiometric profiles from oceanographic cruises
in the Arabian Sea, Sargasso Sea, the California Current

System, the Gulf of California, and the North and South

Atlantic Oceans. The resulting algorithm coefficients for

thiswavelength combination are significantlydifferent,at

the 95% confidencelevel,from those ofthe CZCS K(490)

algorithmbased on the ratioLw(443)/Lw(550). Itisrec-

ommended, therefore,that thecoeffÉcientsfrom the present

analysis,ratherthan thoseofthe CZCS algorithm,be used

forthe prelaunch SeaWiFS K(490) algorithm.

3. A Simplified Out-of-Band

Correction Algorithm for SeaWiFS

The SeaWiFS instrument willscan through a broad

area of known radiance, and the measurement for each

band may contain signalsfrom outsidethe desiredband-

width. A calculationthat willquicklyremove the out-of-

band contamination ispresented inthischapter.

4. Sea WiFS Stray Light

Correction Algorithm

SeaWiFS will scan through not only the dark ocean sur-

face, but also the bright land, clouds, and ice objects. Be-

cause of stray light in the SeaWiFS instrument, light from
these bright sources can contaminate ocean measurements

several pixels away fTom a bright source. A mathematical
formula that can be used to correct this contamination is
discussedin thissection.
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Chapter i

Calibration and Characterization of the GSFC Sphere

EDWARD A. EARLY AND B. CAROL JOHNSON

National Institute of Standards and Technology

Gaithersburg, Maryland

ABSTRACT

A large integrating sphere source, which is owned and maintained by the Sensor Development and Calibration
Branch at GSFC, was calibrated and characterized by the Optical Technology Division at NIST. This effort,

in support of the GSFC SeaWiFS Project, is part of an interagency agreement between NASA and NIST. The

spectral radiance was measured for four different lamp settings of the sphere source from 370-1,100nm every

10 nm using a NIST standard tungsten strip lamp and a prism-grating monochromator which was equipped with

a silicon photodiode. The results are presented as a function of wavelength with a relative standard uncertainty

of 0.29-2.6% (k--l), depending on the measurement conditions. During these measurements, the SXR was
used to determine the spectral radiance of the sphere source at six fixed wavelengths. In a separate study, the

SXR was used to measure the spatial uniformity of the spectral radiance at the exit port of the sphere source.

The measurements were made at three wavelengths and at the same four lamp settings for the sphere. The

radiance in the aperture was found to be uniform to within 0.6-2.2% (peak-to-valley variability), depending

on the measurement conditions. This study was motivated by the requirement that the sphere source perform

post-environmental calibrations of the SeaWiFS instrument, as well as to compare the various radiometric scales

in use by the ocean color community which are all NIST traceable. The measurements in this report were made

just before SIRREX-4.

1.1 INTRODUCTION

Broadband, uniform, large area sources can be used
for absolute radiometric calibration of radiometric sensors

if the relative spectral response of the sensor is known.

Integrating sphere sources like the NASA GSFC sphere,

which can be shipped to various sites, play a critical role in

the calibration of field equipment, intercomparison of spec-

tral radiance scales, and even in the calibration of satellite

sensors themselves. The GSFC sphere was used at four

SIRREXs, where intercomparisons were made with various
sources and radiometers. It was used in October 1992 at

Hughes Santa Barbara Remote Sensing (SBRS) in a com-
parison with the SBRS integrating sphere source that was
used for the initial calibration of the SeaWiFS instrument

shortly after it was built (MueUer 1993a).
The GSFC sphere is scheduled to be used for the post-

environmental test calibration of SeaWiFS. The applica-

tion motivated a careful study of the uniformity of the

spectral radiance across the exit aperture using the SXR,

a muitichannel filter radiometer (Johnson et al. 1997), and
a measurement of the spectral radiance of the sphere source

from 370-1,100nm. A prism-grating monochromator and

a gas-filled tungsten strip lamp were used for these abso-

lute measurements. The work was performed in the Opti-

cal Technology Division of NIST as part of an interagency

agreement with NASA.

The GSFC sphere is 1.07m (3.5 ft) in diameter; the

exit aperture is 39.5cm (15.5in) in diameter. The sphere

source was originally built for the National Oceanic and

Atmospheric Administration (NOAA) and was acquired
by GSFC in 1989; it is similar to that described in Ho-

vis and Knoll (1983). As part of the NOAA programs,

the sphere source was calibrated by Optronic Laborato-

ties, Inc., and used to calibrate spectroradiometers that

were flown on high altitude aircraft in a satellite underpass

configuration over White Sands, New Mexico, in order to

calibrate the fifth Land Resources Satellite (LANDSAT-

5) Thematic Mapper (Smith et al. 1990), the Advanced
Very High Resolution Radiometer (AVHRR) on NOAA-9

(Smith et al. 1988 and Smith et al. 1989a), and the Visible-

Infrared Spin-Scan Radiometer (VISSR) on the sixth Geo-

stationary Operational Environmental Satellite (GOES-6)

spacecraft (Smith el al. 1989b).
The GSFC sphere is configured with 16 45W quartz

halogen lamps, which are mounted on the inside wall and

surround the exit aperture. Small diffuse screens block the

direct optical path between each lamp and the exit aper-

3
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ture. The interior surface is coated with a paint containing

barium sulfate. The source is cooled using a fan mounted

on a baffled aperture on top of the sphere; air flows in
the sphere through a filtered fan port at the top and then

through a baffled aperture at the bottom. Four power

supplies are used to operate the fan and the 16 lamps in

a constant current mode of operation--one power supply
for each set of four lamps; the four lamps are connected

in series. Various radiance levels are achieved by turning

off lamps associated with a particular power supply, fol-

lowed by turning off the supplies (e.g., to transition from

13 lamps to 12 lamps, the fourth power supply is turned
off). The sphere was recoated by GSFC in April 1994.

Prior characterizations and calibrations of the GSFC

sphere were done at GSFC and at the SIRREX activi-

ties (Mueller 1993a, Mueller et al. 1994, Mueller et al.
1995, and Johnson et al. 1996). At GSFC, a NASA fil-

ter radiometer and the SXR were used to map the spec-

tral radiance in the exit aperture (Mueller et al. 1994).

GSFC also investigated the degree to which water vapor

absorption affects the spectral radiance of the sphere using
a single-grating monochromator, model 746 from Optronic

Laboratoriest with foreoptics (McLean, pers. comm.). The

bulk of the measurements by GSFC, however, consists of

determinations of the average spectral radiance of the exit
aperture using a standard irradiance lamp and a double-

aperture method for the irradiance-to-radiance transfer

(e.g., Walker et al. 1987b, or Appendix A in Johnson et
al. 1996). The collection optic for the monochromator is a

small integrating sphere with a known aperture; this con-

figuration is termed the 746/ISIC and it denotes the Op-

tronic Laboratories model 746 monochromator equipped

with an integrating sphere irradiance collector (ISIC).
At the annual SIRREX activities, the data were ob-

tained on the sphere's temporal stability, radiance levels,

and the degree to which Lambert's law is followed. At
SIRREX-2, -3, and -4, information was obtained on the

consistency of independent, NIST-traceable, spectral ra-
diance scales by measuring the spectral radiance of the

GSFC sphere using the 746/ISIC system and the SXR.
The former is traceable to NIST via the irradiance scale

assigned to an FEL 1,000W tungsten-halogen standard

lamp; the latter is traceable to NIST via the radiance scale

assigned to a small integrating sphere source. Both of the

NIST scales are derived using the same facility and start-
ing point for the scale realization (Walker et al. 1987a

and Walker et al. 1987b). The main results indicated

that the radiance of the GSFC sphere was variable across

the exit aperture, with peak-to-valley differences of about
3% (Mueller et al. 1994) and that the variability was re-

duced to about 0.5% after recoating the sphere walls. At

t Identification of commercial equipment to adequately specify
the experimental problem, does not imply recommendation
or endorsement by NASA or NIST, nor does it imply that
the equipment identified is necessarily the best available for
the purpose.

SIRREX-2, the GSFC 746/ISIC and the SXR agreed to
within 5% for measurements of the spectral radiance of

the GSFC sphere. At SIRREX-3, the corresponding result

was about 3% (Mueller et al. 1995).

The measurements reported here were done in April

1995 just prior to SIRREX-4 (Johnson et al. 1996). They

were motivated by the opportunity to measure the re-

sponse of the SeaWiFS instrument to the radiance from

the GSFC sphere as part of post-environmental test cal-

ibrations at Orbital Sciences Corporation (OSC) (Barnes
et al. 1994b). It was also a good opportunity to assign

a spectral radiance scale directly to the GSFC sphere at

NIST, so that the SXR and 746/ISIC measurements of the

GSFC sphere at SIRREX-4 could be compared to a NIST

radiance scale assigned to a gas-filled tungsten standard

strip lamp. The GSFC sphere was operated at four radi-

ance levels in this work by operating 16, 8, 4, and 1 lamp,
which gave adequate overlap with the desired calibration

levels for SeaWiFS (Barnes et al. 1994b).

1.2 APERTURE UNIFORMITY

To calibrate a radiometer, a source with known ra-

diance (e.g., the exit aperture of a sphere) is aligned so
that the entrance window of the radiometer is centered

and coplanar with the source; the entrance pupil must be

filled by the source as well. This part of the measurement

equation (ignoring any spectral aspects) involves integra-

ting the spectral radiance as a function of position and
direction over the source area and all relevant directions,

which depend on the location and size of the entrance pupil

of the radiometer (Kostkowski and Nicodemus 1978). If
the spectral radiance is uniform across the aperture and

independent of viewing direction (lambertian), the mea-

surement equation simplifies to a product of the spectral

radiance and a geometric factor that can be measured (or
calculated) and associated with the radiometer.

If the spectral radiance is nonuniform, the relative spa-

tial response function of the radiometer must be measured.

This relative spatial response corresponds to radiation from

a point source at x,y when the radiometer is focused at 0,0.

In turn, this quantity, the point-spread response (PSR),
must be multiplied by the actual spatial distribution of

the spectral radiance across the aperture. The product is
then integrated, as described above, to estimate a correc-

tion factor for the source nonuniformity. In practice, it is

more common to assign a value corresponding to a level

of nonuniformity that will not affect the final results by

more that some stated uncertainty, and then to measure
the source in question to determine if it can be used in

the calibration procedure. If the source does not meet the

requirement, it is usually easier to improve the source than
to calculate correction factors.

The measurement procedure consisted of mounting the

SXR on an x,y translation stage 100 cm from the exit aper-

ture of the GSFC sphere and recording the signal at one



E-n. Yeh, R.A. Barnes, M. Darzi,L. Kumar, E.A. Early,B.C. Johnson, J.L.Mueller,and C.C. Trees

1.07 m _1

Fig. I. The locationofthe 16 lamps inthe GSFC sphere as observed when facingthe sphere aperture.

