
NASA-CR-205332

t j t/

,.W- ,L:/-_ '/C

PARALLELIZATION OF ROCKET ENGINE SIMULATOR
soFrWARE

(P.R.E.S.S.)

RESEARCH SUMMARY REPORT

Principal Investigator

Dr. Ruknet Cezzar, Associate Professor

Department of Computer Science

Hampton University

Hampton, Virginia 23668

emaih cezzar@cs.hamptonu.edu

Technical Officer

Dr. Don Noga

Mail Stop 501-2

NASA Lewis Research Center

21000 Brook Park Road

Cleveland, Ohio 44135

Grant Number: NAG3-1792

Grant Period: 3 Years

Start date: October 19, 1995

End Date: October 18, 1998

(September 2, 1997)

https://ntrs.nasa.gov/search.jsp?R=19970029277 2020-06-16T01:15:01+00:00Z

TABLE OF CONTENTS

Sectio=_=.._nSubject Pa e

l•

2.

3.

o

St

6.

Background 2• el • • • • o••o•o • • *0 • •• • • •

Research Progress Overview 3

Current Research Activities 4

3.1 TURBDES/PUMPDES Checkout and Translation 4

3.2 Parallel and Distributed Computing Packages 4

3.3 C + + Wrapping and Fortran-C Interfaces 8

3.4 Rocket Engine Transient Simulator(ROCETS) 11

3.5 Conference and Workshop Attendance 12
3.6 Some Ideas on Reuse of Fortran Based Code 14

Difficulties Encountered 16

4.1 Technical

4.2 Staffing

4.3 Equipment and Software

16

16

17

Expected Challenges ... 17

Conclusion 18

REFERENCES ... 19

APPENDIX A ... 20

1. Background

Parallelization of Rocket Engine System Software (PRESS) project is part of a collaborative

effort with Southern University at Baton Rouge (SUBR), University of West l:lorJda (UWF),

and Jackson State University (JSU).

The second-year funding, which supports two graduate students enrolled in our new

Master's program in Computer Science at Hampton University and the principal investigator,

have been obtained for the period from October 19, 1996 through Octobc_ 18, 1997. The

interim progress report dated April 28, 1997 outlines the plans and progress in its relevant
sections:

Background

Research Progress Overview

Current Research Activities (Oct 1996 through April 1996)
Difficulties Encountered

New Directions for Second Year Funding

Expected Challenges
Conclusion

The key part of the interim report was new directions for the second year funding. This

came about from discussions during Rocket Engine Numeric Simulator (RENS) project meeting

in Pensacola on January 17-18, 1997. At that time, a software agreement between Hampton

University and NASA Lewis Research Center had already been concluded. That agreement
concerns off-NASA-site experimentation with PUMPDES/TURBDES software. Before this

agreement, during the first year of the project, another large-scale FORTRAN-based software,

Two-Dimensional Kinetics (TDK), was being used for translation to an object-oriented language

and parallelization experiments. However, that package proved to be too complex and lacking

sufficient documentation for effective translation effort to the object-oriented C + + source code.

The focus, this time with better documented and more manageable PUMPDES/TURBDES

package, was still on translation to C + + with design improvements.

At the RENS Meeting, however, the new impetus for the RENS projects in general, and

PRESS in particular, has shifted in two important ways. One was closer alignment with the

work on Numerical Propulsion System Simulator (NPSS) through cooperation and collaboration

with LeRC ACLU organization. The other was to see whether and how NASA's various rocket

design software can be run over local and intra nets without any radical efforts for redesign and

translation into object-oriented source code. There were also suggestions that the Fortran based

code be encapsulated in C + + code thereby facilitating reuse without undue development effort.

The details are covered in the aforementioned section of the interim report filed on April 28,
1997.

2

2. Research Progress Overview

In this section, we give an overview of progress since the interim report filed in April 1997.

Toward this end, the stipend support for one graduate student, Ms. Chenhong Lu has continued

for the Summer 1997 for the period from June 1 through July 31, 1996. Although, Ms. Lu's

contract was until August 31, 1997, she was transferred to another departmental project one

month short of termination of her contract. This transfer was at her request and for better

utilization of her talents as a graduate assistant in another project within our department, and did

not significantly affect our research efforts on this, P.R.E.S.S., project. As shown in her task

assignment for Summer 1997 in Appendix-A, her efforts continued on debugging and

understanding the workings TURBDES and PUMPDES software packages, and piecemeal

translation into C + + code. To this end, she has translated approximately 2000 lines of source

code from VAX FORTRAN to C++ under GNU's g++ compiler on UNIX platform.

Meanwhile, the principal investigator focused primarily on establishing the infrastructure

toward the main goal of being able to run NASA's rocket engine software in a distributed

manner over local and intra nets. Primarily with cooperation from the NPSS organization, we

have made impressive progress on this front as detailed in the next section. Although we feel

that the foundation in terms of basic networking tools and packages for distributed use of rocket

engine system software has been laid out, the next crucial step of actually demonstrating the

viability of such approaches presents some formidable challenges. These topics are detailed and

discussed in the next two sections, respectively, and the next crucial step awaits third-year

funding of this project.

In summary, while, Ms. Chenhong Lu, graduate research assistant for this project which

we refer to as the PRESS project, continued to concentrate her efforts on the previously obtained

TURBDES/PUMPDES rocket engine design packages (9), the PI has worked on establishing a

foundation for future work toward distributed access and use of NASA's rocket engine design

software packages. The PI's work in this new direction can be categorized as:

. Parallel and distributed computing tools and packages for sharing of rocket

engine software across local area and corporate intranets

. Investigation of C+ + wrappers around Fortran code and related issues of

mixed-language programming interfaces involving Fortran, C, and C+ +

. Checkout and correct installation of Rocket Engine Transient Simulator

(ROCETS) on Unix platform to enhance understanding of rocket components

and design issues

Further details on these activities and accomplishments are discussed in the next section.

