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AN ACCURATE AND DYNAMIC COMPUTER GRAPHICS

MUSCLE MODEL

by

David Asher Levine, M.S.E.

The University of Texas at Austin, 1997

SUPERVISOR: Ronald E. Barr

A computer based musculo-skeletal model was developed at the University in the

departments of Mechanical and Biomedical Engineering. This model accurately

represents human shoulder kinematics. The result of this model is the graphical display

of bones moving through an appropriate range of motion based on inputs of EMGs and

external forces. The need existed to incorporate a geometric muscle model in the larger

musculo-skeletal model. Previous muscle models did not accurately represent muscle

geometries, nor did they account for the kinematics of tendons. This thesis covers the

creation of a new muscle model for use in the above musculo-skeletal model.

This muscle model was based on anatomical data from the Visible Human Project

(VHP) cadaver study. Two-dimensional digital images from the VHP were analyzed

and reconstructed to recreate the three-dimensional muscle geometries. The recreated

geometries were smoothed, reduced, and sliced to form data files defining the surfaces

of each muscle. The muscle modeling function opened these files during run-time and
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recreated the muscle surface. The modeling function applied constant volume

limitations to the muscle and constant geomtry limitations to the tendons.
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1. Introduction and Literature Review

1.1. Project Background

1.1.1. NASA Project

1.1.1.1. Introduction to NASA Project

The growing power of computer graphics is influencing a wide range of fields

including engineering, medicine, and entertainment. Graphical modeling of human

movement is of particular interest in these areas. The exponential development of

computer hardware in the 1980s and 1990s, and the availability of digitized anatomical

data, has created an environment in which more details may be applied to computer-

based models of human movement.

In 1992 NASA's Johnson Space Center issued a Regional University Grant to

the University of Texas at Austin. The purpose of this grant is to create a musculo-

skeletal model of the human upper extremity with application to manned space

operations. This model must accurately portray human muscle forces and joint

movements. The creation of this model has been broken into three segments:

theoretical and computational model creation, experimental validation of the theoretical

model, and graphical support for the model.

1.1.1.2. Modeling

The computational modeling is based on optimal control solutions to a desired

input motion. The model's output will be an accurate computer graphics rendering of

the shoulder's musculo-skeletal system moving as an actual musculo-skeletal system

would for the selected motion. To create the model, muscle and bone geometries must

be measured, muscle forces and their lines of action must be known, and muscle

activation time-histories must be determined for given motions. To create the activation

curves, a large-scale optimal control algorithm was employed [ 1,2]. Once values for all

of the above are found, the result is a dynamic computer graphics model, typically for

movements of short durations.



1.1.1.3. Experimentation

Data were collected to verify the models. Experiments on human subjects were

performed to create data sets. These experiments included both isometric and dynamic

trials. During the isometric trials, subjects' torsos were constrained as they gave 100

percent exertion for contractions of different muscle groups at different joint angles. A

dynamometer measured the net joint torque of these contractions. The dynamic trials

used the same subjects. During the dynamic trials, the research team tracked the motion

of the subjects' limbs and recorded relevant muscle EMG activation levels during

prescribed arm motions. The experimental data were analyzed to solve for net muscle

forces and muscle activation levels during movements that had been modeled.

1.1.1.4. Graphical Support

The last step of the project is the computer graphics support. This support

includes accurate geometric representation of bones and muscles. This thesis discusses

the method by which the graphical muscle models were created. Many of the same

computer programs used for bone modeling were employed for the creation of muscle

models.

1.1.2 Visible Human Project

1.1.2.1. Introduction to the Visible Human Project

The National Library of Medicine decided in its 1986 long-range plan to make a

complete set of anatomically detailed digital images of both the male and female bodies

available to researchers. In August 1991 the National Library of Medicine awarded a

contract for data acquisition to the University of Colorado at Denver [3].

The data acquisition team began by procuring the body of a 38 year old male

convicted murderer who had donated his body to science [4]. The subject was five feet

and eleven inches tall, weighed 199 pounds, and was described as having good to

excellent general health [5]. The data acquisition team took magnetic resonance images

(MR/s) and transverse computed tomography (CT) scans of the fresh cadaver at 4 mm

and 1 mm intervals, respectively. The cadaver was then embedded in a gelatin and

frozen. The data acquisition team took the transverse CT scans again now that the
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cadaver was frozen. The team then actually transversely sliced the cadaver in 1 mm

intervals and snapped color axial photographs of the remaining cadaver. The team

recorded 1871 cross-sectional color photographs and CT scans. The photographs were

later digitized and all of the images were placed on a National Library of Medicine

server [3].

1.1.2.2. Image Resolution

The Visible Human Male data set images vary in resolution. The MRls are 256

pixels by 256 pixels with 12 bit grey scale resolution. The CT scans have a better

resolution than the MRIs at 512 pixels by 512 pixels, but share the 12 bit grey scale

resolution. More importantly, the radius of the CT scans was too small to capture the

entire width of the cadaver. In the CT scans, the widest part of the cadaver, around its

elbows, is cut offby the border of the scan itself. ACT scan is shown in Figure 1.1.

The digitized color images are 2048 pixels by 2048 pixels and are defined by 24 bit

color [3]. Each pixel has a resolution of 0.33 mm [6]. A color image is shown in

Figure 1.2. The complete data set is 15 gigabytes [3].

Figure 1.1. A CT scan of the thorax from the Visible Human Male data set [7].
Note that the elbows are cut offby the radius of the CT scan.



Figure 1.2. A color photograph of the thorax fl'om the Visible Human Male data set
[8].

1.2. Literature Review

1.2.1. Anatomy

The purpose of this research is to create accurate gross anatomical

reconsU'uction of the shoulder muscles from the Visible Human Project images. To

accomplish this goal, fmniliatity with the gross anatomy of the shoulder muscles is

required. The dynamic model involves the motion of the clavicle, scapula, humerus,

and wrist (including the radius, ulna, and several bones of the palm). All muscles

originating or inserting on the major bones, and having a significant impact on the

motion of these bones, are included. A list of those muscles is in Table 1.1 with their

origin and insertion locations. A list of relevant muscles that attach to the clavicle,

scapula, or humerus that were not dynamically modeled is shown in Table 1.2. The

muscles listed in Table 1.2 were measured and decimated, but they were not sliced or

dynamically modeled. Anatomy reference books provided guidance for tracking the

morphology of the individual muscles [9,10].

Mammals' skeletal muscles all share similar morphology. Most skeletal

muscles begin and end in tendons. These muscles are made of fibers. Each fiber is a

long, cylindrical, multinucleated cell surrounded by a membrane. Muscle fibers are



Muscle

Biceps brachii
Brachialis

Brachioradialis

Coracobrachialis

Deltoid

Extensor carpi radialis brevis

Extensor carpi radialis

longus

Extensor carpi ulnaris

Flexor carpi radialis

Flexor carpi ulnaris

Infraspinatus
Latissimus dorsi

Levator scapulae

Palmaris ion_us
Pectoralis major

Pectoralis minor

Pronator teres

Rhomboideus major

Rhomboideus minor

Serratus anterior

Subscapularis

Supraspinatus

Teres major
Teres minor

Trapezitls

Triceps brachii

Table 1.1

Muscles Modeled [ 1O, 1

Origin

Scapula
Humerus

]
Insertion

Radius

Ulna

Humerus Radius

Scapula Humerus

Clavicle, scapula Humerus
Humerus

Humerus

Humerus

Humerus

Humerus, ulna

Scapula

Scapula, thoracic and lumbar
vertebrae, 10th, 11 th, and

12th ribs, pelvis

Scapula
Humerus

Clavicle, sternum, anterior
sheath of rectus abdominus

3rd, 4thr and 5th ribs
Humerus, ulna

2nd through 5th thoracic
vertebrae

7th cervical and I st thoracic

vertebrae

1st through 9th ribs

Scapula

Scapula

Scapula

Scapula
Skull, cervical and thoracic
vertebrae

Scapula. humerus

3rd metacarpal

2nd metacarpal

5th metacarpal

2nd and 3rd metacarpals

Pisiform. hamate, 5th metacarpal
Humerus

Humerus

1st throug, h 4th cervical vertebrae

Palmar aponeurosis
Humerus

Scapula
Radius

Scapula

Scapula

Scapula
Humerus

Humerus

Humerus

Humerus

Clavicle, scapula

Ulna

themselves a congregation of small bundles known as myofibrils. The myofibrils are

composed of thick (myosin) and thin (actin) filaments. The filaments are aligned

parallel to the muscle's line of action. This alignment causes the bundles' forces of

contraction to be additive. The myosin and actin filaments are drawn on top of one

another during muscle contraction. As the filaments move, the muscle shortens and



Muscles Not Modeled

Muscle

Anconeus
Omohyoid
Stemocleidomastoid

Sternohyoid
Subclavius

Origin
Humerus

Scapula
Skull

Hyoid
Ist rib

Table 1.2

that Attach to Relevant Bones [10,11]
Insertion
Ulna

Hyoid
Clavicle. sternum
Clavicle. sternum
Clavicle

widens relative to the filaments. Muscles also act as reservoirs for blood during muscle

contraction [12]. Knowledge of muscle morphology and physiology is necessary for

accurately mimicking muscle geometries during contraction and extension.

1.2.2. Prior Graphics Modeling

Several prior computer graphics models of human skeletal muscles have been

created. Most have occurred since the Visible Human data became public on November

1, 1994 because of the ease of attaining that data [13]. Prior muscle models include

numerous static models and a smaller assortment of dynamic models that respond to

displacement of the insertion and origin points. These models' applications vary from

determining lines of muscle action in precise biomechanics studies to pure artwork for

movies.

1.2.2.1. Static Muscle Models

Numerous static muscle images have been created from cadaver data. The

earliest muscle model based on Visible Human data was from the Visualization Group

of the Scientific Computing Division at the National Center for Atmospheric Research

(NCAR) in Boulder, Colorado. NCAR assisted the Visible Human project by

restacking the photographic images and defining the three-dimensional data in terms of

voxels or volumetric pixels. Each one of the voxels was then given an electron density

value and red, green, and blue color values. An image of the knee as reconstructed by

NCAR's Visualization Group is shown in Figure 1.3. NCAR made their model more

adaptable for virtual surgery by defining it in voxels instead of by surface points.

Using voxels allows the model to be cut and to show color attributes under the surface
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as shown in Figure 1.4. Applications for NCAR's model span from vh'mal surgery to

identifying anatomical structures [13].