The lamp identificationnumber isshown insidethe small circles,and the power supply number (1-4)is

given around the exit aperture (inner-mostcircle)in slantedtype.

measurement wavelength, or SXR channel, for a grid of

pointscoveringthe exitaperture.A 50 x 50 cm 2 area was

measured with a step sizeof 5cm, which was chosen be-

cause the targetarea viewed by the SXR at thisdistance

isabout 4.5cm and the sphere aperture is39.5cm in di-

ameter. A background signalwas recorded by coveringthe

objectivelensof the SXR with the lens cap.

Four radiance levelsof the sphere were measured, cor-

responding to having all16 lamps on, then 8, 4, and 1.

For each lamp configuration,the sphere was mapped at

three SXR channels (wavelengths). The current,drawn

by the lamp power suppliesand the voltageacross each

lamp, was recorded priorto each spatialscan. The spatial

scans and data acquisitionwere fullyautomated using a

personal computer (PC), two Aerotech linearpositioning

stageswith directcurrent(DC) servo motors,an Aerotech

controller,and a Hewlett Packard (HP) 3457A digitalvolt-

meter. The InstituteofElectricaland ElectronicEngineers

(IEEE) 488 interfacebus was used toestablishcommunica-

tions,and the stagepositionand data acquisitionsoftware
was written inVisual Basic.

Figure I shows the lamp arrangement for the GSFC

sphere and the power suppliesthatcontrolthe lamps. Since

the lamps require20 minutes tostabilize,the most efficient

measurement procedure was to startwith all16 lamps on,

and then to turn offthe selectedlamps or power supplies

for the other levels.The 16 lamp configurationresultsin

symmetric illuminationofthe sphere,sincethe lamps are

evenly spaced every 22.5°.As can be seen from Fig.I,the

eight-lamp configurationisalsosymmetric (power supplies

I and 2),but the four-and one-lamp configurationsare not

symmetric (sincelamps I-4 and lamp 1 on power supply

1 were operated forthese configurations).

Itwould be possibletooperatethe spherein a symmet-

ricmanner with lamps 1,2,5,and 7,but thiswould require

having two lamps offinboth power supply I and 2. GSFC

has never triedthisconfiguration,and sincethey could not

supply a wiringdiagram ofthe system with detailson how

shunt resistorsare used inplaceofa lamp when that lamp

isturned off,only the normal procedure was used. Itisnot

possibleto operatethe sphere with a singlelamp and still

produce a symmetric illuminationfield;the resultsindicate

thisconfigurationisthe leastuniform. Another disadvan-

tage ofthe electricalsystem forthe sphere isthat the fan

isoperated on the power supply that operates lamps 1-4,

so power supply 1 must always be on. Since GSFC does

not advisethe operationofa power supply without having

at leastone lamp on, lamps 1-4 get more use.

Table 1. Measurement configurations for the uni-
formity studies of the GSFC sphere.

Lamps SXR Wavelengths [nm]

1-16 411.5 441.6 661.8

1-8 411.5 487.1 661.8

1-4 411.5 487.1 661.8

1 411.5 548.0 661.8

Table 1 summarizes the measurement configurations for

the uniformity studies. The choice of measurement wave-

lengths for the SXR was determined by:

1) Considering the amount of time available for the

study,

2) The spectral coverage required,

3) The fact that the SXR has a more ideal PSR at
particular channels, and

4) The relationship between the sphere radiance and

the spectral bands of the SeaWiFS instrument that

are appropriate for that radiance.

5
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Table2. Lamp parameters during uniformity measurements of the GSFC sphere.

Lamp

Number

1

2

3

4

5

6

7

8

9

10
11

12

13

14

15

16

Lamp Hours Lamp Current [A] and Voltage [V_

11 April 12 April [A] [V] [A] [V] [A] IV]

1.0 6.501 7.144

6.501 7.148

6.501 6.984

6.501 7.196

6.500 7.065

6.500 7.274

6.500 7.144

6.500 7.016

6.501 7.173

6.501 7.359

6.501 7.200

6.501 7.138

6.500 7.237

6.500 7.192

6.500 7.159

6.500 7.455

7.0

6.0

6.0

6.0

4.5

4.5

4.5

4.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

6.501 7.138

6.501 7.142

6.501 6.977

6.501 7.187

6.499 7.057

6.499 7.270

6.499 7.140

6.499 7.001

6.501 7.136

6.501 7.141

6.501 6.976

6.501 7.186

[A] IV]
6.500 7.134

The SXR was operated at an overall gain of unity and

the digital voltmeter was programmed to average over 10
power line cycles, with the autozero mode enabled, and

the number of samples set to 10. At each position, five

readings of the digital voltmeter were recorded, and the

five results along with the average and standard deviation
were stored in an American Standard Code for Information

Interchange (ASCII) file.
The standard deviations for the measurements in the

exit aperture corresponded to a relative standard uncer-

tainty of approximately 0.003%. The procedures for each

measurement consisted of recording the lamp .settings in
a laboratory notebook, measuring the SXR background

signal, and entering this value in the data acquisition pro-

gram. Then, under computer control, the signal at the
center coordinates for the scan was measured, and a hor-

izontal scan from left to right (facing the sphere) at the
lowest vertical position was made. The horizontal scans

were repeated for all the vertical positions, and two read-
ings at the center coordinates were made between each
horizontal scan. The data files consist of a header section

containing the relevant information followed by the stage

position and signal data. Each complete mapping took
about 25 minutes.

The average current and voltages for the lamps dur-
ing the three measurements for each radiance level of the

GSFC sphere are given in Table 2, as well as the number

of hours that the lamps were operated for these tests (11
and 12 April 1995). For all of the measurements, the cur-

rent for each set of four lamps was stable to within 1 mA,
which corresponded to the precision of the indicators on

the power supplies. The voltage for a particular lamp was

stable to within 1 mV during a given lamp configuration,

and changed by as much as 15mV when going from the

16-1amp to the 8-1amp configuration. The repeat mea-
surements at the center of the scan indicate that the com-

bination of the GSFC sphere radiance and the SXR was

stable to between 0.005-0.05%, except in the case of the

measurement at 411.5 ran in the single lamp configuration,
when this value was 0.14%. These variations correspond to
the standard deviation of the measurements at the center

of the scan position.

The results are shown in Figs. 2-5 in the form of con-

tour plots. The net average signal at each scan position

was normalized by the average of the net signal recorded

for the center scan position. Scan positions that corre-

sponded to a view of the edge of the sphere aperture were

excluded. The 16-1amp configuration is shown in Fig. 2,
the 8-1amp in Fig. 3, the 4-1amp in Fig. 4, and the 1-lamp

in Fig. 5. The minimum contour corresponds to a square
about 30 cm on a side. Within the square, the maximum

and the minimum value for the normalized net signals are
also indicated for each of the three wavelengths and the
four radiance levels. All of the data indicate a local min-

imum in the upper left-hand quadrant when facing the
sphere, and there seems to be little dependence on wave-

length for a given lamp configuration.
Table 3 summarizes all of the results in terms of the

peak-to-valley variability using the minimum and maxi-

mum values. The 16-1amp and 8-1amp configurations show

similar variability, between 0.6-0.9%. The variability of
the 4-1amp configuration is greater, between 1.1-1.2%, and

the pattern of variability is consistent with the lamp ar-

rangement (Fig. 1). The greatest variability is observed for

the 1-1amp configuration, between 2.1-2.3%, and again the

pattern is consistent with the lamp arrangement.
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Fig. 2. Contour plot of the radiance in the exit aperture normalized to the average of the measurements
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Table 3. Results of the uniformity studies for the
GSFC sphere presented as the peak-to-valley vari-
ability in }ercent.

Lamps SXR Wavelengths [nm]

On 411.5 441.6 487.1 548.0 661.8

1-16

1-8

1-4

1

0.76 0.61 0.84

0.67 0.78 0.87

1.10 1.14 1.24

2.27 2.14 2.15

1.3 SPECTRAL RADIANCE

The spectral radiance at the center of the exit port
of the GSFC integrating sphere source was determined at

wavelengths from 380-1,100nm with 16, 8, 4, and 1 lamp

operating. Signals as a function of wavelength from both a

calibrated radiance source and from the sphere were mea-

sured, and the spectral radiance of the sphere was deter-
mined by the following procedure. Assuming S and S are

the signals from sources with known and unknown spectral

radiance, respectively, the simplest measurement equation
for these signals is given by

= LR (1)

and

= LR (2)

where L and L are the known and unknown spectral ra-

diances of the sources, respectively, and R is the spectral

radiance responsivity (SRR) of the detector system. Mea-

suring the signal from a source with a known spectral radi-

ance, therefore, determines the SRR of the detector, from
(1), which is then used in (2) along with the measured
signal from the source with the unknown radiance to de-

termine the spectral radiance of the unknown source.

The effects of radiant flux from wavelengths outside of
the nominal spectral bandpass of the detector have been

neglected in (1) and (2), as well as effects from a nonlinear
response of the detector. To minimize these effects as much

as possible, the known and unknown spectral radiances

of the sources should be as similar as po6sible. For the

measurements described in this effort, this was achieved

by determining the spectral radiance of the sphere with 16

lamps operating from the known spectral radiance of a gas

filament lamp. The spectral radiance of the sphere with 16

lamps operating was then used to determine the spectral
radiance of the sphere with 8, 4, and 1 lamp operating.

1.3.1 Experimental Procedures

1.3.1.1 Equipment

The GSFC integrating sphere source and its accom-
panying power supply were described in Sect. 1.1. The

source of known spectral radiance was a gas-filled tungsten

Early, B.C. Johnson, J.L. Mueller, and C.C. Trees

ribbon filament lamp with the designation 92-04. This

lamp was calibrated for spectral radiance by the Facil-

ity for Automated Spectroradiometric Calibrations (FAS-

CAL) at NIST. The current through the lamp was sup-

plied by an HP 6032A power supply and monitored by
an HP 3457A digital voltmeter which measured the volt-

age across a calibrated shunt resistor. The detector sys-

tem consisted of imaging optics, a prism-grating double
monochromator with adjustable slit widths, and a silicon

photodiode with an adjustable gain. A metal mask with
a 0.6 x 0.8 mm 2 hole in front of the entrance slit of the

monochromator defined the imaged area of the source. De-

tails of this system can be found in Mielenz et al. (1990).
The voltage output of the silicon photodiode was mea-

sured by an HP 3457A digital voltmeter. The entire detec-

tor system was mounted in a box on a carriage which was

translated horizontally to view either the filament lamp or
the integrating sphere. The wavelength of the monochro-

mator and the position of the carriage were under com-
puter control; the computer recorded the monochromator

wavelength as determined by an absolute encoder, and the

voltage from the silicon photodiode was measured by the
voltmeter. A measurement generally consisted of a wave-

length scan over a given range, in which the signal from the
photodiode was recorded at discrete wavelengths within

the range.

1.3.1.2 Auxiliary Calibrations

Two calibrations were performed prior to measuring

the spectral radiance of the integrating sphere. The first

determined the actual wavelength setting of the monochro-

mator in terms of the wavelength measured by the encoder,

while the second determined the ratio of the gains of the
silicon photodiode.

