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Abstract

The MEMS (Micro-Electro-Mechanical-Systems) technology is quickly evolving as a viable means to

combine micro-mechanical and micro-optical elements on the same chip. The methods for MEMS

fabrication are based on those already used in the well established semiconductor industry. Dry and wet

etching of deposited, grown, or bulk layers is used to form movable structures of micron dimensions.

These structures can be fabricated on the traditional semiconductor substrate materials making possible the

further integration of MEMS devices with optoelectronics and electronics. Such integration could,

significantly improve the performance, increase the functionality, reduce the size, and cost of optical

systems.

One MEMS technology that has recently gained attention by the research community is the micro-

mechanical Fabry-Perot optical filter. A MEMS based Fabry-Perot consist of a vertically integrated

structure composed of two mirrors separated by an air gap. Wavelength tuning is achieved by applying a
bias between the two mirrors resulting in an attractive electrostatic force which pulls the mirrors closer.

MEMS based Fabry-Perots can provide large tuning ranges, on the order of hundreds of nanometers with a

5V bias. This is an advantage over electro-optic effect Fabry-Perots which are limited to under 10nm of

tuning range due to the small refractive index changes possible.

The methods for micro-mechanical Fabry-Perot filter fabrication recently reported in the literature

require many (10 to 44 layers) deposited or grown layers to form the DBR (Distributed Bragg Reflector)

mirrors and to provide the sacrificial layer for the air gap. Consequently, the fabrication of these Fabry-

Perots is complex and costly. In this work, we present a new micro-mechanical Fabry-Perot structure

which is simpler to fabricate and is integratable with low cost silicon based photodetectors and transistors.

The structure consists of a movable gold coated oxide cantilever for the top mirror and a stationary Au/Ni

plated silicon bottom mirror. The fabrication process is single mask level, self aligned, and requires only

one grown or deposited layer. Undercutting of the oxide cantilever is carried out by a combination of RIE

and anisotropic KOH etching of the (111) silicon substrate. Metallization of the mirrors is provided by

thermal evaporation and electroplating.

The optical filtering characteristics of the fabricated devices were studied. A wavelength shift of 120nm

with 53V applied bias was demonstrated by one device geometry using a 6.27jum air gap. The finesse of

the structure was 2.4. Modulation bandwidths ranging from 91KHz to greater than 920KHz were also
observed. Theoretical calculations show that if mirror reflectivity, smoothness, and parallelism are

improved, a finesse of 30 is attainable. The predictions also suggest that a reduction of the air gap to 1/_m

results in an increased wavelength tuning range of 175nm with a CMOS compatible 4.75V.
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I. Introduction

I.I Micro-Electro-Mechanical-Systems (MEMS): an Overview

The MEMS technology is quickly evolving as a viable means to combine micro-mechanical, micro-

optical, opto-electronic, and electronic devices on the same chip. The methods for MEMS fabrication are

based on those already used in the well established semiconductor industry. Dry and wet etching of depos-

ited, grown, or bulk layers is used to form moveable micron sized structures. These micro-mechanical

structures can be formed on traditional semiconductor substrate materials including silicon and gallium

arsenide. This makes possible the integration of micro-mechanical systems with transistors, optical trans-

mitters, and photodetectors. The monolithic realization of these electro-optical systems will provide many

advantages including higher performance, lower cost, and reduced size.

Historically, micro-mechanics had its beginnings during the early years of the integrated circuit indus-

try. In 1965 H. C. Nathanson et al. of Westinghouse Research Laboratories invented the silicon based

resonant gate transistor [1, 2]. The transistor used a cantilever based gate electrode to control the channel

transconductance. The strong mechanical resonance of the cantilever provided a high-Q bandpass electrical

filter. Nathanson's work generated a brief flurry of interest in micro-mechanics. However, the interest

waned, due to the ease in which the filtering behavior could be implemented electronically. Slowly, micro-

mechanics has evolved with emphasis on applications that could not be implemented with the same per-

formance and simplicity using electronics. For many years following, the fabrication of ink jet nozzles and

print heads represented the main thrust in micro-mechanics [3-5].

Today, the MEMS technology has widespread applications in many areas. These areas include micro-

optics, mechanical actuation, and sensing. Tiny optical benches on a chip are now possible. Texas

Instruments has developed and is currently marketing arrays of digital micro-mirror devices for use in over-

head projectors and printers [6]. In the area of optical communications MEMS based Fabry-Perot optical

filters are being used to tune to and track WDM (Wavelength Division Multiplexing) signals

[7-14]. Acceleration, pressure, and temperature sensors based on micro-mechanics are being developed and

are available off-the-shelf [15-17]. These and growing numbers of applications are being developed to take

advantage of the integrateability of optics, electronics, and micro-mechanics on a single substrate.

1.2 MEMS Based Fabry-Perot Filters: The State of the Art

One MEMS device that has recently (in the past few years) gained increased attention is the tunable

micro-mechanical Fabry-Perot filter. These micro-mechanical Fabry-Perot filters consist of two mirrors

separated by an air gap. The structure is formed vertically. The mirrors either consist of multilayer DBR

(Distributed Bragg Reflector) stacks or a highly reflective metallic layers such as gold. The air gap is

formed by the etching of a sacrificial layer. The top mirror is freely suspended above the bottom mirror. A

voltage applied between electrical contacts on the two mirrors results in an attractive electrostatic force

which pulls the top mirror down. Consequently, the air gap and transmission wavelength of the Fabry-
Perot are reduced.

Traditionally, semiconductor Fabry-Perots have provided tuning based on a cavity refractive index
change through the Stark and the electro-optic effects. The tuning range of these devices have been limited

to less than 10 nm due to the small index changes possible [8, 18, 19]. On the other hand, micro-mechani-

cal Fabry-Perots with tunable air gaps provide much wider tuning ranges than their Stark or electro-optic

effect counterparts. Micro-mechanical Fabry-Perots have demonstrated a tuning range as high as 70 nm

with a maximum 5 volts applied bias.

Both GaAs and Si based micro-mechanical Fabry-Perots have been investigated and have shown prom-

ising performance characteristics. Researchers at Stanford University and the University of California at

Berkley have been working with GaAs based micro-mechanical Fabry Perots. The thrust of their work has

dealt with controlling the output wavelength of VCSEL s (Vertical Cavity Surface Emitting Lasers) with a

tunable coupled cavity micro-mechanical Fabry-Perot [7, 9, 10, 20]. M.S. Wu et al. have fabricated and



havetestedaGaAsbasedmicro-mechanicalFabry-Perotswith thelargesttuningrange[20]. TheFabry-
Perotdemonstrated70nmof wavelengthtuning(wavelengthrange:900to 970nm)withamaximumof
4.9voltsbias.Thelinewidthofthetransmissionspectrawaslessthan10nm. Theirdesignincorporates
twomolecularbeamepitaxygrownAIAs/GaAsDistributedBraggReflector(DBR)mirrorsseparatedbyan
airgap.ThetopandbottomDBRmirrorsuse12.5and 9 quarter wavelength pairs respectively. The top

DBR mirror geometry is a cantilever and moves by a bending motion.

A group at the National Nano Fabrication facility at Cornell is currently fabricating silicon based
micro-mechanical Fabry-Perots. A.T.T.D. Tran et al. have fabricated a silicon based Fabry-Perot which

uses two three and a half period CVD (Chemical Vapor Deposition) deposited Si/SiO 2 DBR mirrors for the

cavity [11-13]. Tran achieved 40 to 60 nm (wavelength range: 1490 to 1540 nm) of tuning with 65 volts

maximum bias applied to the structure. A 5 nm linewidth was typical for this device. The top suspended
mirror for this structure was held on four sides, and consequently moved by more difficult stretching instead

of bending like the GaAs cantilevers.

As mentioned previously, the air gap micro-mechanical Fabry-Perot filters provide a larger tuning range
than their Stark effect counterparts. However, there are disadvantages and problems associated with the

micro-mechanical Fabry-Perots. Although they provide a large tuning range there is a tradeoff in band-

width. Practical Fabry-Perots have demonstrated bandwidths of less than 1Mhz [1, 2, 21]. Yields of the

devices have been less than desirable. The suspended mirrors are fragile and require careful handling follow-

ing air gap formation. Due to their fragility, integration with electronics requires that the Fabry-Perot air

gap formation be the last step. Stress due to differences in the thermal coefficients of expansion have

caused the Fabry-Perot mirrors to curve resulting in a less than stable optical resonator [13]. Lifetimes of

the movable mirrors are sometimes limited to fatigue [21]. If wet etching is used to remove the sacrificial

layer, capillary and intersolid forces during the rinse/dry step could result in plastic deformation of the struc-

ture and the potential pinning of the two mirrors together [22].

1.3 Potential Applications of the Cantilever Micro-Mechanical Fabry-Perot

There are many applications in which the modulator can be used. Here we present a few potential pos-

sibilities although there may be many others.

The wide wavelength tuning range of by micro-mechanical Fabry-Perot filters along with their poten-

tial chip integrateability with photodetectors and electronics makes them attractive for use as miniature

scanning spectrometers. The vertical integration of the filter with a photodetector requires a minimal

amount of chip real estate thus allowing for large arrays of the spectrometers. One application poised to

take advantage of the wavelength selective nature of the micro-mechanical Fabry-Perots is optical fiber

communications. A growing trend in fiber optic communications is the use of multiple wavelength chan-

nels on the same fiber to provide increased data bandwidth [23]. This type of multiplexing is commonly

called Wavelength Division Multiplexing (WDM). At the receiver end of these systems, the WDM optical

channels are demultiplexed and detected with a photodetector. For dense (5 channels or more) WDM optical

systems, the demultiplexing is usually carried out using a diffraction grating based system. A problem

inherent with this type of system is that the grating system is designed to accommodate fixed wavelength

channels. In reality, the wavelengths of the semiconductor lasers drift during operation due to thermal

effects. Additionally, it is very difficult and expensive to specify the laser center wavelength with tight

enough tolerances. A solution to the laser drift and specification problem is an adaptable receiver.

This solution can be realized with an array of Fabry-Perot filter photo-detector pairs as shown in

Figure 1-1. The structure is basically a drop demultiplexer realized with an array of Fabry-Perot filters.
Each filter in succession, is voltage tuned to drop and measure one WDM channel while reflecting the

remaining channels. Sequentially, each channel is picked off and measured by the properly tuned Fabry-

Perots. Thermal drift of the individual channel wavelengths is accommodated by feedback control methods

between the photodetector and the movable mirror. This technique has been demonstrated successfully by

M. S. Wu et al. [24].
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Figure 1-1. An array of micro-mechanical Fabry-Perot filters is used as a WDM demultiplexer with
wavelength tracking capability.

Another possible application for the tunable filters is a flat panel display using the Fabry-Perot as a color

producing pixel element. Black and white displays have been demonstrated using thick metal-coated mov-

able cantilever mirrors by IBM researchers in 1977 [25]. The imaging system used a quasi-collimated light

source to illuminate arrays of the cantilever mirrors. The display image was formed by directing the light

from each cantilever mirror in or out of the numerical aperture of the imaging lens. This imaging system

was probably the precursor to Texas Instruments' Digital Micro-Mirror Device (DMD) display[6].

Optically interrogatable acceleration and temperature sensing are also possibilities for the micro-

mechanical Fabry-Perot filter. Cantilever bending due to acceleration forces can be translated into the spec-

wal transmission shift of a broadband source or the power modulation of monochromatic laser light.
Temperature sensing is possible by the fabrication of the movable mirror with two materials with large

differences in thermal coefficient of expansion. This large difference can be used to produce the bimetallic

bending effect. The thermal stress induced bending of the movable mirror results in an optical cavity length

change. The temperature dependent cavity length is used to relate temperature to the spectral transmission

properties of the Fabry-Perot.

1.4 A Novel Silicon Based Micro-Mechanical Fabry-Perot

The fabrication of the micro-mechanical Fabry-Perots as reported in the literature rely on multilayered

deposited films for the mirrors and selective isotropic removal of a deposited sacrificial layer to form the air

gap. Consequently, the fabrication of these micro-mechanical Fabry-Perots is time consuming, requires

expensive and complicated film growth equipment (especially MBE), and is potentially costly.

We present a new fabrication technique to form micro-mechanical modulators that can be used to realize

Fabry-Perots on a silicon substrate. This technique is simpler and potentially less expensive than all
processes that have been reported to our knowledge. Furthermore, integration with inexpensive, well estab-

lished, Si-based, transistors and photodetectors is made possible. The fabrication process requires only one

mask level and uses a single oxide layer to provide the top mirror supporting structure and the electrical

isolation. A cross-sectional schematic of the structure is shown in Figure 1-2.



Figure 1-2. Cross-sectional diagram of the novel (111) silicon based micro-mechanical Fabry-Perot filter.

A (111) oriented silicon substrate is used. The movable top mirror is a cantilever made of high quality

thermally grown SiO 2. A cantilever structure was chosen due to the much lower voltages required to bend
the structure in comparison to the stretching of a membrane fixed on two or more ends. The formation of

the air gap under the cantilever is accomplished by a combination of vertical RIE (Reactive Ion Etching) and

lateral anisotropic selective KOH wet etching of the (11 l) silicon. The substrate itself provides the sacrifi-

cial layer. The metallization of the top mirror is carried out by gold evaporation while the bottom mirror is

electroplated with nickel followed by gold.

The structure can function as both a filter and a photodetector in the 7(g)-900 nm wavelength range by

simply implanting or diffusing a p-n junction photodetector into the substrate under the bottom mirror.

The filter can also operate in unattenuated transmission through the substrate at wavelengths longer than the

1100 nm cutoff wavelength of the silicon.

In comparison with the micro-mechanical Fabry-Perot filters currently being developed from the litera-

ture, this structure has the advantage of being simpler in construction and fabrication complexity. However,

the utilization of simple metallic mirrors results in a performance Wadeoff not suffered by Fabry-Perots

using DBR mirrors. Fabry-Perots using metallic mirrors cannot provide both high finesse and high trans-

mittance simultaneously due to optical absorption in the metal. That is, the effective mirror reflectivity is

increased with a thicker metal layer which yields a higher finesse. However, the optical throughput is

reduced. In light of this tradeoff, we present the simple structure as an inexpensive alternative to the DBR

based Fabry-Perots for applications where the tradeoff can be tolerated.

We begin in Chapter 2 by presenting a theoretical description of the cantilever bending. The bending

of the cantilever will be related to the physical characteristics of the structure and the applied voltage. A

hysteretic behavior is predicted. However, it is shown to be avoidable if the applied voltages are below a

threshold value. The optical filtering behavior of the structure is related to the device geometry and voltage.

Numerical results are presented and predict reasonable device performance characteristics and reveal perform-
ance tradeoff issues.

In Chapter 3, the modulator fabrication process is described. A new method for cantilever undercutting

using (11 l) Si wafers is presented. Mask design methods are presented that provide efficient undercutting of
the oxide cantilever and the necessary electrical isolation between the mirrors. Details of the mirror

metallization are presented. Top mirror metal evaporation and bottom mirror electroplating are discussed.

Structural and processing problems will be revealed that result in the deviation of the mirror surfaces from

perfect smoothness and flatness.

In Chapter 4, the experimental results for the micro-mechanical Fabry-Perots are presented. Results

from a SEM study of the motion of the cantilever under bias and the spectral tuning characteristics of the

filter axe also presented. The spectra were measured as a function of applied bias. The spectral characteriza-

tion includes tuning voltage versus transmission wavelength, linewidths, and on/off ratios. The fn_quency

response characteristics of the modulator are also presented. The experimental results are compared to theo-

retical predictions.

Finally in Chapter 5 we summarize the results and suggest modulator design improvements that could



result in better filter performance.
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II. Electro-Mechanical and Optical Theory

2.1 Introduction

In this chapter, the theory describing the behavior of the voltage tunable Fabry-Perot filters is

developed and presented. The analysis is performed in two steps. First, the electro-mechanical behavior of

the cantilever structure is analyzed. In this section, the voltage induced bending of the cantilever is

calculated. The bending theory is used to relate the applied voltage to the size of the air gap under the

cantilever mirror. The second part of the analysis is the calculation of the optical spectra transmitted and

reflected by the Fabry-Perot. Given the Fabry-Perot geometry and functional dependence of the air gap on

voltage, the optical filtering characteristics are calculated. In section 2.4 numerical results are presented for

several cases. The numerical results provide an understanding of how the tuning behavior is affected by the

applied voltage and geometry of the structure, and what the wadeoff issues are. In Chapter 4, the theory

presented in this chapter will be compared to the experimental results.

2.2 Electro-Mechanical Theory

2.2.1 Derivation of the Cantilever Bending Equation

The bending of the cantilever as a function of voltage is described in this section. Figure 2-1 shows a

schematic of the cantilever structure described in the analysis with relevant symbol definitions. The

cantilever structure is assumed to be of constant cross-section. However, the theory is amenable to more

complicated geometries. It is also assumed that ideally the cantilever is straight and parallel to the lower

mirror with zero bias applied to the structure.

The structure consists of a gold coated cantilever suspended above a gold coated silicon substrate. The

cantilever forms the top mirror for the Fabry-Perot while the gold coated Si below provides the bottom

mirror. The length of the cantilever is L. It has a width W, and oxide thickness hox. The height of the

cantilever above the bottom mirror with zero bias V is hco. y is defined as the height of the cantilever

above the bottom mirror. With an applied bias y is a function of the lateral position x.

As mentioned in Chapter 1 the basis for the cantilever bending is a capacitive electrostatic force. We

can treat the cantilever structure as a capacitor since the SiO 2 electrically insulates the top mirror metal
from the Si based mirror below. When a voltage is applied between the cantilever metal and the metal on

Figure 2-1.

n

m

Cantilever schematic for the electro-mechanical analysis.



thesilicon,oppositechargesbuild up on the capacitor plates producing an attractive electrostatic force that

pulls the cantilever toward the silicon.

The force between the cantilever and the Si due to the voltage V can be derived from the equation of

stored energy in a capacitor C.

U-I cv 2 (2-1)
2

The force F(y), can be obtained by differentiating the stored energy U with respect to the capacitor spacing

y. The differentiation is performed while holding the capacitor voltage constant. That is, the voltage is

provided by an ideal source. Differentiating gives

F(y) - dU = 1 V2 d__CC
dy 2 dy (2-2)

Here the capacitance is the series combination of the cantilever oxide capacitor and the air gap capacitor
between the bottom of the cantilever and the metal coated Si below.

1 1 1 CoxCair-gap
+ C=

C Cox fair-gap, fox + fair-gap eoeroxWL CoWL (2-3)
, Cox hox ' fair_gap " y

Eo "* freespace permittivity

fox "_ Si02 relative permittivity

Differentiating the series capacitance combination and substituting into the force equation gives

F(y) - d--U-U- - 1 V2 eoWL

dr 2 [ hox]2Y + erox ] (2-4)

The force is shown to be proportional to the square of the ratio of the voltage to the air gap spacing for

small hox/Ero x.