3. Current Research Activities

Much of the progress since the interim report of April 1997 has been during the Summer 1997

months. In accordance with the University's course load requirements, with 25% release time,

the PI is expected to teach three courses per semester. The normal course load is four courses

with up to three distinct preparations. In either case, 180 contact hours with approximately 60

students per semester a required. This helps explain why most of the research progress is during

Summer months at this, as well as at other undergraduate institutions whose expressed emphasis

on teaching. The following is a discussion of activities since April 1997.

3.1 TURBDES/PUMPDES Checkout and Translation to C+ +

Ms. Lu's efforts involved reconstruction of the missing test input data for various types of rocket

engine pump and turbine designs and obtaining meaningful report outputs on performance of

viable designs. She has also worked on GASP submodule which provides data on different types

of gas propellants used in the design. The GASP submodule, which was missing from the

original package, is an "ad hoc" addition to the TURBDES and PUMPDES packages. There

are problems with this interface as is discussed in the next section on difficulties encountered.

She was encouraged to use Fortran-to-C translation tool, f2c, in order to first translate the

code to C and then redesign and rewrite it in C++. However, before she could do so, it was

clear that the code, originally developed in VAX Fortran, was unstructured since it was

developed before the advent of structured programming principles. Thus, TURBDES and

PUMPDES source code with which she dealt had enormously complicated programming style

which predated the structured methods and concepts. For instance, in both TURBDES and

PUMPDES source code, there are many many GOTO statements. These numerous GOTOs are

forwards as well as backwards making the source code difficult to read and understand.

Furthermore, there are unconventional use of shared variables (e.g., FORTRAN COMMONs)

for passing parameters to subprograms adding to complexity. Finally, since the code has been

developed piecemeal over a period of time, there are many ad hoe patches and revisions.

Thus, before attempting to utilize the tools like f2c, her preliminary attempts involved

putting the code in more structured form by replacing the GOTOs with modern loop constructs.

Then, she was able to provide the C++ equivalent code in more structured format. In this

way, she was able to translate approximately 2000 lines of TURBDES source code before

leaving for another project in our department.

3.2 Parallel and Distributed Computing Packages

During a teleconference in February 1997, where the PI, Rick Blech, Joe Hemminger, and

Angela Quealy were participants, the research in the new direction toward finding ways for

distributed access to the fairly rich repertoire of mostly Fortran based rocket design software

associated with RENS and NPSS projects. First, it was agreed that the PI be given access to

NPSS cluster of computers through an account. Moreover, we discussed tools for distributed

parallel executionof codeondifferentnetwork nodesover local or intra nets. In this regard,
as a starting point, we discussedexploring the well known and publicly availablestandard
packagesMessagePassingInterface(MPI) andParallelVirtual Machine(PVM). Specifically,
wewould installandtestsuchtoolsoverHamptonUniversity'sSunSparcstationnetwork,ashas
beendone for the NPSSLACE cluster of workstations. To this end, Angela Quealy was
designatedasour contactpersonat LewisResearchCenter. Sincethen, wehaverequestedand
obtainedan account on the LACE cluster and, as detailed shortly, were able to successfully

install and test these distributed computing tools and their variants. In this regard, Angela

Quealy's comments and suggestions, as well as the test demo packages, have been most helpful.

MPI (Message Passing Interface)

MPI is a specification for a standard library for message passing. It was def'med by the MPI

forum, a broadly based group of parallel computer vendors, library writers, and application

specialist. As its name implies, it uses message passing protocols as the main paradigm of

parallel computations over heterogenous processing nodes (as opposed to some other parallel

processing models such as shared memory, channels, generative, etc.). As such, the model is

suitable for both local area networks and parallel Multiple Instruction - Multiple Data (MIMD)

machines such as the 64-node NCUBE also available, attached to the SGI node at Hampton

University's local net. The software which is basically a shared library as mentioned is available

from Argonne National Laboratories. Specifically, we downloaded Ver 1.1 which is a minor

improvement over Version 1.0 of what is referred to as MPICH for sun4 sparcstation hardware

at Hampton University. The CH suffix refers to ch__p4 device describing the processing nodes

of the sun4 based local area network. The precursor to MPI was a package named P4, also

available from Argonne National Laboratory. The PI had familiarity and experience with this

earlier package in conjunction with the development of a parallel processing course at Hampton

University through a cooperative arrangement with Argonne back in 1992.

First we downloaded the full distribution mpich, tar. Z, from ftp.mcs.anl.gov, then

configured it for ch__p4 device, and finally installed for sun4 and client nodes. Next, we tested

the package using mpi-demo package sent from ACLU. We successfully ran the demo programs

hello, ring, and laplace. The later, laplace, is available only in Fortran, others are available in

Fortran and C. By an email, we happily reported the duplication of results obtained over LACE

cluster at our site over sun4 client host machines. Figure 1 shows a typical process group file,

pgroup, for the execution of Fortran program laplace over four sparcstations using MPI.

apple 0/users/cezzar/mpi-demos/laplace/fortran/laplace

peach 1 /users/cezzar/mpi-demos/laplace/fortran/laplace

basil 1 /users/cezzar/mpi-demos/laplace/fortran/laplace

orange 1 /users/cezzar/mpi-demos/laplace/fortran/laplace

Figure 1: Parallel Execution of 'laplace' program on Sun Network Using MPI

Later, we also testedthe demopackagesusingour new account for the LACE cluster at

ACLU organization. To augment and complement the available on-line documentation, we also

purchased a well known reference book on this package [11].

