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Overview

The goal of our research has been to understand the paths and the processes of planetary evolution that

produced planetary surface materials as we find them. Most of our work has been on lunar materials and
processes. We have done studies that obtain geological knowledge from detailed examination of regolith materials

and we have reported implications for future sample-collecting and on-surface robotic sensing missions. Our

approach has been to study a suite of materials that we have chosen in order to answer specific geologic questions.
We continue this work under NAG54172.

The foundation of our work has been the study of materials with precise chemical and petrographic analyses,

emphasizing analysis for trace chemical elements. We have used quantitative models as tests to account for the
chemical compositions and mineralogical properties of the materials in terms of regolith processes and igneous

processes. We have done experiments as needed to provide values for geochemical parameters used in the models.
Our models take explicitly into account _e physical as well as the chemical processes that produced or modified

the materials. Our approach to planetary geoscience owes much to our experience in terrestrial geoscience, where

samples can be collected in field context and sampling sites revisited if necessary. Through studies of terrestrial

analog materials, we have tested our ideas about the origins of lunar materials.

We have been mainly concerned with the materials of the lunar highland regolith - their properties, their

modes of origin, their provenance, and how to extrapolate from their characteristics to learn about the origin and

evolution of the Moon's early igneous crust. From this work a modified model for the Moon's structure and

evolution is emerging, one of globally asymmetric differentiation of the crust and mantle to produce a crust
consisting mainly of ferroan and magnesian igneous rocks containing on average 70-80% plagioclase, with a

large, mafic, trace-element-rich geochemical province, and a regolith that globally contains trace-element-rich

material distributed from this province by the Imbrium basin-forming impact. This contrasts with earlier models

of a concentrically zoned Moon with a crust of ferroan anorthosite overlying a layer of urKREEP overlying
ultramafic cumulates.

From this work, we have learned lessons useful for developing strategies for studying regolith materials that

help to maximize the information available about both the evolution of the regolith and the igneous differentiation

of the planet. We believe these lessons are useful in developing strategies for on-surface geological, mineralogical,

and geochemical studies, as well.

The main results of our work are given in the following brief summaries of major tasks. Detailed accounts of

these results have been submitted in the annual progress reports.

Geologic Implications of Cryptic Rock Components of Soils: Chemical Mass-balance Modelling

We can understand the formation and evolution of the Moon's crust only if we can identify and quantify its

main igneous rock types. This information must be extracted through studies of the soils and breccias of the

regolith, as bedrock sampling is not possible for most rock t)q_es. Once an igneous rock type has been identified as
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aregolithprecursor,itsprovenancemustbedetermined.Usingchemicalmass-balance(mixing)models,wehave
shownthatlithologiesnotevidentorprevalentin thecollectionoflargerockscanconstituteseveralpercentor
moreofasoil.Forexample,Apollo17soilsconsistmainlyoftwokindsofmarecomponents,high-Timarebasalt
andorangeglass,andtwotypesofhighlandcomponents,meltbrecciaandfeldspathicupper-crustallithologies.
Compositionaltrendsinthesoilstypicallyextrapolatetowardsomemixtureofthemeltbrecciaandpre-basin
components,indicatingaphysicalassociationofthosetwohighlandscomponentsbeforeadmixtureofthebasaltic
components(KorotevandKremser,1992).Thelocalhigh-Timarebasaltsareyoungerthanthehighlandcrustal
materials,andtheorangeglassinthesoilsisreadilyobserved,sotheseillustrativeresultsarenotsurprising.

Unliketheorangeglass,however,somemajorsoilcomponentscannotbedirectlyidentifiedpetrographically
becausetheyaretoofinegrained,havebeentoowellmixedwithothermaterials,orhavebeenconvertedtoglass.
Theirpresenceinasoilorbrecciacanneverthelessbediscoveredandtheirproportionspreciselydeterminedby
chemicalmass-balancemodelling.Thus,ourresults(KorotevandKremser,1992)showedthatallApollo17mare
soilscontain-8%ofvery-low-Ti(VLT)marebasalt.ToadvancebeyonddemonstratingthatVLTbasaltmight be

present as a cryptic rock type to showing convincingly that it is present required mass-balance modelling at an