The bending of a cantilever under the influence of an arbitrary loading function is given by the
cantilever differential equation [1, 2]. This equation provides the steady state or static profile of the
cantilever under a distxibuted load.

d2y M(x)

dx 2 E1 (2-5)

The height of the cantilever is given by y and the lateral position is given by x as in Figure 2-1. M(x) is

the total moment at a position x. It is the sum of either the total loading moment or torque to the left of x

or too the right of x. E is the elasticity modulus of the cantilever material and is frequendy called Young's

modulus. In this case E is the elasticity modulus of the oxide. The elasticity of the composite beam is

minimally affected by the addition of the thin gold layer. I is the cross-sectional area moment of inertia of

the beam (a cross-sectional area defined by hox and the width W) and describes the beams stiffness to

torsional bending. Here the moment is taken about the central z axis of the beams cross-section as shown

in Figure 2-2.
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Figure 2-2. Diagram used for the calculation of the moment of inertia of the cantilever beam.

For the constant cross-section cantilever shown in Figure 2-1, I is given by

y hO_ W

f 3y2dy dz-_ Wh°_

2 2 (2-6)

M(x) can be related to the electrostatic force

L
M(x)- f

XtmX

F(y(x)) (x, _ x)dx, _eoW V2 _ (x' - x) ,
L " h "2dx

(2-7)

The resultant cantilever differential equation is given by

L (X' - X)
d2y 6e.o V 2 f ,

dx2 Eh3x x'-x [y(x,)+ eroxh°XJ]

(2-8)

One immediately observes that the beam bending under the influence of the electrostatic force does not

depend on the width W of the structure, since it has dropped out of the expression. This is a consequence of

both the stiffness of the beam and the electrostatic force depending linearly on W. It will also be shown

that the width does not affect the frequency response either. The classification of the equation is a second

order nonlinear differential equation. It cannot be solved exactly for an analytic solution. Instead, it must be
solved using numerical methods.

The numerical solution solves the differential equation by using trapezoidal integration and iteration to

provide convergence of the y input values to y output values. That is, In'st assume that y(x) is

approximated by hco, the zero voltage air gap. Next, the moment is integrated providing y"(x). Integrate

y"(x) twice to provide y(x). The values for y(x) are plugged into the moment generating equation again.

The iteration is performed until the y(x) solution does not change greater than 1 part in a billion. The
moment integral provides a pulling down of the guessed input values toward the real solution.



Convergence occurs, since the first guess for the y values hco is larger than the real solution.

An analytical solution would provide some needed insight to the cantilever's bending sensitivity to

voltage as a function of the structures geometry. If one assumes in the differential equation, that the height

y(x) does not vary significantly from the initial air gap hco (with 0 Volts), y(x) in the denominator of the

integral can be replaced by the constant hco without great loss of accuracy. The replacement provides an

analytical solution which is valid for small V/h¢o ratios. The small voltage or quadratic approximation is

6E o

y(x)- hco - Eh 3 [hco[
[,?: + x4]

hox ] 6
+

1

f" rox I

(2-9)

The maximum deflection of the cantilever beam occurs at its tip. The position of the tip is given by

y(L) - hco 3 Eo V 2_ P

4Eh3x [hco+erox j
hox ]2

(2-10)

As shown, the maximum displacement of the beam is proportional to the fourth power of the length. The

dependence of the bending to hox is inverse to the 5th power for small initial cavity height hco. Also, for

large hco/box, the displacement goes as the square of the ratio of the voltage to the initial cavity height.

2.2.2 Derivation of the Cantilever's Frequency Response

Another crucial performance metric for the micro-mechanical Fabry-Perot is its deflection response as a

function of the frequency of the applied voltage. From this characteristic we also gain knowledge of the

structures modulation bandwidth which can be used for comparison. Here we present a theoretical method

for calculating the dependence of the response characteristic and bandwidth on the device geometry. In

calculating the response characteristic, a combination of rigorous and first order theory is used. A

completely rigorous analysis would require extensive numerical calculations for solutions of transcendental
functions. It will be shown in Chapter 4 that the approximate theory predicts a response function that is

very consistent with the experimental data. First the natural resonant frequencies of a freely vibrating
cantilever are calculated. The model rigorously describes the distributed mass and elasticity of the

cantilever. Next a response function to a sinusoidal driving force is formulated based on a linear-spring

point-mass system. The response function also includes a damping term due to air resistance. The

response function includes only the affects of the 1st natural frequency of the cantilever. The natural

frequency in the first order response function is then replaced by the fundamental or 1 st natural frequency
calculated using the rigorous theory. This function provides a prediction for the response characteristic of

the cantilever and its -3 dB bandwidth. Justification of this model can he obtained from the experimental

results. Like the frequency response calculated with the linear-spring point-mass model, the measured

response for the cantilevers is low pass. Furthermore, the measured response only shows a significant

contribution from the 1st natural frequency. The strength of the higher order natural frequencies are

relatively small probably due to the viscous air damping of the cantilever.

In general, to calculate exactly the analytic solution to the motion of a freely vibrating cantilever one

uses the partial differential equation of motion for the lateral vibration of a beam [3]

02 {EI 02y) 02Y
OX 2 ( _X 2 ) "-peff.Whox Ot 2

(2-11)
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Perf. "-_ effective density of the beam

PAu _ densityof goldlayer

hAu _ thicknes of gold layer

PSiO 2 box + P AuhAu

perf.- hog
(2-12)

Here all variable definitions are the same as previously stated except for the addition of the effective density.
The effective density includes contributions to the mass of the cantilever from both the thin gold layer (10

to 50 nm) and the thicker oxide layer (850 nm). In the calculation of the bending of the cantilever, the

contribution of the gold layer to the stiffness was negligible. This is a consequence of the gold layer being
much thinner than the oxide layer and the elasticity constant of gold 7.8 x 10 l0 N/m2 being comparable to

that of SiO2 7.3 x 101o N/m 2 [4]. However, when calculating the mass of the structure the gold must be

included for an accurate result. Gold's density is a factor of 7.7 higher than that of oxide, 19.3 g/cm3

versus 2.5 g/cm3 respectively [4, 5]. Consequently the gold layer's contribution to the mass is significant.

The solution to the motion equation is separable and is of the form

X(x)Cos(to.,÷o) (2-13)

At this point a new constant is defined

K 4 to2peff.Whox

E1 (2-14)

Here ton is one of the natural frequencies of oscillation for the cantilever beam. Substituting Eqs. 2-13 and

2-14 into the vibration equation and dividing by Cos(tont + 0) gives

d4g(x) K4X(x)
dx 4 ==

(2-15)

The solution to equation 2-15 is of the form

X = A1Sin(rx ) + A2CosOcx ) + A3Sinh(Kx ) + A4Cosh(Kx ) (2-16)

The constants A 1 , A2, A3, and A 4 are found by the supporting conditions on the ends of the cantilever
beam. In finding the solutions to Eq. 2-16 it is more convenient to redefine the constants and write it in
the form

x - a[Cos( )+cosh(,,x)]+t(cos( )- Cosh( )]
+C[Sin(r.x)+SinhOcx)]+D[Sin(roc)-Sinh( .x)] (2-17)

This form will reduce the number of constants in the final solution. The conditions on the ends of the
cantilever are as follows.

The deflection is proportional to X and is zero at the built-in end.

The slope is proportional to X' and is zero at the built-in end.

The moment is proportional to X" and is zero at the free end.
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The shear is proportional to X'" and is zero at the free end.

The required derivatives are

X' - r_-Sin(r.x) + Sinh(Kx)]+ KB(-Sin(Kx)- Sinh(r_x)]

+_C[co_(_l+Co_h(=l]÷_O[CosI_xt-Co_hI_xl] (2-18)

x" - _2A[_Cos(=)+Cosh(=)]+,:2@Cos(=)- Cosh(=)]

+__C[-Si,,(=)+Si,,h(=)]+,_O[-Si,,(=)-Si,,h(=)] (2-19)

X"'-K3A[Sin(Kx) + Sinh(Kx)]+ K31_Sin(KX)- Sinh(w.x)]

+<_c[-_o_(_x)+_o_(,x)]+<_o[-_o_(=)-_o_(,x)]

Applying the cantilever end conditions to the equations results in

(2-2o)

0 =A (2-21)

0 =C (2-22)

0 - I_Cos(KL)+ Cosh(KL)]+ I_Sin(KL)+ Sinh(KL)] (2-23)

0 - t_Sin(KL)- Sinh(KL)]- L_Cos(KL)+ Cosh(KL)] (2-24)

Here A and C are zero due to the conditions on the built-in end of the cantilever. There are still two

remaining constants which have not been determined B, D, and the spatial frequency K is unknown. Once

the spatial frequency of a given mode has been determined, one of the unknown constants can be found in
terms of the other. There is always one undetermined constant, which can be evaluated only if the

amplitude of the vibration is known. We will not be concerned with this constant since we are calculating

the normalized response of the cantilever. Using Eqs. 2-23 and 2-24, expressions relating the spatial

frequency to the ratio of D to B can be derived.

D Cos(KL) + Cosh(KL) Sin(KL) - Sinh(KL)
--I

B Sin(KL) + Sinh(KL) Cos(KL) + Cosh(rL) (2-25)

Rearranging Eq. 2-25 results in

-1-Co4,,.,_)Cosh(,,.q (2-26)

Eq. 2-26 provides numerical solutions for the spatial frequency given a cantilever length L. Solutions to the

product of spatial frequency and the length must be obtained using numerical methods. The f'wst few
solutions are

12



_IL -1.875

K2L = 4.694

K3L = 7.855

K4L =10.996 (2-27)

Of most significance in calculating the response characteristic of spring-mass system is the fundamental

natural frequency to I . The response of spring-mass system is basically low pass. The fundamental

frequency is the first and most dominant pole in the response characteristic. Substituting K1L in Eq 2-27

into Eq. 2-14 gives an expression for the fundamental natural frequency.

to1,,- **1.015_/E box

(2-28)

Equation 2-11 is the differential equation for a freely vibrating cantilever beam oscillating only in its

resonant frequencies. To obtain the response of the beam to a continuous external force the external ft_ce

must be included in Eq 2-12 and the particular solution solved for in addition to the homogeneous equation.

The solutions to the particular solution are found numerically and are quite cumbersome to calculate. For

an exact solution to the forced oscillator a finite element mechanics program such as MSC/NASTRAN

should be used (MSC/NASTRAN is a registered Irademark of MacNeil Schwendler Corporation) [6].

However, the rigorously calculated 1st natural frequency can be used to adequately model the forced response

of the cantilever when used in combination with the linear-spring point-mass forced oscillator model. As

stated previously from the knowledge of the experimental results the affect of the higher order resonances on

the response are relatively insignificant in comparison to the 1st natural frequency. Consider the simple

harmonic oscillator differential equation.

dEy dy

m-_-t2 + _l-_ + Ky " Fapplied

y --_ displacement

t _ time

m --_ point mass

y --_ damping coefficient

K --* linear spring constant

Fapplied _ applied force (2-29)

This equation assumes a point-mass, a linear spring, and damping. In the case of the cantilever structures,

the damping is caused by viscous air damping. Next, assume a sinusoidal applied force and sinusoidal
displacement of the same frequency (this requires the spring to be linear)

Fapplied ., Fe jt°t
,y ,, Ire j_t (2-30)

Here the complex F and Y represent the complex amplitude of the applied force and displacement

respectively, to is the angular frequency. Plugging Eq. 2-30 into Eq. 2-29 and calculating the displacement

response yields:
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o4+o2( 2,,
(2-31)

Next recognize that the natural frequency of a linear-spring point-mass system is given by

(2-32)

The natural frequency has been subscripted to be the fundamental or first natural frequency. A linear spring

has only one natural frequency. We could obtain a resonance frequency based on the linear-spring point-

mass model by taking the derivative of Eq. 2.10 with respect to the force. However, this would result in

loss of accuracy since the cantilever is a distributed system. Instead we use the more accurate fundamental

natural frequency calculated by the rigorous theory. Rewriting Eq. 2-31 and normalizing to the DC

response yields

I 1 I 1

(2-33)

To numerically calculate the response all that remains to determine is the damping factor. The damping

results from the viscosity of the air displaced by the motion of the cantilever. Theoretical calculation of the

damping factor is generally very difficult. Consequently in this analysis, the damping factor will be

determined from the experimental data. At this point another observation is key. In the undamped case we

calculated the natural frequency, the frequency of maximum displacement amplitude for the cantilever. In

the case of a damped oscillator the frequency of maximum displacement or resonance frequency is reduced in

comparison to the undamped case. The shifted resonance is found by minimizing the denominator of the

response function of Eq. 2-33. The shifted resonance is

/ y2
_l) R I ,_l(0 2 --

2m 2V (2-34)

For our structures (from experimental measurements) the shift is very small due to small value of the factor

containing the damping term relative to the square of the natural frequency. The frequency shift for our

structures is about 4%. Another useful quantity is the -3 dB frequency. Setting Equation 2-33 equal to one-

half gives

1( ,12 )

J
2 ,_ ,.2_ 2

_{ Y + 12./]41
1

)
(2-35)

An approximate and simple expression for the -3 dB frequency can be found provided again that the term

containing the damping factor in Eq. 2-35 is much less that containing the fundamental natural frequency.

y2

f-3dB "_f3fl ,provided _ << 2j_ 2
(2-36)
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2.2.3 Numerical Results For the Cantilever Bending and Frequency Response

In this section, theoretical numerical results for the cantilever structure shown in Figure 2-1

presented. The material constants used in the electro-mechanical calculations are listed in Table 2- I.

are

Table 2-1. Material Constants Used in the Bending Theory and Frequency Response Calculations.

Parameter Symbol Value References

SiO2 Elasticity Modulus E 7.3 x 1010 N/m 2 [7]

(Fused Silica/Optical
Fiber)

SiO2 Density Psio2 2.5 g/cm 3 [7]
(Fused Silica/Optical

Fiber)

SiO2 Relative Permittivity

Au Density

Au Elasticity Modulus

I_sio2 3.9 [5]

PAu 19.3 g/cm3 [4]

2.5 g/cm 3 [4]

Figure 2-3 shows the cantilever air gap, y as a function of lateral position x for a cantilever with initial

air gap hco = 1 pm.. The length of the cantilever is 100 pm. Profiles are shown for both 2.5 and 5 volt

bias. A bias of 2.5 V provides 68 nm of bending at the tip as indicated by both the numerical and low

voltage solutions. The angle of the cantilever tip is 0.04 °. An application of 5 V provides 472 nm of

bending at the tip with an angle of 0.27 ° . The low voltage solution no longer applies and grossly

underestimates the tip bending by a factor of 2. Note that the long length of the cantilever ensures that the

pitch angle is small for a given displacement. A small angle is necessary to provide for a stable and high

finesse optical resonator. Figure 2-4 shows the profile for the same cantilever except the initial air gap has
been increased to 4.0/_m.

I .000

0.900

--- 0.800
E

>_ 0.700

0.600

0.500

uadratic

Solution _ 5V "_

10 20 30 40 50 60 70 80 90 100

x(tam)

Figure 2-3. Cantilever profiles for 2.5 and 5.0 volt bias. The cantilever length is 100 pm and has a 0
voltage air gap of 1 pm. The oxide thicknesses is 0.85 pm.
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Figure 2-4. Cantilever profiles for 15 and 30 volts. The cantilever length is 100/_m and has a 0 voltage

air gap of 4/_m.

An application of 15 V is required to bend the cantilever 200 nm and 30 V bends it 1130 nm. The pitch

angles are 0.11 ° and 0.64 ° respectively. The 4/_m cantilever has a much smaller bending sensitivity to

voltage than the 1/_m cantilever. A 2.5 V bias applied to the 1/_m cavity provides 68 nm of bending at

the tip. Whereas the same 2.5 V bias provides only 4.3 nm of bending for the 4/_m cavity. Recall, from

the quadratic approximation, that the bending goes as

1
Bending ot --

hc2 (2-37)

This implies that a 1/_m air gap cantilever will bend 16 times more than a 4/_m cantilever for the same

voltage.

Yhco-llun 42

Yhco'41 xra 1_- 16
(2-38)

This suggest that the initial air gap should be minimized to provide the highest air gap change for a given

voltage (more spectral shift). The gain in voltage sensitivity does not come at the expense of decreased
bandwidth since the bandwidth does not depend on the air gap. This is contrary to a cantilever length

increase which results in larger sensitivity but at the expense of a lower bandwidth. Additionally, as will be

discussed in the optical theory section, smaller cavity lengths result in a larger free spectral range.

Figure 2-5 shows the air gap at the tip of the cantilever as a function of appfied voltage for a hco = 1
/_m cantilever. The graph shows the results for both forward and backward sweeps of the slowly varying

DC voltage. As the voltage is swept from 0 to 5 volts, the air gap decreases from 1 /_m to .53/_m. A

small increase beyond 5 volts results in a "snapping" down of the cantilever into contact with the bottom

Si mirror. That is, there are no stable positions for the cantilever between 0 and 0.53/_m. This behavior

has been observed by others [7-10]. The unstable behavior is the result of a rapid build up of electrostatic

force at the cantilever tip as it is moved closer to the lower capacitor plate or mirror.
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Figure 2-5. The position of the cantilever tip as the bias is swept in the forward and reverse directions for
a hco = l/_m air gap cantilever.

The voltage for which this occurs is defined as Vth An approximation for Vth as a function of the geometry

of the cantilever structure can be derived by assuming the cantilever bending quadratic as a function of lateral
position and voltage. The expression is [ 10]

3 3
Vth= 3Ehoxhco

10Eo L4
(2-39)

This equation predicts Vth to be 3.9 V which is lower than that predicted by the numerical solution. The

approximation is better for large hco/hox ratios. The snap down occurs approximately when the end of the

cantilever has been bent down 1/3 of the initial air gap.

Following snap down, the voltage is swept in the reverse direction. The reverse sweep indicates a hysteretic

behavior. The cantilever tip does not immediately rise as the voltage is decreased below Vth. Instead a

reduction of the voltage to VR = 2.71 V is required to release the cantilever (V R = release voltage). Below
2.72 V the forward and reverse voltage sweeps are identical.

Figure 2-6 shows the same characteristic for the 4/am air gap cantilever. The same hysteretic behavior

is observed. The threshold voltage is a much higher 32 V which is equivalent to that predicted by the

threshold voltage equation. The release voltage is 5.77 V.

Hysteresis is generally an unwanted characteristic. Figure 2-7 shows the deflection of the cantilever tip

as a function of voltage for initial air gaps of 1,2, and 4/am. The voltage was swept in both forward and

reverse directions but not allowed to go beyond Vth. Hysteresis was not observed under this constraint

V < Vth: the curves retraced exactly. This graph also shows clearly the increased voltage sensitivity

(larger slope) of the smaller air gap cantilever structures over the larger air gap cantilevers.

A plot of the frequency response characteristic that was calculated using Eq. 2-33 is shown in
Figure 2-8. Here the normalized displacement response Y is plotted against drive voltage frequency. The

constants chosen for Eq 2-13 to generate the graph were representative of one of the fabricated cantilever

structures. The oxide cantilever was 101/am long by 20/am wide with a thickness of 0.85/am.
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a 4/am air gap cantilever.

E
=L

e-

._o
o
(D

(D
a

2.0

1.5

1.0

0.5

0.0

L=100Ftm

hox=0.851xm hco=41xm

Vth-32V

Numerical /

Solution /

hco=21"tm /
Vth=l 2V " / .

Vth =5V / /-'"

/ /.'. _..f..- O..,r=,c
], /{-' ._" "'" Approx.

0 5 10 15 20 25 30 35
Voltage (V)

Figure 2-7. Forward and reverse sweep of the bias voltage under the V < Vth constraint for cantilevers with
hco equal to 1, 2, and 4/_m.
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Figure 2-8. Theoretical Bode plot showing the tip displacement response for a cantilever modulator. The
theory models the cantilever as a linear-spring point-mass system that is described by Eq. 2-13. The oxide
cantilever was 101 /_m long by 20 _um wide with a thickness of 0.85/am.