Figure 1.3. The human knee reconstructed by NCAR from Visible Human data
[14].

The Institute for Mathematics and Computer Science in Medicine (IMDM) at the

University Hospital in Hamburg-Eppendoff, Germany created a detailed static atlas of

the human called Voxel-Man. The Voxel-Man atlas began before the Visible Human

data were available, and theretbre used only radiological data of the brain and skull.

The Voxel-Man atlas contrasted many other anatomical atlases of its time by providing

full three-dimensional models of gross anatomy, as opposed to two-dimensional slices,

and used voxels to allow for surgical simulations. When the Visible Human data

became available to the public, IMDM imported the Visible Human data into the Voxel-

Man framework. The Voxel-Man atlas increases surface smoothness and realism by

anti-aliasing. Anti-aliasing determines borders based on color intensity of the pixel data

[16,17,18,19,20]. An image of the Voxel-Man shoulder is shown in Figure 1.5.
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Figure 1.4. A cut in the side of NCAR's leg model displays the advantage of
modeling with voxels. The knife caa be seen in the lower right [15].

Figure 1.5. The shoulder model as created with IMDM's Voxel-Man framework and
Visible Human data [21].

General Electric's Computer Graphics and Systems Program (CGSP) is a

division that works on computer graphics for applications for aerospace, mechanical,



business,and medicalapplications. CGSP testedtheir algorithms for constructing
three-dimensionalmodelson theVisibieHumandata[4]. Manyof thealgorithmsused
by CGSPwerealsousedfor staticmuscularreconstructionanddecimationwithin this
researchandm'ediscussedin morndetailin Chapters2 and3. Themodelof thethigh
musclescreatedby CGSPis shownin Figure 1.6.

Figure la Staticthighmusclecreatedfrom Visible HumanProjectdataby GE's
CGSP [22].

1.2.2.2. Dynamic Muscle Models

A researchteamat the University of Utah modeledmuscle geometriesto
determinemuscleforcesand lines of action. The initial geometrieswere basedon
opticalmeasurementsof grids onmusclesurfaces. The computer-generatedmuscles
reactto theskeletalmovement,but fail to simulatevolumetricchangesor show tendons
[231.

At theUniversityof Toronto,a musclemodelwascreatedto aid the study of
animal movementcontrol. The muscle geometriesme modeled as generalized
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cylinders. The geometries have circular cross-sections throughout, but can wrap

around objects accurately. The muscle geometries bulge when contracted, but do not

follow any anatomical rules when doing so. The plim0a'y purpose of this model is to

provide a fast visualization of the musculotendon units for real-time viewing [24].

The Human Animation Research and Development project (HARD) began in

1994 at the computer graphics development house, Digital Domain (Venice,

California), to simulate a graphical human being. The details of the model are

proprietary, but the muscles ax'e fashioned from high-resolution polygonal tubes. The

muscles bulge in reaction to contraction, but tendons were not represented. The muscle

geomelaies ax'e based on observations and aesthetic judgment. This model clearly has

the best appeax'ance of the dynamic muscle models. It was even used to create entire

computer graphics generated humanoids ("mice men") for the movie The Island of Dr.

Moreau [25,26,27]. Images ti"om the HARD model are shown in Figure 1.7.

Figure 1.7. Three views of the HARD alrn muscles.

1.2.2.3. Graphics Modeling at the University of Texas

Prior work at the University of Texas was performed by Wood [28] and Maxin

[29]. Both reseax'chers modeIed muscles of the elbow joint as linear bodies with

circular cross-sections. Wood o_iginated the muscle model with circular cross-sections

and a splined surface. Maxin's model added bulge factors dining contraction. Both

models a1_e applied to a dynamic bone model [28,29]. These models are shown in

Figures 1.8 and 1.9. This thesis continues the work on their research.
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Figure 1.; ;. Images of Wood's prior muscle model alone (left), and on a skeletal
model (right) [28].

Figure 1.9. An image of/vlalin's prior muscle model at the University of Texas at
Austin [29].

1.3. Research Objectives and Hypothesis

The static muscle models listed previously are based on accurate muscle

geometries, but theh" geometries do not respond to movement of the skeleton. The

dynamic muscle models listed above can alter their geometries, but fail to simulate
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accurate muscle geometries. The purpose of the present muscle model is to create a

dynamic muscle model that is based on accurate muscle measurements and that bulges

with flexion based on objective physical rules.

The proposed geometric muscle model is created by the methodology described

within this thesis. In short, this methodology consists of measuring muscle geometries

from the Visible Human Project data set, and altering these geometries based on inputs

of anatomical reference dimensions over time. These dimensions include the locations

of the origin and insertion bones for each muscle and obstacle locations. Through this

methodology, a realistic and dynamic muscle model is created.

12



2. Muscle Measuring Methodology

2.1. Objective of Muscle Measuring

The construction of anatomically accurate muscle geometries begins by

founding the geometries on measurements of actual muscles. Large numbers of points

on the muscles' surfaces were measured from color photographs of transverse slices.

The large number of points also allowed a realistic surface reconstruction to be

performed. The steps of the methodology used to measure the initial muscle geometries

are listed as follows.

2.2. Software and Hardware Tools for Muscle

Measuring

2.2.1. Visible Man Project Data

The resources that are needed to examine an individual cadaver and

record muscle geometries were beyond the scope of this research. Due to the existence

of the Visible Human Project [3], a cadaver study was not needed. Images from the

male Visible Human Project subject were used to attain muscle surface geometries. A

license agreement with the National Library of Medicine provided permission to use the

images.

2.2.2. "ftp" and "uneompress" Functions in IRIX

To begin the muscle measuring, the images needed to be transferred from the

National Library of Medicine's server to the workstation where the muscle measuring

would be carried out. The workstation where the measuring is performed runs from

the IRIX operating system (IRIX is Silicon Graphics' version of UNIX). IRIX

contains a function, "tip" (file transfer protocol), that transfers files over a network.

"tip" was used to transfer the image files from the National Library of Medicine's

server to the workstation where the measuring was done.
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TheNationalLibraryof Medicinecompressedtheseimagefiles (denotedby a
".Z" after thefile name)to conservememoryon their serverandto speedthetransfer
time of eachfile. Thesefiles were uncompressedwith another IRIX function,
"uncompress".

2.2.3. Shrinking Image Files

Due to the size of the color images and the amount of memory available on the

workstation (see Appendix A), the size of the image files was reduced after the image

was transferred to the workstation. This file size reduction occurred by passing the

image files through a shrinking algorithm.

The shrinking algorithm reduced the size of the file in two ways. The shrinking

algorithm retained pixels whose x and y values were both even. The algorithm also

saved the colors of the pixels in a more efficient method than the original National

Library of Medicine format. The size of the color images varied from 4.5 to 5.2

megabytes in its compressed, ".Z", format. Uncompressed and ready to use, the color

images were roughly 7.5 megabytes each. Each color slice was reduced from its

uncompressed size to 161 kilobytes after application of the shrinking algorithm.

After initial tests, only slices at every fourth millimeter were retained, thus

reducing memory usage by three-fourths. More importantly, this reduction increased

muscle smoothness by eliminating the effect of graphical anomalies from intermediate

slices.

2.2.4 CT Image Editing

A first attempt to measure muscles was made with the CT images. A CT image

is shown in Figure 1.1. The attempt using CT images was originally performed to save

disk space. The lower resolution of the CT images, in both the number of pixels and

the variety of coloring, made them a preferred mode for retrieving muscle geometries.

The CT image editing algorithm was similar to the color photograph editing algorithm

described later in Section 2.2.5. The primary difference between the two algorithms is

the CT image editor's use of grey scale values to differentiate between pixels, and the

color image editor's use of red, green, and blue (RGB) intensity values.
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The CT image editor was originally written to measure the bones in the body.

Inspection of the image in Figure 1.1 shows the bones are clearly discernible from the

surrounding tissue. CT resolution relies partially on water content of the tissues being

scanned. Because bone has a lower concentration of water than its surrounding tissue,

it is clearly visible. However, after using the CT images, it became apparent that the

poor resolution between adjacent muscles, and between muscles and the fat

surrounding the muscles made it impossible to discern a distinguishing line of the

muscles. The decision was made to abandon the use of CT images, and try to measure

the muscles with the color photographs.

2.2.5 Color Cryogenic Image Editing

After the CT images proved unsuitable for reconstructing muscle surfaces, the

color photographs of the frozen cadaver were employed. To create a three-dimensional

surface structure from a series of consecutive two-dimensional images, outlines of the

muscles were defined on the two-dimensional images and then stacked on top of each

other and connected to form the three-dimensional surface. Outlining the muscles on

the two-dimensional color photographs was accomplished using software created at the

University of Texas [30].

Editing the two-dimensional images to generate outlines of a specific muscle

occurred in a three step process: 1. referencing anatomy books, 2. rough outlining, and

3. refining the outline. In the first step, the muscle was identified by referencing

anatomy books [9,10] and scanning through superior and inferior slice images. This

proved useful for isolating each individual muscle on the transverse slices.

In the next step, the muscle was roughly outlined. This rough outlining was

carried out by selecting a point inside of the desired muscle. The software calculated a

line traveling anterior to the point. When the line first intersected a point outside of the

given RGB threshold the software recorded this point as the first point on the outline,

and tracked the pixels that form the outline to the right of the first outline point based on

this border between pixels with acceptable and unacceptable RGB values. The

acceptable red, green, and blue threshold values, although variable, were all set from 0

to 50 on a 0 to 255 scale for these measurements. This pixel thresholding method is
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similar to that used by Lorensen [4] tbr the same application. An example of rough

outlining is shown in Figure 2.1.

Figure 2.1. The rough editor is shown on a color image. A line is drawn supelior to
the transverse slice (blue). The first point which crosses the threshold value is shown
on the outline (yellow). The outline of the pectoralis minor then tbllows the border
between pixels with acceptable and unacceptable RGB values (green) to the fight of the
fh'st point.

Even though the color images provided better definition than the CT scans, the

defining line between some muscles is still indistinguishable to the rough editor.

Hence, the third step in the muscle editing process is refining the rough outline. The

software allowed muscle outlines to be manipulated to correct errors. The outlines

were manipulated to separate contiguous muscles that were both outlined by the rough

editor, or to remove anatomical features, such as blood vessels, that fell within the

RGB threshold. The manipulation also allowed for the inclusion of lighter colored

tendon in the outline.

The locations of the outlines were saved in separate files than the color images.