The wavelength calibration of the monochromator was

determined by viewing, with the detector system, the exit
port of a small integrating sphere which had a line source at

the entrance port. The line source was either a HeNe laser

or a gas emission lamp. Wavelength scans were performed

over ranges that included the line source wavelengths. The
HeNe laser line at 632.816 nm was scanned with monochro-

mator slit widths ranging from 0.125-1.000mm. From
these scans, the bandwidth of the monochromator was de-

termined from the difference in wavelengths at which the

signals were half that of the maximum signal. The disper-

sion of the monochromator is approximately 4.25 nm mm- 1

at 632.8 nm and increases slightly with a decrease in slit
width. The centroids of the HeNe laser line were also de-

termined from these scans, and were all within 0.015 nm
of each other; thus, the slit width has a minimal effect on
the centroid of a line source.

Gas emission lamps were chosen which had intense sin-

glet lines, within the wavelength range 350-1,100nm, and

were separated from other lines by at least 2 nm. Wave-

length scans of the lines from At, Hg, Ne, and Xe lamps
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were usually performed with 0.25 mm slit widths at 0.05 nm
intervals over 4 nm ranges centered on the wavelengths of
the lines. A few of the scans of lines from the Ne lamp

were performed with 0.125mm slit widths in order to re-
solve the lines that are close together in wavelength. The

centroids of the emission lines, in terms of the encoder

wavelength, were calculated from the scans, and the differ-
ences between the actual wavelengths of the lines and the

centroid wavelengths as a function of centroid wavelength

were fit with a third-order polynomial. The actual wave-

length of the monochromator, therefore, is given by the en-

coder wavelength plus the fit of the difference. Using this
calibration, the standard uncertainty in the wavelength of
the monochromator was 0.2 nm.

While the magnitude of the spectral radiance of the gas
filament lamp was several times that of the sphere with

16 lamps operating, the spectral distribution was similar.

Therefore, effects from stray light in the detector system
were minimized, but different gains for the photodiode had

to be used when measuring the two sources. The gain ra-

tio is simply the ratio of the higher gain to the lower gain,

and is equal to the ratio of the signals at those two gains.
The gain ratio was determined by viewing the gas fila-

ment lamp, fixing the wavelength of the monochromator

at 700 nm, and recording the signals from the silicon pho-
todiode at consecutive gain settings. The slit width was

adjusted so that a nearly full-scale signal was obtained at
the higher gain setting. Average signals were determined
four times at gains of 108, 109, and 101° with slit widths of

0.3 mm and 1.2 ram. The gain ratio for gains of 101° and
l0 s was 99.975751 ± 0.011240.

1.3.1.3 Alignment

Proper alignment of both the gas filament lamp and

the exit port of the integrating sphere with the optic axis
of the detector system is critical for correctly determin-

ing the spectral radiance of the integrating sphere. The
beam from a HeNe laser mounted behind the exit slit of

the monochromator, and passing through the monochro-

mator and the imaging optics, defined the optic axis for

the detector system.
The gas filament lamp was mounted on a bipost base

attached to tilt and translation stages on an optical table.

The lamp was operated at half its normal current for the

purpose of optical alignment. Tilt and translation stages
were adjusted so that the laser beam defining the optic

axis passed through the notch in the lamp filament, as
well as the tip of an arrow etched into the back of the

lamp envelope. This oriented the filament perpendicular

to, and centered vertically on, the optic axis. The lamp

was then translated to center the laser beam horizontally

on the filament. Finally, the lamp was translated along the

optic axis to focus the image of the filament onto the mask,
which is in front of the entrance slit of the monochromator.

The integrating sphere was placed on the floor next to

the optical table. The front of the exit aperture of the

sphere was placed the same distance--29.0 cm--from the

detector system, as was the gas filament lamp. The center

of the cover of the exit aperture was marked previously

with a cross, and a glass slide was placed over it. Both

the rotation of the integrating sphere about a vertical axis

and the height of the rear sphere frame were adjusted to
reflect the laser beam back onto itself, thereby making the

exit aperture perpendicular to the optic axis. The height

of the integrating sphere and the position of the carriage

were adjusted to center the exit aperture on the optic axis.

These rotation and height adjustments were iterated sev-
eral times to center the laser beam on the cross and reflect

it back off itself. The exit aperture was centered to within

2mm, but the cover over the exit aperture was slightly

bowed, so the optic axis was perpendicular to the exit aper-
ture to within 2 ° .

The SXR was placed on a tripod behind the carriage

containing the detector system and oriented to view the

center of the exit aperture of the integrating sphere. The

distance from the exit aperture to the front plate of the
SXR was 136 cm.

1.3.1.4 With 16 Lamps

The gas filament lamp was operated at 41.6 A, the same
current at which it was calibrated for spectral radiance

at FASCAL, with an uncertainty of 0.2 mA. All 16 of the

lamps of the integrating sphere were operated at 6.5 A. The

slit width of the monochromator was chosen by setting the

wavelength to 670 nm, viewing the gas lamp, and adjusting

the slit width to yield a signal close to the full scale for

that gain setting. This resulted in a slit width of 0.9 mm,

corresponding to a bandpass of 4.2 nm at a wavelength of

632.8 nm. The voltmeter was configured to average over

100 power line cycles and to autozero.

Wavelength scans of both the gas filament lamp and

the integrating sphere were performed from 360-1,100 nm

at 10nm increments, and took 20 minutes to complete.

Three voltage signals were recorded at each wavelength,

and gains of l0 s and 101° on the silicon photodiode were

used with the gas filament lamp and the integrating sphere,

respectively. The gas filament lamp was scanned first, and

then the carriage with the detector system was translated

to view the integrating sphere. Another wavelength scan

was performed, and the process was completed by trans-

lating the carriage back to the gas filament lamp for a final

wavelength scan. The radiance of the integrating sphere
was measured with the SXR before and after each wave-

length scan with the detector system.

1.3.1.5 With 8, 4, and 1 Lamp

The procedure for measuring the radiance of the inte-

grating sphere with 8, 4, and 1 lamp was similar to that

given above for 16 lamps. The slit width was increased to

3.0 mm (12 nm bandpass) in order to maximize the signals
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fromtheintegratingspherewhenall 16lampswereoper-
ating,andthegainof thesiliconphotodiodewasfixedat
101°. Wavelengthscansoftheintegratingspherewereper-
formedwith 16,8,4, and1lampoperating,andtheradi-
ancewasmeasuredbytheSXRbeforeandaftereachscan.
Afterall the lampswereturnedoff, thebackgroundsig-
nalofthesiliconphotodiodewasdeterminedateachgain.
This backgroundsignalwas-6.733x 10-5V+ 0.846×
10-sv at a gainof l0s and6.0771x 10-4V±3.1762x
10-aV at againof 10l°.

Thetotal accumulatedoperatingtimefor the lamps
of the integratingsphereduringthesemeasurementswas
9hoursfor lamp1, 8.5hoursforlamps2-4,8 hoursfor
lamps5-8,and7.5hoursfor lamps9-16. Thevoltages
acrossthe lampswerecomparableto thoselistedin Ta-
ble2, withvariationsin thevoltageof eachlamponthe
orderof severaltensof millivolts.

1.3.2 Results

For each wavelength scan, the data were reduced to
an average corrected signal as a function of wavelength.

First, the wavelength of the monochromator, given by the

encoder, was converted to the actual wavelength using the

results from the calibration process (Sect. 1.3.1.2). Second,

the three voltage measurements at each wavelength were
averaged with the standard uncertainty given by the stan-

dard deviation of the mean. Third, the background signal

of the photodiode for that gain was subtracted from the
average signal, and the standard uncertainty of the back-

ground signal was propagated. The resulting signal as a

function of wavelength was fit with a natural cubic spline to

wavelengths from 380-1,100nm at 10 nm increments. The

standard uncertainty of the fit signal was taken to be the
standard uncertainty of the signal at the actual wavelength

closest to the fit wavelength.

1.3.2.1 With 16 Lamps

The spectral radiance of the gas filament lamp had

been determined by FASCAL at 34 wavelengths from 225-

2,400 nm, and the standard uncertainty was given at seven

of those wavelengths. Both the spectral radiance and the

standard uncertainty as a function of wavelength were fit
with a natural cubic spline to the wavelength range 380-

1,100nm at 10 nm increments. The corrected, average sig-

nals from both scans of the gas filament lamp were aver-

aged and the uncertainties of the signals were propagated.
These final signals were divided by the spectral radiance to

obtain the SRR of the detector system with slit widths of

0.9 mm and a gain of l0 s. The results are shown in Fig. 6a,

where the SRR is plotted as a function of wavelength. The

SRR has abrupt changes near 580, 780, and 980 nm, which
are caused by the optics of the detector system.

The spectral radiance of the integrating sphere with all

16 lamps operating was obtained by dividing the averaged,
corrected, and fitted signal by the SRR, determined in the

Early, B.C. Johnson, J.L. MueUer, and C.C. Trees

preceding paragraph, and by the gain ratio determined in

Sect. 1.3.1.2. The spectral radiance at 760nm was ob-
viously low when compared to the spectral radiances at

neighboring wavelengths. This was due to the local mini-
mum in the SRR at that wavelength, as shown in Fig. 6a.

Consequently, the spectral radiance from 660-860 nm, ex-
cluding the value at 760 nm, was fit with a second-order

polynomial, and this fit was used to calculate the spectral
radiance at 760 nm. The resulting radiance, as a function

of wavelength, is plotted in Fig. 6b.
Sources of uncertainty in the spectral radiance of the in-

tegrating sphere arise from the gas filament lamp radiance

and current, the detector system signals and wavelength,
and the sphere alignment. The standard uncertainty in the

spectral radiance of the gas filament lamp is given from the
calibration performed by FASCAL. The 2 mA uncertainty

in the current through the lamp yields a relative standard

uncertainty in the spectral radiance dL/L given by

L

where ,_ is the wavelength in nanometers and dI is the

current standard uncertainty in milliamps (Walker et al.

1987b).
The standard uncertainty in the signal is the propa-

gation of the uncertainties from the average signals, the

background signal, and the gain ratio. The relative stan-
dard uncertainty in radiance due to an uncertainty in the

wavelength is given by the following:

dL dL dA

T = d), L" (4)

An analytical expression for the derivative of the radiance
with respect to wavelength was obtained by differentiating

the Wien radiation law. Fits of the spectral radiance of
each source to the Wien radiation law were used to obtain

the parameters needed for the analytic expression.

The results of the SIRREX-3 activity (Mueller et al.
1995) show that the maximum change in radiance as a
function of viewing angle is 1.2% at 5°; therefore, assum-

ing a maximum uncertainty of 2° along either the horizon-
tal or the vertical axis, the relative standard uncertainty

is approximately 0.0020. The relative standard uncertain-
ties, from each of the sources detailed here in determin-

ing the spectral radiance of the integrating sphere with
16 lamps operating, are given in Table 4 (at four selected

wavelengths). Both the detector signal and the wavelength
become significant sources of uncertainty at the shorter

wavelengths.