The response is flat from DC until the frequency approaches the resonant frequency where the response

quickly rises and falls to zero. The behavior will be shown to be consistent with the experimental

measurements presented in Chapter 4. A damping factor of 1.35 x 10 -7 Kg-Hz was used since it was

consistent with the experimental results for this structure. Here the -3 dB frequency is 125 KHz whereas

the resonant frequency is 72.675 KHz. The resonant frequency is actually slightly lower than the natural

frequency which is 72.737 KHz due to the shift caused by the damping factor. Note that the approximate

relation of Eq. 2-36 between the -3dB frequency and the resonant frequency applies due to the low damping.

f-adS ""_A = _,f3(73KHz).. 126KHz- 125KHz
(2-40)

In applications where the cantilever may be used as an indirect optical modulator or for fast wavelength

tracking and tuning, high speeds may be required. The -3 dB bandwidth and cantilever tip deflection were

calculated for cantilever lengths ranging from 1 to 150/_m. The bandwidth calculations were made using

Eq 2-33. The small reduction of the bandwidth due to the damping factor was ignored in the calculations.

The tip deflection is linearly related to the optical tuning range and is discussed in section 2.3. The results

are shown in Figure 2-9. The tip deflections were calculated at 2.5 V bias. A comparison between the two

curves shows a tradeoff between bandwidth and deflection. A 100/_m long cantilever provides a bandwidth

of 125 KHz and a deflection of 62 nm. Whereas, a 50/_m long cantilever provides a much higher 473 KHz
bandwidth and only 4 nm of deflection. However, both a high bandwidth and a reasonable deflection could

be obtained if higher voltages are used.
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Figure 2-9. Bandwidth and cantilever tip deflection as a function of cantilever length.

2.3 Optical Theory

2.3.1 Introduction

In the previous section, the cavity length or air gap of the Fabry-Perot was related to the voltage,

geometry, and material constants of the cantilever structure. The next step of the analysis is the calculation

of the transmittance and reflectance of the Fabry-Perot structure for a given air gap, i.e., relating the spectral

characteristics of the optical filter to the tuning voltage.

In modeling the cantilever Fabry-Perot spectra, it is assumed that the structure is composed of an ideal

stack of homogeneous, smooth, and parallel layers, although this isn't necessarily the case. In the

experimental results presented in Chapter 4 a significantly varying air gap is observed. The variation is due

to stress induced curvature of the top mirror and the angular misalignment of the (111) silicon based bottom

mirror. The model presented here for an ideal structure can be modified to account for the variable air gap.

The modification is presented in Chapter 4 and predicts consistent spectra in comparison to the

experimentally measured spectra.

The theoretical approach to the spectral calculations is a general, but versatile technique. The

generality provides an analytical model easily amenable to changes in the Fabry-Perot structure. The theory

is firstly based upon the standard boundary value approach. The tangential components of the
electromagnetic wave electric field E and magnetic field strength H are made continuous across each

boundary of the multilayered structure (or equivalently the normal components of D and B). The equations

of continuity are then related using matrices [1 l, 12]. Consequently, each layer is uniquely defined by what

is commonly called the characteristic matrix. The product of the characteristic matrices for all the layers

allows one to relate the incident fields to those reflected and transmitted. The addition of a new layers is

easily accommodated by the insertion of the new layer's characteristic matrix into the matrix product.
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The spectral analysis of the multilayered structure is correct for both dielectric and absorptive materials

such as gold or nickel. This is accomplished by assuming in general, that the materials index of refraction

is complex. However, the solution is correct only for the case of normal incidence. In the case of non

normal incidence, the wave in the absorbing material is nonhomogeneous. That is, the optical wave has a

propagation vector magnitude and absorption that are dependent on propagation angle [ 13]. Since the study

in its entirety is at normal incidence, the analysis is confined to this region.

2.3.2 The Calculation of the Transmission and Reflectance Spectra Using the
Matrix Method

In this section, the incident, transmitted, and reflected fields are related for a general multilayer film

stack. The stack represents the cantilever Fabry-Perot. A cross-sectional diagram of the stack with relevant

symbology is shown in Figure 2-10.

The multilayered stack consists of N layers identified with indices: 0 for the incidence medium which is

usually air, 1 through N for the stack, and l for the last layer. The complex indices of these layers is

denoted by n. The thickness of each layer is designated by h.

The tangential components of the electric and magnetic field strengths are equated at each interface

starting on the left with the 0/1 interface and moving to the right and concluding with the N/1 interface.

Note that the direction of propagation for each wave is denoted by K with direction given by the curl of E

into H. Equating tangential components of the electric fields at the interface

Eor + Eoi " Elr + EIi (2-41)

and magnetic fields:

nor - Hoi ffi Hlr - Hli (2--42)
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Figure 2-10. Diagram of the multilayered stack used in the spectral analysis.
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The relation between E and H for a plane wave is given by

H.nmE
_o

nm --" mth layer complex index

_3o_ free space wave impedence

Substituting into the H field continuity expression

Eor_l 0 - Eoi_l 0 - Elm I - E1i7ll

These two equations describing the 0/1 interface can be rewritten in matrix form as

RoA0 - LIA l

(2-43)

(2-44)

(2-45)

For the next boundary, 1/2, the continuity equations become trickier since the relative phase shifts for the
waves must be included.

Elre-J[$1 + ElieJ_! ffi E2r + E2i (2-47)

(2-48)
Elrhl e- J_! - Eli_ll e jIll ffi E2rl'! 2 - E2itl 2

The phase shift 13is given by:

K ---, free space wavelength

hm --_ mthlayer thickness (2-49)

Note that the forward moving wave in medium 1 is advanced in phase by 13 in propagating from the 0/1 to

the 1/2 interface. Similarly, the backward traveling wave in medium 1 is retarded in phase by [3 in going

from interface 0/1 to 1/2. The matrix relation for the 1/2 interface is given by

R_,_- L2& (2-5o)

RI [ e-Jf_t e j_, _ 1 1 .(E2r I
"[_loe-Jfll __0eJ[_, )' A1" (EIlI)' L2" (_ 2 __2) 'A2 _E2i ]

(2-51)
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Similar matrix relations can be generated for each layer in the stack. For the last layer of the stack denoted

by 1.

RNA N ffi LIA I
(2-52)

RN [ e -jf3N eJl3N _ ,_(ENr I ,(1 1 ) ,(Elf I" _hNe-J_ N _hNeJI_N) ' AN _ENi ]" ILl hl -n I ' At _Eli ]
(2°53)

For the complete stack we can write using the inverse matrix operation

R0A 0 ffi [L1RI-IL2R_ 1.,, LNR_vl]LIRI (2-54)

Note that the matrix product in the brackets is a product of characteristic matrices for each layer. The

product can be rewritten as

RoA 0 - [MIM2 °'° MN]LIAt (2-55)

M m - LmRm 1 (2-56)

Here M m is the characteristic matrix of each layer. The matrix product of the layers shown in brackets is

multiplied and represented by M T the characteristic matrix of the total stack.

MT "( roll m12] (2-57)

\ m21 m22]

RoA o - MTLIA t (2-58)

After the elements of the matrix have been calculated with a computer program, they can be used to

calculate the field transmittance and reflectance using the easily derived equations below [ 1 1].

Eor

r m-

eoi

ho(mll - ml2h l) - (m22h l - m21 )

h0(mll - m12_ l) + (m22n / - m21 )
(2-59)

Eli 2ho
tm--m

Eoi rio(roll - m 12fit) + (m22hl - m21 )

The power reflectance and transmittance are given by

R -[rl 2

(2-60)

(2-61)

(2-62)
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The factor nl/no in the power transmittance expression is a consequence of wave impedance differences
between the incident and the transmitted medium.

2.4 Numerical Predictions For The Tunable Optical Filter: Electro-

mechanical and Optical Theory Combined

Combining the electro-mechanical theory of section 2.2 with the optical theory presented in section 2.3

provides the means to predict the tuning characteristics of the micro-mechanical Fabry-Perot filter. That is,
the voltage applied to the cantilever can be related to the transmitted and reflected spectra. In this section,

numerical results generated by the theory are presented. The numerical results provide an understanding of

how the tuning behavior is affected by the geometry of the structure and what the tradeoff issues are.

The material parameters used in the bending theory calculations were shown in Table 2-1 of

section 2.2.2. Table 2-2 below lists the refractive indices used in the spectral calculations. The refractive

indices of both gold and nickel contain a complex part which is representative of absorption. To model

refractive index dispersion effects for the nickel and gold, a straight line fit was used between the specified
values of refractive index. For the dielecWic material silicon dioxide and the semiconductor silicon the

Sellmeier dispersion formula was used [14]. The dispersion of metals (the gold and nickel) cannot be

represented by the Sellmeier equation due to the loss of accuracy of the model near absorption bands. The

Sellmeier formula is given by

,,"(;,,..)-l-
(2-63)

The first three values of Ai and Z,I were used in the Sellmeier expansion and are listed in Table 2-2 for

silicon dioxide and silicon.

Table 2-2. Optical Constants Used in the Theoretical Analysis.

Parameter Symbol Value References

Gold Refractive Index nAu 0.13 + 3.48I (700 nm) [4]
0.15 + 4.65I (800 nm)
0.17 + 5.34I (900nm)

0.18 + 6.04I (1000 rim)

Nickel Refraetive Index 2.48 + 4.381 (800 rim) [4]
2.85 + 5.10I (1000 nm)

SiO2 Refractive Index nsio2 Sellmeter Parameters: [4]
_.l = 0.0684043

_,2 = 0.1162414

_-I = 9.896161

A l = 0.6961663

A 2 = 0.4079426

A 3 = 0.8974794

Si Refractive Index Sellmeter Parameters: [4]

_,1 = 0.301516485

_.2 = 1.13475115

_,3 = 1104.0
Ai = 10.6684293

A2 = 0.0030437484

A 3 = 1.54133408
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Figures 2-11A and 2-11B show the predicted spectra for a 1 jum air gap Fabry-Perot in transmission and
reflection.
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Figure 2-11A. Transmission spectra for a 1 /_m air gap Fabry-Perot at zero bias. The gold thickness is 20
nm. The finesse of the Fabry-Perot is 8.0.
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Figure 2-1 lB. Reflection spectra for a 1 /_m air gap Fabry-Perot at zero bias. The gold thickness is 20
nm. The finesse of the Fabry-Perot is 8.0.
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The spectra were calculated at zero bias. The cantilever oxide thickness was 0.85 jum and it is for all

spectral data presented. The wavelength range of interest is 700-1000 nm which is the high responsivity

region of a Si photodetector. In the introduction the potential for integrating a Si photodetector under the

bottom mirror was mentioned. Referring to Figure 2-10A, the mode spacing of this structure is 181 nm in

this wavelength range with transmission peaks at 765 nm and 946 nm. The peak transmission is 72% and

71% for the 765 nm and 946 nm peaks respectively. The transmission is down from the ideal 100% due to

absorption in the gold mirrors. The Full Width at Half Maximum Cr-WHM) or linewidth of the

transmission peaks is 24 nm. The calculated finesse at 850 nm is 8.0 which is approximately the number

of Wavelength Division Multiplexing (WDM) channels that the filter could potentially select. Finesse is
defined as

Finesse- FSR(v)
FWHM(.) (2-64)

FSR is the free spectral range or mode spacing in frequency and FWHM is the full width at half maximum

of the transmission peak in frequency. Figure 2-10B shows the reflectance spectra for the structure. The

reflectance curve is basically the compliment of the transmission spectra less the absorption in the gold.

The FWHMs of the reflection minima are approximately equal to those of the transmission peaks and was

calculated to be 22 nm for the 946 nm peak.

The finesse of the Fabry-Perot can be improved by increasing the reflectance of the two gold mirror

layers. This is done by increasing their thicknesses. The increase in reflectivity can be explained by

considering the relative phase difference between the internal reflection at the oxide/gold interface and the

reflection from the gold/air interface (the top mirror as an example). To first order, the total reflectance of

the gold layer is the phasor sum from the two interfaces. The phase difference between these two reflections

is approximately 180 ° indicating destructive interference between the waves and consequently a lower

reflectance. By increasing the thickness of the layer the destructive interference between the waves is

reduced since the wave traveling through the gold is absorbed more. Consequently, the reflectance goes up

as thickness is increased and eventually will equal the reflectance of the gold/oxide interface.

Figure 2-12 shows the transmission spectrum for the same Fabry-Perot as in Figures 2-11A and B

except that the gold layer thickness has been increased from 20 nm to 40 nm. As shown, the linewidth has

been reduced to 6 nm. The calculated finesse has been improved to 30 at 850 rim. However, there has
been a tradeoff between finesse and the transmittance, more power has been absorbed. The peak

transmission has been reduced to 38% and 35% at the 765 nm and 946 nm peaks respectively.

Figure 2-13 shows a graph of transmittance and finesse as a function of gold thickness for the 1/_m air

gap Fabry-Perot. A bias of 4 V has been applied to shift the transmission mode to 850 nm. The inverse

relationship between finesse and transmittance is indicated.

The tuning characteristics of the 1 /_m air gap cantilever are shown in Figure 2-14. The gold layer

thickness is 40 nm providing a reasonable 5.5 to 6.5 nm linewidth. Transmission spectra are shown for the

air gap ranging from 1/_m at zero bias to 0.75 Fm at 4.3 V bias . Here the peaks blue shift with voltage

as expected due to the cavity length reduction (the shift is indicated by the arrows). The voltage required to

obtain the spectrum is labeled above the transmission peak.

Figure 2-15 shows a plot of the transmission peak wavelength versus voltage. 175 nm (almost the

entire free spectral range) of wavelength shift is provided with 4.75 V of applied bias. The characteristic is

quadratic in voltage. This agrees with the theory since the air gap at the tip of the cantilever is proportional

to the square of the voltage (in the low voltage approximation) and the transmission wavelength is linearly

proportional to the air gap. In the simple theory, the cavity OPL (Optical Path Length) is equal to an

integer multiple of half wavelengths for the resonant transmission wavelength.
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Figure 2-12. Transmission spectra for a 1 /_m air gap Fabry-Perot at zero bias. The gold thickness has
been increased from 20 nm to 50 nm providing a finesse increase from 8 to 30.
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OPL - m-_ = nsi02 hox + hc

m --'. positive integer

nsi02 _ oxide refractive index

hox --_ oxide thickness

hc --_ air gap (2-65)

Using this relation in conjunction with the quadratic approximation in section 2.2.1 results in

/ /
2 ]"sio hox+hco 3 Eo V2

m [ 4 Eh L [ + box ]2 L4hco Eroxl 1
(2-66)

This approximation was plotted along with the numerical solution. The approximation predicts the

characteristic closely up to 3 V. Beyond 3 V the analytic approximation underestimates the wavelength

shift. The r_aced accuracy beyond 3 V is due to the inaccuracy of the quadratic approximation of the

cantilever bending at high values of the voltage to air gap ratio.

Figures 2-16 shows the transmission spectra for a 4/tm air gap cantilever with zero bias. The mode

spacing is a much smaller 73 nm in comparison to the 181 nm of the 1 /_m air gap Fabry-Perot. This is
predicted by the simple theory

frequency mode spacing:

c
Af=--

20PL (2-67)

FAr
Wavelength Mode Spacing: A_. = __uj. (2-68)

c 20PL

However, consistent with a constant finesse (the finesse depends only on the mirror reflectances), the

linewidth of the 4/_m cavity is smaller by the factor 73/181. In agreement the linewidth is 2.3 nm at the
887 nm peak.

The smaller linewidth of the 4/_m structure could be more advantageous over the shorter 1 pm Fabry-

Perot in applications where the spectral lines of the source are closely spaced and a large free spectral range
is not required.

Figure 2-17 shows the spectra for the 4 jum cavity for voltages ranging from 0 to 16.6 V. The

transmission spectra linewidths range from 1.8 to 2.3 nm.

Figure 2-18 shows the transmission peak wavelength as a function of tuning voltage. The same

quadratic behavior is observed as with the 1/_m air gap cavity. However, the wavelength shift sensitivity

to voltage in much reduced. A wavelength shift of 71 nm is obtained with 20.5 V whereas the 1 /_m

cavity provided 166 nm of tuning with only 4.7 V. The quadratic approximation more accurately predicts

the tuning behavior of the 4/_m air gap cantilever due its small voltage to air gap ratio in comparison to
the 1/_m structure.
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IlI. Fabrication of the Micro-Mechanical Fabry-Perot Filters

3.0 Introduction.

In this chapter we present an overview of the standard methods used to fabricate micro-mechanical

Fabry-Perots. This is followed by a section discussing silicon micro-machining using anisotropic wet

KOH etching and Reactive Ion Etching (RIE). A combination of vertical RIE and wet KOH etching is
shown to provide lateral etching in (11 l) silicon which can be used to undercut a silicon dioxide or silicon

nitride masking material. In section 3.3 we introduce a new fabrication process to form air gap micro-

mechanical Fabry-Perots that is based on this etching technique. Fabry-Perots formed with this technique

are the focus of the study. Finally in section 3.4 we describe the entire fabrication process in detail. The
process presented is self-aligned and uses only one mask level to provide the mirrors and the electrical

isolation. Fabrication results, problems, and potential solutions are also presented.

3.1 Popular Methods of Micro-Mechanical Fabry-Perot Fabrication Using
Deposited Materials

The fabrication methods for micro-mechanical Fabry-Perots recently reported in the literature rely on

deposited materials for the mirrors and the air gap formation. In general, these methods require the

formation of a sandwich of mirror material surrounding a sacrificial layer that can be removed selectively
producing an air gap Fabry-Perot. This is accomplished by depositing the bottom mirror material on the

substrate, followed by a sacrificial layer, and then the top mirror. These layers are typically deposited by
Chemical Vapor Deposition (CVD) or Molecular Beam Epitaxy (MBE) processes. Via holes for a wet

chemical or plasma etchant are provided through the top mirror region to facilitate the removal of the

sacrificial layer. Removal of the sacrificial layer can be accomplished by both wet chemical and plasma
etchants provided that the etchant has a high selectivity to the sacrificial layer over the mirror materials.

Polyimide and photoresist have been used successfully as a sacrificial layer when using Si and SiO 2
DBR mirrors [ 1 ]. The polyimide or photoresist are easily removed with an oxygen plasma without

attacking Si or SiO 2. Acetone can be used to remove the positive photoresist also. Researchers fabricating
GaAs based Fabry-Perots have used intrinsic GaAs as a sacrificial layer with AlGaAs mirrors. Selective

removal of the GaAs sacrificial layer has been accomplished with a dry etch using a SiC14 and SF 6 plasma
[2].

3.2 Anisotropic Etching of Silicon in KOH

Another method of sacrificial layer removal is to take advantage of the anisotropic etching behavior of a
crystalline material in a wet chemical. This process is simpler, since the sacrificial layer need not be

deposited. Instead the substrate material provides the sacrificial layer. In this section we present an
overview of anisotropic etching of Si in KOH and an associated method by which thin film membranes can

be undercut. The method is amenable to the fabrication of micro-mechanical Fabry-Perot structures.