PVM (Parallel Virtual Machine)

PVM is a software tool that enables a collection of heterogenous computers to be used as a

coherent and flexible computational resource. The individual computers may be scalar

workstations interconnected by a variety of networks, such as ethernet which is our case, fiber

distributed data interface (FDDI), and so on. The nodes themselves may be vector computers

such as Cray, distributed-memory, or shared-memory multiprocessors. PVM support software

executes on each node in a user-configurable pool, and presents a unified computational

environment for concurrent applications. In a nutshell, the aim is to use a collection of Unix

computers hooked together by some kind of network as a single large parallel computer. The

software, which is available free from netlib, has been compiled for many different hardware

platforms from Cray to IBM PCs. The PVM library routines allow access from high level

languages C, C+ +, and Fortran. PVM uses the message passing paradigm, as does MPI, with

special synchronization mechanisms through barriers and rendezvous). There is transparent

handling of massage routing and data conversions heterogenous network environment.

We downloaded the current release, PVM3.3.11, from http://epm, ornl.gov, as well as other

variants, xpvm, javapvm, and pvm for Win32. The PVM3.3 package is also available at

ACLU's LACE cluster for RS6000 nodes. Then, we successfully installed this package for

SUN4 host nodes. Later, we ran the test demo package from ACLU and duplicated the results

obtained on the LACE cluster. Figure 2 shows a typical process host file, hostfile, for the

execution of Fortran program LAPLACE on four sparcstations using PVM.

apple.cs.hamptonu.edu dx =/users/cezzar/pvm3/lib/SUN4/pvmd3

ep=/tmp_mnt/users/cezzar/pvm-demos/laplace/fortran

wd =/tmp_mnt/users/cezzar/pvm-demos/laplace/fortran

peach, cs. hamptonu.edu dx=/users/cezzar/pvm3/lib/SUN4/pvmd3

ep=/tmp mnt/users/cezzar/pvm-demos/laplace/fortran

wd =/tmp_mnt/users/cezzar/pvm-demos/laplace/fortran

orange.cs, hamptonu.edu dx=/users/cezzar/pvm3/lib/SUN4/pvmd3

ep=/tmp mnt/users/cezzar/pvm-demos/laplace/fortran

wd = / tmp_mnt/users/cezzar/pvm-demos/laplace/fortran

basil.cs, hamptonu.edu dx=/users/cezzar/pvm3/lib/SUN4/pvmd3

ep'--/tmp mnt/users/cezzar/pvm-demos/laplace/fortran

wd -'-/tmp_mnt/users/cezzar/pv m-demos/laplace/fortran

Figure 2: Parallel Execution of 'laplace' program on Sun Network Using PVM

6

XPVM is a GUI which uses the Unix X-Windows facilities. It implements a console and

monitor for PVM. Normally, PVM console, in our case PVM3 console, accepts a variety of

commands for configuring the system and setting options. It simply gives a prompt as PVM >

and then accepts command lines. For instance, a frequently used command is ADDHOST which

adds new nodes of a network into the configuration and causes the associated deamon process

to start running on the indicated node. Another console command is HALT which halts the

system and cleans up by killing the deamons at various network nodes. With XPVM, this is

done via a pull-down menu graphically in a pleasing way and the configuration icons are

displayed on a window. This pleasing X-Windows based GUI, however, comes at a greater cost

in terms of resource usage and complexity. For instance, for XPVM 3.3.0 or later, we had

procure and install other packages TCL 7.3 or later (specifically TCL 8.0 beta release) and TK

3.6.1 or later (specifically TK 8.0 beta release). At any rate, after many trials involving the

correct build of all these three packages using Unix make facility (specifically Makefile.aimk

generator files for Makefile scripts), we were able to successfully install XPVM 1.0 on our

system as well. This new package simply provides a more pleasing user interface but still

requires the running of the PVM3 package in the background. Nevertheless, it is a dazzling

display of the main concepts involving the parallel execution of concurrent programs over

multiple network nodes.

PVMfor Win32 This is the PVM version intended for PC networks under Microsoft Windows

in 32-bit real mode. It requires rshd remote shell for Windows 95 boxes and rexecd for

Window NT boxes. We have downloaded and experimented with this on our WIN95 PC.

However, to get any use of this package one needs a networked cluster of WIN95 or Windows

NT personal computers. It should further be noted that, since the original design of PVM has

exclusively been based on Unix hosts, its extensions into other platforms is unnatural and

awkward. However, as will be discussed next, its extension to cover Java based applications

on Unix networks is more promising.

JavaPVM is yet another version, currently 1.01, which allows Java applications to use the

parallel execution facilities of PVM. Recall that the current version, PVM3, already supports

Fortran 77, C and C++ applications. We see great promise in this version for the obvious

reason that Java is becoming immensely popular for distributed computing and is expected to

take over C/C + + applications. We have also downloaded and attempted to install this on our

SunOS sun4 sparcstation network. JavaPVM requires the GNU make facility and also a Unix

based Java virtual machine. The current version of Java, jdkl. 1 freely available from SunSoft

and other vendors, can only be installed on Solaris based Sun workstations. Therefore, since

we were not able to have a Java package on our SunOS based system, it was not possible to

experiment with JavaPVM. Finally, it should be noted that there are various other versions of

PVM, such as WPVM which is yet another version for Microsoft Windows, and JPVM which

is a class library implemented in Java for use with Java.

7

3.3 C+ + Wrapping and Fortran-C Interfaces

During the RENS Meeting at Pensacola, Florida, encapsulation (wrapping) of Fortran code in

C + + was an important topic. This idea is very appealing since it permits reuse of existing

Fortran code in an object-oriented framework. According to this, all that is required is clean

interfaces to Fortran based objects from C+ + wrappers. In this context, an email from Joe

Hemminger provided some clues as to how this could be done. However, due to missing code

in the example, we were unable to demonstrate the viability of this approach on our Unix

platform. The essence of the suggestion is shown in Figure 3 on the next page. From what is

shown in the figure, it is clear that the remainder of Fortran function THERM is missing and

the base class of the calling C + + code is missing. More important, the specific compiler and

linking process, apparently on the PC platform because of the appearance of the terms 'far' is

of paramount importance. Due to the proprietary nature of the package, we were unable to
obtain further information on this issue.