1.3.2.2 With 8, 4_ and 1 Lamp

The SRR of the detector system with the larger slit
widths and higher gain used with 8, 4, and 1 lamp oper-

ating was obtained from the wavelength scan of the inte-

grating sphere with 16 lamps operating. The average, cor-
rected, fit signals from this scan were divided by the spec-
tral radiance, calculated in the preceding section, to yield
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the SRR. This responsivity has the same spectral shape as

that shown in Fig. 6a, although it is larger in magnitude

because of the larger slit widths and higher gain. Also,

this SRR was determined only once since no lamps were
operating after the series of measurements, detailed in this

section, were complete.

Table 4. The relative standard uncertainties (in
percent) from the indicated sources at the given
wavelengths for the spectral radiance of the GSFC
sphere with 16 lamps operating.

Source of

Uncertainty

Lamp Radiance

Lamp Current

Detector Signal

Detector Wavelength

Sphere Alignment

Wavele_h [nm]

400 600 800 1,000

0.44 0.33 0.29 0.27
0.02 0.02 0.01 0.01

0.14 0.03 0.03 0.03

0.26 0.08 0.02 0.00

0.10 0.10 0.10 0.10

RSStTotal 0.54 0.35 0.31 0.29

t Root sum squared.

The spectral radiance of the integrating sphere with 8,
4, and 1 lamp operating was obtained by dividing the av-

erage, corrected, fit signal from the wavelength scan with

each lamp combination by the SRR. Again, while the shape

of the spectral radiance for each lamp combination is simi-
lar to that shown in Fig. 6b, the magnitude decreases with

decreasing number of operating lamps, as expected. The

ratio of the spectral radiance with a given number of lamps

operating to the spectral radiance with 16 lamps operat-
ing, is given in Fig. 6c as a function of wavelength. The

ratios are all less than the nominal values of 0.5, 0.25, and
0.0625 for 8, 4, and 1 lamp, respectively, but approach

these values at longer wavelengths. The spectral radiance

of the integrating sphere at each lamp combination, along
with the relative standard uncertainty, is given in Table 5.

The number of sources of uncertainty in the spectral

radiance are considerably reduced from those of the pre-
ceding section. The uncertainties in the spectral radiance

with 16 lamps operating are given by the results from the
preceding section, and those from the detector signals are
still present. However, the uncertainty in radiance from

the current through the lamps of the integrating sphere is

unknown, and the encoder wavelengths and sphere align-
ment are unchanged for all the wavelength scans, so there

is no uncertainty associated with them.

1.4 Ancillary SXR Measurements

In order to track the performance of the GSFC sphere
during SIRREX-4, as well as the post-environmental Sea-

WiFS calibration, the SXR was used to measure the spec-

tral radiance of the GSFC sphere for the four radiance
levels in between the measurements with the spectrora-

diometer. These measurements were compared by fitting
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Table 5. The radiance, L [#Wcm -2 nm -1 sr-1], and relative standard uncertainty, 6 [%], as a function of
wavelength, A, of the GSFC sphere with the indicated number of lamps operating.

A

[nm]
380 1.943 0.61

390 2.449 0.57

400 3.047 0.54

410 3.753 0.51

420 4.536 0.50

430 5.357 0.49

440 6.239 0.47

450 7.181 0.46

460 8.188 0.45

470 9.251 0.44

480 10.36 0.43

490 11.52 0.42
500 12.73 0.41

510 13.96 0.40

520 15.22 0.40

530 16.51 0.39

540 17.80 0.38

550 19.12 0.38
560 20.43 0.37

570 21.76 0.37

580 23.05 0.36

590 24.34 0.36

600 25.61 0.35

610 26.86 0.35

620 28.10 0.34
630 29.29 0.34

640 30.45 0.33

650 31.62 0.33

660 32.70 0.33

670 33.76 0.33

680 34.77 0.32

690 35.71 0.32

700 36.67 0.32

710 37.55 0.32

720 38.35 0.32

730 39.16 0.31

740 39.93 0.31

16 Lamps 8 Lamps 4 Lamps 1 Lamp

L ,_ L _ L _ L

0.926 0.68

1.170 0.61

1.459 0.56

1.801 0.53

2.179 0.51

2.576 0.50

3.005 0.49

3.462 0.46

3.952 0.45

4.470 0.44

5.014 0.44

5.580 0.42
6.170 0.42

6.772 0.41

7.392 0.40

8.023 0.39

8.659 0.39

9.306 0.38

9.955 0.37
10.61 0.37

11.24 0.37

11.88 0.36

12.51 0.35

13.13 0.35

13.74 0.34

14.33 0.34

14.90 0.34

15.48 0.33

16.02 0.33

16.55 0.33

17.05 0.32

17.52 0.32

18.00 0.32

18.44 0.32
18.84 0.32

19.24 0.32

19.62 0.31

0.457 0.74

0.579 0.64

0.723 0.58

0.894 0.54

1.082 0.52

1.280 0.50

1.494 0.49

1.722 0.46

1.967 0.45

2.226 0.44

2.497 0.44

2.781 0.42

3.075 0.42

3.377 0.41

3.686 0.40

4.002 0.39

4.321 0.39

4.645 0.38

4.970 0.37
5.297 0.37

5.615 0.37

5.936 0.36

6.250 0.35

6.559 0.35

6.865 0.34

7.161 0.34

7.451 0.34

7.742 0.33

8.011 0.33

8.278 0.33

8.528 0.32

8.766 0.32

9.006 0.32

9.227 0.32

9.430 0.32

9.632 0.32

9.824 0.31

A

[nm]
0.113 1.51 750 40.64 0.31

0.145 1.13 760 41.27 0.31

0.182 0.90 770 41.90 0.31

0.226 0.75 780 42.45 0.31

0.275 0.66 790 42.94 0.31

0.326 0.60 800 43.37 0.31

0.380 0.56 810 43.75 0.31

0.439 0.52 820 44.05 0.31

0.502 0.49 830 44.35 0.30

0.568 0.47 840 44.63 0.30

0.637 0.47 850 44.82 0.30

0.709 0.44 860 44.99 0.30

0.784 0.43 870 45.10 0.30

0.861 0.42 880 45.17 0.30

0.940 0.41 890 45.21 0.30
1.021 0.40 900 45.10 0.30

1.102 0.40 910 45.04 0.30

1.184 0.39 920 45.01 0.30

1.267 0.38 930 44.72 0.29

1.350 0.38 940 44.56 0.29

1.431 0.37 950 44.26 0.29

1.514 0.36 960 44.23 0.29

1.593 0.36 970 44.14 0.29

1.672 0.36 980 43.90 0.29

1.750 0.35 990 43.71 0.29

1.824 0.35 1,000 43.41 0.29

1.898 0.34 1,010 43.12 0.29

1.971 0.34 1,020 42.82 0.29

2.039 0.34 1,030 42.48 0.29
2.106 0.33 1,040 42.14 0.30

2.169 0.33 1,050 41.78 0.31

2.229 0.33 1,060 41.36 0.33

2.289 0.33 1,070 40.93 0.35

2.344 0.32 1,080 40.48 0.40

2.395 0.32 1,090 40.04 0.46

2.446 0.32 1,100 39.62 0.55
2.493 0.32

16 Lamps 8 Lamps 4 Lamps 1 Lamp

L _ L _ L 6 L 6

19.95 0.32

20.27 0.31

20.59 0.31

20.86 0.31

21.11 0.31

21.33 0.31

21.53 0.31

21.67 0.31

21.83 0.30

21.97 0.31

22.07 0.30

22.16 0.30

22.22 0.30

22.26 0.30

22.28 0.30
22.24 0.30

22.21 0.30

22.20 0.30

22.06 0.30

21.98 0.29

21.84 0.29

21.83 0.30

21.80 0.29

21.69 0.29
21.59 0.29

21.45 0.29

21.33 0.29

21.19 0.30

21.03 0.31

20.86 0.32

20.70 0.34

20.48 0.39

20.25 0.45

20.04 0.53

19.83 0.64

19.65 0.81

9.987 0.32

10.15 0.31

10.31 0.31

10.45 0.31

10.57 0.31

10.68 0.31

10.79 0.31

10.85 0.31

10.93 0.31

11.01 0.31

11.06 0.30

11.10 0.30

11.14 0.30

11.16 0.30

11.17 0.30

11.15 0.30

11.14 0.30

11.13 0.30

11.06 0.30

11.03 0.30

10.96 0.30

10.95 0.30

10.94 0.29

10.88 0.29

10.83 0.29
10.76 0.29

10.70 0.30

10.62 0.31

10.54 0.32

10.45 0.34

10.36 0.37

10.24 0.43

10.12 0.51
10.00 0.62

9.883 0.77

9.759 0.97

2.534 0.32

2.573 0.32

2.614 0.32

2.647 0.32

2.677 0.32

2.704 0.32

2.729 0.32

2.745 0.32

2.764 0.32

2.782 0.32

2.794 0.32

2.805 0.32

2.813 0.32

2.818 0.32

2.821 0.32

2.815 0.32

2.811 0.32
2.809 0.32

2.792 0.32

2.781 0.32

2.763 0.33

2.760 0.34

2.757 0.33

2.744 0.32

2.729 0.32

2.708 0.34

2.690 0.37

2.669 0.42

2.643 0.49

2.618 0.60

2.591 0.75

2.559 0.97

2.530 1.24

2.504 1.58

2.486 2.01
2.483 2.58
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Table6. A comparisonofSXRspectralradiancemeasurements(Ls) to thevaluesmeasuredwith thespectro-
radiometerandthegas-filledstrip lampstandard(LG),bothgiveninunitsof#Wcm-2 nm-1 sr-1.

A
{nm]

411.5 3.853 3.869 0.9959

441.6 6.317 6.387 0.9890

487.1 11.22 11.18 1.003
548.0 19.08 18.85 1.012

661.8 32.81 32.89 0.9975

774.8 42.36 42.21 1.003

16 Lamps 8 Lamps 4 Lamps 1 Lamp

Ls LG Ls/LG Ls LG Ls/LG Ls LG Ls/LG Ls LG Ls/LG

1.848 1.857 0.9951

3.040 3.077 0.9881

5.422 5.413 1.002

9.269 9.173 1.010

16.05 16.11 0.9959

20.82 20.74 1.003

0.9188 0.9220 0.9965
1.512 1.530 0.9886

2.702 2.697 1.002

4.626 4.578 1.010

8.026 8.059 0.9958

10.42 10.39 1.003

0.2349 0.2335 1.006

0.3865 0.3895 0.9925

0.6899 0.6880 1.003

1.180 1.167 1.011

2.040 2.051 0.9948

2.642 2.633 1.004

the spectroradiometer results to a cubic spline and interpo-

lating them to the effective wavelengths of the SXR. Cor-
rection was made for a size-of-source effect in the SXR.

The results are given in Table 6 as spectral radiance, and

the SXR values are divided by the spectroradiometer val-

ues. The agreement is within the combined uncertainties

of the techniques; however, a degree of consistency in these

ratios is evident, as shown in Fig. 7. This indicates a possi-

ble error in the absolute calibration because of systematic
effects, such as the calibration coefficients for the SXR or

the calibration data for the strip lamp.