The anisotropic etching behavior of crystalline silicon in wet chemical etchants has been known for

many years [3-6]. This anisotropy makes possible many unique etched geometries. Integrated circuit
designs have implemented anisotropic etching to form trench electrical isolation around transistors. In the

area of micro-machining, pyramid shaped ink jet nozzles have been formed using the anisotropic etching

behavior. The anisotropic etching behavior is a consequence of a high etch rate dependency on direction in

the silicon crystal. This dependence has been attributed to differences in atomic and dangling bond densities
for different planes in the crystalline lattice [3]. In the silicon lattice, the principle feature of the

anisotropic etching behavior is the much slower etch rate of the (111) planes in comparison to the much

faster etching (110) and (100) planes. The (lli) planes have the highest density of atoms per square
centimeter and the lowest density of dangling bonds that can be easily attacked by the etchant molecules.

A common anisotropic silicon etchant is KOH. Its silicon etching behavior has been well studied

33



[3, 7]. Its etching behavior is not highly sensitive to the Si dopant type (p or n type) or dopant density

provided that the density is not greater than 102°/cm 3. KOH provides comparative etch rates and

selectivities given by :

Comparative Etch Rates in KOH: (110) > (100) >> (111) >>> SiO 2 >> Si3N 4 (3-1)

(110.____).160 (110._____).500 (110_____).oo

Selectivities: (111) SiO 2 Si3N4 (3-2)

The selectivities where taken from the literature [7] and are shown for a solution of 45% KOH in water by

weight at a temperature of 70°C. KOH etches (110) planes most rapidly while the (11 l) planes comparably

form an etch stop. The etch rates and selectivities of two optically transparent dielectric materials, SiO 2 and

Si3N 4 have also been included. These are the popular and effective KOH masking materials. They provide
an additional etch geometry control mechanism and can also be used for their good mechanical properties.

Here Si3N 4 provides the best etch stop for KOH. However, SiO 2 can be used for shorter etch time

applications.

There are three standard silicon wafer orientations (surface normal) which yield unique anisotropic

etching geometries. These are the most popular (100) orientation, the (110), and the least popular (11 l)
orientation. Pyramidal shaped structures can be formed in (100) Si by opening square holes in the masking

material to the KOH etching. Figure 3-1 shows a cross-sectional view of the pyramid structure in a (100)

substrate. Here the Si etches quickly in the vertical [100] direction until the slow etching (l 1 l) facets _e

exposed resulting the 54.7 ° angles as shown in the Figure. Some undercutting of the mask material has

occurred due to the angle of the (111) facets and the small width of the window. The other two walls of the

four sided pyramid are found by a rotation of the Figure by 90 °. This technique has been used to form ink

jet nozzles and trench isolation.

Rectangular trenches can be formed in (110) Si substrates as shown in Figure 3-2. Here the Si etches

vertically in the fastest etching [110] direction. Lateral etching or undercutting is prevented by the (111)

sidewalls. The depth of these trenches are not constrained by (111) facets permitting them to be deep and
nalTOW.

(100)

(111)
SiO2 or Si3N4 Mask

Si (100)

Figure 3-1. Pyramidal structure formed in (100) Si by KOH etching.
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(110)

Sit2 or Si3N4 Mask

Si (110)

Figure 3-2. Rectangular trenches formed in (ll0) Si by KOH etching.

Now imagine rotating the (110) wafer by 90 degrees resulting in a (111) surface normal and a (110) facet

facing laterally. The anisotropic etching of the (111) Si is not possible by KOH etching alone, since the

only facet exposed through the mask would be the slowly etching (111 ) plane. However, RIE (Reactive Ion

Etching) is not as sensitive to the crystal direction and can be used to drill vertically through the (111)
surface exposing the faster etching (110) planes. A schematic of the (lid oriented Si is shown in

Figure 3-3 following vertical drilling with two windows opened in the mask.

Following the RIE, the wafer can be etched in KOH. The etching is shown in Figure 3-4. The

exposed (110) facets are rapidly etched resulting in the undercutting of the mask material. If the etching is

continued, the mask material between the two windows will be completely undercut. The depth of the well
remains relatively constant due to its slowly etching (111) surface. This assumes that the etch rate in the

[111] direction is small and that the etch time is low. However, prolonged etch times will result in

increased depth. The Figure shows the (110) wall proceeding with the etch perpendicular to the (111)

surface. For prolonged etch times the wall profile will evolve and eventually meet and stop on another
(111) surface. This will only be true for the outside walls. Here it is assumed that the central masked

region is narrow enough to prohibit this. The inside wall angles are 109.5 ° for the left wall and 70.5 ° for
the right wall.

The lateral undercutting of the mask material is exactly what is needed to provide a freely suspended

structure which can be used to realize a micro-mechanical Fabry-Perot. This technique has several
important advantages for Fabry-Perot formation. The depth of the well can be controlled by the RIE etch

alone. Since the cavity length of the Fabry-Perot dictates its resonant wavelengths, single step depth
control is advantageous. Additionally, the lateral undercutting along the [ll0] direction provides a flat
surface underneath and parallel to the suspended mask material which can be used as the bottom mirror of

the Fabry-Perot.

(111)

eRIE Sit2 or SiaN4 Mask

/ Si,lll, ,,,
Figure 3-3. Schematic of (111) Si following vertical drilling using RIE.
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(lll)

SiO2 or Si3N4 Mask

Si(lll)

Figure 3-4. Cross-sectional diagram of (111) silicon drilled vertically with RIE and followed with lateral
KOH etching.

Although (100) Si can be used to provide mask undercutting it suffers from several disadvantages [8]. The

amount of undercutting is strongly dependent on window size constraining the geometry of the freely

suspended structure. Additionally, the presence of a silicon ridge formed by (111) facets under the suspended

structure results in nonplanar etched surface.

3.3 Fabrication of the Fabry-Perots in (111) Silicon: an Overview

In the previous section we presented a method by which thin film membranes could be formed in (111)
Si using a combination of RIE and KOH etching. The method provides depth control by RIE etching

alone. The resulting membranes are inherently parallel to the surface of the undercut Si providing for a

structure amenable for use as a micro-mechanical Fabry-Perot filter. In this study we use this process to

form micro-mechanical Fabry-Perot structures.

Two optically transparent dielectric materials, SiO 2 and Si3N 4 were mentioned as suitable mask

materials for KOH etching. There are tradeoffs to be considered between Si3N 4 and SiO 2. Si3N 4 is a better
mask material for KOH. From a mechanical point of view it has an elasticity modulus (3.85 x 1012

dyne/cm 2) 5 times that of SiO 2 (0.73 × 1012 dyne/cm2). This implies that much thinner silicon nitride

layers can achieve the same stiffness as silicon dioxide layers. A disadvantage of Si3N 4 is its high index of

refraction (2.05) in comparison to SiO 2 (1.46). The higher index will result in a lower finesse due to the

deleterious larger reflection at the dielectric-air interface at the underside of the cantilever: 11% reflectivity
for silicon nitride versus 4% for silicon dioxide. Maximizing the majority of the reflection to occur at the

metal-dielectric interface provides best reflectivities. SiO 2 layers can be thermally grown whereas Si3N 4

layers must be deposited. High temperature growth provides superior films in comparison to those which

are deposited. Deposited films are generally, not as dense, of uniform thickness, and not as void free as
thermally grown films. The thermal growth of SiO 2 is the simplest and one of the most standard thin film

process. On the other hand, the high growth temperatures required for thermal oxidation (900-1100°C) and

the large differences in thermal coefficient of expansion between SiO 2 (0.55 x 10-6/°C) and Si (2.33 x 10-

6/°C) could potentially result in stress problems. The stress can manifest itself as curvature and even

catastrophic breakage of the membranes following undercutting. Si3N 4 is deposited generally at a

temperature of 700"C (300"C with plasma assisted deposition) and has a coefficient of expansion (2.85 x -

6/°C) much closer to that of Si and consequently would suffer less stress problems than SiO 2 [9]. In this

study, we use thermally grown SiO 2 for the membrane and mask material due to its growth simplicity

lower refractive index. Although Si3N 4 may be potentially a better material primarily due to its lower

stress. Stress problems with the thermally grown SiO 2 will be presented in section 3-11.

Figure 3-5 shows a top view of the basic process for cantilever mirror formation. We start with a

(111) oriented Si wafer. We then thermally grow an oxide layer. The thermal oxidation provides the
mechanical
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Membrane Process

• (111 ) Substrate

Thermal Oxidation [_

• RIE Trenches in Si

• Lateral Undercut With KOH

KOH

(110) Flat

(110) Flat

Undercut SiO 2

Figure 3-5. Basic movable mirror fabrication process.
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material for the suspended movable mirrors (a cantilever structure). The oxidation is fonowed by the

masking of a region defining the mirror which blocks the reactive ion etching. The (11 l) wafer is then

placed in an RIE etcher where the exposed SiO 2 layer and Si are etched. The RIE etched region is shown in

Figure 3-5 as the dark gray areas. The vertical etching exposes (110) facets which are parallel to the flat and

perpendicular to the surface. Next the wafer is placed in liquid KOH. The KOH etches the silicon rapidly
in the (110) direction undercutting the SiO 2 and providing a freely suspended cantilever. The dotted gray

areas in the figure are those in which the oxide has been undercut.

Note that the long length of the cantilever is oriented parallel to the wafer flat or equivalently the (110)

facet. This orientation is necessary to provide the fastest undercutting. On the other hand, a 90 ° rotation of

the cantilever pattern would have resulted in no undercutting at all since the largest exposed facet would be

another (111) plane besides the surface. The triangular inset shows the intersection of all 3 remaining (111)

etch stop planes with the (111) surface. The intersections are 60 ° apart and are the source of the 60 ° facets
in the corners of the etch silicon well and the remaining triangular wall of Si under the connecting section

of the cantilever.

Finally, to produce a Fabry-Perot filter from the suspended cantilever structure, we metallize the
cantilever and the silicon underneath. The metallization provides the high reflectivity mirrors. The top

mirror metallization is camed out with simple evaporation while the bottom mirror or Si substrate is

electroplated.

3.4 Fabrication of Fabry-Perot Filters in (111) Si: Details and Results

3.4.0 Process Objectives

The fabrication goal requires a fabrication process which has as few steps as possible which are easy to

control and produces high yields. Good Fabry-Perot finesse requires a process that produces a high degree of

mirror reflectivity, smoothness, flatness, and parallelism. To provide electrostatic force tunability, the

Fabry-Perot mirrors must be sufficiently electrically isolated from one another. In light of these objectives,

we present a single mask layer, self-aligned fabrication process for a tunable micro-mechanical Fabry-Perot
filter.

3.4.1 Si Wafer Specifications

An important precursor to processing was to obtain (11 l) Si wafers with a surface normal as close as

possible to the (Ill)direction. Standard off-the-shelf (lll)wafers are typically 4 ° tilted from (111) to

prevent channeling effects during normal incidence ion implantation. Any deviation from (111) orientation
will result in Si surfaces with a rough staircase like profile following the KOH etch. This is a consequence

of the flat RIE etched surface etching in KOH until it meets a collection of offset but parallel (lll)

surfaces. The surface profile of a 4 ° tilted, KOH etched, (111) Si wafer is shown in Figure 3-6. The pitch
of the staircase is 5 to 10 pm with a 0.5 to 2 pm step height. The staircase profile of the silicon will

result in a bottom mirror with a diffuse reflectance consequendy lowering the finesse of the completed

Fabry-Perot structure.

Figure 3-6. Staircase Si profile which results from 4° misalignment with the (111) direction.
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To avoid the staircase effect, Si (111) wafers were ordered from Semiconductor Processing Co. of
Boston MA, with tolerances of +/- 0.5 ° on the misalignment with the (111) direction. Tighter tolerances

were not permitted due to their manufacturing capability. The wafers were also specified as 10 f2-cm , p or

n type, and were double side polished. The KOH etching is insensitive to dopant type and density allowing
for integration flexibility.

3.4.2 Thermal Oxidation

A wet thermal oxidation at 1000°C was used to provide the KOH etching mask and supporting
structure for the cantilever mirrors. The 1000°C temperature was chosen as the lowest reasonable

temperature to grow a maximum of 9000 A of oxide in one eight hour day. Low growth temperatures were

de.sired in order to minimize the thermal stress between the oxide and the silicon. The higher thermal

expansion coefficient of the Si results in compressive stress in the oxide and consequently can cause

buckling of the oxide after undercutting [10]. The furnace temperature was monitored to ensure that a

steady temperature had been reached before insertion of the wafers. The Si wafers were taken directly from

the wafer box in their cleanest state and placed in the furnace. The wafers were inserted slowly with only

N 2 purge gas flowing to prevent any thermal stress gradients forming due to oxide layers growing at

different temperatures. Various oxide thicknesses (5000 to 9000A) were grown to provide cantilever mirrors

with a wide variety of mechanical properties for the study.

3.4.3 Masking Materials For the RIE Step

Following thermal oxidation, masking material for the vertical RIE step was put on the wafer as
shown in Figure 3-7.

The gas used for the RIE was Poly etch which contains 90% CF 4 with 10% NO 2. Two mask

materials were used, either spun on negative photoresist or evaporated chrome. A photoresist mask yields a

smoother RIE etched Si surface in comparison to a Cr mask. The Cr mask suffers from edge profile

cracking and flaking during the etching. The Cr flakes can redeposit in the etched region resulting in

unwanted surface roughness. Photoresist, on the other hand, does not flake off. However negative

photoresist has a comparably high etch rate in CF 4 in comparison to Cr and will eventually be etched

away. Consequently, photoresist was used in the cases where shallow or short cavity Fabry-Perots were
desired (<0.6 pm) and Cr in the case of deep wells >(0.6 pm).

3.4.4 The Photolithographic Mask Design

3.4.4.1 Mask Design Introduction. As mentioned earlier only one mask is required for the
fabrication of the micro-mechanical Fabry-Perot filters. The mask used for the fabrication is shown in
Figure 3-8.

It contains 57 uniquely shaped cantilever mirrors with various lengths and widths and with either one or

two supporting legs. Each cantilever is surrounded by a hexagonal shaped trench that provides electrical
isolation between Fabry-Perot structures. The mirror regions (where the light is focused) of the cantilevers

were made either 50 pm or 20 pm wide in order to accommodate the spot sizes of multimode or single
mode fiber.

Cr or PR

S102

Figure 3-7. Cross-section of the wafer following oxide growth and masking for reactive ion etching.
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Figure 3-8. The single mask required for the fabrication of the micro-mechanical Fabry-Perot filters. The

mask incorporates a wide variety of cantilever shapes each surrounded by a hexagonal electrical isolation

trench.

3.4.4.2 Why Cantilever Mirrors? The choice of the cantilever structure for the top mirror

instead of a structure held on two or more sides was a consequence of two issues. It is much easier to bend

a cantilever than to stretch a structure held on two or more sides. Early experiments showed no movement

with 50 V applied to a 5000/_, thick "H" shaped mirror that was held on two sides. As discussed in the

theoretical section, the required voltages to shift the cantilever filter by 100 nm wavelength can be less than

5 V, making it compatible with standard transistor voltages. The second issue arises from, the mismatch

between the thermal expansion coefficients of Si and SiO 2, and the high growth temperature of the thermal

oxide. The SEM (Scanning Electron Microscope) photo of an "H" shaped membrane that is held on each

side by two legs is shown in Figure 3-9.

Figure 3-9. A SEM photograph of an "H"

compressive stress.

shaped oxide membrane on Si which is sagging due to
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This cantilever is 150pm long and exhibits a sag of 5.5 pm in a 7 pm deep Si well. The sag is a

consequence of the much higher coefficient of thermal expansion of Si in comparison to SiO 2 and the high
growth temperature of the SiO 2. The oxide was grown at 1000°C temperature, with Ctsi = 2.6 x 10-6/°C

and Ctsio2 = 5 × 10-7[°C. As the membrane structures cool to room temperature following removal from

the fumace, the Si substrate contracts five times more than the SiO 2 placing it under compression.

Following the removal of the Si underneath the membrane it relaxes through expansion and sags. The sag

produces a central mirror area which is not optimally fiat. Instead it is concave up which results in an

unstable optical resonator. One solution to this problem is to use deposited low temperature oxide, silicon
nitride, or silicon oxynitride for the membrane material. These films can be deposited on silicon with much
lower stress.

Cantilevers, on the other hand, do not suffer from the sagging problem even with large thermal
coefficient of expansion differences. Instead, as the silicon underneath the oxide cantilever is removed, it is

allowed to freely expand at the free end without buckling. As a consequence of the bending ease and re_c¢_
thermal oxide buckling, the study focused on the cantilever mirror structure.

3.4.4.3 Mask Design For Electrical Isolation. The top mirrors or cantilevers must be

electrically isolated from the bottom mirror to provide voltage tunability. A capacitive charging of the

mirrors provides the electrostatic bending force on the cantilever. Furthermore, each of the Fabry-Perot

cantilever mirrors on the die must be electrically isolated from one another to provide for independent
voltage tuning.

One mask is used to provide for both the undercutting of the cantilevers and the electrical isolation.

We provide the electrical isolation by using the same undercutting technique as used for the removal of the
silicon underneath the cantilever. The method relies on undercut oxide eaves as a means to create an

electrical discontinuity between, the top and bottom mirror of each device and between top mirrors in the

array. The electrical discontinuity occurs at the underside of the electrically insulating oxide eave. The

underside of the eave is left uncoated during the top and bottom mirror metallization.

As discussed earlier there are three other slowly etching (111) planes besides the surface normal. Their

intersections with the surface normal create an equilateral triangle with one side perpendicular to the wafer

flat. To provide undercut oxide eaves by KOH etching, we avoid exposing the additional (111) facets during
the RIE etch step.

Electrical isolation between the cantilever or top mirror and the silicon region below can be achieved by

etching a well with the RIE which has two outside walls parallel to the flat on the two opposite sides of the

cantilever as shown in Figure 3-10. The Si facet for these sides are the fast etching (110) planes which
easily provide an oxide eave after KOH etching. On the sides perpendicular to the line of the flat we must

use a more complex wall shape to ensure the presence of an undercut eave following the KOH step. This

wall if made simply perpendicular to the flat would be opening on a slowly etching (111) facet so that very

little undercutting would occur. However, if the wall is shaped with an opening oriented midway between

two (111) facets, undercutting will result. This was done with a 30°-30°-120 ° triangle wall shape as
shown in Figure 3-10.

To electrically isolate the top mirrors of different Fabry-Perot devices from each other, the same method

is used. A hexagonal shaped isolation trench is etched around the entire structure with sides oriented for

optimal undercutting of oxide eaves. The trench has two sides parallel to the fast undercutting (110) flat
with the same 30°-30°-120 ° triangle capping them as shown in Figure 3-10.

3.4.5 Reactive Ion Etching of the Si Well and Isolation Trench

Following the application of the photoresist or chromium masking layer, the layer is
photolithographically patterned resulting in the cross section shown in Figure 3-1 I. The gas used for the

RIE was Poly etch which contains CF 4 diluted with 10% NO 2 .
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(111) Si Wafer

Figure 3-10. The shape of the cantilever silicon well and the hexagonal isolation trench provide electrical
isolation between the cantilevers and the underlying Si and between individual cantilevers on the die.

Cr or PR

Figure 3-11. A cross-sectional diagram of the wafer showing chromium or photoresist covered regions that
are protected during the RIE vertical etching.