This allowed the color images to be used repeatedly and helped to conse_we memo13,.

Saving the outlines sepm'ately also provided for easy reconstruction of the muscle [30].
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2.2.6 Muscle Reconstruction

The outlines of the two-dimensional muscle images were stacked on top of one

another and the pixels were connected to form a three-dimensional muscle [31]. The

method used to reconstruct the muscles is the marching cubes algorithm [32]. This

algorithm produced high resolution three-dimensional surfaces from two-dimensional

slice data, exactly what was needed when reconstructing these muscles.

Marching cubes reconstructs the three dimensional surface in small, easy-to-

handle steps, one cube at a time. That cube is made of the eight pixels of its comers.

Four of these pixels form a square on one image slice, and the other four form a square

at the same two-dimensional coordinates, but on the next slice down.

Now that the cube has been defined, the algorithm checks the pixels to

determine if they are, or are not on the outline defined during editing. Because there are

eight comers to the cube, each of which may be either on the outline or not (two cases),

there are 28 (256) possible combinations of comer definitions. Symmetries of the cube

reduce the number of possible combinations from 256 to 14 unique, non-symmetric

cases.

Graphical surfaces have long been defined with polygons, particularly triangles.

Triangle orientations have been defined for the 14 unique cases. All the algorithm must

do is look up the necessary triangles for each cube, speeding reconstruction. The trivial

cases exist when all eight comers of the cube are either part of the outline, or all eight

comers are not part of the outline. In these cases, no triangles are defined. Two of the

other 13 cases are shown in Figure 2.2 as an example of the remaining cases. After

defining the triangles for the particular cube being analyzed, the algorithm marches to

the next cube, and so on until all of the data has been analyzed and the entire object has

been reconstructed.

The result of using the marching cubes algorithm was an effective

reconstruction of three-dimensional surface data. The biggest disadvantage of the

reconstruction [32] was that it left ridges between slices as shown in Figure 2.3.
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Figure 2.2. Two examples of the 14 possible combinations of triangles with the
marching cubes algorithm. Each comer of the cube represents one pixel. The comers
with points represent pixels that are on (or not on) the outline of the muscle, whereas
the other comers are not on (orare on) the outlineofthe muscle [32].

2.2.7 Muscle Smoothing

The marching cubes algorithm produced a high resolution, three-dimensional

surface. The ridges that thereconstruction generated between slices are natural for the

algorithmwith the given resolution and level of noise, but unnatural for actual muscle

tissue. To reduce this artificial roughness, each reconstructed muscle surface was

passed through a smoothing algorithm[33].

The smoothing algorithm was originally created at the University for the

purpose of smoothing bones. The algorithm adjusts the coordinates of each point to

coincidewith a three-dimensionalpolynomial surface of the surrounding points within

a patch radius. To ensure consistency, all smoothed points were calculated before any

of the smoothed points replace the unsmoothed points [34]. Each muscle was passed

through the smoothing algorithmthree times. The patch radii usedin these passes were

3.0 mm, 3.5 mm, and 4.0 mm, respectively. The result ofmuscle smoothing is shown

in Figure 2.3.

2.3 Integration of Tools

In order to measure muscles from the Visible Human Project color images,

eight steps were performed. First the image files were transferred to the workstation

from the National Library of Medicine. Then the images were uncompressed and

shrunk. Next, image editing occurred for each muscle in three steps: identifying the

muscle to be measured, getting a rough outline of that muscle, and manually refining
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theoutline. Thelattertwo editingstepswererepeatedfor eachslicethatcontainedthe
given muscle. The two-dimensionaloutlines were then reconstructedinto throe-
dimensionalmusclemodels,andthethroe-dimensionalmodelsweresmoothedto finish

the process, This methodologyis shown in Figure 2.4. The resultsof the muscle
measuringfor all of themusclesinvolvedareshownin AppendixB.

Figure 2.3. Anterior views of the reconsla'ucted (left) and smoothed (right) pectoralis
minor.
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Figure 2.4. Flow chart of muscle measuring methodology.
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3. Muscle Data Reduction Methodology

3.1. Data Reduction Reasoning

In their reconstructed state, the muscles were defined by large sets of

geometrically unorganized vertices. These sets of vertices slowed screen refresh and

were not conducive to a structured method to bulge the muscles. Primarily for these

two reasons, the data sets that composed the muscle surfaces were reduced to a

decimated and organized set of vertices.

The original method for decimation included a four step process. First, the

muscles were decimated as described in Section 3.2. Second, several points were

manually selected from the muscle surface with the aid of a mobile cursor existing in

the graphics software package [35]. Third, these points were run through a

normalizing algorithm to ensure that they lay in a plane normal to the particular

muscle's line of action [36]. Fourth, these points would be inserted into a computer-

aided design (CAD) program expressly made for creating muscle surfaces [37]. The

normalizing algorithm and CAD program were facilitated, and several trials were

attempted to decimate the muscles in the above manner. With not much success, this

data reduction methodology was discarded and a new methodology was employed.

This methodology increased accuracy of the decimated muscle surfaces and the

automation of decimation tasks.

3.2. Muscle Decimation

The reconstructed and smoothed muscle models were checked for anomalies to

ensure that the slice editing was performed correctly. For this reason, the smoothed

muscle models must be translated and rotated on the screen at reasonable speeds.

Several of the smoothed muscle files were over 1.6 megabytes large. Examining large

muscle models becomes very non-interactive when the screen takes over twenty

seconds to refresh after a single translation or rotation of the muscle model. The

solution to this problem was to reduce the number of triangles and vertices that define

the muscles' surfaces.
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A decimation algorithm was selected that had been used on similar three-

dimensional marching cubes reconstructions [32]. Because muscle surfaces are

continuous, non-ending, and do not intersect themselves (like three-dimensional,

Cartesian x-y and x-z planes intersect each other), the decimation is simplified

tremendously. The algorithm traveled from vertex to vertex, determining if each vertex

fit within a set of decimation criteria. For each vertex, the algorithm computed a plane

from all of the triangles that used that vertex as a comer. The plane's location was

based on a weighted average of the triangles' centerpoint coordinates. The weighting

was based on each triangle's area. The plane's surface normal was also based on a

similarly weighted average of the triangles' surface normals. The distance to this new

plane was then calculated. If the distance from the vertex to the plane was below a set

tolerance, the point was removed. The gap that was left was retriangulated using the

neighboring points as new comers of the replacement triangles. This decimation

removed points which added little detail to the topology of the muscle [38].

Two sets of decimated muscles were created, a high-resolution set, and a low-

resolution set. Each muscle was passed through the decimation algorithm three times.

The high-resolution set was decimated with a tolerance of 0.1 mm. The low-resolution

set was decimated with a tolerance of 0.25 mm. The low-resolution muscles had very

few visible differences from the high-resolution muscles. After reviewing the results,

only the low-resolution muscles were used and will be discussed from this point on.

The high-resolution muscles were saved for possible future research. The low-

resolution pectoralis minor is shown in Figure 3.1. All of the decimated muscles are

shown in Appendix B.

The decimation algorithm works well for smooth muscle surfaces. The highest

level of decimation occurred on the latissimus dorsi. This was most likely due to the

latissimus dorsi's large anterior and posterior sides that have little curvature, and few

protrusions. After decimation, its file was reduced from 1,616 kilobytes to 76

kilobytes, 4.7 percent of its original smoothed size. On the average, the decimation

algorithm reduced the smoothed muscle files to 8.7 percent of their original size.
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Figure 3.1. The smoothed (left) and decimated (right) pectoralis minor. Note that
the decimated model has different lighting and color seeings.

3.3. Muscle Slicing

At this point the data sets defining the muscles were small enough to be

transformed with reasonable refresh rates. However, the data were not organized in a

manner that was conducive to dynamic modeling the muscles as desclibed later in

Chapter 4. The muscles needed to be reorganized, so they were redefined by vertices

that lie on planes perpendiculm" to theb lines of action.

Software was developed at the University of Texas to find muscles' lines of

action for the dynanaic model [39]. The software was extended to find the points that

lie on planes perpendiculm" to these lines of action. The software allowed the manual

manipulation of a visible plane in the graphical space containing the muscle. The user

positioned the plane te intersect the muscle perpendicula_r to the muscle's line of action.

The software recorded the plane's location and orientation, and a slice was created.

The process was then repeated for each muscle. The number of slices taken for each
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muscleis subjectivelybasedon themuscle's topology, size, curvatureof the line of
action.Muscleslicing is shownin Figure3.2.

Figure 3.2. Two imagesof thepectoralisminor duringmuscleslicing. Theslicing
planeis shownasthebluegrid. Thegreenlinesaredefinedslices.

The softwarecalculatedthepoints on the muscle'ssurface that intersectthe
plane. This wasdone by analyzingeach of the triangles that define the muscle's

surface. As long as all three of the triangle's vertices lay on one side of the plane, no

action was taken. If one of the triangle's vertices lay on a different (odd) side of the

plane than the other two, two points were recorded where the plane intersects the two

lines of the la_iangle that emanated from the odd vertex. All of the original points were

discm'ded, and the mtLscle was then defined by several slices of points.
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Themuscle'slineof actionwasthendeterminedin three-dimensionswith these

slicesof points. Thepointsweretessellatedandcentroidswerefound for thealeaof
eachof theresultingNangles.Thelocationsof thesecentroidswerethenweightedby
theircon'espondingtriangle'sareaandaveraged.This producedthecentroidfor each
slice, and a point on the muscle'sline of action. Figure 3.3 shows the resultsof
muscleslicingwith slicesandthe line of action. In this state,the datadefining the
musclessurfaces'werenowcompletelypreparedfor dynamicmodeling.

Figure 3.3. The pectoralisminor in decimated(left) andsliced(right) forms. The
redline in theslicedmuscleis themuscle'sLine of action.

The data from muscle slicfi_g were an'anged in text and stored in a separate file

for each muscle. Each file was identitied by the muscle's name followed by ".points"

(e.g. pectoralis minor.points). The tile holds data on each slice: tendon value, offset,

transformation matrix, centroid, number of points, and point x, y, and z locations. The

tendon level for each slice was listed firstl but was added in manually after slicing.
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Tendonvaluesvary from zeroto oneasa measureof the fraction of the slice that is

tendon. If no tendon figure was listed, the default value is zero. The offset value was

computed by averaging the locations of all of the points in the slice. The centroid for

each was computed by the method described above. Although not specifically studied,

for all observed slices, the centroid lies within 0.0001% of the offset value. As an

example of the file format, the teres minor's file, one of the smaller muscle files, is

listed in Appendix C.
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4. Muscle Modeling

4.1. Theoretical Muscle Modeling

Equations exist for modeling the geometry of skeletal muscle. However, these

equations are limited to those that solve for a physiological property given a geometrical

state. For example, Schneck and Hatze propose methods of relating Taylor series of

muscle strain to the Calcium concentration in the sarcoplasm [40,41 ]. Solving for the

strain from these equations is both mathematically difficult and not relevant for this

application. The direct application of the proposed model had no physiological input to

determine muscle length. As mentioned later, the model may one day be expanded to

account for electromyographic activity.