Later we obtained a workable sample code from Angela which demonstrates Fortran to C

interface where C functions are called from within Fortran programs. On Unix platform, using

C compiler cc and Fortran compiler f77, we were able to successfully develop and link this

sample as shown in Figure 4 following next page. Looking at this figure, since time and date

calls from Fortran are not in the standard intrinsic set of library functions, we supplied the

values fictitiously through the loop shown. The calls to sub1 and sub2 are normal Fortran-to-

Fortran and C-to-C calls respectively. These are included to see if there are any side effects.

The real call is from Fortran main program PROG1 (in progl.f t-de) to C function prog2 (in

prog2.c). Notice, however, that because Fortran appends an underline character as suffix to its

subroutines (and C does not), the C function needs to be exercises under a different name of as

prog2_0.

This is all well except for two problems. In this example, no values are passed to the

Fortran main function. When we attempted to do so, starting with C function sub20 returning

double (not shown in the figure), we got inconsistent values on Fortran side. Regardless, the
other and more important issue is the direction of the interface. It is from Fortran main to a C

subroutine. After all, as is well known and documented for PC platforms, many a vendor

provides workable interfaces to C from other HLLs (e.g., BASIC, FORTRAN, Pascal). Indeed,

a fairly detailed discussion of such issues are discussed in the chapter entitled Mixed-Language

Programming in [13]. The aim, however, is to wrap Fortran code in C or C++ in precisely
the opposite direction.

8

C++ module getEntropy() in file getentro.cpp
// The following C++ code is calling the FORTRAN function therm. The FORTRAN
// compiler adds an underscore to both the beginning and end of a function
// name. The C++ compiler only adds an underscore to the beginning of the
// name. Thus when referencing the FORTRAN name in the C++ code, you have
// to manually add a trailing underscore.

/ Also note that the FORTRAN compiler automatically demotes *everything* to
/ lowercase. So in case sensitive C++, you have to use all lower case for
/ FORTRAN function, subroutine and argument names.

/ Each of the arguments to therm is typecast to the type required by the
/ FORTRAN function. This insures that the argument types match, For instance
/ far is currently a single precision number. It has to be cast to a double
/ _ecause therm is expectzng double precision numbers. This would be good
/ practice even if far was a double on the C++ already. This way if far
/ is later redefine_ to be something else, then your code here doesn't-break.

/This is some of the C++ code that call this FORTRAN function.
/Definition of the getEntropy function in the header file

virtual double getEntropy();

/implementation of getEntropy in the body file. The therm_(...) are the
calls to the FORTRAN function.

/ ...

//return the delta entropy
/ ...

NCPReal

ThermFlowStation::getEntropy()

{
NCPReal PrelTotal = therm ((in*)2, (double) Ttotal, (double)_far);

RgasTotal = therm ((int_6 (double)_far, (double) far);
_entropy = RgasTo_al * log i PrelTotal / _Ptotal);-

return _entropy;
}

Fortran function THERM(ID, ARG, FAOLD) in therm.f

FUNCTION THERM(ID,ARG,FAOLD)
C .. C

C

C $1d: therm.f,v 4.2 1996/01/28 19:17:02 saklann Exp $
C
C PURPOSE: calculates gas properties from built-in cubic spline
C fits for air and stoichiometric products of combustion

C with fuels having a hydrogen-to carbon mass ratio of .16.
C
C FUNCTION DEFINITION: returns the value of the gas property
C
C CALL ARGUMENTS:
C ID identifies type of independent parameter
C ARG value of independent parameter (see USAGE)
C FAOLD fuel-to-air mass ratio, f/a

C
IMPLICIT DOUBLE PRECISION (A-H,O-Z)

C <<<<< Note *her rest of this code was missing >>>>>>>

Figure 3: An Illustration of C++ Wrapper Code Concept

9

Fortran main program file progl.f
program progl

integer ivall(8), ival2(8)
print *,'Hello Worldl (from progl.f)'

C Fill in the time values instead of calling system time from Fortran
do i=8,1,-1

ivall(i) = i
ival2(i) = 2"i

end do

C Calculate the first clock value

time1= float((iva11(5)*3600) + (ivall(6)*60) + ivall(7))
* +(float(ivall(8))*.O01)

print *, 'TIME=',timel

C Here's a call to normal Fortran subroutine in subl,f
call sub1

C There's is a call to a C functlon in prog2.c module function prog
call prog2

C Calculate the second clock value

time1= float((iva11(5)*3600) + (ivall(6)*60) + ivall(7))
time2= float((iva12(5)*3600) + (iva12(6)'60) + iva12(7))

* +(float(ival2(8))*.O01)

print *,'TIME2= ', time2
print *,'Elapsed= ', time2-timel

stop
end

Fortran subroutine file subl.f
subroutine sub1

print *,'In subroutine sub1 (.f)'
return
end

C function file prog2.c
#include <stdio.h>
void prog2 ()
(

printf ("Hello World (from prog2.c)l\n");
sub2 (); /* just a normal call to C function in sub2.c */

}

void prog2_ ()
{

prog2 ();
}

/* this is really what the Fortran main accepts */

C function file sub2.c
void sub2 ()
{

printf ("in subroutine 2 (sub2.c)\n");
}

Figure 4: An Illustration of Fortran to C Mixed-language Interface

10

3.4 Rocket Engine Transient Simulator (ROCETS)

Although primarily intended for Jackson State University's efforts in developing object-oriented

concept diagrams of various rocket engine system components and interrelationships, we have

obtained a copy of this software(10) on a 3.5-inch diskette. Later on, we obtained further

documentation on various types of fuel turbopumps and rocket cycle engine flow schematics.

In addition, there was a general and more detailed explanation of ROCETS for simulating the

transient behavior of such components. The documentation was forwarded to us from Dane

Elliott-Lewis of the University of Michigan in Ann Arbor at the request of Joe Hemminger (14).