The optimum parameters for the RIE were determined to be 50 watts power, 10 sccm Poly Etch, and

30 mTorr pressure. Experiments showed that surface roughness increases with plate power and therefore

the lowest possible power of 50 watts was used. The plasma will not ignite below 50 watts. The lower

than typical pressure of 30 mTorr was used to provide the highest anisotropy (high mean free path) of the
etching to avoid oxide lateral etching. Using the above RIE parameters, the lateral etching was measured to

be 30% of the vertical depth. The RIE etch rates of Si, SiO 2, and negative photoresist are shown in
Table 3-1.
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Table 3-1 .RIE Etch Rates of Silicon, Silicon Dioxide, and Negative Photoresist in CF 4.

Material RIE Etch Rate (A/minute)
50 Watts, 10 sccm Poly Etch, 30 mTorr

Silicon (111) 376

Silicon Dioxide 120

Shipley 747 Negative Resist 220

Both the SiO 2 and Si were vertically etched with the CF 4 reactive ion etch when chrome was used as the

masking layer. It is preferable to etch the SiO 2 layer chemically since RIE etch roughness is an increasing
function of etch depth. Attempts were made to etch through the oxide layer first with buffered oxide etch

(BOE) containing 10% hydrofluoric acid. However, the adhesion of the chrome to the oxide was marginal

enough to permit undercutting and removal of the surrounding oxide layers. The SiO 2 could be BOE etched
effectively without undercutting when negative photoresist was used as the RIE masking material. The

negative photoresist provided better adhesion. Figure 3-12 illustrates the chip cross-section following the
RIE drilling.

3.4.6 KOH Undercutting of the Silicon Dioxide

The step following RIE is chrome or photoresist mask removal using phosphoric acid and an oxygen
plasma etcher respectively. The mask materials must be removed before the KOH etching since they will

be eventually lifted off without dissolution. The contamination results in a roughened KOH etched silicon
surface.

For the KOH undercutting Transene PSE200 Si etchant was generally used. The solution contains

potassium hydroxide (KOH) 45% by weight in deionized water with the addition of a proprietary surfactant.

The surfactant reduces the surface tension and thereby ensures uniform wetting of the silicon in the well
and underneath the cantilever. Etching using a KOH solution without the surfactant results in a much
rougher silicon surface.

One cm square chips were cleaved and placed into a Teflon basket suspended in a glass beaker

containing the KOH solution. The chips were placed flat, cantilever structures facing upward. This

orientation facilitated escape of gas byproducts from the etch reaction. Trapping of these bubbles in the

cantilever structure blocks the KOH etchant resulting in increased etched silicon surface roughness. Also, a

magnetic stir bar was placed in the beaker to sweep the bubbles out quickly. In general, the temperature of
the Transene solution was maintained at 70°C +/- I°C. This temperature gave high (ll0)/(lll) taxi

(110)/SiO 2 selectivities and a reasonable 35 minute total etch time to undercut the 20/_m wide cantilevers.

A total of 45 minutes was required to undercut 501_m wide cantilevers. Figures 3-13 and 3-14 illustrate the

cross-sections of the Fabry-Perot structure during the KOH undercutting.

SiF 4
&

-.-.

Figure 3-12. A cross section of the wafer following RIE of SiO 2 and Si layers. This step exposes (I 10)
facets for subsequent lateral undercutting of the oxide layer during the KOH etch step.
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Figure 3-13. Lateral undercutting of the cantilever by rapid wet KOH etching in the (110) direction.

SiO 2 Cantilever

.....

Figure 3-14. The lateral undercutting has completely removed the Si underneath the cantilever.

Optical micrographs showing top views of the Si undercutting evolution are shown in Figures
3-15A-D.

Figure 3-15A shows the profile of an unetched oxide cantilever structure. In Figure 3-15B about 3.5

/_m of Si has been etched away from each side of the cantilever and the majority of the perimeter of the

well. Figure 3-15C shows about 7/am of Si removed. Note the formation of two circular pits in the Si

well. The origin of the pits could be bubble trapping during etching or a point defect in the silicon. In

Figure
3-15D the cantilever is completely undercut except for a few small islands of Si in the center of the
cantilever. These islands are made obvious from the presence of circular interference fringes. Continued

etching removes the islands. Note also the remaining triangular chunk of Si remaining under the

connecting point of the cantilever. The sides of the triangle are (111) etch stop facets. Another crucial
observation is the small undercutting in the corners of the Si well. These corners are parallel to (lll)

facets. The reduced undercutting could potentially result in loss of electrical isolation between the cantilever

and the silicon below. Increased magnification reveals that 0.5 to 1/am of undercutting is present in the

corners. The undercutting is the result of a non zero etch rate in the (111) direction and the 30%

undercutting provided by the less than anisotropic RIE etch.

Figure 3-16 is a SEM photo of the complete device including the hexagonal isolation trench. The
structure has been etched in KOH for 45 minutes. The photo shows that the KOH etching of the hexagonal

isolation trench has resulted in a uniformly undercut oxide cave around the inside perimeter. This oxide

cave provides electrical isolation between top mirrors of individual devices.

Note also that the extended 45 minute etch has completely removed the triangular section of silicon

under the connecting region of the cantilever providing a planar supporting wall of silicon. The planar wall

may be more advantageous than the triangular supporting wall since the stress forces during bending are

more uniformly distributed. Points of concentrated stress may cause increased fatigue and premature failure
of the cantilever.

3.4.6.1 Lower Than Expected KOH Selectivities. A high finesse thin film Fabry -Perot

requires smooth parallel surfaces for the mirrors. The crystal orientation dependent etch rates, selectivities,
and oxide etch rate of the potassium hydroxide solution can greatly affect the parallelism and smoothness.

Etchant temperature, KOH percentage, and crystal alignment are the parameters which affect the etch rates
and selectivities.
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Figure 3-15A. Unetched Figure 3-15B. 10 minute etch

Figure 3-15C. 20 minute etch Figure 3-15D. 30 minute etch

Figures 3-15A-D. Optical micrographs showing the evolution of the KOH undercutting as a function of etch

time. The cantilever is 20/_m wide and is parallel to the (110) fiat.

_!i!!iiii_ii!ii_iiiiiiiiiiiiiiiii_il_ ........

Figure 3-16. A SEM photo of the entire Fabry-Perot structure including the hexagonal isolation trench

following 45 minutes of KOH etching. The KOH etching of the hexagonal isolation trench has provided

uniformly undercut oxide eaves around the inside perimeter of the trench.

A high (110)/(111) selectivity is desirable for several reasons. A high selectivity permits the undercutting

of larger width membranes without deepening the underlying silicon surface thereby yielding cavity length
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control to the RIE step alone. Additionally, a small (l l l) etch rate avoids the convex shaping

of the silicon surface underneath the cantilever. The convex shape is a consequence of the longer exposure

time of the exterior regions of the Si under the cantilever to the etchant. The convex shape results in a less

stable and lower finesse Fabry-Perot. A high (110)/SiO 2 selectivity is also desirable to avoid the convex

shape and the loss of mechanical material for the cantilever.

An experimental matrix was carried out to determine the etch rates and selectivities as a function of

KOH percentage and temperature. The measured etch rates and selectivities are shown it Table 3-2.

Table 3-2. Measured KOH Etch Rates and Selectivities of Silicon and Silicon Dioxide.

%KOH Temp. R(110) R(I I 1) R(SiO2) R(110)/ R(110)/

R( 111 ) R SiO 2

% by °C _m/hr _m/hr A/hr

Weight

36 50 21.1 0.728 343 29 616

36 55 30.0 0.315 523 95 574

36 60 30.3 0.784 364 39 832

36 80 90.9 1.219 2418 75 376

41 50 13.0 0.260 140 50 929

41 60 24.2 0.571 518 42 468

41 70 54.5 1.573 1026 35 532

41 80 72.7 1.312 1412 55 515

41 90 145 8.759 3420 17 425

45" 50 7.44 0.256 270 29 276

45* 60 9.14 0.115 198 79 462

45* 70 34.8 0.571 1300 61 268

45* 90 71.9 !.252 4334 57 166

50 70 20.8 0.368 1078 57 193

50 80 45.5 0.624 2808 73 162

"Transene PSE200 Solution With Surfactant

The selectivities are given as ratios of the etch rate of (110) to etch rates in the (111) direction and the SiO 2

etch rate. High selectivity ratios are best. From the table, the relation between temperature and (110)/

SiO 2 selectivity is generally monotonic yielding best selectivity at the lowest temperature. Lower KOH

concentration also provides better selectivity. The behavior of the 010)/(111) selectivity as a function of

temperature is much more complex yielding multiple peaks and valleys. However, the behavior is

relatively flat in the 60 to 90"C temperature range using the PSE200 solution. Using the PSE200, the

best selectivities occur at 60°C. However, 70°C provides a more reasonable undercutting (110) etch rate

(35/_m/hr versus 9/_m/hr) with lower but comparable selectivities.

At 70 ° C, the typical time to undercut a 20/_m wide cantilever is 35 minutes using PSE200. The

less than ideal selectivities result in the etching of 750 ._ of oxide and the deepening of the silicon well by

3300/_. The etching of the SiO 2 and (111) Si is detrimental to Fabry-Perot optical performance since the
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silicon surface and cantilever material are being etched and reshaped into nonplanar surfaces. The nonplanar

surfaces were observed with an interference microscope.

The measured selectivities were much lower than those reporteA by others in the literature. Table 3-3

shows the selectivities reported by Waggener et al. [7].

Table 3-3. KOH Etch Rates and Selectivities Reported by Waggener.

R( 110)/ R( 110)/

%KOH Temp. R(i 10) R(111) R(SiO2) R(111) RSiO 2

% by

Weight °C _tm/hr lam/hr A/hr

9 23 0.49 0.13 5.3 4 920

9 40 4.6 0.49 37 9 1200

9 50 19 0.85 99 22 1900

9 80 100 3.1 1100 32 910

18 23 3.3 0.10 7.5 33 4400

18

18

18

40

50

80

13

21

130

0.32

0.53

1.2

47

120

1500

41

11

40

110

2800

160

1800

870

22.5 23 3 0.087 8.6 34 3500

22.5 40 13 0.23 60 57 2200

22.5 50 23 0.42 180 55 1300

22.5 60 41 0.51 80

22.5 70 69

22.5 80 130 1.2 1600 110 810

22.5 100 360 3.3 110

27 23 2.8 0.070 9.7 40 2900

27 40 10 0.24 48 42 2100

27 50 24 0.29 180 83 1300

27 80 130 0.93 1900 140 680

36 23 2.3 0.031 9.9 74 2300

36 40 9.0 0.094 51 96 1800

36 50 22 0.15 130 150 1700

36 80 120 0.69 2100 170 570

45 23 1.2 0.0073

83

1100

45 40 4.4 0.026 55 170 800

45 50 10 0.062 180 160 560

45 80 87 0.48 1900 180 460

54 40 1.7 0.0086 24 200 710

54 50 4.2 0.024 81 180 520

54 80 34 0.41 1900 180

The values for the etch rates in the (110) directions were comparable to ours. However our etch rates for the

(111) directions were much faster by a factor of 2.5. A comparison between Waggener's and our (110)/(111 )

selectivity is shown in Figure 3-17. Also our SiO 2 etch rates are higher by a factor of 1.5 at 70°C. A

graphical comparison of the (110)/SiO 2 selectivity is shown in Figure 3-18.

One source for our much larger (111) etch rates in comparison to Waggener's is the misalignment of

our (111) Si wafers with the (111) direction. The apparent (111) etch rate is extremely sensitive to the

wafer surface normal misalignment. This behavior has been reported by others in the literature[6].
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Referring to Figure 3-19, we have a wafer with its surface normal slightly misaligned (the angle in the

Figure is exaggerated). The apparent etch rate in the (11 l) direction is given by R'(ll l) and its value is

given by the projection of the true rates in the (111) and (110) directions onto the surface normal.
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Figure 3-17. A graphical comparison between our measured (110)/(l I l) selectivities and those reported by

Waggener . The KOH percentage of the etchant is 45%.
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Figure 3-18. A graphical comparison between our measured (ll0)/SiO 2 selectivities and those reported by
Waggener. The KOH percentage of the etchant is 45%.

R(111) m terms of the projections is given by:
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R'(111) * R(lll)Cos(O) + R(1 lO)Sin(O) (3-3)

Wafer Surface Normal

A

R(lll_

R(llO)

R'(1 1)

Figure 3-19. The misalignment of the wafer surface normal with the (11 I) direction results in a much

higher apparent (111) etch rate due to the (110) etch rate projection.

The second term on the right side of the equation can be comparable to the 1st term even though Sin(0) is

small, since R(110) can be hundreds of times greater than R(I 11). The above expression can be rearranged
into a more revealing form while assuming a small misalignment:

R(ll0)

R(llO) R(111)

R'(I 1 I) 1+ R_I lOj{ _Sin(O)
R(11 l) (3-4)

For a (110)/(111) selectivity of 160 relxnXed by Waggener for 45% KOH at 60 to 70°C an angular

misalignment of 0.5* (the tolerance on our wafers) results in a reduction of the selectivity by a factor of
0.4. to a much lower 66. This selectivity is consistent with our measured values of 61 and 79 at 60 and

70"C respectively.

Our smaller (110)/SiO 2 selectivities in comparison to Waggener's results cannot be a consequence of

misalignment, since SiO 2 is amorphous and the (110) rates are comparable. The higher SiO 2 etch rates
may be due to the surfactant in the PSE200 or possibly a lower oxide density.

A slight misalignment of the surface normal with the (111) affects not only the selectivity but also

produces the same staircase profile exhibited by the 4 ° tilted wafers but not as severe. Figure 3-20 shows

the profile of the Si under a 20 jum wide cantilever. The depth of the silicon under the cantilever varies
388/_ across the 20/_m width. The tilt angle of the wafer was calculated to be 0.13". Dektak traces on

other devices showed angular deviations as high as the 0.5 ° tolerance. These surfaces evolve during the
etching process and produce a wide surface profile variability.

Other observed sources of profile deviation from planarity were pits and terraces. These are believed to

be due to Si crystalline defects such as point defects, slip planes, and impurity contamination. The depth of

these etch defects were very large for some devices resulting in variations as high as 0.5/_m.
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3.4.7 Chip Rinsing and Nitric Acid Treatment

Following the KOH undercutting, the next step is the careful removal of the chips from the teflon

basket. The cantilever membranes are fragile at this point since they are freely suspended. The chips me
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Figure 3-20. A Dektak profile underneath a 20 /_m wide cantilever. The profile is measured across the
narrow width of the cantilever near the tip. The measured angle between the reference and measurement
cursors is 0.13 ° .

carefully moved to a deionized water rinse tank where the KOH solution is rinsed off. Transport to the tank

must be done quickly without drying of the cantilever structures. Air drying will result in the permanent
pinning of the cantilevers to the lower silicon surface due to capillary and intersolid forces [1 1 ].

Following the final wet chemical step, the metal electroplating of the bottom mirror, the chips are dried

using the critical point drying method. CPD drying does not result in cantilever pinning. The method is

described in section 3.2.8. Following a careful 5 minute rinse, the chips are then transported to a beaker of

10% nitric acid solution in deionized water for a one minute soak at room temperature. The nitric acid
solution is used to remove a water and alcohol insoluble residue on the surface of the Si, which is a

byproduct of the KOH etching. The residue has been observed by other researchers [1 1]. Figures 3-21A
and 3-21B show SEM photos of a cantilever membrane with and without the nitric acid treatment.

Note that in both photos, the "air dried" cantilevers are pinned to the Si surface. Removal of the
cantilever revealed the absence of the residue under the cantilever even without the nitric acid soak. This is

shown in Figure 3-22. This indicates that the residue formation is probably related to the reactive ion

etching.

Following the nitric acid cleaning, the chip is again rinsed in deionized water for 5 minutes.

3.4.8 Metal Electroplating of the Lower Mirror

The next part of the process is the application of a high reflectivity metal to the silicon layer

underneath the cantilevers. This layer underneath serves as the lower mirror to the Fabry-Perot structure.

The silicon alone provides for only 30% reflectivity (refractive index = 3.875 at a wavelength of

632.8 nm) and would result in a low finesse Fabry-Perot. In general, simple evaporative methods deposit

extremely smooth metal films which are of optical quality. This is the desired method. However,
evaporative methods cannot be used to deposit metal on the silicon surface under the cantilevers. This is

due to the close proximity and consequent shadowing effect of the cantilevers to the silicon surface (on the

order of micrometers). The obvious alternative for the metallization is electroplating. The advantage of

metal electroplating over evaporation is the ability of the plating solution to plate surfaces in extremely
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confined spaces such as the silicon underneath the cantilever. Another advantage of electroplating is its

plating selectivity to conductors. The silicon can be electroplated while the oxide is not, thereby preserving
the electrical isolation between the cantilever mirror and the silicon based mirror below. Gold is the desired

metal for both the top and bottom mirrors, since it provides a high reflectivity in the inflated (97%) md

does not oxidize (like silver). Smooth and adherent gold films can be easily plated to other metals.

However, these high quality gold films cannot be directly electroplated onto silicon. Smooth, adherent,

Figure 3-21A. A SEM photo of a cantilever Fabry-Perot structure showing the KOH etch residue on the
silicon (white specks). This device was rinsed with water followed by acetone.

Figure 3-21B. A SEM photo of a cantilever Fabry-Perot structure showing the absence of the residue when
the device is cleaned with nitric acid.

nickel films, on the other hand can be, as evidenced by the large number of micro-machines employing

plated nickel. Nickel provides a much lower reflectivity (67%) than gold (97%). However, with the base

nickel plated to the silicon, it can be replaced substitutionaUy by electroplated gold [ 12]. Here we present

the electroplating method, results, and problems for nickel. Substitutional replacement of the nickel with
gold is left for future work.

There are basically two electroplating methods. The first is the standard technique in which a voltage is

applied between a metal ion containing solution and the conductive item being plated. The voltage
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produces a metal ion current which transports metal to the plated surface. The disadvantage of this

technique is poor plating uniformity on uneven surfaces. The plating current density generally follows the

density of electric field lines between the solution electrode and the plated material. The density of the field

lines is extremely uniform between two smooth parallel plates. This would be true for a flat solution
electrode and a smooth flat piece of silicon. However, the Fabry-Perot chip is not smooth and contains

complex topography so the field lines are nonuniform. This explains the high roughness, Ra = 1000 /_

which was observed during an electroplating experiment where we attempted to plate gold to the Si surface

l
m

Figure 3-22. A SEM photo of the cantilever Fabry-Perot structure showing the absence of the residue under
the cantilever. This device was not cleaned with nitric acid.

of a Fabry-Perot chip. R a is a industry standard for roughness measurements and is defined as the mean
deviation from the average height of the surface and is mathematically represented by

1

Ra - T{ ly(x)- y_

Ra --, average roughness

y _ verticalheight

y --* average height

L _ lateral range of roughness measurement (3-5)

The second electroplating method is called electroless plating. This method requires no external voltage

between the solution and the plated material. However the difference in chemical potential between the

solution and material being plated must be of correct polarity and additionally competing processes besides

plating must be minimal. That is, the plating efficiency depends greatly on the chemistry between the

plating solution and the material being plated. On the other hand, the advantage of electroless plating is

metal plating uniformity independent of surface topography.

