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ABSTRACT

Particle-based hydrodynamics models offer distinct advantages over Eulerian and

Lagrangian hydrocodes in particular shock physics applications. Particle models are designed

to avoid the mesh distortion and state variable diffusion problems which can hinder the

effective use of Lagrangian and Eulerian codes respectively. However conventional particle-

in-cell and smooth particle hydrodynamics methods employ particles which are actually

moving interpolation points. A new particle-based modeling methodology, termed

Hamiltonian particle hydrodynamics, was developed by Fahrenthold and Koo (1997) to

provide an alternative, fully Lagrangian, energy-based approach to shock physics

simulations. This alternative formulation avoids the tensile and boundary instabilities

associated with standard smooth particle hydrodynamics formulations and the diffusive grid-

to-particle mapping schemes characteristic of particle-in-cell methods.

In the work described herein, the method of Fahrenthold and Koo (1997) has been

extended, by coupling the aforementioned hydrodynamic particle model to a hexahedral finite

element based description of the continuum dynamics. The resulting continuum model

retains all of the features (including general contact-impact effects) of Hamiltonian particle

hydrodynamics, while in addition accounting for tensile strength, plasticity, and damage

effects important in the simulation of hypervelocity impact on orbital debris shielding. A

three dimensional, vectorized, and autotasked implementation of the extended particle

method described here has been coded for application to orbital debris shielding design.

Source code for the pre-processor (PREP), analysis code (EXOS), post-processor (POST),

and rezoner (ZONE), have been delivered separately, along with a User's Guide describing

installation and application of the software.
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1. Introduction

The Hamiltonian particle dynamics model developed by Fahrenthold and Koo

(1997) is purely hydrodynamic. In order to account for strength effects important in the

simulation of hypervelocity impacts on space structures, the aforementioned model has

been extended, to incorporate elastic-plastic-damage effects. These effects are quantified

using a three dimensional, hexahedral finite element characterization of deformation in the

modeled continuum.

The extension of the particle model of Fahrenthold and Koo (1997), described here,

is based on a body centered cubic packing scheme for the material particles. Under such a

packing scheme, each particle has eight nearest neighbors in the reference configuration.

The center of mass coordinates of these eight nearest neighbors are designated as nodal

coordinates for a hexahedral finite element centered initially on the particle. The volume of

this element is calculated at each time step (using one point integration), and appears as a

mechanical variable in the system level internal energy function. The relative velocity of the

body centered particle, with respect to each of its nearest neighbors, is calculated at each

time step to determine the local plastic strain rate. Finally a scalar continuum damage

variable is introduced for each element, allowing for the loss of cohesion of the element

when a user-specified level of plastic strain has been accumulated.

The sections which follow describe in detail the hexahedral finite element based

elastic-plastic-damage model implemented in the code EXOS, and illustrate application of

the code by the simulation of example hypervelocity impact problems. A User's Guide for

the analysis code EXOS, pre-processor PREP, post-processor POST, and rezoner ZONE

is provided separately. In the interest of brevity the current report describes only the new

finite element based augmentations developed to extend the model of Fahrenthold and

Koo(1997). The reader is referred to the latter reference for a detailed description of the

basic Hamiltonian particle hydrodynamics model.
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2. Kinematics

The hexahedral element kinematics are similar to those employed in Lagrangian

hydrocodes, for example DYNA3D (Hallquist, 1983). The components of the deformation
[-''l

gradient (f_'_)for element T are calculated as
j_

(i) (i,2) (i, 1) (i,3) (i,4) (i,6) (i,5) (i,7) (i,8)

fll=[Cl - c 1 + c 1 c 1 + c 1 - c 1 + c 1 - c 1 ]/8 (la)

(i) (i,2) (i,1) (i,3) (i,4) (i,6) (i,5) (i,7) (i,8)

f21=[c2 - c 2 + c 2 - c 2 + c 2 - c 2 + c 2 c 2 ]/8 (lb)

(i) (i,2) (i, 1) (i,3) (i,4) (i,6) (i,5) (i,7) (i,8)

f31 =[c3 c 3 + c 3 - c 3 + c 3 - c 3 + c 3 c 3 ]/8 (lc)