The said package also included an original documentation by the developer [15].

Despite this additional documentation, the source code modules given to us on a 3.5-inch

diskette were not complete and lacked hierarchical organization for a build. The software is

written in a highly structured Fortran code, specifically Lahey's PowerFortran, but we could not

build an executable on personal computer or on Unix platforms. Finally, after numerous email

exchanges with Elliot-Lewis Dane of NASA Lewis Research Center, we were able to build and

test the package on our Unix (SunOS) platform. However, the Unix version, aside from not

missing various source module, include, and library components, is organized differently in a
modular fashion in different directories. In that sense, it is a bit more complex, but for more

readable and comprehensible. It should be noted that this is no small package and altogether has

approximately 70 source components and many more intermediate and library components. We
were able to run the test case with rctsdemo.run as the configuration file successfully as shown

in Figure 5.

ENTER RUN FILE NAME
rctsdemo.run

.... GUESS ROUTINE WAS CALLED

*** SUIT03 CONVERGED IN 2 ATTEMPTS ***

11 TOTAL PASSES, 1JACOBIAN EVALUATION(S),

err pct state x err tol 1.06E+01 0.000 HTSPLT 1.08709E+02
err pct state x err to1 8.12E+00 0.237 HTSPLT 1.17433E+02
err pct state x err tol 4.16E-05 0.965 PTVLM2 3.53186E+02
TIME = 0.1000 DT= 0.10000 TOTAL= 17 JACOB = 1 BROYD= 5

,.,

<< about 250 l±nes of messages on percent errors on convergence >>

TIME= 5.0000 DT= 0.10000 TOTAL= 15 JACOB= 0 BROYD = 10

***** -- ROCETS -- *****

****** END OF RUN INPUT FILE ENCOUNTERED ******
***** PROGRAM TERMINATING NORMALLY *****

0 BROYDEN UPDATES

3.1956 0.0010
2.7902 0.0012
O.OOOO 0.0010

Figure 5: The Demo Test Run of ROCETS Software (rctsdemo executable module)

11

Figure 6 showsthepartial contentof the report output file for the above demo test run.

1 POINT 1.000000

MODULE LINO OUTPUT

2 DPLINO 46.80453
3 PTINLT 500.0000
4 PTSPLT 453.1955

MODULE LIN1 OUTPUT

<< etc..>>
*** STATISTICS IN WRIT01 ***

PLOT FILE CONTAINING 100 PARAMETERS AND

--- PLOT FILE ---
RCTSDEMO.PLT
--- TITLE ---

DEMO TEST CASE #1
--- MENU ---

MODULE LIN3 OUTPUT

<< e_c.. >>
*** STATISTICS IN WRIT01

PLOT FILE CONTAINING 100 PARAMETERS AND

--- PLOT FILE ---
RCTSDEMO.PLT
--- TITLE --o

DEMO TEST CASE #1

1 SCANS HAS BEEN WRITTEN

51 SCANS HAS BEEN WRITTEN

--- MENU ---

1 TIME 2 AREAVLV1 3 AREAVLV2 4 CFLINO
5 CFLIN1 6 CFLIN2 7 CFLIN3 8 CFVLV1

97 WOUTVLM1 98 WOUTVLM2 99 WVLV1 100 WVLV2

Figure 6: Partial Content of Output Summary Report file rctsdemo.OUT

3.5 Conference and Workshop Attendance

We have submitted the abstract of our work to the Fourth HBCU Conference, April 9-10, 1997,

Cleveland, Ohio. At the time, the travel budget limitations, we were unable to attend and paper

post our work. Later, with travel budget adjustments and augmentation from other sources in

the department, we were able to attend the Object Expo/Java Expo and Conference, June 2-6,

1997, New York City, New York. At that three-day conference, of which our budget allowed

only one-day of conference attendance, there was one presentation [8] that was highly

12

relevantto our ultimateresearchgoals. Thefollowing is a brief discussionof this presentation.
Anyonewishing to havea copyof slidesfor thispresentationmayrequestit from us via email
to cezzar@cs,hamptonu.edu.

The presentationwasmadeby a Europeanparticipant,Mr. ThomasJell, of
SiemensNixdorf, ASWSDP. Thediscussionfocusedon anapplicationcalledSEM (Structured
Electronic Manual for TechnicalDocumentation). Its aim is to presentstructuredelectronic
manualswith multimediabrowsing on-line with hyperlinking capabilities for its text over the

intranets and the internet. This kind of application is possible by providing CGI scripts on a

server; however, it was felt that the server becomes a bottleneck and the user cannot use drag-

and-drop for hypertext on his screen. Therefore, the main approach was to provide Java applets

at client workstations. As was amply demonstrated over the rest of the conference, Java's

capabilities for distributed computing via browsers at client workstations is impressive and is

surpassed only by some older C + + based applications with more flexibility. Nevertheless, Java

applets could not handle certain heterogenous client nodes via sockets. The application, after

extending and exhausting Java applet capabilities using RMI (Remote Method Invocation),

required the use of CORBA at the next level to provide hyperlinks to the other heterogenous

nodes. First, RMI is kind of mechanism similar to the well know RPC (Remote Procedure Call)

on Unix host nodes. CORBA (Common Object Request Broker Architecture) def'mes a standard

for the object oriented interaction of objects in networked heterogenous systems. As is

elaborated in the next subsection, this aim practically precludes older high level languages like

Fortran. Such languages do not allow object oriented mechanisms like instantiation through

dynamic mechanisms, replication, polymorphism, inheritance, and the like. Indeed, the very

idea of an "object" as is understood in object-oriented parlance, is alien to such older languages

like BASIC, COBOL, FORTRAN. In any case, in the remainder of the presentation, the

speaker has emphasized the intricacies involved in using CORBA in conjunction with Java

applets. Indeed, the complaint was about CORBA IDL mapping not being the same as

distributed Java applications and the difficulty of implementing CORBA objects written in Java.