4.2. Modeling Assumptions

Two major assumptions were made when modeling the muscle geometry. It

was assumed that the muscles had constant volume and that the tendons would hold a

constant geometry. Insertion and attachment patch areas were also assumed to be

planar. This assumption is minor, in that it affects only one aspect of the modeling

function, as described in Section 4.6, from which no other aspects are driven. This

assumption was justified by visual examination of the sliced planes at the ends of the

muscles from Chapter 3 compared to the actual measured origin and insertion sites of

the muscles.

Skeletal muscles act as blood reservoirs during physical activity [12]. During

rest, the skeletal muscles receive 15% to 20% of the total cardiac output. When

muscles become active, their blood flow can increase as much as 20 times. The cause

of the increase in blood flow is chemical. As a simplified example, during skeletal

muscle activation, oxygen will be diverted to skeletal muscle from smooth muscle in the

blood vessels. The lack of oxygen to the smooth muscle prevents it from contracting.

Thus, the blood vessels dilate, and blood flow to the muscles is increased. This

process alone causes the blood flow to skeletal muscles to increase by a factor of three

[40]. However, the skeletal motions that the muscle model was applied have a duration
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of less than one second. The relative lag times for the chemical factors to increase

blood flow to the skeletal muscles and the durations of skeletal motion are such that the

increase in skeletal muscle volume was assumed to be negligible.

The second assumption was that tendons possess relatively constant geometry

compared to muscle fibers. Although mechanical properties of most biological

materials vary slightly from sample to sample, Young's Modulus (E) for collagen, the

primary protein of tendons, is on the order of 109 dynes/cm2; and Young's Modulus for

myofilaments is on the order of 104 dynes/cm 2. It should be noted that muscle fibers

are made up of a mix of myofilaments and collagen resulting in a strain modulus of

approximately l0 7 dynes/cm 2 [40]. Even then, tendon's strain is about 1/100th the

strain of the surrounding muscle. With this in mind, the tendon was assumed to have

negligible strain relative to the surrounding muscle.

4.3. Wireframe Reconstruction

The first active step in the creation of the muscle geometry was to form a

wireframe of the surface. This wireframe was needed to facilitate the change in the

muscle geometry. Each muscle was reconstructed using a bicubic spline wireframe to

define control points on a surface grid.

4.3.1. Cardinal Splines

Cardinal splines were selected to form the wireframe. Cardinal splines are

bicubic, thus providing C2 surface continuity and inherently fixing the frame to the

control points. The formula for a generic Cardinal spline is given below:

_)(t) = [t3 t2 t

1]t! "2 1 ][_1 ]

3 -2 -1 P2

0 1  (P2- Po)
o o -
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where the p-vector is the resulting interpolated point for the given parametric value, t.

The px-vectors are the four surrounding points from which the p-vector is being

interpolated. The pl-veetor and P2-vector are the boundary points. (When t equals

zero, the p-vector equals the pl-vector. When t equals one, the p-vector equals the P2-

vector.) The P0-vector is the point before the prvector, and the p3-vector is the

point aider the p2-vector. The et value characterizes the proximity of the curvature of the

spline to the control points. The _t value was set at 0.5 to evenly distribute the

curvature along each splined section [42].

An important property of Cardinal splines is that they pass through their

defining control points. This was important for the model because the frame needed to

fit directly to the control points measured from the Visible Human Project's muscles.

This varies from the formulas of Bezier curves and general B-splines which do not

necessarily fit through their control points. These splines can be forced to fit through

their control points, but that property is not an identity of the spline itself [43].

Cardinal splines were also chosen because they are third-order. This

characteristic provided an optimal cost-benefit ratio. Because they are third order,

Cardinal splines provided C2 continuity; therefore the first and second derivatives (with

respect to three-space) of all lines defining the wireframe were continuous. C2

continuity is usually used as an upper limit in industrial design and was thus deemed

sufficient for this model [43]. Higher order splines also provided better than C2

continuity, but the number of computations needed increased exponentially and the

resulting higher continuity was not needed.

4.3.2 Wireframe Organization

The wireframe of the model was set up as a square grid. Muscle defining data

were read from previously made files. The latitudinal slices defined in these data sets

were then reformed to standard resolutions. Additional latitudinal slices were then

interpolated between the aforementioned slices to create the entire wireframe. This grid

system simplified the dynamic movement of the muscle body. All control points were

held in both Cartesian coordinates - to aid in the formation of splines - and radial

coordinates - to aid bulging calculations.
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Theslicedmuscledatadescribedin Section3.3 wereorganizedas points that
lay in latitudinalplanesalongthemuscle. Thenumberof pointsvariedfrom planeto
plane,andthenumberof planesvariedfrom muscleto muscle. Eachplanewas also
givena tendonvalue. If no tendonvalue was assignedto a given plane, it was
assignedthedefaultvalueof 100percentmuscle.

Thedatapointsfor eachlatitudinalslicewererecalculated.Thenumberof new
datapointsfor eachslicewassetwithin themodelingfunction.During testing,andfor
all of theimagesseenhere,the latitudinalresolutionwassetbetweenfitieen andforty
points. (This valueshould be increasedwhen the modelingfunction is run on a
workstationwith afasterprocessorandmorepowerfulgraphicshardware.This value
is stored in the "domuscles.h"headerfile as "LATITUDINAL RESOLUTION.")
Cardinalsplineswerefit throughthepointsmeasuredby slicingthemusclesin Section
3.3. Thesplineswere wrappedaroundthe beginningand endof the slice as well.
Newcontrolpointsweretheninterpolatedfrom thesplinesat equaldistancesalongthe
perimeterof theslice. Eachrecalculatedlatitudinalslicethenhadthesamenumberof
points.

Controlpointswerethencalculatedin thelongitudinaldirection.New points in
the longitudinaldirectionwereformed in a similarmannerto thosein the latitudinal
direction,but nowrappingwasperformedat theendsasmusclesdo not closeat their
attachmentssite,but formto thebone. Similarto thenumberof new latitudinalcontrol
points, thenumberof new controlpoints in the longitudinaldirectionfor eachstrip
alongthesideof themusclecanalsobesetwithin themodelingfunction. Valuesfor
longitudinalresolutionduring testingweresetbetweenfifteenandforty points. (This
valueshouldbe increasedwhenthemodelingfunctionis run on a workstationwith a
fasterprocessorand morepowerful graphicshardware. This value is storedin the
"domuscles.h"headerfile as"LONGITUDINAL RESOLUTION.")

Eachof thesenew points in the longitudinaldirectionwasgroupedwith the
othernew pointsat its longitudinallengthto form a new latitudinalslice (commonly
referredto simplyas"slices" laterin this thesis). Tendon values were assigned to the

newly formed latitudinal slices. Tendon values were interpolated linearly from the

slice's distance between two previously defined planes and those planes' tendon
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values.
below.

Thewireframeof the longheadof thebicepsbrachiiis shownin Figure 4.1

Figure 4.1. Theconstruction brachii (origm at the
fight) is shownabovein threestages. The top imageshows lines connectingthe
interpolatedlatitudinalpoints.Themiddleimageshowsthe longitudinalinterpolation.
Thebottomimageis thecompletedwireframe.

4.4. Contraction

The contraction of muscles that must wrap around obstacles is discussed in

Section 4.7. It is assumed that other muscles travel in straight lines. By "straight

lines", it is meant that the centroid of each of the muscle slices lines up in a line.

The modeling function first accounted for muscle dynamics in the longitudinal

direction: muscle contraction. Three passes were made over each muscle to set the

longitudinal location of the slices that hold the control points. One pass is made to
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placetheslicesateachendthatcontainanyamountof tendon,andonepassis madeto
longitudinallyplaceslicesthatareconsideredall muscle.

Themodelingfunctionwasfedtheoriginandinsertionpoint of eachmuscleas
input. The original origin and insertion points were recorded as the centroids of the end

slices of the muscle during slicing. The original wireframe must now be sized to fit to

the new muscle length.

In a simplified and idealized situation, the latitudinal slices - evenly spaced in

the longitudinal direction due to the wireframe methodology - would all be spread

evenly over the new length from the new origin point to the new insertion point.

However, this model characterized tendon as a constant geometry tissue and allowed

latitudinal slices to have varying amounts of tendon from zero to one hundred percent.

Thus, the modeling function placed tendon slices in a partially parametric manner.

During the passes over each end of the muscle, the modeling function examined

each slice as long as the percent of tendon was less than that of the previous slice and

higher than a tolerance of 0.0001 percent. (This tolerance level was needed because the

tendon value was held as a floating point variable, which rarely lands exactly on zero.)

Each slice's length from its respective end, its tendon value, and the location of the

previously placed slice was examined. The modeling function then computed the

longitudinal length of the slice based on a weighted balance between parametric

placement and placing the slice at its original length. The placement of each slice was

based on the formula below:

/ Lslice-1 \
Lslice = tendon (Loslice) + (1 - tendon)(Lslice - 1 + { /)endslice - slice /

Where L I is the longitudinal distance of slice x from the end of the muscle that the

tendon in question originated, Lol is the original longitudinal distance from the static

measured muscle of slice x from the tendon's end of the muscle, tendon is the percent

of the slice that is considered tendon, slice is number of the slice that is being placed as

counted from its end of the muscle, and endsliee is the number of the last slice that

was placed at the other end of the muscle as counted from the end of the muscle that the

tendon in question originated.
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Oncetheslicesthatareassociatedwith thetendonswereplaced,themodeling
functionfixesthelongitudinalpositionsof theslicesthatareall muscle. Themodeling
functionevenlydistributesthesemuscleslicesthroughoutthe remaininglength. The
placementof theseslicesfollowedthefunctionbelow:

slice - oriqin tendon )Lslice = Lorigintendon + (Linsert tendon - Lorigin tendon) insert tendon - origin tendon

Where L x is the longitudinal distance of slice x from the origin point of the muscle,

slice is the number of the slice that is being placed, origin tendon is the number of

the last slice that was placed as a part of the origin end of tendon, and insert tendon

is the number of the last slice that was placed as a part of the insertion end of the

tendon.