(i) (i,3) (i,2) (i,4) (i,1) (i,7) 0,6) (i,8) (i,5)

fl2=[Cl c 1 + c 1 - c 1 + c 1 c 1 + c 1 - c 1 ]/8 (ld)

6) (i,3) (i,2) (i,4) (i,1) (i,7) (i,6) (i,8) (i,5)

f22=[c2 - c 2 +c 2 c 2 +c 2 c 2 + c 2 -c 2 ]/8 (le)

(i) (i,3) (i,2) (i,4) (i,1) (i,7) (i,6) (i,8) (i,5)

f32 = [ c3 - c3 + c3 c3 + c3 c3 + c3 - c3 ]/8 (If)

(i) (i,5) (i, 1) (i,6) (i,2) (i,7) (i,3) (i,8) (i,4)

fl3=[Cl - c 1 + c 1 c 1 + c 1 - c 1 + c 1 c 1 ]/8 (lg)

(i_ (i,5) (i, 1) (i,6) (i,2) 0,7) 0,3) (i,8) (i,4)

f23=[c2 c 2 +c 2 -c 2 +c 2 -c 2 +c 2 c 2 ]/8 (lh)

(i) (i,5) (i, 1) (i,6) (i,2) (i,7) (i,3) (i,8) (i,4)

f33 = [c3 c 3 + c 3 - c 3 + c 3 c 3 + c 3 c 3 ]/8 (li)

(id)
whcrc ck

ncighbor 'j'ofparticlc'i'.The current(cffective)volume forthe clcment isthcn

veff(i) = 8 det[ f(i) ]

where 'det' denotes the determinant and the deformation gradient matrix is f(i).

denotes the 'k'th component of the center of mass position vector for nearest

(2)



3. Internal energy

The total internal energy associated with particle T is assumed to consist of particle

and element based components, and take the form
n

U = (1/2) g m (i) [ u(i)( v (i), s (i)) + (1 - D (i)) u(i)(_(i), s(i) ) ]
i=l

e(i) = veff(i)/m(i)

(3a)

(3b)

where m(i), u (i), v (i), s (i), D (i), and V eff(i) are the mass, internal energy per unit mass,

volume per unit mass, entropy per unit mass, continuum damage, and element volume

associated with particle T. Since the element volume depends on the particle coordinates

e(i) and since the particle entropy (S (i)) and deformation gradient (F (i)) are related to the

previously defined variables by

s(i) = m (i) s (i) ; v(i)/v (i) = det(F (i)) = F(i) 3 (3c,d)
O

where v (i) is the specific volume in the reference configuration, it follows that the system
O

internal energy can be expressed as a function of the generalized coordinates c (i), F(i), D (i),

and S (i)

U = U(c (i), F(i), S (i), D (i)) (3e)

Hence the generalized conservative forces for the system are

geff(i) 0U (4a)
- De(i )

G(i) _ 0U - 3 V (i) p(i) F(i)2 (4b)
0F(i) - o

0(i)_ 0U
0s(i ) - (1/2) [ 0P ar(i) + ( 1 - D (i)) 0 eff(i) ] (4c)

r(i)_- OU _ (I/2)m(i)u(i)(E(i),s(i)) (4d)
aDO)



where 1-'(i) is a damage energy release rate, p(i) is the particle pressure,

p(i) = _ 0u(i)( v (i), s(i) )

av(i)

and the particle and element temperatures are

(5a)

4

0Par(i) = 0u(i)(v(i), s(i) )
" /

Os(i)
(5b)

oeff(i) = au(i)(e(i), s(i) )

as(i)
(5c)

The generalized conservative forces geff(i) in equation (4a), associated with the

particle center of mass coordinates, may be calculated from the element pressure (peff(i)),
which is

peff(i) _ _ Ou(i)_(e(i), s(i) )
be(i)

and the minor determinants of the element deformation gradient, which are

m(i) _(i) _(i) (i) _(i)

fll = t22 133 - f23 t32

m(i) _(i) _(i) _(i) _(i)

f12 = t31 t23 - f21 f33

m(i) _(i) _(i) _(i) _(i)

el3 = t21 t32 - t31 122

fm(i) _(i) _(i) _(i) _(i)