improved, very high level of confidence. We achieved that level by two means: We analyzed hundreds of small

rock fragments from the soils to determine what rock types are actually present and to establish their compositional

ranges, and we tested thousands of possible model mixtures based on different combinations of these and other well
determined rock compositions. The modelling results showed that the only acceptable mixtures of possible

components were those including a VLT component, a number of fragments of which were found in the small rock

fragments (Jolliff et al., 1996a). Establishing the widespread, well mixed occurrence of the VLT component is

geologically important, because there is no known source of VLT basalt within the Taurus-Littrow valley (Korotev
and Kremser, 1992). Lateral transport of enough basaltic material from Mare Serenitafis to add several percent of

VLT basalt to the valley as a widespread component of mare soils would require nearby impact events producing
craters >100 km in diameter, and these craters are not present. Possibly, the source is pyroclasfic material from

within the valley or flows that underlie the high-Ti basalts of the valley floor.

The presence of VLT basalt in the Apollo 17 mare regolith may be surprising, but it seems plausible given

that there is a local mare source, at least for High-Ti basalt. We also showed by precise modelling, however, that

the Apollo 16 regolith contains ---6% ofa low-Ti mare component (Korotev, 1997c). The nearest known source of

mare material near the Apollo 16 site is Mare Nectaris, but that mare has spectral characteristics of an
intermediate-Ti basalt. Also, this low-Ti mare component is widespread and well mixed into the regolith to at

least half a meter depth, so its presence is not a consequence of lateral transport by small impacts. It does not occur

in the ancient regolith component of Apollo 16 (McKay et al., 1986), and may have been added when the Cayley

plains formed. The identification of these mare components far distant from any obvious source requires a suitable

geologic mechanism of emplacement and places a constraint on the origin of the regolith in which they now occur.

Thus, chemical compositions of regolith fines (the < 1-mm particulate component) provide a record of aspects

of geologic history that has not been found elsewhere. For definitive work of this type, many of the older chemical

analyses of Apollo and Luna materials lack precision or contain too many systematic errors, and many of the
materials analyzed early were not characterized petrographically so we cannot be certain what they were. New

analyses of well-characterized materials were and in some cases still are required.

Characterizing Typical Lunar Highlands

The best picture of the overall characteristics of typical lunar highlands has ceme from the Apollo _,-ray data,
the Clementine data, and the feldspathic lunar meteorites. The highlands are rich in feldspar (mostly in the range

70-80%), but contain at least several percent FeO nearly everywhere. Highlands of the Procellarum-Imbriurn

region are also rich in Th and presumably other incompatible trace elements. Of the Apollo and Luna landing

sites, the Apollo 16 site is the most like typical highlands, but its regolith is richer than typical in incompatible

trace elements and mafic components, judging from the lunar meteorites, remote sensing, and mass-balance

modelling. These materials, however, turn out to be late additions to the Apollo 16 highlands.

The "extra" trace elements and highland mafic components are found in mafic impact-melt breccia, which is

a significant component of the Apollo 16 regolith (--30%, Korotev, 1997c). We recently discovered that there are

at least five compositionally distinct types of mafic impact-melt breccias at the Apollo 16 site, not two as previously

believed (Korotev, 1994). Compared to otherwise similar melt breccias from other sites, all of these breccia types
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areunusualincontainingahighabundanceofanFe-Nimetalofmeteoriticorigin,suggestingtheiroriginsare
somehowconnected.Twoterrain units occur at the Apollo 16 site: the Cayley plains and the Descartes Formation;

the populations of the mafic impact-melt breccias differ between these two units. Mixing trends in Apollo 16

ancient regolith breccias indicate that the mostly feldspathic components of the ancient highland regolith were well

mixed and presumably fine grained before admixture of the trace-element-rich, mafic-impact-melt-breccia

component; the mare-derived component of the present Apollo 16 soil was added even later (Korotev, 1996b). The

widespread occurrence of the Cayley soils, a11 very similar in composition, and the behavior of the mafic melt

breccias as a single mass-balance end member within them in nearly constant proportion (25-3 I%) indicates that

the event that produced the mixture was a major, relatively late event such as a basin-forming impact, not a series
of smaller events (Korotev, 1997c; Korotev et al., 1997). When the mafic impact-melt breccias are "removed" in

the mathematical sense from the regolith of either the Descartes or the Cayley terrain, the residual compositions of

the "prebasin" regoliths are similar to each other and similar to those of the feldspathic lunar meteorites but
somewhat more feldspathic (Korotev, 1996b). Thus, the Apollo 16 regolith is anomalous compared to typical

highlands only in containing a higher proportion of KREEP-bearing, mafic impact-melt breccia, a consequence of

its proximity to one or more major basins.