1.5 CONCLUSIONS

spectral dependence to the variability, and there is a con-

sistent region of lower radiance when compared to the av-
erage of the central values. The spectral radiance of the

sphere was determined at four different lamp settings using
both a prism-grating monochromator from 370-1,100nm

every 10 nm and the SXR at its six fixed wavelengths. The

spectral radiance was a smoothly varying function of wave-
length, with a peak of 45.21 #W cm -2 st- xnm- 1 at 890 nm

with all 16 lamps operating. The magnitude of the spectral

radiance scaled approximately with the number of lamps.

The spectral radiances determined by the SXR agreed with
those determined by the monochromator and the standard

lamp within their combined standard uncertainties.

The peak-to-valley variability of the spectral radiance

in the exit aperture of the GSFC sphere is between 0.6-

0.9% when the sphere is illuminated in a symmetric fash-

ion. When only a single lamp is used, resulting in an

asymmetric illumination geometry, these values increase

by more than a factor of two. There appears to be no
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Chapter 2

Revised SeaWiFS Prelaunch Algorithm for the Diffuse

Attenuation Coefficient K(490)

JAMES L. MUELLER AND CHARLES C. TREES

Center .for Hydro-Optics and Remote Sensing/SDSU

San Diego, California

ABSTRACT

The algorithm relating the diffuse attenuation coefficient K(490) at 490 nm to the ratio of water-leaving radiances

Lw (443)/Lw (555) is evaluated through regression analysis of radiometric profiles from oceanographic cruises in

the Arabian Sea, Sargasso Sea, the California Current System, the Gulf of California, and the North and South

Atlantic Oceans. The resulting algorithm coefficients for this wavelength combination are significantly different,

at the 95% confidence level, from those of the CZCS K(490) algorithm based on the ratio Lw(443)/Lw(550).
It is recommended, therefore, that the coefficients from the present analysis, rather than those of the CZCS

algorithm, be used for the prelaunch SeaWiFS K(490) algorithm.

2.1 INTRODUCTION

The diffuseattenuationcoefficientat 490 nm, K(490),

was one of the standard ocean data products calculated

from Nimbus-7 CZCS imagery. Austin and Petzold (1981)

derivedthe Nimbus-7 CZCS algorithm relatingK(490), in

per unit meters, to the ratioof water-leavingradiances

Lw(443)/Lw(550), at wavelengths of 443 and 550nm, as

"Lw(443)" -1'491m_1.

K(490) = 0.022 ÷ 0.088 Lw(550) (5)

Root mean square (rms) uncertainties in K(490) esti-
mated from CZCS data are less than 20% (la) based on

direct comparisons with in situ radiometric profiles (e.g.,

Mueller 1993b).
The SeaWiFS Science Team formally recommended the

Austin and Petzold 1981 algorithm, (5), be adopted as

the prelaunch K(490) algorithm for SeaWiFS data pro-

cessing. This algorithm replaces the CZCS water-leaving

radiances Lw(443) and Lw(550) with the SeaWiFS nor-
ma/ized water-leaving radiances LWN(443) and LwN(555).

Some members of the SeaWiFS Science Team, however,

questioned whether the shift from 550 to 555 nm might

lead to significant systematic errors in SeaWiFS K(490)
estimates if the coefficients in (5) are used. Mueller (1995)

compared K(490) and LwN(443)/LwN(555) derived from

45 radiometric profiles made during recent cruises using

instruments configured with SeaWiFS wavelengths. The

profiles that made up this small sample were contributed

by:

1) C. Trees (San Diego State University [SDSU] Center

for Hydro-Optics and Remote Sensing [CHOIRS]),

16 profiles from the Arabian Sea;

2) G. Mitchell (University of California San Diego

[UCSD] Scripps Institution of Oceanography [SIO]),
18 profiles from the California Current System; and

3) D. Siegel (University of California Santa Barbara

[UCSB]), 11 profiles from the Sargasso Sea.

The logarithmic regression analysis of these data resulted
in the algorithm

LwN(443)
/((490) = 0.022 + 0.0984 _ m -1, (6)

with a standard error of 0.018m -i . The coefficients of

(5) (Austin and Petzold 1981) fell well within the 90%
confidence limits of the coefficients of (6). Mueller (1995)

concluded, therefore, that there was insufficient evidence
to reject the hypothesis that the two algorithms are equiv-
alent.

During the past year, 242 data triplets [of K(490),

LWN (443), and LWN (555)] were accrued using radiometric

profile data from:

a) Three additional cruises in the Arabian Sea (C.

Trees);
b) One cruise in the Gulf of California (E. Valdez, H.

Maske, and their colleagues, of Centro de Investi-

gaci6n Cient_fica y de Educaci6n Superior de Ense-

nada, [CICESE] Baja, California, and J. Mueller of

CHORS); and

18



E-n.Yeh,R.A.Barnes,M.Darzi,L. Kumar,E.A.Early,B.C.Johnson,J.L.Mueller,andC.C.Trees

c) ThefirstAtlanticMeridionalTransect(AMT-1)of
theNorth and South Atlantic Oceans in Septem-

ber/October 1995 (G. Moore of Plymouth Marine

Laboratory [PML], United Kingdom [UK]).

These cruises were carried out, in part, under the Sea-

WiFS Science Team investigations of the participants. The

regression analysis of this larger sample yields algorithm

coefficients with much narrower (95%) confidence limits

than those associated with (6) (Mueller 1995). In contrast

to that earlier result, the new algorithm is significantly

different from (5) (Austin and Petzold 1981).

2.2 DATA AND METHODS

Profiles of spectral downwelling irradiance Ed(z, A) and

upwelling radiance Lu(z, A) at the SeaWiFS wavelengths

(within 2 nm) were obtained from cruises in the:

1) Arabian Sea (C. Trees);

2) California Current System (G. Mitchell);

3) Sargasso Sea near Bermuda and the Joint Global

Ocean Flux Study (JGOFS) Bermuda Atlantic Time

Series (BATS) site (D. Siegel);

4) Central Gulf of California (J. Mueller, E. Valdez
and H. Maske); and

5) North and South Atlantic Oceans, AMT-1 cruise of

September-October 1995 (G. Moore).

Table 7 lists the instruments used in conjunction with the

profiles taken, in addition to where the instruments were
calibrated.

Each calibrated set of profiles of Ed(z, A), L_(z, A),
and Es(A), as measured with each instrument's deck ra-

diometer, was analyzed using the integral least-squares so-

lution of Mueller (1991) to determine profiles of Ka(z, A)

and KL(Z, A), and the vertical attenuation coefficients for

Ea(z, A) and L_(z, A), respectively. The AMT-1 profiles,
however, were analyzed by G. Moore at PML. From these

profiles, the authors extracted irradiance above the sea sur-

face, Es(A), and upwelling radiances just below the sea

surface, Lu(O-, A), for wavelengths (A) of 443 and 555 nm.

This was, together with remote sensing K(490), calculated

by averaging Kd(z, 490) over the first optical attenuation

length, i.e.,

1 f,_O0

K(490) = _9o ] Ka(z, 490)dz,J0
(7)

where z9o is the depth and where

E(490, z) - fo _° Kd(z,ago)az e-1
E(490,0) = e = = 0.37. (8)

Normalized water-leaving radiances LWN(A) for A -_443
and 555 nm are calculated as

F0( )
LwN(A) = Lu(O-,A)tf(A) (9)

where L=(0-,A) and E,(A) are taken from the analyzed

profiles, tf ($) is the upward Fresnel transmittance through

the air-sea interface for radiance, and F0(A) is the mean
extraterrestrial solar spectral flux. Within less than 1%,

tl(443)/tl(555 ) _- 1.0, so that from (9) the ratio of nor-
malized water-leaving radiances at 443 and 555 nm may be

expressed as

LwN( 443) L_(O-, 443)Fo(443)Es(555)
___

LWN(555) Lu(0-, 555)F0(555)Es(443) (10)

From the work of Neckel and Labs (1984), F0(443) = 198.5
and Fo(555) = 190.0 #W cm -: nm -1.

The logarithmic regression model relating K(490) to

the ratio LWN(443)/LwN(555) may be expressed as

[LwN(443)]
In[K(490) - 0.022] = In(A) +Bln LLwN(555)], (11)

where using (5), A = 0.088 and B = -1.491, or from (6),
A = 0.0984 and B = -1.403. The attenuation coefficient

for pure water, Kw (490) = 0.022 m-1, is the minimum pos-

sible value for K(490). The present sample of 242 profile
measurements were used to determine best-fit coefficients

for (11) using simple linear regression.

2.3 RESULTS

Data from the sample described above were combined,

using (10) and (11), to assemble a regression sample of size
N - 242 The linear least-squares fit to this data is

In [K(490) - 0.022] = -2.30261

[LwN(443)] (12)
- 1.29966 In L J'

with the multiple correlation coefficient, R 2 = 0.90, and

a residual standard deviation of 0.293 (in log space). The
scatter of these data are illustrated in Fig. 8, together with

the best-fit regression line defined by (12). Also shown in

Fig. 8, as a dashed line, is (5) (Austin and Petzold 1981).
Equation (12) may be transformed to the form of (5)

as

"LwN( 443)" -1.30o
m -I. (13)

K(490) = 0.022 + 0.1000 LWN(555)

The measured data pairs are compared to (13) in Fig. 9
[LwN(443)/LwN(555) on a logarithmic scale compared to

linear K(490)].
The linear residual standard deviation of/<(490) (stan-

dard error of the estimate) associated with (13) is

SKi -----

1/2

O.O17m -1,

(14)
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Fig. 8. Scattergram comparing K(490) and the normalized ratio LWN(443)/LwN(555) from the Ara-

bian Sea, California Current System (CCS), Sargasso Sea, Gulf of California (GoCal), and the North

and South Atlantic (AMT-1). The solid line is the least-squares fitto the data, and the dashed line

illustratesthe CZCS K(490) algorithm of Austin and Petzold (1981). The resulting regression equation

is In [K(490)- 0.022] = -2.30261 -1.29966 In [Lw_v(443)/Lwjv(555)] with R 2 = 0.90; and the standard
error of the estimate isa = 0.017m -I.
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Fig. 9. Linear K(490) versus a logarithmic scaling LWN(443)/LwN(555) display of the data and re-

gression fit (solid curve) from Fig. 8.
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Table 7. This table lists the instruments used, as well as where the instruments were calibrated, for their
respective set of profiles.

Profiles Instruments Used CaJibration Site

Arabian Sea MER-1032t CHORS

MER-2040t

California Current System MER-2040t CHORS

SIIt

Sargasso Sea UCSB

Gulf of California CHORS

North and South Atlantic Oceans (AMT-1) PML

MER-2040t

PRR-600

OCI-200

All four MER instruments were manufactured by Biospherical Instruments, Inc. (BII), of San Diego, California.

and the fit is unbiased. When (5) is applied to this data

set, the linear residual standard deviation (in this case the

standard error of prediction) SKx = 0.018m -1, and the

mean linear bias of the Austin and Petzold (1981) esti-
mates of/_(490), is -0.007m -1.