21 = f13 f32 - f12 t33

f22 i) _(i) (i) _(i) _(i)
= fll f33 - f13 f31

= _(i) _(i) _(i) (i)
f230) 112 I31 - fll f32

(6)

(7a)

(7b)

(7c)

(7d)

(7e)

(70



= _(i) (i) _(i) _(i)
f3(1) f12 f23 - t-I3 t22

f_2 (i) _(i) _(i) _(i) _(i)
- t21 - tll I23

fm(i) (i) _(i) _(i) _(i)

33 = flI t22- f12 t21

(7g)

(7h)

(7i)

Equations (6) and (7) then determine the generalized forces for nearest neighbor nl (i) as

= _ _re(i) m(i) rn(i)
g_ff(nl(i)) (I/2) (1 - D(i)) peff(i) [. fl 1 - f12 f13 ]

= - 5n(i) m(i) m(i)
g_ff(nl(i)) (I/2) (1 - D(i)) peff(i) [_ 121 _ f22 f23 ]

g_ff(n 1 (i)) = _ rn(i) _re(i) re(i)
(1/2) (1 -D(i))peff(i) [.131 _ t32 _ 133 ] (8c)

(Sa)

(8b)

The generalized forces for nearest neighbor n2(i) are

= rn(i)
g_ff(n2(i)) _ (1/2) (I - D(i)) peff(i) [fl 1 -

= re(i)
g_ff(n2(i)) _ (1/2) (1 - D(i)) peff(i) [ t21 _

= re(i)
g_ff(n2(i)) _ (1/2) (1 - D(i)) peff(i) [ i31 _

The generalized forces for nearest neighbor n3(i) are

re(i) re(i)

f12 - f13 ] (8d)

re(i) _re(i)

f22 " 1-23 ] (8e)

f_2(i) m(i)" f33 ] (8f)

= _ m(i) m(i)
g_ff(n3(i)) (1/2) (1 - D(i)) peff(i) [ fl 1 + f12 -

= _re(i) re(i)
g_ff(n3(i)) _ (1/2) (1 - D(i)) peff(i) [ i21 + f22 -

= re(i) • _g_ff(n3(i)) _ (1/2) (1- D(i)) peff(i) [ t-31 + f32(0

re(i)

f13 ] (8g)

f2 i)

3 ] (8h)

fm(i)

33 ] (8i)
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Thegeneralizedforcesfor nearestneighborn4(i) are

eff(n4(i)) D(i)) peff(i) em(i) m(i) m(i)
gl =-(1/2)(1- [-'11 + f12 - f13 ] (9a)

fT(i) m(i) m(i)ge2ff(n4(i)) = - (1/2) (1 - D(i)) peff(i) [ _ + f22 - f23 ] (9b)

fT(i) m(i) m(i)ge3ff(n4(i)) = - (1/2) (1 - D (i)) peff(i) [ _ + f32 - f33 ] (9c)

The generalized forces for nearest neighbor n5(i) are

eff(n5(i)) D(i)) peff(i) rm(i) m(i) m(i)
gl =-(1/2)(1- [-'11 - f12 + f13 ] (9d)

f2_i) m(i) m(i)geff(n5(i))2 = - (1/2) (1 - D (i)) peff(i) [ - - f22 + f23 ] (9e)

fT_i) m(i) m(i)geff(n5(i))3 = - (1/2) (1 - D (i)) peff(i) [ - - f32 + f33 ] (9f)

The generalized forces for nearest neighbor n6(i) are

eff(n6(i)) _ peff(i) m(i) m(i) m(i)
gl =-(1/2)(1 D(i)) [fll - f12 + f13 ] (9g)

m(i) m(i) m(i)

ge2ff(n6(i)) = - (1/2) (1 - D (i)) peff(i) [ f21 - f22 + f23 ] (9h)

f3_i) m(i) m(i)geff(n6(i))3 = - (1/2) (1 - D (i)) peff(i) [ - f32 + f33 ] (9i)