4.5 Bulging

After the modeling function finalized the longitudinal locations of the control

points on a slice-by-slice basis, it computed their latitudinal shif_ on point-by-point

basis, thus accounting for muscle bulging. The modeling function based the bulge of

each point on the constant volume assumption. As the slices spread apart or closed

together as described in the previous section, the individual control points were then

pulled in toward the muscle's line of action, or pushed away from the line of action,

respectively, in order to hold the muscle at a constant volume.

Each slice was considered to contain the volume of its cross-section from half

the longitudinal distance from the previous slice to half the longitudinal distance to the

next slice. For end slices the volume was of the slice's cross-section from the location

of the given end slice to half the longitudinal distance to the next slice inward on the

muscle. The cross-sectional area of each slice was computed by tessellating the slice's

control points. An example of the method of associating volume with respective slices

is shown in Figure 4.2.

Each of the control points was defined in two-dimensions for each slice in both

Cartesian coordinates and in polar coordinates with the line of action acting as the
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origin. Holding the control points in polar coordinates simplified bulging. Angles

defining control points in the polar coordinate system were held constant throughout the

muscle dynamics. However, the radii defining the control points were shortened or

lengthened to adjust for a lengthening or contracting muscle, respectively.

Figure 4.2. An example muscle on the left is shown by five circular slices and the
muscle's line of action. The right image shows cylindrical volumes associated with

each of the slices.

Tendons were being accounted for as constant geometry, but because the

associated volume of a given slice was based on the location of its neighboring slices,

increases or decreases in area for each slice were calculated dependent on other sIices.

This also perturbed the fixation of the geometries of slices composed entirely of tendon.

If a longitudinal resolution of infinity is used, slices of pure tendon will still hold

constant geometry. In realistic situations, however, a high enough longitudinal

resolution should be used to reduce this affect. (Longitudinal resolutions of fifteen

vertices reduced the problem tremendously, and resolutions of forty made tendon

geometry changes disappear to the naked eye.)

The function used to control vertices' radii is shown below.

Where r is the radius of the point in question, ro is the radius of the point in que_an

before the muscle is perturbed from its original position, depth is the length from the
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slice holding the point in question half way to the slices on both sides of it, depth° is

measured in the same manner as depth, but from before the muscle was perturbed.

4.6 Plane Rotations

The last geometric adjustment performed by the modeling function was rotation

of the individual planes holding the control points to account for rotations of the origin

and insertion attachment patches. The ends of the muscle were assumed to be perfectly

planar to simplify rotation of the intermediate planes. The difference in rotation between

the origin and insertion sites were then distributed evenly over the intermediate slices,

taking into account the rotation differences of the ends of the measured muscles from

the Visible Human Project.

First, the Eulerian angles defining the origin and insertion end slices were

computed for three-dimensional space. These or, [3, and _, values, corresponding to the

x, y, and z-axes, respectively, simplified the distribution of the rotations. These

Eulerian angles were solved from the transformation matrices defining the slices [43].

If the rotations were held in matrix form, as they were throughout the modeling

function, then differences in the matrices could not have been distributed over the slices

defining the muscle. This is not possible because four-by-four transformation matrices

contain more transformations than rotation alone, and distributing the difference

between two of these matrices would have also transformed and scaled the intermediate

muscle slices. However, the difference between the Eulerian angles was distributed

evenly across the slices with no detrimental side effects.

After the differences in Eulerian angles between ends of the muscles were

solved, the modeling function performed four quick steps to rotate the planes. First, it

subtracted the original rotations of the origin and insertion planes, so they wouldn't be

accounted for twice. Second, it linearly distributed the difference in each angle over the

slices based on the given slice's longitudinal length from the origin point. Third, it

converted the needed rotations from Eulerian back into matrix forms. Finally, the

modeling function applied the four-by-four transformation matrices to the slices. A

generic example of plane rotation is shown in Figure 4.3.
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Figure 4.3. An example muscle on the left is shown by five circular slices and the

muscle's line of action. The right image shows the slices evenly distributed in the 3'-

direction by the 3, deflection of the rightmost slice.

4.7 Graphics Complement

With the muscle model near completion, finishing touches were applied with the

benefit of the Silicon Graphics GL (Graphics Library). The GL is a library of graphics

pipeline functions. The GL simplified rendering of the outer surface of the muscle.

This included setting normal vectors, surfacing, and lighting. The final application

program that will house the muscle modeling function has its own lighting definitions.

Thus lighting was arbitrarily defined during testing stages only.

4.7.1 Normal Vectors

First, normal vectors were set for each vertex defining the muscle surface.

Normal vectors defined surface orientations for the lighting. Normal vectors were set

for each vertex in a three step process illustrated by Figure 4.4. First, the location was

attained of the vertices in the comers of the local three-by-three grid surrounding the

vertex in question. This method smoothes the reflected lighting from surface patch to

surface patch compared to normal vectors solved from a local two-by-two grid without

adding computational steps. This works due to diluting variances of the local grid

vertices' locations. This principle is highlighted in Figure 4.4 by the large distances

from vertices 0,-1 and 0,1 to vertex 0,0 and the short distances from vertex-1,0 and 1,0

to 0,0. If a two-by-two local grid had been used, the change in the magnitudes and

possibly the directions of normal vectors from surface patch to surface patch would

hove varied more than using a three-by-three grid. Four-by-four or larger local grids
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were not used to determine normal vectors because at least two of the vertices in the

local grid would no longer be adjacent to the vertex in question, and would therefore

not have any relevance to its lighting.

After the locations of the comer vertices on the grid were found, the differences

between the comers were solved. These distances are shown in Figure 4.4 as the dx. _-

vector, dx,_-vector , d_,y-Vector, and dl,y-Vector. Then, the corresponding x-vectors

were averaged and the corresponding y-vectors were averaged. This provided two

vectors that characterized the local surface. The normal vector, the n0.0-vector in Figure

4.4, was solved as the cross-product of the averaged y-vector with the averaged x-

vector.

0,-1

< °dx'-'

• d •

O ._ dx,1 ... 01, I

oO
,I

Figure 4.4. Solving for a normal vertex. The normal vector for vertex 0,0 is solved
by taking an average of the distance between vertices -1 ,-1 and -l, 1 and the distance
between 1,- 1 and 1,1 and taking the cross-product of that vector with an average of the
distance between vertices - 1,- 1 and 1,- 1 and the distance between - l, 1 and l, 1.

4.7.2 Material Properties

Scientific replication of the color and shininess of the muscles and associated

tendons was not within the scope of this research, but a subjective attempt was made

using the prior models described in Section 1.2.2 as references. Colors needed to be
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defined for both a muscle material and a tendon material. After comparing color

gradients from the Silicon Graphics GL with the prior models, all of which varied, a

color scheme was set as shown in Table 4.1. In the Silicon Graphics GL, color

settings vary from a minimum of 0 to a maximum of 1 with a shininess value from 0,

most shiny, to 255, least shiny. The values in Table 4.1 are stored in the

"domuscles.h" header file.

Muscle

Characteristic

Ambient Red

Table 4.1
and Tendon Color Settings

Muscle Material

0.80

Tendon Material

0.75

Ambient Green 0.05 0.75

Ambient Blue 0.04 0.85

0.80Diffuse Red 0.65

Diffuse Green 0.05 0.65

Diffuse Blue 0.04 0.75

Specular Red 0.85 0.65

Specular Green 0.15 0.65

Specular Blue 0.10 0.75

Shininess 50 10

Atter color and shininess properties were defined for muscle and tendon

material, materials were then applied to each latitudinal slice individually. All points

within slices composed entirely of muscle or entirely of tendon received the appropriate

material. Vertices within slices that were a combination of both tendon and muscle

received properties that were linearly interpolated between the two defined materials.

The modeling function holds the color variables as real numbers, and thus has an

infinite resolution of the color of the model between muscle and tendon.

An attempt at striating the muscle was also performed. Lines were drawn in the

longitudinal direction along the wireframe, but - as can be seen somewhat in Figure 4.5

- the resulting striation was not realistic. Thus, the final version of the modeling

function did not striate the muscles.
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Figure 4.5. A superior view of the modeled rhomboideus minor (origin at tight)
with its wireframe. The slice at the insertion end of the muscle was denoted as tendon.
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5. Results

The completed project including muscle measuring, data decimation, and

dynamic muscle modeling provided a bevy of output data. The two major results from

this project were the static models of the thirty-one skeletal muscles and the dynamic

model of twenty-six of those thirty-one muscles. Severn residual benefits were also

produced t¥om the two major results.

5.1. Static Models

The static muscle models described in Section 3 were the fit'st of the major

results garnered from this research. These models show the full geometry of the

twenty-six muscles listed in Table 1.1 as well as the five muscles listed in Table 1.2.

Figure 5.1 shows three views of the static muscle models on a relevant portion of the

bone model created by Garner.

Figure 5.1. Three views of a portion of the skeletal model with all of the static
modeled muscles applied.
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An immense amount of geometric data was gathered from the static muscle

models. Cross sectional outlines, areas, and centroids were determined for slices of all

of the muscles. These data can also be determined in any cutting plane in any muscle

with the help of the software used in Section 3.3 to slice the muscles [39]. The same

applies to lines of action on a muscle by muscle basis. Volumetric data were also

solved for muscles, but not needed. Volumes could also be solved as parts of muscles.

5.2. Dynamic Models

Of the thirty-five muscles listed in Tables 1.1 and 1.2, thirty were decimated

and sliced. ".point" files described in Section 3.3 were created for all thirty of these

muscles and stored within proximity of the muscle modeling function. The dynamics

of the muscle models were tested using this library of files with dummy origin and

insertion points that varied over time. These tests proved the muscle modeling function

worthwhile and usable with the library of static muscle files. Figure 5.2 shows the

rhomboideus minor during dynamics testing. As a side effect of the dynamic muscle

model, all of the above geometrical data listed for the static muscles were now made

available for the muscle in any position.