The (upper, lower) 95% confidence limits of the inter-

cept in (12) are (-2.27452, -2.36003), and the 95% confi-

dence limits of the slope are (-1.24596, -1.35335). Both

the intercept (-2.4303) and slope (-1.491) of the natural
log-transform of (5) fall outside these limits. On this basis,
there is sufficient evidence at the 95% confidence level to

reject the hypothesis that (5) is equivalent to (13).

2.4 DISCUSSION

Figures 8 and 9 emphasize scatter at different levels of

K(490). In the log-log display of Fig. 8, the largest devia-

tions from the regression fit occur at low values of K(490),
within less than 0.01 m -1 of pure water. When the K(490)

data are displayed on a linear axis (Fig. 9), it is immedi-

ately apparent that these deviations at low K(490), which

appear to be very large in Fig. 8, are actually very small

discrepancies. In fact, the linear K(490) scale (Fig. 9)
clearly shows that the largest contributors to the linear

standard error of the estimate, SKx, (14), are at the high

values [K(490) >_ 0.1].

The analysis outlined in this paper addressed the ques-

tion of whether the Austin and Petzold (1981) K(490) al-

gorithm, (5), which is based on the Lw(443)/Lw(550) ra-

tio, will produce accurate K(490) estimates when it is used

with the LwN(443)/LwN(555) ratio. The log-transformed

coefficients of (5) fall outside the 95% confidence limits of

the coefficients of (12), the log-linear least-squares fit to

the present sample of 242 [K(490), LWN(443)/LwN(555)]
pairs. Therefore, there is sufficient evidence at the 95%

confidence level to reject the hypothesis that (5) is equiva-

lent to (13). The difference between the two sets of predic-

tions, while small, is nevertheless statistically significant at

the 95% confidence level. Changing this algorithm's coef-

ficients, therefore, will improve the statistical uncertainty

associated with the SeaWiFS K(490) at-launch products.
This change should be simple to implement, and the au-
thors recommend that it be done.

In closing, note that the normalized water-leaving ra-
diances used here were not corrected for either instrument

self shading, or the ocean bidirectional reflectance distri-

bution function (Morel and Gentili 1996). Furthermore,

the Ed(490, z) profiles from which K(490) values were de-
termined were not corrected for Raman scattering. These

corrections, which are assumed to be small, are deferred for

possible use in a postlaunch refinement of this SeaWiFS al-

gorithm.
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Chapter 3

A Simplified Out-of-Band Correction

Algorithm for SeaWiFS

EUENG-NAN YEH

ROBERT A. BARNES

General Sciences Corporation
Laurel, Maryland

ABSTRACT

The SeaWiFS instrument will scan through a broad area of known radiance, and the measurement for each

band may contain signals from outside of the desired bandwidth. A calculation that will quickly remove the

out-of-band contamination is presented here.

3.1 INTRODUCTION

SeaWiFS is an eight-band filter radiometer. For Sea-

WiFS, as well as for other satellite instruments managed at

GSFC, the spectral response of the instrument is divided
into in-band and out-of-band responses. The in-band re-

sponse includes the wavelength region where the response

of the band is greater than 1% of the maximum response;

at all other wavelengths, the response is out-of-band.

For each SeaWiFS band, the out-of-band response is

within the specification for the instrument (Barnes et al.

1994a). These out-of-band responses, however, must be ac-
commodated in the data reduction algorithms for on-orbit

SeaWiFS measurements. The original out-of-band correc-
tion algorithm was derived for measurements by SeaWiFS

from a radiant source with the spectral shape of a 5,900 K

blackbody (Barnes et al. 1994b). This is the reference

source spectral shape in the SeaWiFS performance spec-

ifications (Barnes et al. 1994a). Subsequently, an out-of-

band correction scheme was developed that uses SeaWiFS

measurements to determine the spectral shape of the up-
welling Earth radiances which SeaWiFS measures (Barnes

et al. 1995). Although this correction technique gives ac-

curate out-of-band responses, the technique requires an al-

gorithm that uses a great deal of computation time. As

a result, Barnes et al. (1996) derived an alternate ap-
proach that produces out-of-band calculations much faster

in terms of computer time. The equations in Barnes et

al. (1996) are the basis for the computer code presented
here. A benchmark test of 200 SeaWiFS scan lines has

shown that the new algorithm operates about 120 times

faster than its predecessor. In addition, the benchmark
test showed the calculated results from the two algorithms

to be equivalent at the 0.1% level.

3.2 THE out_bandsub ALGORITHM

Prior to the applicationof atmospheric correctionto

derivegeophysicalvalues,the level-1radiancesfrom Sea-

WiFS need an out-of-bandcorrection.The correctionsfor

out-of-bandresponse range from about 0.5_ to more than

5%. The level-1data correctionroutine,out_bandsub,

takes an array of calibratedlevel-lbradiancesand, after

applyingthe out-of-bandcorrection,returnsa correspond-

ing array of correctedlevel-lbdata. This subroutine is

designedto work one scan linewith eightbands at a time.

This procedure iswrittenin C.

The input arguments forthisalgorithm are:

1) rad (realnumber, array size8× 1285): the level-lb

radiances(bands I-8) per line;

2) oxygen (realnumber): the oxygen absorption cor-

rectionfactor;equals1 iftad(76 nm) isalreadycor-

rected,otherwiseitequals 1.12;

3) xsample (integer):number ofpixelsper line(max-

imum of 1,285).

There isonly one output argument, which is:

tad (realnumber, array size8x 1285): the level-lb

out-of-bandcorrectedradiances(bands I-8).

This simplifiedout-of-bandmethod appliesthe ratioof

in-band response to the totalband response as an out-of-

band correctionfactor(kb,Table 11, Barnes et al.[1996])

foreach band. This processwillgo through each pixelof
a line:

for (m - 0; m < xsample; m++) \(

original_input_8 = rad[7] [m] ;

orlglnal_input_6 = rad[5] [m] ;

orlginal_input_5 - rad[4] [m] ;

for (n ffiO; n < 8; n++) tad[n] [In] *ffiKb[n] ;.
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Before bands 8, 6, and 5 can be further revised, the
oxygen absorption effect and radiance at 765 nm should be
established:

xoffr = rad[6] [m] * oxygen;

OUT9 = 2 m rad[7] [m] - XOUT;.

The simplified out-of-band calculation of SeaWiFS

band 8 divides the spectral response, based on a spectrally

fiat source, into six components (Fig. 20, Barnes et al.

[1996]). These response values, S, are listed in Table 13 of

Barnes et al. (1996); thus, for a given pixel the new k b of
band 8 is

XN = rad[7][m] m S[4];

XD = radiO] [m]mS[O] + rad[3] _]*S[I] + rad[4] [m]mS[2]
+ x0ffr.sc3] + XN + otrr9.s[5];

NEW Kb - XN / XD;

and the final result for band 8 is

tad [7] [m] = NEW_Kb* original_input_8 ;.

The correction calculations for band 6 is a simplified

version of that for band 8. The spectral response, S, is

divided into three components (Table 14, Barnes et al.

[1996]). The revised k b of band 6 is

XN = radfS][m] * S[l];

XD = rad [2] [m] mS [O] + XN + rad [7] [nO mS [2] ;

NEW_Kb = XN / XD;

and the final result for band 6 is

radCS] [m] - NEW_Kb * original_input_6;.

Similarly, the three components of the band 5 spectral

response, S, are listed in Table 15 of Barnes et al. (1996).
The revised k b of band 5 is

XN = rad[4][m] m S[1];

XD = rad[l][m]*S[O] + XN + rad[5][m]*S[2];
NEW_Kb = XN / XD;

and the final result for band 5 is

rad[4] [m] = NEW_Kb * origlnal_input_5;
).
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Chapter 4

SeaWiFS Stray Light Correction Algorithm

EUENG-NAN YEH AND MICHAEL DARZI

General Sciences Corporation

Laurel, Maryland

LAKSHMI KUMAR

Hughes STX
Lanham, Maryland

ABSTRACT

SeaWiFS will scan through not only the dark ocean surface, but also the bright land, clouds, and ice objects.

Because of stray light in the SeaWiFS instrument, light from these bright sources can contaminate ocean
measurements several pixels away from a bright source. A mathematical formula that can be used to correct
this contamination is discussed here.

4.1 INTRODUCTION

Two routines were developed, stray_light_lac and

stray_light_gac, to apply a stray light correction to Sea-

WiFS level-1 LAC and GAC data, respectively. The rou-

tines are integrated as part of the operational level-la read

routine; their algorithms are based on the methodology de-

scribed by Barnes et al. (1995). The routines perform radi-
ance manipulations to label pixels that are bright sources

or are in the vicinity of bright sources. In addition, the

radiances of pixels that are along scan to, and near, a

bright source are corrected for stray light contamination

from that bright source. Because the input data to the
routines are radiances, the calibrated levet-1 data, i.e.,

level-lb data, must be used.

The labelling identifies pixels that are part of a bright

source, near a bright source in the along-track direction,

diagonal to the ends of a bright source, or near a bright

source in the along-scan direction. These along-scan pixels
are correctable for stray light contamination as a function

of their distance from the bright source. For this reason,

they are labelled by their pixel distance from the nearest

edge of a bright source to the right of that pixel and from

the nearest edge of a bright source to the left of that pixel.
For LAC, 14 pixels to the left and 12 pixels to the right of

a bright source edge are considered to be affected by stray

light from that bright source. For GAC, 3 pixels on each
side of a bright source are so considered. If a stray light

pixel is within this range between two bright sources, the
pixel distance to the bright source on the right is multiplied

by 1,000; the product is then added to the pixel distance

to the bright source on the left.

Both routines are designed to work on individual scan

lines even though along-track processing is required. This

is accomplished by using a buffer that retains a rolling
window of consecutive scan lines.

4.2 LAC CORRECTION

There are two major steps involving the SeaWiFS LAC

image stray light correction for level-lb data (Fig. 10).

The first step is to identify the left and right bright source

edges. Two conditions, radiance value and gradient value,

are applied to SeaWiFS level-1 band 8 (865 nm) radiance

(L8) to identify these edges. The radiance of a pixel has

to exceed a certain threshold, Stray_thresh, which is de-
fined as a fraction of the value of L8 at knee 1. The value

of the typical stray light fraction, Styp frac, is given as
0.9. The radiance gradient, AL, is defined as the L8 dif-

ference between two adjacent pixels n + 1 and n. The
left edge is found if the radiance value is greater than

Stray_thresh and AL is greater than the typical gradi-
ent threshold value. This value is defined as a fraction of

the bigger one of the following two quantities: Ltypica 1(8),

or the difference between L8 of pixel n ÷ 1, i.e., L8[n ÷

1], and Ltypical(8 ). The Ltypical(8) is the typical quan-

tity of sea surface radiance measured by band 8 and the
value is 1.09mWcm-2#m -lsr -1. The radiance fraction

Ltyp_frac is given as 0.25. The right edge is found if the

radiance value is greater than Stray thresh and A L is

greater than the typical gradient threshold value, which
is defined as a fraction of the bigger one of the following

two quantities: Ltypical(8), or the difference between L8 of
pixel n, i.e., LS[n], and Ltypical(8).
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_all the routine for each scan line in the scene. ,)
If along-track processing is requested:
Will work with a rotating buffer of 5 scans. The buffer's center scan, s, will be
processed for bright sources, along-scan flagging, and corrections.
S will be returned by the routing after it rotates it to the first (earliest) scan in the buffer.