ENPAT (Electroless Nickel Plating Ammonia Type) is a popular and successful nickel electroless

plating solution [13] (ENPAT is a trademark of Transene Inc. of Rowley MA). This solution plates

adherent and uniform films of nickel to both n or p type silicon. An electroless gold plating solution is

available called Bright Electroless Gold which is also sold by Transene Inc. [14]. It cannot not be

electrolessly plated directly to Si. However, its chemistry allows plating to nickel by substitutional

replacement [ 12]. That is, plating occurs through ion exchange, gold atoms replacing Ni atoms which go

into solution. According to chemists at Transene the replacement can go almost to completion with only a

few atomic layers of nickel remaining. So the plating can be done in a two step process, first plating with
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nickel, then replacement with gold using ion exchange.

Ni plating of the Fabry-Perot structures was carried out with the following procedure which was
optimized for smooth and adherent layers. Chips were transported in a deionized water solution to the

plating hood with care to avoid any potential air drying. The next step was a quick 10% BOE dip (Buffered

Oxide Etch) for 10 seconds. This step was necessary to remove any native oxide present on the Si which

would prevent nickel plating. Following the BOE dip, the chip was carefully placed into a beaker

containing the ENPAT solution. The chip was suspended in the solution with a pair of plastic hemostats.

The chip was continuously agitated by hand. Additionally, the solution was stirred vigorously with a
magnetic stir bar to prevent gaseous bubbles from building up in the cantilever wells. These bubbles are a

byproduct of the plating reaction and their presence results in nonuniform plating.

The temperature of the plating solution was maintained at 95°C with a hot plate and a surrounding

water bath. The temperature of the solution must be greater than 90°C to provide plating. The temperature

must be greater than 90°C in order to crack and ionize the Ni containing molecule in the plating solution.

The pH of the solution must be accurately controlled in order to obtain reproducible plating rates. This

was done by the addition of ammonium hydroxide to maintain a pH of 10. The pH of the solution was

continuously decreasing due to the evaporation of ammonium hydroxide which is extremely rapid at the
95°C boiling temperature. The rapid evaporation caused large deviations of the nickel plating rates and
consequently resulted in poor control over the film thickness.

The chips were generally plated for 3 minutes resulting in a 500 /_, thick nickel layer. Figure 3-23

shows a cross-sectional diagram of the Fabry Perot structure following Ni plating. Note that the nickel has

selectively plated the silicon without plating the silicon dioxide. The plating selectivity preserves the
electrical isolation between the top and bottom mirrors.

Figure 3-24 is an optical micrograph showing a top view of the Ni electroplating on a 3.2/_m deep
Fabry-Perot. Note the blackish fuzz around the perimeter of the isolation trench and the (110) sides of the

Si well. Under higher magnification the fuzz is revealed to be long thin strands or fingers of nickel. The

fingers concentrate in regions of pronounced silicon roughness or sharp corners. Ni roughnesses as good as
R a = 37 ,/k was observed in these wells.

Ni plating was not successful, however, for the short cavity Fabry-Perots (<0.6pm). The tiny space

between the cantilever and the Si surface was not sufficient to provide for uniform plating solution and gas

byproduct flow. That is, both liquid and gas bubbles were stagnant underneath the cantilever. The result

was extremely rough Ni plating under the cantilever. The roughness also was accompanied by long nickel

finger growth that resulted in total loss of electrical isolation between the top and bottom mirrors. A

microphotograph of a nickel plated 0.6 pm gap Fabry-Perot is shown in Figure 3-25. Note the dark rough

nickel plated regions under the oxide, cantilever and eaves. A 0.2 pm increase in the well depth (due to a Si

terrace) occurs at the right end of the cantilever. The increase in depth results in smoother plating.

3.4.9 Drying of the Cantilever Structures Following Wet Processing

3.4.9.1 Drying Through Room Air Evaporation and the Pinning/Sticking

Problem. From initial immersion in the KOH solution to this point, the chips have not been allowed to

air dry. As was mentioned previously, if the chip is dried, the cantilever structures will become

permanently pinned down to the Si surface [11]. The pinning process is the result of two types of forces.

First the cantilever is pulled down to the Si surface as a result of attractive capillary forces and liquid

evaporation. After the cantilever makes contact with the silicon surface, strong attractive intersolid forces

(Van der Waals forces) hold the cantilever fast to the Si surface. The pinning problem is well known
within the MEMS research
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Ni Plates Si Not SiO 2

Ni

Figure 3-23. A cross-sectional diagram of the Fabry-Perot structure following Ni plating. The Ni has

plated only the Si and not the Sit 2 preserving the electrical isolation between the top and bottom mirrors.

Figure 3-24. An optical micrograph of a Ni plated 3.2/_m cavity Fabry-Perot.

Figure 3-25. An optical micrograph of a Ni plated 0.6 /am air gap Fabry-Perot. Note the rough Ni plating
under the cantilever and oxide eaves. The roughness is a consequence of poor plating solution and gas

transport in the narrow gap.

community. Most researchers fabricating air gap micro-mechanical Fabry-Perots avoid the pinning problem

by using dry etching methods to remove the sacrificial layer [15]. However, dry etching methods me

generally isotropic, and consequently are not compatible with our crystal orientation dependent technique.
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The pinning process is depicted in Figure 3-26. In Figure 3-26A the water underneath the cantilever is

just beginning to evaporate at the edges. There exists an attractive force between the water and the SiO 2
cantilever (water wets oxide). There also exists an attractive force between the silicon substrate and the

water due to the presence of a thin native oxide on the silicon or the nickel. As shown in Figure 3-26B, the

end of the cantilever is pulled down as the water droplet evaporates. In Figure 3-26C the cantilever tip has

been completely pulled down to intimate contact with the Si where it is held fast by Van der Waals forces.

All cantilever Fabry-Perots that were air dried during this study exhibited the pinning behavior except a
small percentage of the Ni plated samples. Many air drying solutions were tried to no avail, water,

methanol, ethanol, isopropanol, and acetone, with both slow room-temperature drying and accelerated oven

drying. Pretreatment with BOE to remove the native oxide was also attempted. However, the native oxide

grew back rapidly, since pinning still occurred. Figure 3-27, shows a typical air dried cantilever pinned to
the Si surface.

Na_v'- c:_- SiO2 Cantilever Tip

O_'de _Attractive Force

_ H20 _ Evaporation

: ::: _Attractive Force

Figure 3-26A-C.

Cantilever Pinned to Si

The pinning process of a cantilever that is dried through room air evaporation.
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Figure 3-27. A SEM photo of an room air dried cantilever that is pinned down to the Si surface due to

capillary and Van der Waals forces.

Figure 3-28 shows a SEM photo of an air dried cantilever Fabry-Perot which includes the electrical

isolation trench.

i
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Figure 3-28. A SEM photo of an air dried Fabry-Perot including the surrounding hexagonal isolation

trench. Note that the oxide eaves around the trench have been pulled down into contact with the Si. These

contact points will result in the loss of electrical isolation between the top and bottom mirror

metallization.

Note that the oxide eaves used for the electrical isolation have been pulled down into contact with the Si at

many points. These electrical shorts are visibly shown as the bright white regions surrounded by dark areas

around the perimeter of the hexagonal isolation trench. The contact points will provide electrical shorting

paths between the metal on top of the cantilever and the Si/Ni layer below.

3.4.9.2 Critical Point Drying. A method by which the Fabry-Perots can be dried without

pinning is Critical Point Drying (CPD) [16, 17]. CPD has been used for many years by biologists

interested in looking at fragile and normally wet biological samples with a high vacuum Scanning Electron

Microscope (SEM). Succinctly put, CPD drying permits surface tension force free drying, because a
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liquid/air interface is never allowed to develop.

The critical point of a liquid/gas system is the critical temperature and pressure on the phase diagram.

Below the critical temperature the system is entirely in a liquid state. Above the critical temperature the

system is always gaseous and cannot be converted by pressure changes. The transition from liquid to gas at

the critical point takes place without an interface because the densities of the liquid and gas are the same at

this point. If the sample is totally immersed in liquid and taken above its critical point then it will be

instantaneously dried without surface tension forces.

A Balzers Union Model CPD 020 critical point dryer was used to dry the Fabry-Perot chips. The unit

consisted of a stainless steel pressure vessel complete with temperature controller. The liquid used for the

CPD was bone dry (no water) liquid CO 2 which has a critical temperature and pressure of 31 °C and 1073 psi

(73 atm) respectively. Chips were transferred from the deionized water rinse to a liquid miscible with CO 2

either ethanol or acetone and then placed into the CPD pressure vessel which contained enough ethanol to

cover the chip. The chamber was then reduced from room temperature to 5°C to ensure that incoming CO 2

liquid wouldn't rapidly and violently convert to gas potentially damaging the cantilevers. The chamber was

then flushed with CO 2 until no odor of ethanol remained at the exhaust port, i.e., complete replacement of

the ethanol with CO 2.

Following complete replacement with CO 2 liquid, all chamber valves were closed and the temperature

raised through and past the critical point. Observation through a glass viewing port during the critical point

transition showed the expected interface free transition of the CO 2 from a liquid to a gas. The f'mal

temperature of the chamber was raised to 45°C to ensure that recondensation of the CO 2 gas did not occur

during the exhaust phase. The final part of the drying was the opening of the exhaust port allowing the gas

to escape from the chamber. This was done slowly over a period of 30 minutes to avoid gas flow damage
to the cantilevers. Figures 3-29 and 3-30 shows SEM photos of cantilever Fabry-Perots that have been

dried with the CPD method. The cantilevers are erect and the oxide eaves haven't been pulled down into
intimate contact with the Si.

3.4.10 Top Mirror Metal Evaporation.

The final step of the fabrication of the micro-mechanical Fabry-Perot filters is the evaporation of gold

metal onto the top side of the SiO 2 cantilever. This metal will provide a high reflectivity which is
necessary for a high f'messe Fabry-Perot. The gold also provides a means of moving charge onto the

cantilever which results in the electrostatic bending force.

Figure 3-29. A SEM photo of a CPD dried cantilever which is erect in contrast to the air dried structures.
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Figure 3-30. A SEM photo of a CPD dried cantilever Fabry-Perot which is erect. Note also that the oxide
eaves used for the electrical isolation are not in contact with silicon layer below in contrast to the air dried
devices.

An evaporation system was used to deposit gold onto the top mirror. Use of the evaporation system

for this purpose provided several advantages. The evaporation system can deposit extremely clean and

smooth films due to the low pressures obtainable with the diffusion pump (0.1 pTorr). Additionally, the

metal flux is very anisotropic in comparison to a sputtering system due to the low pressure in the chamber

and the point source nature of the metal flux. The anisotropy of the flux is extremely important to the
fabrication of the Fabry-Perots, since we rely on electrical discontinuity between the top and bottom mirrors

through the shadowing effects of the undercut oxide eaves. Figure 3-31 shows a cross-sectional diagram

following the gold evaporation. Note the discontinuity between the top metal and bottom metal at the

underside of the Sit 2 eaves.

A microphotograph of a completely processed cantilever based Fabry-Perot is shown in Figure 3-32
below.

The siliconunderthecantileverisplatedwith500 _ ofnickel,whilethetop sideof the cantileverand

regionsnot shadowed have been coatedwith300/_ ofgold. The airgap underthe cantileveris3.2 p m as

measured witha profilometcr.

I

Evaporate Gold

GoUld

; Ni/Au i ------- SiO2

Figure 3-31. A cross-sectional diagram of the cantilever Fabry-Perot following the top mirror gold
evaporation. Note the electrical discontinuity provided by the underside of the oxide eaves.
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Figure 3-32. A microphotograph of a completely processed micro-mechanical tunable optical filter based
on a movable cantilever mirror. The top side of the cantilever is coated with gold. The silicon underneath
the cantilever is plated with nickel.

3.4.11 Stress Induced Cantilever Mirror Curvature

The high growth temperature of the thermal oxide (1000°C) and the large difference in the coefficients

of thermal expansion between Si (2.33 × 10-6/°C) and SiO 2 (0.55 × 10-6/°C) can result in stress problems.

Since silicon dioxide has a much lower thermal coefficient of expansion than silicon it is compressively
stressed following removal from the furnace and cooling. The stress problems are usually manifested as

unwanted curvature and in severe cases breakage. In the case of the Fabry-Perot structures, the thermal
stress results in unwanted upward curvature of the cantilever. The curvature results in a lower finesse

Fabry-Perot due to the loss of mirror parallelism. Figure 3-33 illustrates the curvature problem. The

Figures are SEM photos of the cantilevers taken at a 50 degree tilt angle to emphasize the curvature. The
cantilevers have been coated with 165/_ of gold but were not nickel plated. The width of the cantilevers is

20/am. The photos depict the same cantilever structure but with increasing oxide thickness. The 970 A

thick oxide cantilever exhibits the most severe curvature. It is noticeably curling both along its width and

length due to the stress at the oxide/silicon interface. The curvature of the cantilever is reduced by

increasing the oxide thickness. The thickest oxide provides a higher film stiffness to bending. The least
amount of curvature is exhibited by the 8300 ]k thick cantilever (the thickest cantilever).

Another detrimental affect of the stress is the noticeable oxide cave ripple around the perimeter of the

cantilever well. The amplitude of the ripples can be high enough to allow contact between the top mirror
region and the nickel plated silicon below creating an electrical short.

All cantilevers fabricated in this study exhibited some degree of curvature. We believe the cause of the

curvature is stress, but another question remains. Where does the stress concentrate itself in the cantilever

and can it be avoided while using a thermally grown oxide? Some further observations reveal answers to

this question. Note that in the Figure 3-33 that the cantilevers exhibit an increased slope in the upward

bending as one moves toward their tips. This suggest that the stress inducing curvature is not entirely

concentrated at the silicon connecting region. The stress is obviously distributed across the entire length of
the freely suspended cantilever. Furthermore, to provide the upward bending, the bottom region of the

cantilever must be in compression while the top region is in tension. One source of the stress profile could

be due to defects or impurities present at the silicon/silicon dioxide interface or any other mechanism which

results in a nonuniform stoichiometry and density during the thermal growth of the oxide. Another source

of the stress profile could also be plastic deformation of the interfacial oxide cantilever during the KOH

undercutting and release process. This explanation has been presented by other researchers in the literature
[10,18].
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Figures 3-33. SEM photographs illustrating the stress induced upward cantilever curvature. Thicker oxide
cantilevers curve less.

They suggest that the compressive stress on the interracial oxide layer which is in intimate contact with the
silicon can be high enough to plastically damage the layer during release. That is, the interfacial oxide

under high compression has stored a large amount of spring energy. During undercutting, the spring energy
is released allowing the interfacial oxide to expand beyond its plastic limit. These explanations which

suggest an interfacial stress source for the bending are both consistent with the reduced bending of the
thicker cantilevers. Wilmsen et al. have shown analytically that the stress limit for the plastic deformation

is geometry dependent for square membranes held on all sides (oxide windows) [10]. He presents upper and
lower bounds on the oxide thickness to window dimension ratio that do not result in plastic deformation

following release. However, his theory is not directly applicable to freely suspended cantilevers. Further

analytical work is needed to determine whether such bounds exist for cantilevers grown with thermal

oxidation and whether the geometry constraints are practical for micro-mechanical Fabry-Perot fabrication.

An mentioned in section 3.1.4, one simple solution to the cantilever bending problem is to use low

temperature CVD silicon nitfide (low stress) as the cantilever material instead of thermal oxide. This

solution totally avoids any potential geometry constraints on the shape or thickness of the cantilever
structure. Silicon nitride may be a better candidate for the cantilever material and should be considered for

future studies.
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IV. Electro-Mechanical and Electro-Optical Characterization

4.1 Introduction

In this chapter, the electro-mechanical and optical characteristics of the micro-mechanical modulators

are presented. The characterization includes a voltage-contrast SEM study of the motion of a cantilever

under bias. The SEM study also provided a qualitative indication of the effectiveness of the designed

electrical isolation. Following, the wavelength resolved characteristics of the modulators are presented.

Spectral measurements were taken with both a tunable laser and a broadband LED. Time resolved

measurements are presented in section 4.4. Here the frequency response characteristics of the optical

modulator are discussed. Comparisons between theoretical predictions and experimental results are included.

4.2 SEM Characterization of the Electro-Mechanical Behavior

The electro-mechanical behavior of a micro-mechanical tunable Fabry-Perot filter was studied in a

SEM. A 1 cm by 1 cm sized chip containing approximately 600 devices was mounted on an SEM stage

equipped with electrical probes. One probe was used to make contact to the top mirror region of the filter.

Electrical connection to the silicon substrate was provided by backside contact with the probe stage.

Electrical connection to the stage was made via an electrical feedthrough into the SEM chamber. A DC

voltage supply connected in series with a floating ground AC function generator (DC to l MHz) was used
to drive the modulator.

A SEM photo and a cross-sectional diagram of the cantilever modulator studied in the SEM are shown

in Figures 4-1 and 4-2. The cantilever consists of a 20 nm gold coated, 470 nm thick SiO 2 membrane.
The tip of the cantilever is separated from the Si surface by a 7.5 pm air gap when no bias is applied.

The surface geometry of the cantilever is a 55 pm square mirror pad supported by two 28 pm long

legs. Originally the pad was supported on the other side by two more legs. This is obvious from the

remnants of the oxide legs at the end of the cantilever. Inadvertently, but fortunately, the processing

resulted in the breakage of these two legs forming the more flexible cantilever structure. The yield for

complete structures is around 95%.

Electrical isolation between the top mirrors of individual Fabry-Perot devices and between the top

mirrors and the underlying Si was observed using voltage contrast SEM. Figure 4-3 shows 16 of the

Fabry-Perot structures with the top mirror of one cantilever structure electrically contacted with a probe

Figure 4-1. A photo of the cantilever modulator studied under bias in the SEM.
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470nm SiO 2

Figure 4-2. A cross-sectional schematic of the cantilever modulator studied in the SEM.

Figure 4-3. A SEM photo of the cantilever modulator without an applied bias.

without applied bias. Note the hexagonal electrical isolation trench delineating the structure. The extent of

the probed cantilever including the isolation trench is 250 pm by 400 pro. Figure 4-4 shows the same

cantilever but with 45 V of DC bias. The white or brighter regions indicate the area with a higher

potential. Note that the hexagonal trench clearly electrically isolates the top minor of the device from the

top mirrors of adjacent Fabry-Perots. Also the bright top mirror or cantilever is shown to be electrically
isolated from the darker Si well below. This indicates the required electrical isolation between the top and
bottom mirrors.
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Figure 4-4. A SEM voltage contrast photo showing electrical isolation between the top and bottom mirrors

of the contacted Fabry-Perot. The top mirror of the contacted device is also shown to be electrically
isolated from the top mirrors of adjacent structures.

The movement of the cantilever as a function of applied DC bias was studied. The drive voltage was swept
from 0 to 45 volts and then back to 0 volts. Figures 4-5 and 4-6 show SEM photos of the structure with 0
and 45 volts applied respectively.

Little movement of the cantilever was observed until the voltage reached 40 volts. At 40 volts the air

gap at the tip of the cantilever was approximately 5/_m. The low sensitivity to voltage is expected since

the cantilever force is proportional to the square of the ratio of the voltage to the air gap. At 45 volts the

cantilever snapped down into contact with the Si indicating the threshold voltage effect predicted by the

theory (at the threshold voltage a runaway condition exists in which the cantilever stiffness can no longer
balance the electrostatic force).

Hysteresis was observed in the motion of the cantilever during the reverse voltage sweep. A reduction
of the voltage to 12 volts was required to release the structure from the silicon. The hysteresis was

predicted in the theoretical chapter and is consequence of the large electrostatic force present when the
cantilever is in close proximity to the Si surface. However, as will be discussed in section 4.3 the

hysteresis is experimentally shown to be avoidable, if the drive voltage is not allowed to exceed the

threshold voltage Vth. The capability to operate the device without hysteresis was also predicted in the
theoretical chapter.