5.3. Video Presentation

A video presentation is in the process of being assembled at the time of this

writing. The video will include a straight line muscle linked to the skeleton. The

skeleton will undergo a dynamic movement to drive the muscle dynamics. The muscle

should perform similar to the rhomboideus minor in Figure 5.2.
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Figure 5.2. The our images show the rhomboideus minor from Figure 4.5 in four
stages of flexion.
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6. Conclusions

6.1. Original Contributions

This research accomplished several original contributions significant to the

specialty of modeling muscle geometries. The most significant original contribution of

this research was the creation of a dynamic muscle model based on actual anatomical

measurements. As described earlier, several static muscle models have been created

based on anatomical measurements, and some muscle models have been able to change

their geometries dynamically, but the two characteristics have never before been linked.

As a residual effect of using anatomically based muscles, this research also

began the use of attachment patches for dynamic muscle models. In all of the dynamic

models before this, the muscles have all tapered at their ends with their attachment sites

represented by points. Although the actual attachment site would better be represented

by a three-dimensional curved patch, the improvement from point to two-dimensional

area was clearly significant.

Another significant contribution of this research was the incorporation of tendon

as a unique tissue in dynamic models. Because this was the first dynamic graphical

model to account for tendon, all characteristics related to tendons in this model were

original. This research began the use of dynamic models accounting for tendon as a

constant geometry. This model also was the first dynamic model to assign separate

properties to tendon and muscle tissue. The mixture of tendon and muscle within the

same latitudinal slice was also an original contribution.

A minor contribution was the creation of the static muscle models shown in

Figure 5.1. Although similar static surface muscle models were created in the past, and

the method used in this research was similar to that of General Electric's CGSP, the

muscles in this research were manually edited on a slice by slice basis before

reconstruction to remove graphical anomalies. GE edited their muscle models after

reconstruction. The results of this research appear to have a smoother surface. The

downside was that the slice by slice editing method was extremely time intensive. Two

graduate students and nine undergraduate assistants spent time manually editing muscle

slices.
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6.2. Future Work

6.2.1. Short Term Goals

The next step in this model is its integration with the skeletal model. As yet, all

tests of the model have been performed without the skeletal model. The skeletal model

will send the muscle model the translations and rotations of the origin bones and

insertion bones for the muscles as well as obstacles in the muscles' paths. The muscle

modeling function will then determine the new origin and insertion points as well as the

appropriate rotations of the muscles' planes. As soon as the two models are integrated,

the video presentation described above will also be made.

Another short term addition to on the model would enable it to wrap muscles

around obstacles. Muscles in the skeletal model possess one of three geometric states:

straight, wrapped around one obstacle, or wrapped around two obstacles. The

modeling function can only display the straight muscles. Thus, creation of a wrapping

function around obstacles is needed.

All obstacles are characterized by the skeletal model as cylinders or spheres.

The skeletal model will feed the muscle model the points and rotations listed above as

well as the points that the given muscle's line of action intersects an obstacle and

departs from the obstacle as well as the obstacle's radius. The muscle model's job

would be to compute the curve around the obstacle and place the latitudinal slices

appropriately. The curve should be computed fitting a parabola to the line of action's

intersection and departure points with the obstacle and the radius of the obstacle. A

simplified example is shown in Figure 6.1.

Tendon values must still be defined in the files holding the static muscles' data,

other than for testing purposes. No clear process was determined for objectively

defining the percent of tendon of each latitudinal slice measured in Section 3.3. The

default tendon value is zero percent tendon. It is imperative that tendon values are

defined, subjectively at least, for the muscle slices if the modeling function's ability to

account for tendon is to impart any real benefit.

During creation of the skeletal model, several muscles were divided into

segments to more accurately represent their true kinematics. These were typically larger
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muscleswith largeattachmentsites:thepectoralismajor, andthe latissimusdorsi for
example.Sincetheskeletalmodelnowviewsthesemusclesastheir segments,andnot
theentiremuscle,thestaticmusclefilesmustalsobedividedaccordingly. Themuscle
modelingfunctionmustbeableto getdatadefiningthegeometryof just onesegment,
asopposedto theentiremuscle. Unfortunately,thesegmentationdoesnotoccurin the
latitudinaldirection,asthedataarestored.Themusclesaresplit alongthelongitudinal
direction.Thus,splittingthedatafileswill entailmorethanmerelycopyingandpasting
sectionsof dataintodifferentfiles.

Figure 6.1. An example ofparabolically fitting a muscle's line of action around a
cylindrical obstacle.

6.2.2.Long Term Goals

This model has yet to be validated by experimental methods. Validation would

add credibility to the model, but the resources needed to perform validation are

presently not available. Suggested validation would include the digitization of points

on the surface of the appropriate muscles on a cadaver in both relaxed and stimulated

states. Due to the difficulties associated with cadaver studies, validation with cadaver

studies is listed as long term future work.

Another long term project is the addition of fat and skin to the model. The

HARD model had fat and skin applied to it [25,26]. This was likely done with a

method of sweeping and revolving radii attachedto the surface verticesand determining
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their farthes_distancefrom the surface. Theseradii's extremitydistanceswere then
likely connectedto tbrm thesurthcelayerrepresentingtheoutsidesurfaceof thefat. To
increase,or decreasefat, the radii would be lengthenedor shortened,respectively.
Skinwas thenaddedby attachingimagepatchesto thesurfacepatches[25,26].

The muscle model may also be made to alter muscle geometries during static

contractions. When electrical simaals are fed to muscles, the muscle geometries change

regardless of the three-space transformations of the insertion and origin sites. These

changes are typically smaller than geometric changes when transformations of the

attachment sites occur. Thus, the geometric changes for contracting muscles that are

held still were neglected in this model.

A beneficial application of this research involves the facilitation of virtual

surgery,. To enable such an application, the model would need the addition of

calculations to interpolate and create a volumetric model. The volume of each slice is

currently calculated by the modeling function, but no interpolation is performed to

"voxelate" the model.

6.3. Applications

This research is being directly applied as a graphical aid for a dynamic musculo-

skeletal model being produced at the University of Texas at Austin. The muscle

modeling function will be incorporated into this larger musculo-skeletal model to drive

the graphics of the skeletal muscles. Other current and potential applications of this

research vary widely by discipline.

The HARD model is already being used in the entertainment industry. Its use in

major motion pictures and planned use in more validates the potential application of this

research in the entertainment field [25,26]. This research surpasses the HARD model

in all aspects of realism with the exception of the application of fat and skin. After such

future work is accomplished to include fat and skin, this model could be used in the

creation of industrial special effects.

The Voxel-Man muscle model and NCAR's voxel model are currently being

applied to virtual surgery [ 13,16,17,18,19,20]. The barrier standing in the way of this

model's use in virtual surgery is its surface definition. As described earlier, to apply

this model to virtual surgery, each muscle would likely need to be filled with

46



interpolatedvoxels.Thisvoxelinterpolationwouldallow themodelto becut awayas
seenonNCAR's modelin Figure1.4.

This modelcouldalsobeusedon biomechanicalmodelswith a minor amount
of futurework. The musclemodelwould benefitbiomechanicalmodelaccuracyby
accountingfor forcesandmomentsof inertiaappliedon thejoints by theweightof the
muscles.The modelingfunctioncalculatesthe volumeof eachslice, and a density
wouldneedto beappliedto thatvolume,andthemodelingfunctionwould needto be
integratedwith thebiomechanicalmodel.

A final suggestedapplicationof thismodelliesin thefield of ergonomics.The
modelcandeterminetheproximity of a subject'sbody. This ability canbe enhanced
with theadditionof fat andskinasmentionedabove.Thiscouldhavearesidualimpact
in clothingdesign.

47



APPENDIX A

Workstation Parameters

Intemet Protocol Name: armus.me.utexas.edu

Location: Engineering Teaching Center II 3. 110, The University of Texas at Austin
Type: Silicon Graphics Iris Indigo X24
Operating System: IRIX 4.0.5
Processor: 1 - 33 MHZ IP12

Hard Drive: 1 extemal- 1235 Mbytes
FPU: MIPS R2010A/R3010 VLSI Floating Point Chip Revision: 4.0
CPU: MIPS R2000A/R3000 Processor Chip Revision: 3.0
On-board serial ports: 2
Data cache size: 32 Kbytes
Instruction cache size: 32 Kbytes
Main memory size: 48 Mbytes
Integral Ethernet: ec0, version 0
CDROM: unit 4 on SCSI controller 0

Tape drive: unit 3 on SCSI controller 0: DAT
Disk drive: unit 1 on SCSI controller 0

Integral SCSI controller 0: Version WD33C93B, revision C
Iris Audio Processor: revision 10

Graphics board: GR2-XS24 with Z-buffer
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APPENDIX B
Static Muscles

FI B1. Anconeus. B2. Bic_ _s brachii.

Figure B3. Brachialis

49

Figure B4. Brachioradialis.



Figure B5. Coracobrachialis. Figure B6. Deltoid.

Figure B7. Extensorcarpi radialis
brevis.

Figure B1 Extensorcarpi radialis
longus.
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Figure B9. Extensorcarpi ulna'is. Fi B10. Flexor carpi radialis.

Figure Bll. Flexor carpi ulnaris. Figure B12. Infraspinatus.
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Figure B13. Latissimus dorsi.

Figure B15. Omohyoid.
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Figure B16. Palmaris longus.



Figure B17. Pectoralis major.

Figure B19. Pronator teres.

Fi ure B18. Pectoralis minor.

Figure B20. Rhomboideus major.
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Figure B21. Rhomboideus minor.

Figure B22. Serratus Anterior.

Figure B: _. Sternocleidomastoid. Figure B24. Stemohyoid.
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Figure B25. Subclavius. Fi B26. Subscapulalis.

Figure B27. Supraspinatus.
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Figure B28. Teres major.



Fi ure B29. Teres minor.

Figure B31. Triceps brachii.