, Otherwise: Will work with one scan, S, at a time.

Do for entire scan S: Flag as BT those pixels whose band 8 radiances

are greater than the band 8 calibration knee 1 value.

I Pixel index--0 I

I Increment pixel index ]

_'es _.. 0 has been detected

]-yes

Mark up to 14 pixels (that are not flagged as BT, AT, or
DIAG pixels) to the left of LE b), their distance from LE.

Keep incrementing n and testing for RE until

RE is found or there are no more pixels left in S.

I Mark up to 12 pixels (that are not flagged as BT, AT, or

I DIAG pixels) to the right of RE b)' their distance from RE.

I If no LE had been found, assume that the first pixel in scan is the LE.

I Assume that the last pixel in scan is the RE. I _J

[ Flag all pixels between and includin$ LE and RE as BT pixels.

For each BT pixel, flag corresponding pixels in earlier scans S- 2 and S- 1 (if there are such scans

in the buffer and the pixels are not flagged asBT pixels), and later scans S+l and s+2 (if there
are any such scans in the buffer)r as being along-track contaminated (AT).
Flag pixels diagonally to the left (if any) of LE and diagonally to the right (if any) of RE in S- 1
and S+ 1 (if there are any such scans in the buffer and if the pixels in S- 1 and S+l are not

marked as BT) as being diagonally contaminated (DIAG).

no _ Apply correction to pixels marked by their distance from abright source edge but are not otherwise flagged.

$
(Return earliest scan (S, S-1, or S-2) with corrected radiances and flags.)

+
Identify all pixels flagged as BT, AT, DIAG, or whose radiances have been corrected by I

using the level-2 quality control stray light flag. If that flag has been designated as a mask, Ithen all level-2 products for the identified pixels will not be generated.

Fig. 10. A logic flow diagram for the detection and correction of stray light in SeaWiFS LAC level-1
data is shown.
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-LAC

I I

-GAC

BT

A: Along track from BT

D: Diagonal to BT

S: Pixel adjacent to BT

+: Corrected

SCAN

TRACK

o,iiiiii,o 
AAAAAA

Fig. 11. This is a schematic illustration of how the stray light correction is done for LAC and GAC

scenes. The arrow of SCAN indicates the instrument scanning direction. The arrow of TRACK indicates

the direction of satellite movement. The shaded area represents the bright source region. Symbols A,

D, and S represent flags for along-track from, diagonal to, and the scan adjacent to the bright source,

respectively. The + sign represents a stray light corrected pixel. These pixels are also flagged as the
distance from the bright source edge.

The second step is to mask and correct the bright source

affected pixels (Fig. 11). All pixels between the left and

right bright source edges will be flagged as a bright target

(BT) for subsequent masking by the SeaWiFS processing

program. In addition, 14 LI_NGE (extra pixels to the left),

and 12 RRANGE (extra pixels to the right of bright source

edges) will be flagged by their distances from their respec-
tive bright source edge as stray-light contaminated pixels

if they have not been flagged as BT, along-track (AT), or

diagonal (DIAG) pixels before. These pixels will later be

corrected by the along-scan direction correction algorithm

for the contamination. If along-track masking is selected,

all pixels not identified as BTs between the left and right
bright source edges on the previous two lines and next two

lines will be flagged as along-track pixels. Only one extra
pixel to the left and one extra pixel to the right of bright

source edges of one previous line and one subsequent line
will be flagged as diagonal pixels.

The along-scan direction stray light correction (Lcorr)

for pixel 0 proceeds in the following sequence:

Sequence 1, set the correction term to zero:

Lcorr = 0. (15)

Sequence 2, replace pixel 0 radiance, L[0], as:

Lcorr = Lcor_ + L[0](1 - g[0]), (16)

where K[0] is the stray light correction constant for pixel
0. The values of K are listed in Table 8.

Sequence 3, remove the stray light contributions from the

adjacent pixels:

Lcor_ = Lcorr - L[-1]K[+I], (17)

L¢o_ = Leo, - L[-2]K[+2], (18)

Lcorr = Lco_ - L[+I]K[-1], (19)
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Table 8. Along-scan responses for SeaWiFS bands 1-8 with their respective wavelengths, in nanometers, in
)arentheses. These are the constants, K, used in the LAC stray light correction procedure.

Pixel Band Numbers and Wavelengths [nm]

Offset 1 (412) 2 (443) 3 (490) 4 (510) 5 (555) 6 (670) 7 (765) 8 (865)

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

0.00000 0.00005 0.00000 0.00006 0.00080 0.00005 0.00000 0.00003

0.00000 0.00014 0.00000 0.00020 0.00000 0.00016 0.00000 0.08010

0.00000 0.00029 0.00000 0.00034 0.00000 0.00027 0.00000 0.00016

0.00000 0.00048 0.00000 0.00052 0.00000 0.00048 0.00000 0.00026

0.00004 0.00071 0.00004 0.00070 0.00002 0.00076 0.00000 0.00039

0.00010 0.00086 0.00010 0.00078 0.00005 0.00098 0.00003 0.00048

0.00030 0.00105 0.00025 0.00090 0.00015 0.00129 0.00010 0.00064

0.00080 0.00124 0.00073 0.00104 0.00045 0.00140 0.00031 0.00086

0.00240 0.00141 0.00195 0.00157 0.00135 0.00168 0.00096 0.00118

0.00639 0.00494 0.00534 0.00444 0.00343 0.00292 0.00232 0.00239

0.01757 0.01271 0.01531 0.01044 0.00925 0.00599 0.00758 0.00710

0.13172 0.09747 0.21432 0.10994 0.06548 0.05577 0.18735 0.23668

0.73254 0.83142 0.73217 0.86085 0.67127 0.70802 0.67749 0.66297

0.06387 -0.00424 -0.00267 -0.08104 0.23406 0.19771 0.09616 0.05512
0.01998 0.03237 0.01956 -0.00418 0.00737 0.01381 0.01971 0.01586

0.01038 0.01271 0.00607 0.00914 0.00298 0.00550 0.00372 0.00796

0.00350 0.00419 0.00176 0.00301 0.00150 0.00194 0.00133 0.00382

0.00300 0.00141 0.00146 0.00090 0.00059 0.00081 0.00079 0.00191

0.00230 0.00052 0.00108 0.00026 0.00052 0.00030 0.00061 0.00089

0.00200 0.00019 0.00083 0.00008 0.00045 0.00011 0.00044 0.00048

0.00140 0.00007 0.00065 0.00003 0.00035 0.00004 0.00031 0.00029

0.00110 0.00002 0.00049 0.00000 0.00030 0.00002 0.00028 0.00016

0.00050 0.00080 0.00031 0.00000 0.00022 0.00000 0.00021 0.00010

0.00013 0.00000 0.00020 0.00008 0.00015 0.00000 0.00014 0.00010

0.00000 0.00000 0.00007 0.00000 0.00007 0.00000 0.00010 0.00006

0.00080 0.00000 0.00000 0.00000 0.00000 0.00008 0.00007 0.00003

0.00000 0.00000 0.00000 0.00080 0.00000 0.00000 0.00003 0.00000

and

Lcorr = Loot, - L[+2]K[-2], (20)

until pixels LRANGE (equals 14) and RRANGE(equals 12) are
reached.

Sequence 4, correct the radiance:

L[0] = L[0] + Lcorr. (21)

The above sequences are applied to all eight SeaWiFS
bands.

This subroutine is designed to work one scan line with

eight bands at a time; this procedure is written in C.

The variables, both for input and output, needed for

the function stray_light lac are summarized in Table 9.

This subroutine, stray_light_lac, calls for each scan
line in the scene:

status = stray_light_lac(initial, Ltyp_frac,

Styp_frac, nscans, nsamples, scan_no,

gn, rads, lib_data, sl_scan, sl_flag).

If along-track processing is requested, this subroutine will

use a rotating buffer of five scans to mark as BT and along-

scan flagging and corrections on the current scan line, S.
Other scans in the buffer will store information of pixels

flagged with AT and DIAG. Otherwise, it will work with one

scan, S, at a time.

As discussed in previous sections, the stray light algo-

rithm will try to identify stray light affected pixels and

correct them if possible. The first step to find stray light
pixels is to screen through each pixel, from scan S, and ver-

ify if it is a bright source pixel. The test is if L8 is greater

than the knee value, then set the flag buffer as BT. Ta-

ble 10 is the first knee value of band 8, which will be used

for Stray_thresh value calculation. This screening can

speed up the determination of bright source edges, which
will skip consecutive bright source pixels.

The bright source edges can be identified by tests of
two quantities: radiance value and gradient value. The

edge is a left edge if the gradient shows a positive value.

A negative gradient means a right bright source edge is

detected. The flag buffer will mark up to LRANGEor RRANGE

pixels to the left or right of bright source edges by their
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Table 9. Listedbelow are the LAC input and output parameters.

Variable Data Type VariableDescription

initial int32

Ltyp__rac l_oat32
StypJrac Soat32

nscans int32

nsamples int32
scan_no int32

gn int16
rads Boat32

11b_data I]oat32

llb_data Aost32

sl_scan int32

slllag int32

Return value int32

Input Parameters

Should be setto 1 forthe firstcallof a scene.

Fraction(=0.25) factorof Ltypica!to determine the brighttargetedge.

Fraction(=0.90) factorof band 8 knee 1 radiance to determine

the brighttargetedge.

This isthe processingindicator.Ifnscans-%, itwillperform only

along-scandirectionstraylightcorrectionprocessing.If

nscans_maximum of the filerecords,itwilldo both along-scanand

along-trackstraylightprocessing.

Number of pixelsper line.

Scan linenumber (0-relative)of input data.

Band 8 gain ofscan linescan_no.

Knee radiance values [8 x 4 x 5].

An arrayofnsamples long containingllb_data (8 bands) of

scan line scan_no.

Output Paramete.rs

An array of stray light corrected level-lb data.
Scan line number for which the returned 11b_data is applied.

An array of nsamplss long containing codes identifying bright

target pixels and the proximity of others to bright targets.

The meaning of sl_flag value is:
0 A brighttargetflag(BT);

-1 An along-trackflag(AT);

-2 A diagonal flag(DIAG);

>0 The number represents the distance in pixels away from the

bright target edges--if a pixel is within range of two bright

targets, sl_flag will equal the pixel distance from the

left bright target edge plus 1,000 times the pixel distance

from the right bright target edge (a sl_flag value of 3001
means three pixels away from the bright target edge on the

right and one pixel away from left bright target edge); and

-10 None of the above (BLANK).