This, despite close similarity of Java to C++ in which CORBA's IDL is written. That, of

course, says something about implementation of CORBA objects written in Fortran (if we can

even begin to envision such). We elaborate this point further in the next subsection.

CORBA Revisited

Indeed CORBA is discussed in conjunction with the design goals of NPSS in [4]. There,

some other emerging technologies involving programming languages and libraries, database

management systems are discussed and the adherence to standards and development of standards

are emphasized. CORBA is embraced as a unifying standard for the open and distributed

architecture envisioned for NPSS. Nevertheless, some technical issues involving CORBA's IDL

(Interface Definition Language) versus the vast majority of Fortran based application software

at NASA is not covered in detail. Indeed, this issue was raised during the aforementioned

presentation by the PI, and the response of the presenter was somewhat cautions and pessimistic.

The speaker pointed out that CORBA's IDL, having been written in C+ +, presented difficulties

even for a very similar object oriented language Java. There was also a mention that the basic

13

aim of standardslike CORBA and applicationsupportpackagessuchas Iona ORBIX was to
provide distributedenvironmentfor object-oriented applications where objects and messages

passed amongst them are well defined. Fortran, while being ahead of other high level languages

in parallel environments on tightly-coupled multiprocessors and vector machines, simply lacks

the object oriented-ness to be included in the emerging standards involving distributed execution

and data access. Had CORBA been proposed with the vast Fortran application base in mind,

its interface definition language would have allowed inclusion of Fortran based objects (if such

a thing can exist). In the work cited, there is a hint that this can be remedied by encapsulation

(wrapping) of Fortran (and plain C) code in an object oriented language C + + according to well

defined standards and conventions. Aside from the difficulties involving Cq-+ wrapper, this

may still not be sufficient for use of CORBA standards.

The next question is then what to do about reusing the vast Fortran based code at NASA

and at other scientific government laboratories. Based on our experience, albeit still limited,

we offer some ideas and suggestions in this regard in the next section.

3.6 Some Ideas on Reuse of Fortran Based Code

This is an important issue since there is a large number of Fortran based engineering

applications, some well over 100,000 lines [4]. During the first year funding of this project

(P.R.E.S.S.), we had some experience with a very large package, Two-Dimensional Kinetics

(TDK). This package consisted of some 282 modules which were developed over close to two

decades. More recently, we had closer experience with TURBDES and PUMPDES packages

which are similar to TDK but not as large (5 modules each). All this software have been

developed in VAX Fortran on DEC VAX VMS platform. In the previous section, we touched

upon difficulties in experimenting with these packages on Unix platform. By now, it is amply

clear that all three packages, TDK, PUMDES, and TURBDES, predate the structured

programming methods and styles and are, in a sense, textbook examples of spaghetti code. On

the other hand, we recently also had experience with more modem Fortran based software,

namely ROCETS. ROCETS is a fairly large package consisting of about 70 modules. It is

written in a much more structured style; so much so that the code is almost self documenting.

Then, when we see its adaptation to the Unix platform with separate directories and library

modules in each, Make files, and the like, we see an almost ideal case of Fortran application

code. Nevertheless, some cross-platform and implementation issues arise even in this case. For

instance, ROCETS software was written in Lahey PowerFortran which allowed variable length

COMMON blocks, suffixed COMMON declarations, and the like. Most other Fortran

implementations on Unix and PC platforms do not allow this. Thus in adapting the package to

Unix, some effort was spent in that regard. Nevertheless, we may regard ROCETS software

and similar packages as the best of the bunch worth saving and reuse. As for the older source

code referred to earlier, the rework and rewriting, even if they are re-written in Fortran gain

is a worthwhile consideration. Nevertheless, with the advent of object oriented languages like

C + + and now Java, it makes sense to expend the redesign, rework, and rewriting effort on one

of these. From Figures 4 and 5 which shows the outputs for a successful test run, we can see

14

that, asidefrom thevariousobjectorientedfeatures,Fortran lacksa GUI interfaceevenin its
best form. The only graphicalinterfaceto Fortran is the QuickWin facilities for Microsoft
family, but eventhat interfaceis nota GUI in thestrict sense. At leastfor thoseFortranbased

software with which we became familiar with, the inputs are painstaking (e.g., carefully crafted

namelists, input files, etc.) and the outputs are very large and unfriendly tables of numbers

looking like COBOL dumps! A rocket scientist or designer deserves better. We doubt that the

rocket engineers and scientists, even if they are sympathetic to Fortran code with which they are

familiar, would mind friendly GUI interfaces for both inputs and outputs of "any" rocket design

software tool. After all, the building architects don't mind accessing CAD packages of glitter
and glamour.

We can restate the above thoughts in a nutshell as: There is Fortran code and there is

Fortran code. Further, Fortran's lacks object-oriented-ness which is expected and assumed in

new standards such as CORBA. This has important implications for unsing the emerging new

technologies. The new technologies and standardization efforts assume the so called "objects"

as the main paradigm. There are attempts [6] toward making Fortran object oriented but such

efforts should be viewed with skepticism. In conclusion, as far the reuse of Fortran based

software is concerned, first we restrict the scope only to those related to rocket design (RENS,

NPSS, and related), we propose the following:

. An inventory of all the available Fortran based source code be made with respect to

name, origin, size, location, current use, and the like (we are told that such an

inventory already exists)

. A classification be made with respect to: original development hardware platform

(e.g., DEC, HP, etc.) and operating system platform (e.g., VMS, Unix, MS-DOS,

Windows, X Windows, etc.)

. A grading be done on various software packages as to whether they are currently

working correctly, and if so, whether in frequent use by whom and for what reason.

If the software is dormant, just thousands of source lines sitting somewhere and doing
nothing, such packages should be de-graded.