Figure B30. Trapezius.
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APPENDIX C
Example Static Muscle File

The defining file for the teres minor.

numplanes 9

offset

46.602020 250.142609 -1339.928101
matrix

-1.646424 -1.389782 0.959142
0.987287 0.400216 2.137462
-1.460389 1.976335 0.298976
0.000000 0.000000 0.000000

cengoid
46.602009 250.142624 -1339.928467

points52
33.853664 241.085602 -1342.329224
32.950348 240.205109 -1340.921265
32.413204 239.840286 -1341.133423
32.744488 239.553558 -1337.619751
32.788509 238.989243 -1333.674438
32.834305 238.430359 -1329.756348
33.717262 238.820084 -1328.019653
35.008755 239.586105 -1326.774902
35.183319 239.663300 -1326.432373
35.442623 239.851959 -1326.412964
36.098763 240.353409 -1326.522705
37.322506 241.181992 -1326.022339
41.747375 244.414413 -1325.775879
46.136711 248.618561 -1332.126465
48.132381 250.413162 -1334.241211
50.647659 252.121246 -1333.246094
52.491241 253.653488 -1334.369507
54.392365 255.157242 -1335.023560
55.336826 255.639465 -1333.597778
58.793644 258.122864 -1333.128662
59.072369 258.347992 -1333.255493
63.610039 262.050415 -1335.564697
63.726429 262.174164 -1335.814209
63.963711 262.341370 -1335.760620
64.071091 262.431763 -1335.833496
65.044563 263.150024 -1335.826538
63.976696 262.554749 -1337.107666
63.999378 263.290741 -1341.862061
62.986233 262.746429 -1343.212769
62.426018 262.458862 -1344.048340
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58.051994
57.774101
57.232166
56.365143
52.340893
52.263054
51.786140
50.208103
49.573124
48.020222
46.612518
46.109085
43.275452
42.700096
40.373043
39.715458
38.969639
37.491283
35.498959
35.066608
34.343880
33.853664

260.092346
259.897766
259.465546
258.851929
255.772705
255.712112
255.423096
254.346252
253.919159
252.944443
251.928970
251.320908
249.466248
249.046097
247.440170
247.003204
246.403900
244.904144
242.951889
242.376465
241.585632
241.085602

-1349.770508
-1349.841431
-1349.631470
-1349.810425
-1349.112671
-1349.092285
-1349.511353
-1350.101196
-1350.379639
-1351.521851
-1351.685303
-1350.124878
-1351.706177
-1351.739258
-1352.490356
-1352.813965
-1352.495361
-1349.802734
-1346.629395
-1344.937500
-1343.240112
-1342.329224

offset
48.668663

matrix
-2.072740
0.998415
-0.928762
0.000000

cen_oid
48.668606

points42
49.691154
47.098480
46.078522
43.628563
38.572914
35.066269
34.557552
34.504028
34.536591
31.750603
34.739216
36.110107
36.598080
37.844788

258.739929

-0.840069
0.358338
2.414078
0.000000

258.739929

258.977692
257.959412
257.569977
256.634613
254.691391
253.347626
253.195648
253.176971
253.193405
252.159836
253.386475
254.008102
254.210846
254.701996

-1339.103394

0.994908
2.241035
0.035481
0.000000

-1339.103760

-1328.514404
-1327.099243
-1327.301880
-1327.791016
-1327.916504
-1328.279663
-1331.255371
-1331.385132
-1331.651001
-1334.255737
-1339.483032
-1345.892944
-1346.914429
-1347.697021
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42.723499
43.165413
45.018883
46.519531
49.015980
49.908459
50.477798
56.423157
57.267506
58.308109
61.414631
62.626472
62.757038
64.022987
64.022835
67.941353
64.743843
63.947819
61.788822
61.291145
59.841274
58.862499
56.616241
55.923870
52.526726
51.844780
51.388260
49.691154

256.627808
256.810822
257.518555
258.091278
259.028503
259.378113
259.598938
261.903687
262.218536
262.614441
263.741302
264.183563
264.230865
264.692322
264.691345
266.102570
264.867737
264.550629
263.721405
263.528259
262.932892
262.538666
261.656219
261.390594
260.069733
259.805389
259.627075
258.977692

-1351.020020
-1351.904419
-1351.540527
-1351.226807
-1349.645386
-1350.071899
-1350.191650
-1351.377441
-1350.696899
-1350.394287
-1345.746460
-1344.117432
-1343.918213
-1342.176147
-1342.114624
-1335.559448
-1335.242554
-1334.503906
-1334.599487
-1334.484619
-1331.929077
-1330.726929
-1329.484741
-1329.536865
-1328.590698
-1328.456055
-1328.274048
-1328.514404

offset
55.530693

matrix
-2.479644
1.002617
-0.006775
0.000000

cen_oid
55.530720

points47
72.881844
73.036583
71.872345
70.920525
69.897514
68.026932
67.921783
67.865524

268.780640

0.078542
0.297107
2.838681
0.000000

268.780609

268.639954
268.844055
269.125580
269.212372
269.303406
269.660339
269.667755
269.664337

-1340.442871

0.942203
2.469714
-0.314677
0.000000

-1340.442993

-1342.085571
-1340.247803
-1337.682861
-1336.879639
-1336.036255
-1332.776245
-1332.707031
-1332.736694

59

0.000000
0.000000
0.000000
1.000000



61.999939
61.687614
58.105701
57.766323
57.615761
57.347691
53.730221
52.831093
49.845188
49.215141
48.944149
48.432148
46.662724
44.815990
44.748013
44.731304
44.717327
43.155678
41.982769
42.728157
42.651623
42.577374
42.669640
42.847553
44.176723
44.825935
45.513821
46.932884
50.549282
51.094742
51.263138
55.586735
56.428276
60.652687
61.934284
65.052521
67.053482
69.318520
72.881844

269.492004
269.503632
269.584015
269.589844
269.604614
269.614655
269.615326
269.680328
269.961243
270.006714
270.059021
270.113861
270.177704
270.034271
270.028229
270.024780
270.021362
269.888458
269.637756
269.348969
269.306366
269.271210
269.228607
268.426697
268.033661
267.881897
267.820251
267.704254
267.499390
267.470703
267.471527
267.581360
267.655060
267.792114
268.023224
268.098969
268.149445
268.308502
268.639954

-1334.164917
-1334.053467
-1333.251099
-1333.191162
-1333.054810
-1332.958252
-1332.874268
-1332.268799
-1329.670288
-1329.246582
-1328.768799
-1328.263184
-1327.649170
-1328.903320
-1328.956299
-1328.987061
-1329.017578
-1330.182983
-1332.419067
-1335.040405
-1335.422974
-1335.738647
-1336.125000
-1343.362793
-1346.936890
-1348.319824
-1348.890625
-1349.967896
-1351.893799
-1352.164062
-1352.160522
-1351.262695
-1350.615967
-1349.470459
-1347.413452
-1346.797119
-1346.384888
-1344.998901
-1342.085571

offset

matrix
62.710762

-2.459187
0.862245
1.411245
0.000000

276.845398

1.443759
0.233719
2.736840
0.000000

-1342.095947

0.600771
2.773098
-0.648455
0.000000
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cen_oid
62.710758

points37
60.267490
59.715954
57.756958
57.654766
55.961964
55.241722
54.599461
53.055717
51.860821
51.845425
51.825336
52.308739
52.148075
52.208439
52.566605
56.051262
57.879612
58.118080
58.578636
62.363018
65.375732
67.674637
69.381958
73.123611
73.955666
74.332008
74.819969
74.850677
74.841034
74.799606
73.110657
71.806969
68.400352
66.451408
65.145714
62.464863
60.267490

276.845398

280.025665
280.411102
281.720917
281.780579
282.614014
282.635071
282.841492
283.190338
283.021698
282.910187
282.669525
281.840820
281.729553
281.588562
281.276428
278.554047
276.978699
276.809784
276.583984
274.506470
273.550751
272.384705
271.737396
270.720276
270.457062
270.387329
270.993774
271.033051
271.047424
271.077148
272.814636
273.710876
275.503754
276.747253
277.599396
279.128387
280.025665

-1342.096558

-1333.990723
-1333.564331
-1332.299683
-1332.270142
-1332.436646
-1333.915405
-1334.441895
-1336.329224
-1339.641479
-1340.145630
-1341.204956
-1343.650635
-1344.469849
-1344.933594
-1345.471436
-1349.377686
-1352.047485
-1352.241333
-1352.192017
-1352.724365
-1350.201416
-1350.119629
-1349.135986
-1345.285767
-1344.585693
-1344.061035
-1340.439575
-1340.207031
-1340.167236
-1340.131958
-1336.474487
-1335.529053
-1335.376099
-1334.369385
-1333.614502
-1332.995605
-1333.990723

offset

matrix
64.997856

-2.323323
0.779351
1.764060

279.941315

1.758390
0.203038
2.571812

-1344.276245

0.472969
2.833130
-0.649376
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0.000000
cen_oid

64.997833
points36

60.387009
59.489273
58.663727
58.132462
57.324490
56.347679
56.245876
55.552399
54.864998
54.808678
55.714062
56.179268
56.113937
59.262089
59.907913
61.064110
61.864113
63.525749
64.872513
68.029442
70.297661
71.421463
74.218506
75.830910
76.136551
75.842476
75.846313
75.754044
75.672058
74.848877
73.855690
71.858513
71.398277
71.116989
60.791447
60.387009

0.000000

279.941284

285.258514
286.037567
286.590607
286.981628
287.235779
287.542389
287.408295
287.289673
287.473724
286.992096
286.186646
285.565613
284.954285
281.324371
280.868866
279.904480
279.302612
278.223114
277.586304
276.176697
274.660858
273.911865
272.708435
272.238708
272.618622
273.886688
273.895111
274.103149
274.316010
274.849365
275.623199
276.973022
277.347443
277.581696
285.032593
285.258514

0.000000

-1344.276489

-1335.743408
-1335.096802
-1335.149170
-1335.043701
-1336.232056
-1337.671265
-1338.478882
-1340.832642
-1341.970947
-1344.031494
-1344.761841
-1345.957764
-1348.556274
-1354.380249
-1354.429810
-1355.108276
-1355.318726
-1355.080200
-1353.943604
-1350.950317
-1350.791992
-1350.705444
-1347.873291
-1345.353516
-1343.018555
-1338.795288
-1338.751587
-1338.178345
-1337.557983
-1337.681763
-1337.315063
-1337.394653
-1337.161987
-1336.998535
-1335.539551
-1335.743408

1.000000

offset

matrix
69.649223

-1.437539
0.185707
2.934977

287.327850

2.767686
-0.148480
1.604688

-1346.266724

0.186817
3.076282
-0.085764
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0.000000
cenvoid

69.649216
points37

64.588295
65.576096
65.810905
66.237244
67.603981
69.831528
70.382202
73.718575
74.950462
76.136406
76.470482
76.835419
76.840668
77.084496
77.062859
76.349167
76.317421
75.137062
74.843056
74.838882
74.573944
72.192596
71.721115
71.413231
70.310333
68.745972
67.404449
66.680069
66.433350
65.720535
64.832802
63.332527
63.178238
63.123672
63.287689
64.403275
64.588295