Stiction was also observed when the cantilever was allowed to rest on the Si surface for more than a

few seconds. That is, the cantilever was stuck and was not released at 12 Volts. Instead, the voltage had to
be reduced further to release the structure. Stiction, as the name suggests, is the pinning of two structures

together following contact. The pinning force is provided by short range intersolid forces between the two

structures (Van der Waal forces). These are the same force which causes the pinning problem during the air
drying which was discussed in the fabrication chapter. Stiction is a common problem with micro-

mechanical structures which rely on contacted surfaces during operation. In the normal operation of the

micro-mechanical Fabry-Perot the voltages would be maintained below the threshold voltage disallowing
contact and preventing the stiction problem.
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Figure 4-5. A SEM photo of the cantilever with 0 volts applied bias.

Figure 4-6. A SEM photo of the cantilever with 45 volts applied bias. The cantilever has been moved into

contact with the silicon surface

Figure 4-7 shows the predicted displacement-voltage characteristic of the cantilever using the theoretical

numerical model presented in Chapter 1I. As shown, the theoretical model is consistent with the

experimental results. The model predicts the hysteresis and equivalent threshold and release voltages.
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Figure 4-7. The predicted Displacement-Voltage characteristic for the cantilever structure studied in the $EM.

The resonant frequency of the cantilever structure was also observed using the SEM. The cantilever was

driven with a 35 volt DC bias summed with a 10 volt peak-to-peak sinusoidal voltage. The resonant

frequency of the cantilever was determined by observing the cantilever tip oscillation amplitude during the

frequency sweep. Observation of the high frequency oscillations with the SEM video screen was made

possible by scan triggering using the AC cantilever drive signal. The fundamental resonance frequency of

the structure was observed to be approximately 40 KHz which is comparable with the theoretically predicted
value of 42 KHz. Higher order resonances were also observed at 80 KHz and 120 KHz.

43 Electro-Optical Characterization: Wavelength Resolved

4.3.0 Introduction

In this section, the experimentally measured behavior of the micro-mechanical Fabry-Perots as tunable

optical filters is presented. The behavior of the modulator filtering characteristics as a function of DC

voltage is presented for two cases. In the first case, a cantilever modulator is spectrally analyzed using a

tunable Ti-Sapphire laser source. The cantilever structure analyzed with the laser did not include a nickel

layer on the bottom mirror. In the next case, a broadband LED is used as a source to spectrally characterize

a cantilever Fabry-Perot filter including the nickel layer. The wavelength range for the spectral
characterizations was 720-920 nm. This range is consistent with the high sensitivity region of a silicon

photodetector which could potentially be integrated with the Fabry-Perot filter. Reflectance spectra were

measured since the silicon substrate absorbs highly in this wavelength range preventing transmission

spectra measurements.

The experimental arrangement used for all spectral characterizations is shown in Figure 4-8.

The light from the laser or LED is first collimated by a f = 25.4 mm lens and then focused onto the chip

with an 8 mm focal length lens. A beam splitter is positioned between the lenses to direct the beam

reflected by the Fabry-Perot chip to the spectrometer or to the CCD camera. All lenses were conected for

spherical aberration, coma, and astigmatism (Melles Griot multielement lenses 06 GLC 00# series). The
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lenses were also antireflection coated for wavelengths ranging from 0.6 to 1/,m.
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Figure 4-8. The experimental arrangement used to spectrally characterize the Fabry-Perot filters.

The drive voltage for the cantilever structures was applied by an electrical probe mounted onto a translation

stage. The Fabry-Perot chip was mounted onto one-sided copper printed circuit board (PCB) that served as

the electrical ground. The chip PCB combination was attached to a XYZ stage for focus optimization and

cantilever selection. The glass-epoxy side of the PCB provided electrical isolation between the chip ground

and the XYZ stage preventing ground loop problems.

Upon reflection from the Fabry-Perot cantilever structures, the reflected light is sampled with the beam

splitter. From this point the light is either directed toward the CCD camera system for imaging or to the

spectrometer. When the mirror is in place, an image of the chip is provided to the CCD camera. The

camera system was used to view the sample during cantilever selection and beam focusing. Chip

illumination was provided by a beam splitter coupled collimated white light source as shown.

Removal of the mirror permits the light to enter the spectrometer. The spectrometer used was an

ORIEL Instaspec system with a 0.5 tun resolution. A 125 mm lens is used to focus the modulated light

from the Fabry-Perot into the focal plane of the spectrometer.

4.3.1 Spectral Analysis of a Modulator Without Ni: Early Spectral Results

The first wavelength resolved reflectance characteristics were obtained on a Fabry-Perot which used the

silicon-air interface as the bottom mirror rather than a metal mirror. The cantilever Fabry-Perot is shown in

Figure 4-9. The length of the cantilever is a short 30/,m resulting in a very stiff structure. Longer and

more voltage sensitive cantilevers were not analyzed on this chip since they were all pinned to the silicon

(this chip was fabricated before CPD drying was used).
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The reflection mode spectral characteristics of this structure were measured with a tunable Ti: Sapphire

laser source. Figure 4-10 shows the reflected power plotted against wavelength for mirror voltages of 0, 30,
and 40 volts.

20 m

L = 30/tm

SiOz

Figure 4-9. The cantilever structure which was spectrally analyzed with Ti:Sapphire laser. The length of
the cantilever is a stiff 30 /_m. The bottom mirror is not coated with nickel and provides only the 35%

reflectivity of the bare silicon.
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Figure 4-10. Fabry-Perot spectra taken at 0, 30, and 40 volts.

The reflected power is shown in arbitrary units and is normalized to the spectral distribution of the laser.

The reflectance minima as predicted by the theory shift toward shorter wavelengths with increased voltage.

An increase in voltage results in a shorter cavity and a smaller resonant wavelength. The filter provides 40

nm of wavelength tuning with a maximum of 40 volts applied bias. The small tuning range is mainly a

consequence of the cantilever's short length. The linewidth of the reflection minimum is approximately 60

nm yielding a low finesse of 1.1. The low finesse is mainly due to the low 35% reflectivity of the silicon-
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air interface.

4.3.2 Spectral Analysis of a Modulator Including the Ni Layer.

The spectral characteristics of a cantilever modulator including the higher reflectance nickel layer (67%)

on the bottom mirror was measured. The light source used for the spectral characterization was a graded

bandgap AlOaAs surface emitting LED. The LED spectral width was 100 nm FWHM and was centered at

850 nm. The LED light was coupled into a 62.5/_m core fiber pigtail providing 260/aW of power at the

input of the spectrum measurement system. The intensity profde of the focused spot was measured with a

beam scanner. The spot distribution was gaussian with a standard deviation of 5/am (o). Consequently,

the spot diameter is 10pro at a radius of one sigma. The spot is easily accommodated by the smallest 20

/_m dimension of the cantilevers. The spectral measurements were normalized by the unamplified spectral

distribution of the LED and are true reflectance spectra.

A cross-sectional diagram of the cantilever modulator spectrally characterized with the LED is shown in

Figure 4-11. The oxide cantilever was coated with 200 ,_ of gold. The bottom mirror or silicon well was

electroplated with 500 A of nickel. The air gap under the cantilever at the supporting silicon wall was

measured to be 3.2/_m with a Dektak profilometer. The length of the cantilever was 101/_m. The longer

length of the cantilever provides for a more flexible top mirror in comparison to the 30/am long cantilever

analyzed with the Ti:Sapphire laser.

Spectra at voltages ranging from 0--53 V were measured for this structure. At 54 volts the cantilever

structure reached its threshold voltage and snapped down into contact with the nickel surface. Hysteresis

was observed during the reverse voltage sweep following contact. However, it was experimentally shown

that if the applied voltage is constrained below the threshold voltage, then the hysteresis is avoided. That

is, there is a one-to-one correspondence between voltage and spectra. The nonhysteretic behavior region was

also predicted by the theory.

Spectra taken in the 40-50 volt range provided the highest spectral shift sensitivity to voltage, best
finesse, best on/off ratio, and smallest linewidths. Figure 4-12 shows the reflectance spectra for this

structure at 40, 44, and 48 volts. As shown the spectral width of the reflection minima is approximately

25 nm. This is a 35 nm improvement over the cantilever with a bare silicon bottom mirror which produced

a 60 nm linewidth. The mode spacing for the nickel plated Fabry-Perot is approximately 60 nm yielding an

improved finesse of 2.4. The finesse improvement is due to the increase in mirror reflectivity provided by

the nickel layer. The on/off ratio is 1.5. The spectra, as predicted by the theory, blue shifts as the voltage

is increased and the cavity length is reduced (this is indicated by the arrows in the Figure).

L
V

Figure 4-11. A cross-sectional diagram of a cantilever modulator with a nickel plated bottom mirror.
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Figure 4-12. The Fabry-Perot spectra measured at 40, 44, and 48 volts applied bias.

Comparison between theoretical and experimentally measured spectra and threshold voltage has suggested

that the air gap at the end of the cantilever is 6.27/am instead of 3.2/_m. The wavelength position of the

reflectance minima and the 53 volt threshold voltage are consistent with an air gap of 6.27/am. The 3.2

/am depth as shown in Figure 4-11 was measured with the Dektak prof'dometer at the supporting silicon

wall and not at the tip of the cantilever where the light beam is focused. Measurement of the cantilever tip

height with the Dektak is impossible since the weight of the stylus would collapse the cantilever. The

Dektak measurement is valid at the tip when the cantilever is straight. However, as mentioned in the

fabrication chapter, the cantilevers curve upward resulting in an increased air gap at the tip (see Figure 3-
33). The curvature was due to the high thermal stress between the silicon substrate and the silicon dioxide

cantilever before undercutting.

Figure 4-13 shows a comparison between the measured and theoretical spectrum for the cantilever with

a 40 volt applied bias. The calculated spectrum assumes ideal, flat and parallel, top and bottom mirrors and

an air gap of 6.27/am.

The measured reflectance wavelength minima are closely predicted by the theory. The maximum

reflectance measured experimentally is 86% which is slightly lower but comparable to the calculated value
of 92%. The lower experimental values are probably due to light scattering losses at the mirrors. On the

other hand, the finesse, linewidth, and on/off ratio are much poorer than that predicted by the ideal Fabry-

Perot theory. The theory predicts a finesse of 13, a linewidth of 4 rim, and an on/off ratio of 9. Reduced

performance is most probably due to the stress induced curvature of the top mirror and the staircase profde

of the bottom mirror. The staircase profile was discussed in the fabrication chapter and is a consequence of

a misalignment of the wafer surface with respect to the (111) plane. The depth of the staircase has been
shown to result in air gap variations ranging from 388-1700/_ underneath the cantilever as measured using

the Dektak profilometer.
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Figure 4-13. A comparison between the measured and calculated spectra for the Fabry-Perot at 40 volts
applied bias. The calculated spectrum assumes ideal, flat and parallel, top and bottom mirrors.

The ideal Fabry-Perot optical theory predicts much better performance characteristics for our structure in

comparison to those experimentally measured. A modification of the optical theory to include the effects of

the nonideal curved top mirror and angled bottom mirror is required. The modified theory requires an

estimate of the shape of the top and bottom mirror. We already have Dektak profiles of the bottom mirror

indicating a flat sloped mirror with tilt angles ranging from 0.13 ° to 0.5 °. In regard to the top mirror, we

know that the cantilever curvature is much more pronounced along its length than its width. To simplify

the analysis the curvature along the cantilever width is ignored. It is known based on the Dektak

measurement that the air gap at the supported end of the cantilever is 3.2 jam. As mentioned previously,

both the ideal optical and electromechanical theory suggests that the tip of the cantilever where the light
beam is focused is 6.27 pm. above the bottom mirror. Furthermore the optical theory suggests that the air

gap at the position of the light beam is 6.27 ym. During the measurements the center of the beam was

positioned at 94pm or 6 jam from the end of the cantilever. We now have two points to pass a profile

curve through. It is assumed that the profile curve has the same fourth order polynomial dependence as in

Equation 9 of Chapter 2. The shape is actually a superposition of a quadratic profile that results from the

thermal stress [1] and a 4th order profile that results from the applied voltage. Figure 4-14 below shows

the fitted fourth order polynomial profile of the cantilever. Qualitatively, the profile agrees with those

shown in the SEM photos of Figures 3-33. In Figure 4-13 and the analysis, the angular misaligument of

the bottom mirror is included. Later it will be shown that the performance degradation due to the relatively

small angular misaligument of the bottom mirror is negligible in comparison to that of the top mirror.

The top mirror has a calculated pitch angle of 2.5 ° at the tip while the staircase profile of the bottom mirror

ranges from 0.1 ° to 0.5 °. Here it is assumed that the bottom mirror has the worst case 0.5 ° misalignment

which is the tolerance specified for the silicon wafers.
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Figure 4-14. Mirror profiles for the Fabry-Perot. The 101 /_m long cantilever is curving upwards due to
stress damage. The bottom mirror is angled at -0.5 ° to represent the worst case staircase effect. The bias
between the two mirrors is 40 volts.

A theoretical approximation of the spectra produced by the non ideal Fabry-Perot is to represent the two

curved mirrors as a collection of ideal parallel mirror cavities with variable cavity length y(x). Here y(x) is

the cavity length at position x. The spectrum produced by the collection of ideal cavities is the sum of each

spectrum generated at position x weighted by the intensity profile of the illuminating light beam and an

aperture function. The mathematical expression representing the theoretical calculation is given by:

RCurved Mirrors (_") =

W( xi )R/deal[ _', Y( Xi )]
Beam Extent

W(xi )
Beam Extent (4-1)

Here Rldeal(Z,, y(xj)) is the spectrum produced by a an ideal Fabry-Perot at position x i. Each Fabry-
Perot cavity is separated by the adjacent cavity by Ax which determines the spacing of the x i and accuracy of

the summation. The weighting function W(xi) is a product of the focused light beams intensity distribution

and an aperture function.

W(xi) - l(xi)A(xi) (4-2)

The intensity distribution, I(xi) as mentioned previously, was measured with a beam scanner. The
intensity profile is shown in Figure 4-15. The profile was fitted using a gaussian function with a o of 5

The aperture function, A(xi) is an additional weighting factor on the gaussian. It either carries the value
of zero or one. The physical source of the aperture function is the entr'ance slit of the Oriel spectrometer

which is the first image plane for the gaussian, The entrance slit was 100/_m wide during the spectral

measurements. Projecting an image of the entrance slit into the plane of the cantilever results in a

demagnification of the slit to 5.0pm. Consequently the aperture function for the gaussian in Figure 4-15

is 1 for -2.5 jum < x < 2.5/_m and zero outside this range. The summation over the weighting factors in

Equation 4-1 above provides the normalization.
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Figure 4-15. The measured intensity profile of the focused LED light beam on the top mirror. The profile
is fitted with a o = 5 /am gaussian function. The gaussian function is used to weight the spectra in the
summation.

A few statements regarding the expected validity of the modified theory is due. The weighted sum

approximation is more valid for low finesse. Our measured finesse is only 2.4 indicating that on average

the light in the cavity exits or no longer contributes interferometrically after 2.4 round trips. The low

number of round trips and small mirror angles ensure that beam walkout effects are not significant.

Another concern is the validity of the plane wave approximation of the wavefronts. Consider the confocal

beam parameter which gives the range over which the beam expands by factor of the square root of two

from its minimum waiste position [2].

/gto2n

Z o --_

to o --_ minimum waist diameter

n --, refractiveindexinsidecavity

)_ --, wavelength (4-3)

The confocal length corresponding to a sigma of 5 jum is 185 #m at 850 nm wavelength whereas the path

corresponding to the photon lifetime is a much small 15/_m (2.4 round trips in the cavity). Consequently

beam divergence should be a relatively small correction to our modified theory.

Figure 4-16 shows the spectra calculated for the 101/am long cantilever using the spectral summation

approximation for the case of gaussian beam illumination. The mirror profiles shown in Figure 4-14 were

used. The summation was taken over Fabry-Perots spaced every 0.5/am in the x direction. The gaussian

was apertured with a 5/am diameter iris. The theory shows that as the light beam spot size increases, the
finesse and on/off ratio deoeam while the linewidth increases, These trends are consistent with our

experimental results. A larger spot size samples a larger range of cavity lengths resulting in poorer filter
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Figure 4-16. Reflectance as a function of wavelength for various spot sizes. Here the spectral summation
approximation was used to calculate the total reflectance. The mirror profiles are those from Figure 4-14.

Figure 4-17 shows a comparison between the experimental and the theoretically calculated spectra for our

nonideal Fabry-Perot shown in Figure 4-14. o was the measured 5/_m. The spectral summation closely

matches the experimental spectrum. Note that the finesse, linewidth, and on/off ratio predicted by the

theoretical summation closely predicts the experimental values. The theory predicts a finesse of 2.7 and a

linewidth of 22 nm which is close to the experimental values of 2.4 and 25 nm respectively. The

maximum reflectance from the theoretical calculation is around 92% while the experimental value is a

slightly lower 86%. As previously mentioned light scattering losses at the mirrors could be the culprit for
the loss. The on/off ratio predicted by the theoretical summation is 1.4 whereas the experimental value is

a comparable 1.5. In general the shape of the calculated spectrum is comparable to the experimentally

measured spectrum except for the sharper or narrower peaks of the experimental data.

We have just established through theoretical corroboration that the curved top mirror and angled bottom

mirror are the performance loss culprits of the micro-mechanical Fabry-Perot filter. One further question to

be answered to facilitate efforts of future work is which of the two mirrors dominates the performance loss.

Figure 4-18 below shows the calculated spectra for the Fabry-Perot when both the curvature of the top

mirror and angled bottom mirror are included, and for the case in which the top mirror curvature alone is
considered. There is only a slight difference between the two spectra. This indicates that the performance

degradation due to the staircase profile of the bottom mirror is negligible in comparison to that caused by

the stress induced curvature of the top mirror.
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Figure 4-17. Experimental and theoretical spectra for the 101 /_m long cantilever. The non ideal Fabry
Perot theoretical spectrum was calculated using the summation approximation.

Figure 4-19 shows the wavelength tuning behavior of one cavity mode (8 wavelengths or m = 16) as a

function of applied voltage. The diamond data points are the measured data points. The dashed lines

represents the quadratic approximation of the resonant wavelength using :

I
X(V) ,, 2 tnsio2ho x + hc° - 43Eh3oxe° V2h 2 L4

4" "'OX ]l hco erox] (4-4)

The solid line represents the numerical solution.

Regarding the experimental data, the reflectance minima or transmission peak varies quadratically with

voltage. Beyond 53 volts the cantilever snaps down into contact with the nickel due to the threshold

voltage effect. The wavelength tuning range of this structure is 120 nm with 0-53 volts. As predicted by

the theory, the wavelength tuning sensitivity of the more flexible 101 pm long cantilever is higher than the

30jum long cantilever analyzed with the Ti:Sapphire laser (40 nm: 40 V). Analytic solutions are plotted
for oxide elasticity moduli of 7.3 × 101° Nm 2 and 5.0 × 10 l° Nm 2. As shown by the theoretical curves the

reported value of 7.3 × 101° Nm 2 for fused silica results in an underestimate in the wavelength shift. A

reduction of the elasticity modulus to 5.0 × 101° Nm 2 results in closer agreement with the measured data.
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Figure 4-18. Experimental and theoretical spectra for the 101 ym long cantilever. The theoretical spectra
were calculated using the weighted spectral summation. The dashed curves represent the theoretical spectra.
The finesse degradation due to the top mirror curvature is dominant.