Lunar impact-melt breccias. We have compiled a large database of high-precision chemical compositions for

lunar impact-melt breccias from the highland landing sites. Using this database, we have characterized

compositional groupings (e.g., Apollo 16 - Korotev, 1994), filled in gaps that show in some cases a continuous

range of compositions, and discovered new groups (e.g., Apollo 17 - Jolliff et al., 1996a). This database is
important because the impact-melt breccias are samples from very large or basin impacts and their compositions

and relationships strongly constrain correlations to specific events and source regions. This database allows us to
discern subtle differences even in the nature of KREEP components, which reflect deep crustal heterogeneity that

relates to early crustal differentiation (Jolliff et al., 1995c; Jolliff and Haskin, 1995; Jolliff, 1997).

Lunar Meteorites. We have combined our ability to analyze small samples and our knowledge of Apollo

samples to characterize most of the lunar meteorites and to relate them to the Apollo samples. We have shown that

several of the highland meteorites have important ferroan, mafic components as clasts and as cryptic components

in matrix and glasses (e.g., Korotev et al., 1996b). In a mixed mare-highlands breccia, QUE94281, we reported on
the geochemistry and petrology of VLT crystalline and volcanic-glass components (Jolliff et al., 1997).

Igneous-metamorphic Petrogenetic Modelling

Our early mass-balance modelling showed that a ferroan, highland rock type containing 10% or more matic-

minerals is a significant cryptic component of Apollo 16 soils and was probably an important prebasin highland

rock type. This rock type, more mafic than ferroan anorthosite, is almost absent from the Apollo collection as an

igneous rock. As part of the prebasin Apollo 16 regolith, by extension it must be present in typical highland soils

generally. Lunar highland regolith breccias such as MAC88105 and QUE93069 consist largely of components
derived from ferroan noritic anorthosite, a plagioclase-rich rock type, but containing as much as 10-25% pyroxene

(Korotev et at., 1996b).

The Pre-basin Highland Crust. We found an example of the anticipated ferroan plagioclase-rich, mafic

highland rock we knew form mass-balance modelling had to be present. Among the soils from North Ray Crater,

Apollo 16, the one richest in non-Cayley components and richest in Descartes components contains a large suite of
fragments of such a rock, a type called ferroan noritic anorthosite (Jolliff and Haskin, 1995). The lunar magma

ocean hypothesis suggests accumulation of the mineral plagioclase feldspar by crystallization of that mineral and

its separation by flotation from co-crystallizing mafic minerals such as olivine and pyroxene. Individual igneous

fragments from the suite contain, in addition to accumulated plagioclase, products of crystallization of interstitial

melt. By considering the set of 148 fragments as a whole, we were able to model quantitatively how a noritic

anorthosite pluton with those characteristics could have originated, starting as a perched layer of plagioclase-rich

mush within a magma ocean or similar setting (Jolliff and Haskin, 1995). The chemical compositions of the

fragments and their constituent minerals showed that the process of formation of the rock was complex. Even the
accumulated plagioclase, expected to be the simplest component of the rocks, shows evidence of several stages of

growth and possible metamorphic recrystallization. This plagioclase made a "framework" of crystals buoyed by

magma beneath and within. Part of this magma crystallized within the plagioclase framework, and its

crystallization path, constrained by the compositions of the individual fragments, could be matched by combined

trace- and major-element geochemical and petrologic modelling.
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Inrecent,preciseanalysisandmodellingofApollo17materials,wedetermined that the highland component

of the North Massif soils was mainly granulitic breccia and mafic impact-melt breccia in roughly equal

proportions. We also found, however, that there must be in addition a more mafic Mg-suite component in North

Massif soils that is not a significant component of South Massif light mantle soils (Korotev and Kremser, 1992).