Returns as 0, not done, to indicate that the routine did not

return any useful information for the last call, but was filling

its buffers with scan line data; and 1, done, to indicate that the

llb_data and sl_flag arrays for scan line sl_scan have been set.

Table 10. These axe the band 8 knee 1 values for the SeaWiFS bilineax gains. The radiances are in units of

cm-2 st-1 #m -1.

Gain 1 2 3 4

Knee Radiance 1.64928 0.830554 6.32555 3.30217

Knee Count 762.30 758.12 794.66 773.58

distance from the respective edge, assuming these pixels

have not been flagged as BT, AT, or DIAG pixels.

For a pixel within the range of two bright sources, the

flag buffer will mark the distance as the sum of the pixel

distance from the left bright source edge plus 1,000 times

the pixel distance from the right bright source edge. Pixels

with flag buffers marked as distance will eventually per-

form the along-scan stray light correction. If a left and

right edge pair fails to identify one of the two edges, the

first pixel in scan S will be assigned as the beginning of

the left edge for the missing left edge, or the last pixel in

S will be assigned as the ending of the right edge for the

missing right edge.

The flag buffer will mark all pixels between, and in-

cluding, the left and right edges as BT pixels for scan S. If

along-track masking is the option, for each BT pixel, the
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Gall the routine for each scan line in the scene. )

If along-track processing is requested:

Will work with a rotating buffer of 3 scans. The buffer's center scan, S, will be
processed for bright sources and along-scan flagging and corrections.
s will be returned by the routing after it rotates it to the first (earliest) scan in the buffer.
Otherwise: Will work with one scan, S, at a time.

Do for entire scan S: Flag as BT those pixels whose band 8 radiances ]

are greater than the band 8 calibration knee 1 value. I
[ Pixel index=0 ]

[ Increment pixei index [

_ A right edge (RE)
,T- 119 has been detected

1 yes

_A left edge (LE) has been detected.

Mark up to 3 pixels (that are not flagged as BT or AT ) to the left of LE by their ]
i

distance from LE and apply correction to the 3rd pixel (if an),) to the left of LE. I
Keep incrementing n and testing for RE until ]

RE is found or there are no more pixels left in S. I

),es

]Vl"-"_kup to 3 pixels (that are not flagged as BT or AT) to the rig-]ht of RE by

eir distance from RE and apply correction to 3rd [_ixel (if any) to right of RE.

[ If no LE had been found, assume that the first pixel in scan is the LE./
IAssume that the last pixel in scan is the RE. ] -_

11

] Fla[ all pixels between and includin_ LE and RE as BT pixels.

For each BT pixel, flag corresponding pixels in the earlier scan S- 1 (if there is such a scan

in the buffer and the pixels are not flagged asBT pixels), and later scan S+l (if there is such a

scan in the buffer)r as being along-track contaminated (AT).

QRetum earliest scan (s

Identify all pixels flagged as BT, AT, or have been marked by distance from a bright source [by using the level-2 quality control stray light flag. If that flag has been designated as a Imask, then all level-2 products for the identified pixels will not be generated.

]

or S- 1) with corrected radiances and fla[s. )

Fig. 12. Logic flow diagram for the detection and correction of stray light in SeaWiFS GAC level-1 data.
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Thble 11. Along-scan GAC stray light correction factors, K.

Band Pixels Before Bright Source Pixels After Bright Source

Number -1 -2 -3 1 2 3

-0.00000 0 0

-0.00060 0 0

-0.00000 0 0

-0.00074 0 0

-0.00000 0 0

-0.00055 0 0

-0.00000 0 0

-0.00037 0 0

0 0 -0.00090

0 0 -0.00001

0 0 -0.00055

0 0 -0.00000
0 0 -0.00053

0 0 -0.00000

0 0 -0.00055

0 0 -0.00033

corresponding pixel in earlier scans (S-1 and S-2) and later

scans (S+l and S+2) will be flagged as AT for stray light
contaminated pixels, assuming the scan lines do exist and

the pixels have not been marked as BT. The flag buffer will
also mark one extra pixel to the left or right of the left

or right edge on scans S-t and S+I as DIA0 for stray light
contaminated pixels, assuming the scan lines do exist and

the pixels have not been marked as BT. The bright source

edge detection and flag buffer flagging will run through the

whole scan S. The along-scan direction stray light correc-

tion algorithm will apply to the pixel, having the distance

as the flag indicator.

This program will output the earliest scan (8-2, S-l,

or S) with stray light corrected radiances and flags. The
information contained in the flag record can be used to

identify all pixels flagged as BT, AT, DIA0, or the distance
from a BT edge. If that flag has been designated as a mask,

then all level-2 products for the identified pixels will not

be generated.

4.3 GAC CORRECTION

The algorithm for GAC stray light correction, identi-

fying bright sources and edges, is similar to that for the
LAC correction algorithm (Fig. 12). The GAC along-scan

correction, however, is applied only to the third GAC pixel

from the bright source edge:

L[3] = L[3] + Ledg.K[3], (22)

where L[3] represents the level-1 radiance at three pixels
away from the bright source edge. K is the GAC stray

light correction constant and its value is listed in Table 11.

The above equation is also applied to all eight SeaWiFS
bands.

The GAC stray light correction algorithm will flag three

pixels before the left edge and three pixels after the right

edge (by their distances from respective bright source

edges) as stray light contaminated pixels if they have not

been previously flagged as BT or AT pixels.

The parameters used for the stray_light_gac func-

tion are similar to that of the stray_light_lac function

(Table 9). The only exception is that 0AC does not have

DIAG flags.
Unlike LAC, the GAC rotating buffer contains only

three scan lines if along-track processing is requested and

the output will be the earliest scan (S-I, or S). The flag

buffers will not contain DIA0 flags. The value of LRANOE

and RRANGEis 3 with only the third GAC pixel from the

bright source edge corrected for stray light contamination.

Other than that, the GAC software is the same as the LAC
software.

4.4 STRAY LIGHT MASKING

As mentioned before, the stray light affected pixels will

be flagged as bright source (BT ----0), along track (AT = -1),

diagonal (DIA0 = -2), or distance (greater than or equal
to 1, in units of pixels) away from the bright source edges.

The distance range for a LAC scene can be 14 pixels to the

left of a bright source left edge and 12 pixels to the right

of a bright source right edge. All pixels with positive flag

settings will be corrected for stray light contaminations.
As a GAC scene, however, the distance range will go up

to only three pixels on both sides of bright source edges

and only the third pixel will be corrected. All pixels not
affected by stray light will be flagged as blank (BLANK =

-10).
Further analysis of the flag output, sl_flag, will reset

the flag values between -10 (exclude) and the value of the

maximum distance range of 256, i.e., the SeaWiFS level-2

stray light masking. In this way, the pixels with corrections
will also be masked out.
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AMT

ASCII

AVHRR

BATS

BII

CCS

CHORS

CICESE

CVT

CZCS

DC

EOSDIS

FASCAL

GAC
GoCal

GOES

GSFC

HP

IEEE

ISIC

JGOFS

LAC

LANDSAT

LE

MER

NASA

NIST

NOAA

OSC

PC
PML

PSR

RE

rms

SBRS

SDSU

SeaWiFS

SIO

SIRREX

SIRREX-1

SIRREX-2

SIRREX-3

SIRREX-4

SRR

SXR

UCSD

UCSB

UK

GLOSSARY

Atlantic Meridional Transect

American Standard Code for Information Inter-

change A

Advanced Very High Resolution Radiometer
B

Bermuda Atlantic Time Series
Ed(z, _)

Biospherical Instruments, Inc. E0(A)

California Current System F0(A)
Center for Hydro-Optics and Remote Sensing
Centro de lnvestigacidn Cient(fica y de Educacidn I

Superior de Ensenada (Baja, California) kb
Calibration and Validation Team K

Coastal Zone Color Scanner K(490)

Direct Current

Earth Observing System Data and Information Sys- /_(490)
tem

Facilityfor Automated Spectroradiometric Calibra_ Kd(z, A)
tions

KL(z, A)
Global Area Coverage

Gulf of California K_

Geostationary Operational Environmental Sat-
ellite L

L
Goddard Space Flight Center

Hewlett-Packard L

Institute of Electrical and Electronic Engineers L8

Integrating Sphere Irradiance Collector Lcorr

Joint Global Ocean Flux Study Lo

Local Area Coverage Ls
Land Resources Satellite

Left Edge

Marine Environmental Radiometer
L_(z,A)

National Aeronautics and Space Administration Lw

National Institute of Standards and Technology LwN (A)
National Oceanic and Atmospheric Administration

Orbital Sciences Corporation N

Personal Computer (IBM) R

Plymouth Marine Laboratory R 2

Point Spread Response S

Right Edge ,_

root mean square

(Hughes) Santa Barbara Remote Sensing SKx

San Diego State University

Sea-viewing Wide Field-of-viewSensor if(A)

Scripps Institutionof Oceanography

SeaWiFS Intercalibration Round-Robin Experi- x
ment

The First SIRREX (July 1992) Y

The Second SIRREX (June 1993) z

The Third SIRREX (September 1994) zgo
The Fourth SIRREX (May 1995)

Spectral Radiance Responsivity
SeaWiFS Transfer Radiometer 5

AL
University of California, San Diego
University of California,Santa Barbara A

United Kingdom a

VISSR Visible-Infrared Spin-Scan Radiometer

Ltypical(8)

SYMBOLS

Logarithmic regression model coefficient.

Logarithmic regression model coefficient.

Downwelling irradiance.

Downwelling irradiance incident at the sea surface.

Mean extraterrestrial solar flux.

Current.

Out-of-band correction factor.

Stray light correction constant.

Remote sensing diffuse attenuation coefficient, in

per unit meters. The average of Kd(z, 490) over

the first attenuation length.

Regression model estimate of K(490) in per unit
meters.

Vertical attenuation coefficient for Ed(z, A), in per
unit meters.

Vertical attenuation coefficient for Lu(z, A), in per
unit meters.

Attenuation coefficient for pure water.

Spectral radiance.

The spectral radiance from a calibrated (known)
source.

The spectral radiance from a measured (unknown)
source.
Level-1 band 8 radiance.

Along-scan radiance correction factor.

Spectral radiance measured with a gas filled strip-

lamp standard.

Spectral radiance measured with a spectroradiome-
ter.

Typical quantity of sea surface radiance measured

by band 8.

Upwelling spectral radiance at depth z.
Water-leaving radiance.

Normalized water-leaving radiance at the top of the

sea surface (z = 0+).

Sample size.

Spectral radiance responsivity.

Multiple correlation coefficient.

Response value.

The signal from a calibrated (known) source.

The signal from a measured (unknown) source.
Linear residual standard deviation of modeled radi-

ance ratios from water-leaving radiance ratios.

Upward Fresnel transmittance through the air-sea
interface for radiance.

Horizontal spatial coordinate.

Vertical spatial coordinate.

Depth, in meters, below the air-sea interface.

Depth, in meters, equal to the first attenuation

length.

Relative standard uncertainty.

Radiance gradient.

Wavelength.

Standard deviation.
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