The generalized forces for nearest neighbor n7(i) are

eff(n7(i)) _ peff(i) m(i) m(i) m(i)
gl =-(1/2)(1 D(i)) [fll + f12 + f13 ] (10a)



m(i) m(i) m(i)
eff(n7(i)) _ (1/2) (1 - D(i)) peff(i) [ f21 + f22 + f23 ] (10b)g2 =

m(i) m(i) m(i)
ge3ff(n7(i)) = - (1/2) (1 - D(i)) peff(i) [ f31 + f32 + f33 ]

Finally the generalized forces for nearest neighbor n 1(i) are

(lOc)

eff(n8(i)) peff(i) m(i) m(i) m(i)
g 1 =- (1/2) (1 - D (i)) [ - fl 1 + f12 + f13 ] (10d)

eff(n8(i)) _ peff(i) f2(i) m(i) f2_i)g2 = - (1/2) (1 D (i)) [ - + f22 + ] (10e)

f3_i) m(i) m(i)eff(n8(i)) _ _ (1/2) (1 - D (i)) peff(i) [ _ + f32 + f33 ] (10t')g3

Note that when the damage for the element associated with particle T is zero, the preceding

generalized forces are zero, that is the element looses its cohesion.

4. Plasticity model

Just as the element's nodal displacements determine its current density and hence

(in part) its internal energy, the relative velocities of the nodes with respect to the body

centered particle determine the local rate of plastic strain. To be specific, the local plastic

strain rate at particle T is determined from the tangent relative velocities of particle T with

respect to its eight nearest neighbors in the reference configuration

vtan(i,j) =/:(i) _/z(J) - vrad(i,J) ; j = 1, 2 .... 8 (1 la)

where

vrad(i,J) = { [ (c (i) - cO)) / Ic(i) - cO)l ]. (/:(i) _ _(j)) } [ (c(i) _ cO)) / Ic (i) - c(J)l ] (1 lb)

Given a yield stress (_y(i)) and current volume (V (i)) for the particle, the force on particle

T associated with plastic flow is



8 . tan(i,j)
fp(i) = Z fP(i'J) sign[ vk ] (1lc)

j=l

where

fp(i,j)=[l/(h(i)+hfj))][l_min(D(i),D(j))](l/2)(v(i)c_y(i)+v(j)6 y(j)) (lld)

Theeffectiveplasticstrain(eP(i)) is thencalculatedby integratingtherateequation

8
_p(i) = (2/3) g { [ 1/ (h (i) + h(J))] I vtan(i'J ) I }2 (lie)

j=l

for each particle.

5. Damage evolution

The damage evolution relation assumed here is the simplest possible, namely the

damage is set to one when the plastic strain in an element reaches a user specified critical

value. This value is normally termed an erosion or failure strain in the finite element

literature. The introduction of more complex damage evolution relations and other failure

criteria is relatively simple, and is under consideration for future versions of the analysis

code.

6. Entropy production

The effects of plastic deformation and damage evolution must be accounted for in

the entropy evolution relations, since plastic flow and damage evolution are dissipative

processes. An irreversible entropy production rate for particle T (sirr(i)) is calculated from

the energy dissipation rate associated with plastic deformation and damage evolution, as

follows:

/;irr(i) = (1 / 0 (i)) [ f p(i)./:(i) + r(i) i_(i) ] (12)

The coefficients of the generalized velocities in the entropy production relations will

determine nonconservative generalized forces in the system level state equations.



7. Example simulations

Appendices A, B, and C, show some example hypervelocity impact simulations

performed using the code EXOS.

The first example represents the oblique impact of a spherical projectile on a flat

plate at 6.81 kilometers per second. Both the projectile and the shield were taken to be

aluminum, with the material described by a Mie-Grtineisen equation of state. Parameters of

the simulation are shown in Appendix A. Figures A-1, A-2, and A-3 show the simulation

results.

The second example represents the oblique impact of a cylindrical projectile on a

flat plate at 7.0 kilometers per second. Again both the projectile and plate materials were

taken to be aluminum, and a Mie-Grtineisen equation of state was used. Parameters of the

simulation are shown in Appendix B. Figures B-1, B-2, B-3, and B-4 show the simulation

results.