We then sought the identity of this component by analysis of 2-4 mm soil fragments, and found it to be magnesian
troctolitic anorthosite (Jolliff et al., 1996a). The South Massif light mantle soils, which do not require this

additional magnesian component, derive mainly from the top of the massif, are >70% mafic impact-melt breccia

(Jolliff et al., 1996a). This difference between North Massif soils and South Massif light mantle soils is consistent

with a stratigraphy that concentrates pre-basin, upper-crustal material into the lower parts of the massifs. This

implies different origins for the upper and lower massif deposits.

The Most Evolved Crustal Igneous Rocks: INAA and Ion-microprobe Studies, New Theory, Experiment, and

Quantitative Modelling. Among the 2-4 mm soil fragments from Apollo 14, we discovered a suite of some of the

most petrologically and geochemically evolved lunar rocks known (quartz monzogabbro, granite, and an impact-
melt rock with REE concentrations three times those of KREEP). This led us to study the mechanisms of

chemical evolution of lunar residual melts and to discover the unusual effects of phosphate crystallization,

especially whitlockite, on trace-element distributions. Whitlockite grains contained in these samples are rich in
REE and within a single rock show grain-to-grain differences in REE concentrations. Previous workers had noted

similar high REE concentrations and concentration differences and had concluded that the whitlockite was out of

equilibrium with surrounding major minerals; they suggested crustal metasomatism would be required to produce

those properties. We showed by modelling that the whitlockite REE concentrations in these rocks could be

produced by igneous fractional crystallization (Jolliffet al., 1993a).

Demonstrating the above required development of a new fundamental understanding of the nature of REE

partitioning into minerals such as whitlockite. We used a combination of detailed analytical measurements by
INAA and by electron and ion microprobes, experiments to determine distribution coefficients, and theoretical

modelling to determine the distribution (uptake) of REEs in whitlockite and apatite as a complex function of

composition and crystallization timing (Jolliff et al., 1993a; Colson and Jolliff, 1993). We developed a concept of

a special feature of late-stage fractional crystallization, that of melt-pocket equilibrium, in which the concentration-

dependent partition coefficients come into play only after solidification has progressed to the point of isolating

pockets of highly evolved melt. Finally, we used the new theory to model the phosphate REE concentrations
observed within the actual lunar rocks.

In the course of this work, we also found the first and only clear example of an immiscible felsic liquid

preserved in a plutonic rock, postulated by others to occur when fractional crystallization was extensive and

believed important in the genesis of lunar granite (Jolliff and Floss, 1997). We showed that the unusual REE

fractionation of lunar granites resulted from the crystallization of whitlockite prior to immiscible-liquid separation,

and that the high REE contents of some lunar samples can be related to normal late-stage igneous processes.

Modification of the Pre-basin Highland Crust: The Hypothetical High-Th Oval Region and the lmbrium

Impact Event

The highland soils at the Apollos 14-17 sites all contain mafic impact-melt breccia of one or more chemical

compositions at each site. All contain meteoritic metal, and the metal found in Apollos 14 and 15 mafic impact-

melt breccias, although in lower concentration, has the same composition as that found in the Apollo 16 mafic

impact-melt breccias. In order to account for this and other characteristics of lunar surface materials, we have

tested and re-evaluated the hypothesis that most or all of the mafic impact-melt breccias are "contamination" from

the large lmbrium impact event. We have suggested (1) that the lmbrium event produced thicker, Moon-wide

ejecta deposits than previously estimated, (2) that the Imbrium basin was excavated into an apparently unique, Th-

rich geochemical province (we call it the High-Th Oval Region), so that the ejected lmbrium material in these

deposits would be Th-rich like the mafic impact-melt breccias, and (3) that the distribution of Th concentrations in

the highlands could result largely from Imbrium ejecta of material from that region. This work required us to
extend previous models for ejecta deposit formation and to re-examine the Apollo ganuna-ray Th data. It also set

up testable hypotheses for the Lunar Prospector mission: that the High-Th Oval Region is a unique feature of the

Moon, and that the Th in the lunar highlands comes largely from that region.
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A New View of the Moon