0.000000

287.327881

297.050598
295.282593
294.830078
294.057404
291.500549
287.450256
286.472198
280.324158
278.060364
275.913910
275.175781
274.388885
274.366089
273.788239
273.760345
274.924835
274.977600
277.052429
277.562958
277.561920
278.014954
282.207275
283.079956
283.661316
285.725677
288.443665
290.880737
292.124542
292.568085
293.914520
295.638611
298.650604
299.078430
299.295166
299.187347
297.350555
297.050598

0.000000

-1346.266724

-1337.541992
-1336.818359
-1337.249268
-1337.116455
-1338.184814
-1337.737549
-1337.192749
-1338.049561
-1338.249512
-1337.826050
-1340.203979
-1342.438843
-1342.685425
-1345.153076
-1346.415771
-1349.050781
-1349.150269
-1350.723145
-1351.231812
-1351.393799
-1351.984497
-1355.037354
-1354.843384
-1354.502441
-1353.620239
-1356.299927
-1356.610352
-1358.127075
-1358.271240
-1357.472412
-1355.593750
-1350.579468
-1347.854858
-1345.666870
-1342.071167
-1338.261475
-1337.541992

1.000000

offset

matrix
74.984940

-1.470565
-0.860745

294.395874

2.972327
-0.812272

-1351.298584

0.343865
3.028404
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2.979376
0.000000

cen_oid
74.984940

points50
68.025902
68.167030
68.302139
70.537315
72.979446
73.062126
74.333252
76.620216
76.935127
77.348122
79.550819
80.523148
81.008369
81.588120
81.530479
81.464340
81.751373
81.644104
82.680534
82.812363
83.545494
83.559715
82.320938
82.197861
81.806686
79.772278
78.395126
73.844727
72.464005
71.637680
70.217224
70.235794
69.538986
69.301590
69.216484
69.004906
68.998138
69.067139
68.255066
68.173500
68.648590
68.679001
68.122490
67.835579

1.434713
0.000000

294.395874

296.302063
296.149597
295.828461
292.456238
286.848511
286.499664
284.141968
279.724945
279.240448
279.247742
281.188629
280.692932
281.119873
281.217194
281.821930
282.739807
282.814636
283.018433
284.439301
285.012482
286.342316
286.542450
288.907776
289.166351
291.921844
297.609497
299.226654
307.177429
308.361725
308.703979
309.671967
308.845978
309.400116
309.803070
310.300781
309.948730
309.479828
308.114227
306.353882
305.945526
304.929382
304.677032
304.474121
304.459381

1.234596
0.000000

-1351.298584

-1336.719971
-1336.883301
-1336.836182
-1338.311401
-1337.688110
-1337.482300
-1337.809937
-1338.195923
-1338.392822
-1339.398071
-1346.969116
-1348.739502
-1350.406616
-1351.918823
-1352.482422
-1353.389526
-1354.169189
-1354.147095
-1358.299438
-1359.283691
-1362.598267
-1362.865234
-1362.624390
-1362.627930
-1364.885986
-1366.586060
-1365.141968
-1363.400269
-1361.444580
-1359.848145
-1357.545166
-1356.630127
-1355.592529
-1355.487915
-1355.860840
-1354.941162
-1354.379883
-1352.959473
-1348.954102
-1348.282715
-1348.248413
-1348.028442
-1346.449707
-1345.740234
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67.412407
66.943420
67.493599
67.248062
67.594734
68.025902

303.803467
301.460785
299.474274
298.692078
297.615540
296.302063

-1343.956665
-1340.102539
-1339.121704
-1337.620239
-1337.205811
-1336.719971

offset
77.268608

matrix
-0.570417
-0.080801
-0.988286
0.000000

cen_oid
77.268593

points64
69.514267
69.524223
69.532196
71.768570
73.674561
73.691986
74.430580
76.881485
76.901550
76.992615
79.582542
80.846283
81.326073
81.909576
82.178909
82.202599
82.217209
83.110550
83.217346
83.206551
83.223618
83.849472
84.115753
84.446449
85.099586
85.093582
85.077515
85.054947
85.099144
85.699432

297.786011

0.497311
1.000167
-0.357563
0.000000

297.785980

296.921448
296.909668
296.883484
292.857391
286.715637
286.506134
284.746490
278.619751
278.546906
278.658691
281.625702
281.013000
281.444092
281.579285
282.872101
282.995270
282.988678
283.922302
284.001831
284.037933
284.056885
285.942963
286.368225
288.295105
290.569855
291.420563
291.531616
291.652740
291.585205
293.025879

-1354.199219

0.868534
-0.573907
-0.454564
0.000000

-1354.199219

-1336.660156
-1336.672485
-1336.669189
-1338.364502
-1337.677246
-1337.550293
-1337.771973
-1338.281250
-1338.267578
-1338.553467
-1346.518188
-1348.783813
-1350.166016
-1351.541016
-1353.143555
-1353.291870
-1353.318481
-1355.995117
-1356.289917
-1356.294800
-1356.346802
-1359.191162
-1360.104614
-1362.339233
-1365.548584
-1366.204712
-1366.257080
-1366.303345
-1366.346313
-1368.784668
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85.550072
85.684303
84.992271
84.798889
82.966187
81.137100
80.500679
80.442795
80.397705
79.996841
77.604012
76.160690
75.893753
73.981018
73.556396
72.729324
72.187256
71.904449
71.788612
71.211349
70.802460
70.411034
70.647758
70.039772
69.983765
70.099861
69.759659
68.715866
68.693306
68.888695
69.143524
69.049980
69.495232
69.514267

293.373749
294.075134
296.941986
298.719452
305.201691
309.481964
310.456512
310.574524
310.567078
311.340149
313.330780
314.694305
314.786743
314.789856
314.307434
314.410004
314.385010
313.526398
312.744598
312.575867
312.150055
311.624390
311.178314
307.382019
307.150848
306.480530
305.793671
302.445282
302.203583
300.994110
299.506683
299.305878
297.015869
296.921448

-1368.733521
-1369.577148
-1370.327637
-1371.305420
-1372.419800
-1371.809937
-1371.192871
-1371.159912
-1371.056030
-1370.792603
-1367.156006
-1365.090576
-1364.583008
-1360.426880
-1359.124146
-1357.406738
-1356.208496
-1354.918213
-1354.051514
-1352.663696
-1351.439697
-1350.175293
-1350.338989
-1346.031006
-1345.727417
-1345.452515
-1344.172607
-1339.269409
-1339.030151
-1338.503662
-1337.887695
-1337.526367
-1336.692993
-1336.660156

offset
83.907822

matrix
-0.566979
O.166097
-1.023733
0.000000

centroid
83.907661

points79
81.250740
77.075821

305.664246

0.712023
0.965770
-0.235020
0.000000

305.664032

285.710205
288.654114

-1360.062500

0.778038
-0.687002
-0.545445
0.000000

-1360.062378

-1346.477783
-1339.910400
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97.126740
97.088890
97.054520
96.209129
95.834198
93.901215
93.555923
93.334877
93.186119
92.155052
91.108063
87.797394
87.747269
87.707741
87.477348
87.109047
87.156174
87.141052
86.912148
86.676094
84.866951
84.691063
84.478821
84.318954
83.586296
83.041298
80.555595
81.250740

314.970032
314.956970
314.826660
312.253662
311.220428
308.660553
308.299286
307.910339
306.283905
306.058502
303.363892
297.691040
297.695374
297.481964
295.466431
295.292267
294.831970
294.573364
293.860870
292.822845
287.761749
287.379913
287.125458
287.180298
287.678131
288.315948
289.187225
285.710205

-1388.882446
-1388.805786
-1388.685059
-1385.989746
-1384.840820
-1380.109863
-1379.306152
-1378.723755
-1377.743652
-1375.711426
-1372.585327
-1363.927246
-1363.835083
-1363.668945
-1362.368042
-1361.601807
-1361.491943
-1361.352051
-1360.615479
-1359.725098
-1354.148926
-1353.654175
-1353.146240
-1352.869873
-1351.709229
-1350.961182
-1346.671265
-1346.477783
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APPENDIX D
ModelingFunctionLocationandConstruction

Themusclemodelingfunctionandits associated header file are located on the
Silicon Graphics Indigo named Armus in the Engineering Teaching Center room 3.110
on the University of Texas at Austin campus. This workstation is listed on the intemet
as armus.me.utexas.edu. The paths to the modeling function and its associated header
file are /usr/people/gamer/DAVE/VIA/TEST/domuscles.c, and
/usr/people/garner/DAVE/VIA/TEST/domuscles.h, respectively.

The modeling function is made up of several subfunctions. These
subfunctions' names and descriptions are listed below in alphabetical order.

angleorder - Sorts the vertices for one latitudinal plane in order from lowest angle on
that plane to highest.

buigeslice - Applies a bulge factor to a given slice.

cartesianize - Calculates three-dimensional cartesian values for vertices based on their

slice number and angle and radius within the plane.

computeareas - Computes the area for all of the planes of each muscle.

computerelaxedlength - Solves for the length between each vertex and the center of
its latitudinal plane for the static muscle data. This length is commonly referred to as
the radius.

computeslicedepths - Solves for the depth of each plane in each muscle.

computevolumes - Solves for the total volume of muscle, opposed to tendon, in each
muscle.

copyoriginaldata - Copies originally read static muscle data into backup variables to
free the original variables for dynamic data.

dostraightmuscles - Applies dynamics to muscles by computing the needed bulging
and rotations for latitudinal planes.

drawmuscles - Draws muscles that are composed of an equal number of vertices on
each latitudinal plane with all vertices sorted in order of increasing angle on their plane.

initiaiparametrization - Computes the parametric length value (zero at the origin,
one at the insertion) for each slice in each muscle.

latspline - Fits cardinal spline functions to the vertices defining latitudinal planes and
interpolates new vertices to define the planes, latspline is a prerequisite for longspline.
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Iongspline - Fits cardinal spline functions to corresponding vertices in the latitudinal
planes interpolates new vertices to define new latitudinal planes, latspline is a
prerequisite for longspline.

radialize - Calculates an eulerian angle for each verticex in each muscle.

readmuseles - Reads in all of the data for all of the muscles defined in

return_bone_number - Returns a predefined number representing each bone in the
model: one for clavicle, two for scapula, etc.

rotatesliee - Rotates all of the vertices in a given slice for given ct, 13,and T-values.

solveoffsets - Solves for the centers of slices by averaging the locations of the

vertices on that plane. (NOTE: This method has less computations than solving by
tesselation and held less than 0.1 percent error compared to solving by tesselation.)

translateslice - Translates all of the vertices in a given slice for given x, y, and z-
values.
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