. The above mentioned grading could be extended to the style in which the Fortran code

is written. For instance, in our experience, TDK is D-, PUMPDES is C-, TURBDES
is C, ROCETS A-, etc..

. The lower grade Fortran based code should then be redesigned, reworked, and

rewritten in the most fashionable modern day object oriented language. Such decisions

which involve biting the bullet now rather than paying heavily in later years must be

clearly, firmly, and without hesitation. After all, making the rocket engine design

scientists and engineers familiar with more modern languages, programming

paradigms, and software technologies is an advantage in this regard.

15

4. Difficulties Encountered

4.1 Technical

Aside from the lack of structured programming of TURBDES and PUMPDES software, the

interface of both TURBDES and PUMPDES to GASP (Gas Parameters) subsystem is

problematic. It should be noted that the original GASP subprogram is missing and in its place

there is an "add hoc" test subprogram. The call from the main routines involved parameters

which were not in the definition of this subprogram. Later it was discovered that the primary
mechanism of parameter passing was through COMMON blocks and that block data in the

GASP subprogram was used to supply the parameters describing the propellant gas properties.

There are various entry points in the GASP subprogram file gasp.f and these are called from

anywhere in the main modules of TURBDES and PUMPDES. Moreover, there were some

discrepancies involving the parameters passed back and forth through Fortran COMMON blocks.

Finally, the READ and WRITE statements appear anywhere and everywhere in PUMPDES and

TURBDES main programs as well as in GASP subprogram. In other words, since the

development of this software was piecemeal and preceded structured programming principles,

there is no notion of single entry - single exit. Nevertheless, after fixing all these bugs, we were

able to obtain very large output files reporting performance data. It is almost impossible,

however, to test and verify the correctness of such large outputs.

In some checkout cases, there were error messages involving floating point overflows.

These errors stemmed from incorrect initialization of values through GASP interface but also

from the disparity of internal representations in VAX VMS versus Sun Unix platforms. The

double precision floating point representations used by VAX are proprietary and slightly longer

than the IEEE floating point standards used on Sun system (and most other systems these days).

Indeed, that problem which cause overflows at unexpected places and times is a formidable one

unless the whole software is redesigned with careful consideration of values and variables.

4.2 Staff'mg

We have maintained partial support throughout the first two years for only one graduate student

assistant even though the budget allowed for two. The reason for this is the diminishing size

of our graduate student population and better opportunities elsewhere for our graduate students.

The formal and administrative requirements make it very difficult to hire research assistants from

other institutions of higher learning in our area. It is easier to get graduate research assistants

from other departments of our School of Science, such as Physics, Chemistry, Mathematics.

However, the utter lack of programming skills of such graduate students do not serve our the

purpose of our research. In other words, if our research efforts did not heavily involve systems

and software, and instead focused on theoretical issues, we would have no such difficulty
enlisting graduate student assistants from the other departments.

16

4.3 Equipment and Software

Hampton University's local area network is well protected with no telnet access from outside

and no faculty access to/usr/local directory which is used for experimentation in some other

systems and sites. Nevertheless, it is hard to argue with the security concerns of the system
administrators, and the lack of time devoted to research efforts. The administrative efforts

involved in teaching, such as the students accounts and their maintenance, the laboratories and

the like, naturally leave less time to research related efforts. For that reason, for instance, the

packages MPI, PVM, etc. have all been implemented in PI's account and not in a shared area

like /usr/local directory (that is the case with ACLU LACE but the institution and the

organization is well suited for it).

5. Expected Challenges

Our plan is to continue the checkout of TURBDES and PUMPDES packages and after we are

sure of correct outputs, to run these software in parallel over our local net in a distributed

manner. Each of these consist of four modules using GASP subsystem in common. There are

still some problems with TURBDES-GASP and PUMPDES-GASP interfaces having to do with

COMMON areas and setting of gas properties as block data. However, we are certain that the

parallel execution of this code over Sun sparcstation NFS will be feasible and successful. We

expect to the same with the Unix version of ROCETS software with minimal problems. The

next step would normally be demonstration of parallel execution of these packages over wider

networks using the LACE cluster as the starting point with MPI and PVM. However, as is

discussed at some length in the content, the step beyond this, involving CORBA type of standard

interfaces is not very clear.

Based on our experience with mixed-language programming [13] and the limited exposure

to the idea of C+ + wrappers through email exchanges mentioned in Section 3.2, we are highly

skeptical about the realization of C + + wrapper approach for reuse of Fortran based code. The

reason for this is that, starting with Microsoft family of languages QuickBasic, QuickC, Fortran

5.1, etc., the high level language vendors provided workable and viable interfaces to C from the

other languages which also included TurboPascal on PC platform (and some others, even Turbo

Prolog!). However, notice that the direction is from the older languages to the more modern

and popular languages like C (or more recently C+ +). There is a reason for this. As is

articulated in the respective Chapter of [13], once can have a BASIC or QuickBasic main

program call and use C functions but not the other way around. Traditional languages have

more complex preparations of the environment before their subroutines are called and an outside

C or C + + main program (or higher level subprogram module) has no way of anticipating such

preparations. Further, notice that the only success in this area has so far been accomplished on

PC platform because of the same vendor providing a number of different HLLs and common

linking utilities. The key to success in this area which may generally be regarded as mixed-

language programming support is to provide common object file formats and linking facilities

for all, or at least a variety of, high level languages. Moreover, such standards must included

17

personalcomputer,workstation,andmainframeplatforms. We simplydonot seeanysignificant
effort or event in that direction. Nevertheless,we will continue to pursue the idea of
encapsulationof Fortrancodein C+ + rigorously since it is a very promising one.

Finally, as discussed in Section 4.2, another challenge is to enlist the assisla_ce of

competent graduate student research assistants. With third year funding, we will be able to

provide full stipend and tuition assistance for up to three graduate students. Upon _hir_ :.'_a_

funding, we will post bulletins and sent emails to all faculty concerning this. Although, we are

having difficulty finding qualified students in our small pool of graduate student,% we are

optimistic and hopeful. If that does not happen, we will seek to support undergrad_w_fc students
under different pay arrangements.