As a result in large measure of the work described above, our current ideas of the Moon's igneous

differentiation differ from the paradigm that produces a concentrically and symmetrically differentiated Moon with

a highland crust that initially consisted of ferroan plagioclase-rich rocks, then was intruded by more magnesian

magmas, and onto which melts form a global urKREEP layer extruded. Instead, we see an asymmetric

differentiation to produce a crust consisting mainly of somewhat mafic ferroan plagioclase-rich plutonic rocks and
somewhat mafic, magnesian plagioclase-rich plutonic rocks. The differentiation left a unique mafic geochemical

province rich in trace elements beneath the Imbrium-Procellarum region (the High-Th Oval Region). The early

igneous crust was constantly pounded by impacting planetary debris, the last and most spectacular impact events
left the major basins and rearranged crustal materials substantially, in each instance mixing large amounts of

material ejected from each basin with many times its volume of material on which the ejecta fell. The next to last

of the major, basin-forming events, the Imbrium event, excavated Th-rich material from the High-Th Oval Region

and spread it Moon-wide as mafic impact-melt breccia, leaving the pattern of Th observed in the highland regolith

by the Apollo "/-my experiment. All of this early history (and more) is recorded in the chemical compositions of

the lunar regolith samples.

Toward Future Planetary Studies

The lessons we have learned from studies of lunar samples can help us design missions for robotic planetary

exploration. We have learned that it is essential to understand the origins and provenances of the materials in

planetary regoliths. All lunar samples came from regolith, and spectral measurements on the Moon, Mars, and

most other planetary objects have been and will be made on regolith. We must now apply our expertise derived
from working with lunar and terrestrial materials to prepare for on-surface mineralogy and geochemistry of many

planetary objects, at this time mainly the Moon and Mars. We must use the lessons gained from studies of lunar
regolith materials in the design of sample returns from those objects. The problem will be significantly different

on Mars, given the atmosphere that winnows materials and displaces fines from their origins, and given the

reactions with atmosphere and hydrosphere that have occurred. Much of Mars remains heavily cratered, however,

so we may expect that many of the regolith materials are of impact origin, although they may have been displaced

by later sedimentary processes.

From Soil Ground Truth to Remotely Sensed Terrain. Our extensive analyses of<l nun soil fines have

provided us with a soil compositional map in geological context for each of the Apollo sites, highland and mare.

We are using these maps to determine how well spectral data (e.g., ground-based, Clementine, future Prospector)
can be used to distinguish among known highland materials and provide several kilometer-scale geological insight.

We have shown that Clementine spectra allow us to distinguish among the main soil types sampled at the Taurus-

Littrow valley (Jolliff, 1997). Our extensive work on compositions of highland regolith materials caused Korotev

et al., 1996 to question early estimates of global Fe concentrations derived from Clementine UV-VIS data (Lucey et

al., 1995). Our discussions with the Lucey group about the discrepancy between our estimates and theirs was a
factor in their recent revision of their Fe calibration, and has led to collaboration with them to help refine their new

method of estimating Ti concentrations (Blewett et al., 1997c). The new calibration based on landing site soil data

leads to estimates of highland surface compositions that are consistent with estimates based both on data from the

lunar meteorites and the Apollo and Luna sites.

Assessing the Promise of On-Surface-Sensing Methods. We applied our knowledge of Apollo site

geochemistry and geology and of analytical instrumentation to determine how well we could expect a particular
instrument, an alpha-proton-X-ray spectrometer for major element analysis, to determine rock and soil

characteristics that we knew to be present from observing them in Apollo samples. That work has also led to the

development of new modelling approaches for such evaluations (Korotev et al., 1995a). One result of that study
was to recognize that supplementing the data on chemical compositions with mineral identification and

proportions on a small sample scale would greatly enhance our understanding of the materials encountered.

In response, we are currently developing a Raman spectrometer suitable for planetary on-surface sensing

(Wang et al., 1997). Raman spectroscopy offers unambiguous identification of most minerals and can be used on a

microscopic scale. We are learning how best to apply it to on-surface determination of rock and soil mineralogy

(Wang et al., 1995; Haskin et al., 1997). Using it, we can expect to obtain mineral identification, constraints on

mineral compositions, and mineral proportions in rocks and soils.
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