The third example represents the oblique impact of a rod on a flat plate at 7.0

kilometers per second. Again both the projectile and plate materials were taken to be

aluminum, and a Mie-Grtineisen equation of state was used. Parameters of the simulation

are shown in Appendix C. Figures C-1, C-2, C-3, and C-4 show the simulation results.

8. Conclusion

This report details the formulation and implementation of a finite element

augmentation for the particle hydrodynamics model of Fahrenthold and Koo (1997). The

coupling of particle based and finite element based models in a single code allows for the

general characterization of both contact-impact effects and elastic-plastic-damage effects,

important to the simulation of hypervelocity impacts on space structures.
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APPENDIX A: Sphere impact simulation

Simulation parameters_ oblique impact of a sphere on a fiat plate:

Sphere diameter (aluminum) =

Impact velocity =
Impact obliquity =

Plate thickness (aluminum) =

Equation of state type =
Failure strain =

Yield stress =

Numerical shear viscosity coefficient =

Numerical bulk viscosity coefficient =
Numerical conduction coefficient =

Penalty stiffness coefficient =

Time step coefficient =

Number of particles =
Total simulation time =

Number of time steps =

CPU time (Cray J916)

1.00 cm

6.81 cm/l.tsec

15 degrees
0.16 cm

Mie-Grtineisen

0.50

0.0029 Mbar

0.01

0.10

1.00

10.0
10.0

17,530

3.00 lxsec
3,210
2.82 hours

List of figures (attached):

Figure A-1. Oblique view: simulation a t = 0.0 txsec.

Figure A-2. Oblique view: simulation a t = 3.0 ktsec.

Figure A-3. Normal view: simulation a t = 3.0 _tsec.



Figure A-I



Figure A-2



Figure A-3
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APPENDIX B: Cylinder impact simulation

Simulation parameters_ oblique impact of a cylinder on a fiat plate:

Cylinder diameter (aluminum)
Cylinder length

Impact velocity

Impact obliquity
Plate thickness (aluminum)

Equation of state type
Failure strain

Yield stress

Numerical shear viscosity coefficient

Numerical bulk viscosity coefficient
Numerical conduction coefficient

Penalty stiffness coefficient

Time step coefficient

Number of particles
Total simulation time

Number of time steps

CPU time (Cray J916)

= 0.20 cm

= 0.40 cm

= 7.00 cm/I.tsec

= 31 degrees
= 0.04 cm

= Mie-Gr0neisen

= 0.50

= 0.0029 Mbar

= 0.01

= 0.10

= 1.00
= 10.0

= 10.0

= 11,184

= 2.00 _tsec
= 7,772
= 4.66 hours

List of figures (attached):

Figure B-1. Oblique view: simulation a t = 0.00 _tsec.

Figure B-2. Oblique view: simulation a t = 1.21 _tsec.

Figure B-3. Oblique view: simulation a t = 2.00 I.tsec.

Figure B-4. Normal view: simulation a t = 2.00 lxsec.



Figure B-I



Figure B-2



Figure B-3



Figure B-4
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APPENDIX C: Rod impact simulation

Simulation parameters_ oblique impact of a rod on a flat plate:

Cylinder diameter (aluminum) =

Cylinder length =
Impact velocity =

Impact obliquity =
Plate thickness (aluminum) =

Equation of state type =
Failure strain =

Yield stress =

Numerical shear viscosity coefficient =

Numerical bulk viscosity coefficient =
Numerical conduction coefficient =

Penalty stiffness coefficient =

Time step coefficient =

Number of particles =
Total simulation time =

Number of time steps =
CPU time (Cray J916) =

0.08 cm

0.24

7.00 cm/l.tsec

31 degrees
0.04 cm

Mie-Grtineisen

0.50
0.0029 Mbar

0.01
0.10

1.00

10.0

10.0

23,754

1.00 l.tsec
7,959
8.04 hours

List of figures (attached):

Figure C-1. Oblique view: simulation a t = 0.000 ktsec.

Figure C-2. Oblique view: simulation a t = 0.206 lxsec.

Figure C-3. Oblique view: simulation a t = 0.627 ktsec.

Figure C-4. Oblique view: simulation a t = 1.000 [tsec.



Figure C-I



Figure C-2



Figure C-3



Figure C-4