6. Conclusion

With successful installation and demo runs of distributed computing tools such as MPI and

PVM, we have laid the ground for further experimentation with parallel execution of Fortran

based code lent to us under two separate software agreements. We will continue with our efforts

involving parallel execution of the code and the idea of making the existing code conform to the

object oriented principles as discussed in the previous section. In case we do not make much

progress in the area of C + + wrappers, we will attempt outfight rework and translation of the
TURBDES and PUMPDES code to C + +.

As for the policy issue of what is to be done with NASA's large Fortran based software

application base, we have provided some ideas and suggestions in Section 3.5. With respect to

the last item there, where we propose porting of software written in Fortran in traditional (non-

structured) style, we hope this issue gets serious attention and consideration. After all, although

it involves effort which may seem unnecessary, there axe certain advantages in reworking and

translation of existing software from one source language base to another.

It is important not to view such efforts as software redevelopment from scratch.

Redevelopment or new development from scratch entails gathering requirements, providing high

and low level software architectures based on those requirements, and the whole gamut of

software development life cycle. Reworking as we propose bypasses the requirements step

thereby saving much time and effort. In effect, the existing old software serves as requirements

(provided it is readable and thoroughly understood). Moreover, reworking of source code

presents opportunities of catching faults in the design, modeling, and algorithms. For instance,

suppose a formula or table for a certain procedure was not used correctly, that will be uncovered
during the rework and translation of the source code.

18

REFERENCES

[1] Huzel, D. K. and Huang, D. H. Modern Engineering for Design of Liquid-Propellant

Rocket Engines (Second Printing), AIAA, Inc., Washington, D.C. 20024, (1992).

[2] Sutton, G. P. Rocket Propulsion Elements: An Introduction to Engineering of Rockets (6th

Edition), John Wiley and Sons, Inc., New York, (1992).

[3] Follen, G. Williams, A., Blech, R, and Drei, D.V. (NASA Lewis), Apel, A. (P&W, East

Hartford), Byrd, R. (P&W, West Palm Beach), Gardocki, M. (G.E. Aircraft Engines),

Crawford, N. (AlliedSignal Engines), Ashleman, R. (Boeing), McNelly, M. (Allison

Engine Co.) "Numerical Propolsion System Simulation Architecture Definition," NASA TM

107343, November 1996.

[4] Williams, A., Follen, G., Claus, R., Blech, R, et. al. "Key Technologies for Implementing

An NPSS," Technical Memorandum, NASA Lewis Research Center, February 1997,

[DRAFT].

[5] Miller, B., Szuch, J. R., Gauigier, R. E., Wood, J.R. "A Perspective on Future Directions

in Aerospace Propulsion System Simulation," Lewis Research Center, NASA TM 102038,

1989.

[6] Reese, D. S., and Luke, E., "Object Oriented Fortran for Development of Portable Parallel

Programs, Mississippi State University, NASA Grant NAG3-1073 and NSF cooperative

agreement ECD-8907070).

[7] Blech, R.A. and Arpasi, D.J., "An Approach to Real-Time Simulation Using Parallel

Processing,", NASA TM 81731, 1981.

[8] Jell, Thomas, "Building Multimedia Application Systems Using Component Technology,"

WEB APPS Solutions Report W4, Object Expo/JAVA Expo '97, New York City, New

York, May 2, 1997 (presentation viewgraphs).

[9] Software Use Agreement for TURBDES and PUMPDES between Hampton University

(recipient) and NASA Lewis Research Center, October 2, 1996.

[10] Software Use Agreement for ROCETS between Hampton University

(recipient) and NASA Lewis Research Center, May 12, 1997.

[11] Snir, M., Otto, S.W., Huss-Lederman, S., Walker, D.W., Dongarra, J.

MPI: The Complete Reference, The MIT Press, Cambridge, Massachusetts

(Second Printing, 1997).

[12] Geist, A., beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Sunderam, V.
PVM: Parallel Virtual Machine, A User's Guide and Tutorial for Networked

Parallel Computing, The MIT Press, Cambridge, Massachusetts (Third Printing, 1996)

[13] Cezzar, R. A Guide to Programming Languages: An Overview and Comparison,
Artech House Publishers, Inc., Norwood Mass. 02062, c. 1995

(ISBN 0-89006-812-7).

[14] Elliot-Lewis, D. Cover letter addressed to Dr. Cezzar, dated July 28

1997 with accompanying documents on turbopump components and schematics

[15] Pratt & Whitney, Rocket Engine User's Manual, 31 May 1990, United Technologies

Pratt & Whitney Government Engine Business, West Palm Beach, Florida, FR-20284

19

APPENDIX A: Task Assignment for Ms. Chenhong Lu for Summer 1997

PROJECT: P.R.E.S.S -- NAG 3 1792

Research Assistant

Duration: June 1 thru August 31, 1997

Student Name: Chenhong Lu

Email address: grlu@cs.hamptonu.edu

Tasks for Summer 1997

Your mission, if you choose to accept it, shall be:

1) Completely translate all codes in TURBDES and GASP

software to C + + and DOCUMENT it. Use CC throughout (unless

there is a problem which absolutely requires use of g+ +).

2) Make reports every 10 days, on the average, mentioning progress in

terms of modules, and source lines. Discuss problems outstanding at

the end of each emailed report.

3) By July 15, should be able to run a demo on TURBDES package
with correct results.

4) By August 15, should complete the entire work with TURBDES and

demo both on SunOS Unix system.

5) By August 25, should also submit the entire documentation in

plain text form.

6) You may consult with Terrence on certain general issues:

t. a. lawrence@larc, nasa. gov

icetee@cs, hamptonu, edu

Good luck.

20