The experimental results presented in the next section for the time resolved response characteristics also
suggest an elasticity modulus of 5.0 x 101° Nm 2. It is reasonable to expect a smaller elasticity for our

grown wet oxides in comparison to fused silica or dry oxide. Wet oxides exhibit lower densities than dry
oxide or fused silica. A lower density results in a smaller number of springs per unit volume and a smaller

electronic binding force between atoms (decreased stiffness). K.E. Petersen has shown in earlier work with

cantilever structures a measured elasticity modulus for a wet oxide of 5.7 x 101° Nm 2 and 6.9 x 1010 Nm 2

for a dry oxide [3]. He reports an accuracy of+/- 20%. Our measured value of 5.0 x 101° Nm 2 is within

the bounds of his accuracy and consistent with his results. Figure 4-20 shows the behavior of the on/off

ratio as a function of applied voltage. The ratio increases from a value of 1.26 at 0 volts to a value of 1.5

at 40 volts where it saturates. This behavior is most probably due to the lack of mirror parallelism at 0

volts. At zero volts the cantilever tip is bending upward due to stress induced curvature. An increase in

voltage would bring the tip of the cantilever down into better parallelism with the Ni layer below providing

for a more stable optical resonator (the light beam is focused on the tip of the cantilever). Consequently,
the on/off ratio is improved.

The repeatability of the filter tuning characteristic was studied. One concern was the potential changes

in the shape and elasticity of the cantilevers following the application of a voltage higher than the threshold

voltage. Beyond the threshold voltage the cantilever snaps down into full contact with the nickel/silicon

surface. The large attractive force provided by the high voltage could result in the plastic deformation of the

cantilever and possibly sticdon. Stiction, as mentioned earlier, is a common problem with micro-machined
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Figure 4-19. Minimum reflectance wavelength for one cavity mode as a function of applied DC voltage.
The theoretical predictions using 5.0 X 1010 N/m 2 for the oxide elasticity modulus closely match the
experimentally measured values.

structures. Stiction refers to the sticking of the cantilever to the substrate due to intersolid forces. The

sticking force is higher with increased contact area. Large contact area between two structures is provided

when their surfaces are maximally smooth as in the case of two smooth Fabry-Perot mirrors.

Figure 4-21 illustrates the repeatability of the cantilever spectrum. A spectrum was measured at 40

volts bias before the cantilever was pushed beyond the threshold voltage. A second spectrum also measured
at 40 V bias is shown. This spectrum was taken following 10 voltage cycles. During each cycle the

cantilever was snapped down into contact with the nickel at the threshold voltage and then released during
the reverse sweep (0 to 54 to 0 volt cycle).

As shown the spectrum is repeatable and shows no measurable wavelength shift. This suggest that the

stress forces are not sufficient to plastically deform the cantilever. Some stiction was observed on this

device but not permanent sticking. The threshold voltage remained constant at 54 V over the 10 cycles..

However, the release voltage decreased from 13 V to 5 V over the 10 cycles. The reduction in release

voltage for the structure is believed to be due to the increased conformality of the cantilever oxide surface to

the nickel surface during the contact cycling. The increased contact surface area would result in greater

stiction forces and consequently a lower release voltage.

The effects of the continuous oscillation of the cantilever on spectral repeatability was also studied. A

41 V DC bias in series with a 5 V peak-to-peak AC signal at 10 KHz was applied to the 101 /,m long
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Figure 4-21. Repeatability of the cantilever Fabry-Perot spectra before and after cycling the cantilever from
0 to 54 volts and back ten times. Both spectra were measured at 40 V applied bias. Significant changes in
the spectrum were not observed.

cantilever Fabry-Perot. The signal was applied for 8 hours. Spectra were taken at 41 V before and after the
8 hour period. Figure 4-22 shows the spectra.
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Figure 4-22. Spectrum repeatability before and after 8 hours of oscillation at a 10 KHz drive frequency.
The applied voltage consisted of a 41 V DC bias in series with a 5 V peak-to-peak sinusoidal signal.

The spectra do not exhibit a significant change in reflectance and indicate good repeatability. The average

magnitude change in the reflectance was 1.6 % with a maximum change in reflectance of 5.5%.

4.4 Electro-Optical Characterization: Time Resolved

The characteristics of the cantilever Fabry-Perots as intensity modulators were studied. The intensity

modulation was characterized as function of drive frequency. Cantilever modulators as shown in

Figure 4-11 above were studied with lengths ranging from 60 to 101 pro. The measurement arrangement

shown in Figure 4-8 was used for the characterization. A fiber pigtailed 830 nm single mode laser was used

as the optical source. An optical isolator was added in line with the laser to prevent optical feedback

problems. The laser spot was focused on the cantilever tips to provide maximum intensity modulation.
Detection of the modulated optical power was provided with a silicon PIN photodetector with a 125 MHz

bandwidth. In Figure 4-8, the photodetector was placed in the position of the spectrometer.

The voltage applied to the cantilevers consisted of a small sinusoidal voltage (AC peak-to-peak voltage

< 5 V) in series with a DC bias. An illustration of the biasing scheme is shown in Figure 4-23. The DC

bias was necessary to blue shift the reflectance curve to a linear monotonic region relative to the laser

wavelength.

Here the reflectance curve is DC biased to shift the reflectance spectrum from a peak at 830 nm to the

midpoint in the reflection minima. At the midpoint the slope and modulation sensitivity is highest.

Additionally, the midpoint ensures maximum cantilever deflection without nonlinearities. The small AC

voltage then modulates the reflectance curve about the DC bias point yielding linear modulation of the laser

light intensity. The DC biases were kept below the cantilever's threshold voltage. Additionally, the sums
of
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Figure 4-23. An illustration of the biasing scheme used in the time resolved measurements.

the DC and AC voltage were chosen so that the reflectance minima did not move relative to the laser line

into and beyond its maxima and minimas during the AC cycle. This ensured an intensity modulation
frequency equal to the AC signal frequency and linear modulation.

Figure 4-24 shows the photodetector output voltage versus time for the L = 101 /_m cantilever Fabry-
Perot modulated at 10 KHz.

The photodetector output frequency matches the cantilever AC drive frequency. The on/off ratio of the
filter is approximately 2 and is defined as Vmax/Vmin.

Figure 4-25 shows the optical power as a function of time for the same L = 101 /_m cantilever driven

near at its fundamental resonant frequency of 57 KHz. The photodetector signal frequency no longer
matches the cantilever drive signal frequency. Instead nonlinear modulation has occurred. For all other

measurements presented, the AC voltage was reduced to avoid the nonlinearities. During this measurement
the sum of the AC and DC voltages were high enough to result in nonlinearities at resonance. The

existence of the higher frequency components and distortion is due to the large variation of the air gap at

resonance. The large deflections result in modulation in the nonlinear regions of the reflectance curve.

Another possibility is multiple reflectance minima and maxima passing through the 830 nm laser line per

AC cycle. Note that the optical power envelope frequency still matches the drive voltage frequency.

Figures 4-26 and 4-27 show the frequency response of the optical power modulation for cantilevers of

length 101 jum and 45/_m respectively. The response is defined as the peak-to-peak amplitude of the
photodetector voltage (Vmax-Vmi n as shown in Figure 4-24 above) and is normalized to the DC response.

The frequency response is relatively flat from DC to the fundamental resonant frequency for all three

cantilevers. At the fundamental resonance the response peaks and then quickly rolls off toward zero.
Contributions to the response characteristic from higher order resonances were not evident from the

measurements as they were in the SEM study. The reduced effect of the higher order resonances during
these measurements is due to viscous air damping which is not present in the vacuum of the SEM chamber.

The longest and most flexible cantilever (L = 101 /_m), as predicted by the theory, provided the smallest
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Figure 4-25. Modulation of 830 nm laser light by a cantilever modulator driven at its fundamental resonant

frequency of 57 KHz. Note the higher order frequency components in the photodetector signal due to the

large cantilever deflection.

bandwidth of 91 KHz (resonant frequency = 57 KHz) while the shorter and stiffer cantilever (L= 45 /,m)

exhibited a much higher 360 KHz bandwidth (resonant frequency = 262 KHz). The solid line in the graphs

represents the theoretical prediction to the response characteristics. The theory presented in section 2.2 was

used. An oxide elasticity modulus of 5.0 X 1010 N/m 2 was assumed since this value agrees with the

measured resonant frequencies,

Damping factors of 1.35 x 10 -7 kg/sec and 1.95 x 10 -7 kg/sec were used to fit the amplitude at

resonance for the 101/_m and 45 /*m long cantilevers respectively. The larger damping factor for the

shorter cantilever could be due to its smaller air gap: a longer cantilever bends further upwards due to stress.

The smaller air gap of the short cantilever results in increased air compression resistance during the

downward motion of the cantilever. Using the assumed values of elasticity and damping factor, the

theoretical curves agree closely with the experimental values.
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A graphical comparison between the experimentally measured and theoretically calculated bandwidth

and resonant frequency as function of cantilever length is shown in Figure 4-28. In the theoretical
calculations a value of 5.0 x 10 !° N/m 2 was used for the elasticity modulus. The experimental values for

the resonant frequency ranged from 57 KHz for the longest cantilever CL = 101 /am) and 920 KHz for the
shortest cantilever (L = 22 /am). The experimental values for the resonant frequency exhibit a 1/L 2

dependence and show excellent agreement with the theoretical curve. For cantilevers with lengths ranging

from 45/am to 101/am the relative error between predicted and experimental values was within 6%. The

measured -3 dB bandwidths ranged from 91 KHz for the 101/am long cantilever and to more than 920 KHz

for the 22/am long cantilever. The -3 dB frequency for the latter structure could not measured due to the

limiting 1 MHz bandwidth of the AC signal function generator. Agreement between the measured and

theoretically predicted bandwidth is good (within 10%) for cantilevers of lengths ranging from 60 /am to

101/am. For the 45/am long cantilever the percent error was a relatively was 33%. The larger error may
be due to limitations of the theoretical model when applied to the shorter structures.
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Figure 4-28. Bandwidth and resonant frequency versus cantilever length.

by the lines and the experimental values by the diamonds. The elasticity

curves was 5.0 x 1010 N/m 2.

The calculated values are shown
modulus used in the theoretical

The graph of Figure 4-28 is also shown in Figure 4-29. Here the same experimental data for the resonance

frequency and bandwidth appears. However, the theoretical curves are now plotted using the reported value

of the elasticity modulus for fused silica (7.3 x 1010 N/m2). The theoretical curves predict significantly

higher bandwidths and resonant frequencies in comparison with the experimental values. Relative errors

ranging from 16 to 54% occur between the measured and predicted values for the resonant frequency. The

large discrepancies between theory and experiment using the elasticity modulus of fused silica suggest the

elasticity value of 5.0 x 10 l° N/m 2 is a more accurate value for the wet oxide. Both the wavelength tuning

characteristic presented in section 4.3.2 and the response characteristic suggest the lower value.
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V. Conclusion

5.I Summary of the Study: Major Issues

In this work, we have demonstrated a novel single mask level self-aligned process for fabricating micro-

mechanical Fabry-Perot filters in (111) Si. We have used this process to fabricate arrays of Fabry-Perot
optical filters with a movable cantilever top mirror and a silicon based bottom mirror. Our fabrication

process requires only one grown or deposited layer to form the movable mirror, while the substrate material

provides for both the sacrificial layer and the bottom mirror. The structure utilizes metallic coatings to

provide for the high reflectivity mirrors. The silicon based Fabry-Perot filter can be integrated with low
cost silicon-based photodetectors and electronic circuits.

In chapter two we presented a theoretical analysis describing the movement of the cantilever as a

function of applied bias and the corresponding optical spectra. The wavelength-voltage tuning characteristic

was shown to be parabolic for low voltages. It was shown that small air gap, long length cantilever Fabry-

Perots provide the highest wavelength tuning range and highest sensitivity to voltage. Hysteresis in the

tuning characteristic was also predicted when the applied voltage was driven past the threshold voltage, Vth.
Hysteresis is not present for voltages below Vth. The theory also predicted tradeoffs: modulator bandwidth
for wavelength tuning sensitivity and transmittance for finesse. Numerical calculations showed that 175

nm of wavelength tuning range is provided with a CMOS compatible 4.75 V of applied bias, using a 1
/am air gap, 100/am long Fabry-Perot with both mirrors gold coated. The finesse of the structure with 40

nm of gold thickness was calculated to be 30 with 181 nm of free spectral range.

The details and results of our modulator fabrication process were presented in chapter 3. The process

uses only one grown or deposited layer (silicon dioxide or silicon nitride) to provide the cantilever material.

A single mask was used to define the cantilever structure and the electrical isolation. The sacrificial layer

and lower mirror material are provided by a (111) silicon substrate. The formation of the air gap under the

cantilever relies on a combination of reactive ion etching and KOH anisotropic etching on the (111) silicon

substrate. Electrical isolation between mirrors was provided by KOH undercut eaves around the perimeter
of the cantilever well and around a hexagonal isolation trench. Gold was the choice of metal for the

mirrors due to its high reflectivity and inertness to oxidation. Gold metallization of the cantilever was

carried out using thermal evaporation. Metallization of the silicon based bottom mirror was camed out

using selective nickel electroplating. The Ni electroplating was successful for structures with air gaps

larger than 1 /am. Nickel electroplating can be followed by substitutional gold electroplating to provide
higher finesse structures.

Several sources of Fabry-Perot performance degradation were observed during the fabrication. The

smoothness and planarity of the silicon based bottom mirror was shown to be highly sensitive to the
alignment of the wafer surface normal with the (11 l) direction (the staircase effect). Bottom mirror surface

height deviations ranging from 388 ]k to 1700/_ were observed across the 20/am width of the cantilevers.

The smoothness and planarity was also shown to be affected by surface defects in the wafer (the source of

the defects is probably the wafer sawing and polishing). The formation of pits in the silicon during the
KOH etching was commonly observed especially in the case of short cavity Fabry-Perots. These
degradations can be reduced with tighter wafer tolerances.

Silicon dioxide and silicon nitride were presented as good candidates for the cantilever and KOH

masking material. In this study we used thermally grown silicon dioxide. A problem in using thermal

oxide is the large thermal stress between the oxide and the silicon due to the high growth temperatures _xt

large difference in thermal coefficients of expansion. The stress results in an upward curvature of the

cantilever. This curvature results in loss of parallelism between the top and bottom mirrors and

consequently a lower finesse structure. Replacement of the thermal oxide layer with a silicon nitride layer

in future devices should remedy this problem entirely since silicon nitride's thermal expansion coefficient
closely matches that of silicon.

Another problem is the rough electroplating of the silicon in the case of short cavity (on the order of 1
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/_m) Fabry-Perots. Small air gap Fabry-Perots are attractive since they provide high wavelength sensitivity

to voltage. The rough plating is believed to be due to slow plating solution and byproduct transport in the

tight and restrictive space under the cantilever. The roughness could be potentially improved by more

rigorous solution agitation (higher rpm stirbar, ultrasonic agitation, etc.) and by improving the surface

wetting property of the plating solution.

The measured electro-mechanical and electro-optical behavior of the cantilever modulators was presented

in chapter 4. The motion and electrical isolation of a cantilever modulator under bias was studied in an
SEM. Qualitative results from the SEM study showed agreement with the theory. Electrical isolation

between the mirrors was confirmed using voltage contrast SEM. The predicted hysteretic behavior in the
motion of the cantilever was also observed. However, the hysteresis was experimentally shown to be

avoidable if the voltage is maintained below the threshold voltage.

The spectral tuning characteristics of the cantilevers Fabry-Perots were measured in the 700 to 900 nm

wavelength range for a 101 /_m long cantilever. Agreement between the theoretically predicted m:l
measured spectra required the modification of the optical theory to account for the stress induced curvature of

the cantilever beam and the angular misalignment of the bottom mirror. The wavelength tuning
characteristics indicated a blue shift of the wavelength with increasing voltage. The wavelength tuning

characteristic was shown to be quadratically dependent on voltage. The theoretically calculated and measured

tuning characteristic were in agreement provided that a wet oxide elasticity modulus of 5.0 x 101° N/m 2 is

used. This is in agreement with Petersen's measurements which indicated a lower elasticity modulus for
wet oxides (E = 5.7 x 101° N/m 2 +/- 20%) in comparison to that of dry oxides (E = 6.9 x 101° N/m 2

+/- 20%) or fused silica (E = 7.3 x 1010 N/m2).

The frequency response was measured for structures with cantilevers lengths ranging from 22/_m to

101 /_m. The theoretically calculated and measured frequency response were in agreement provided that

again a wet oxide elasticity modulus of 5.0 x 1010 N/m 2 is used. The modulation bandwidths of the

structures ranged from 91 KHz for the 101/_m long cantilever and greater than 920 KHz for the stiffest 22

/_m long cantilever. The bandwidth and resonant frequency of the structures exhibited the 1/L 2 dependen_

in agreement with the theory. A tradeoff between modulation bandwidth and on/off ratio was observed

experimentally and is consistent with theoretical calculations.

5.2 Micro-Mechanical Fabry-Perot Performance Comparison

Table 5-1 provides a comparison between the performance of our 101 /zm long cantilever Fabry-Perot

and Cornell's DBR Fabry-Perot which is also formed on a silicon substrate[1]. The table also includes

theoretically predicted performance characteristics for our structure that are based on expected improvements

in mirror quality on future devices.

Column 1 in Table 5-1 lists the tuning sensitivities of the devices. Tuning sensitivity is defined as

the required voltage to obtain a transmission wavelength shift. Our measured device exhibits a tuning

sensitivity of almost twice that of Cornelrs reported structure: 120 nm: 53 V versus their 60 nm: 65 V.

Our larger tuning sensitivity occurs even though their device has a much smaller air gap than our structure,

3.0/_m versus our 6.27/_m. For a given voltage the electrostatic force present in their structure is 4 times
that of ours (the electrostatic force per unit area is proportional to 1/Air Gap2). The low sensitivity of their

device is probably due to the many stiff DBR layers in the movable mirror structure and the movement of

their top mirror through more difficult stretching instead of bending like our cantilever structure. In

comparing the spectral filtering quality of the micro-mechanical Fabry-Perots finesse is used as the figure of
merit. Cornelrs DBR structure exhibits a superior finesse of 35 in comparison to our structures 2.4. In

light of the great importance of finesse as a figure of merit for the Fabry-Perot, Cornell's structure is

currently better performance wise.
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Table 5-1. Micro-Mechanical Fabry-Perot Performance Comparison

Tuning Finesse FSR Air Band- Number of

Sensitivity Gap width Layers

Required

CUB Measured 120rim: 2.4 60rim 6.27_tm 91 KHz 3

Au-Ni 53V

CUB Theory 120nm." 13 60rim 6.27_tm 94KHz 4

Au-Ni 53V

CUB 175nm: 3 0 181 nm l_rn 94KHz 4

Theory 5V

Au-Au

Cornell's DBR- 60nm: 3 5 375nm 3/am ? 1 9
DBR

65V (Calculated)

However our device deserves consideration for future research and development. A major advantage of our

structure is its simple fabrication process. The fabrication process for our structure requires only 4 total

deposited layers including the metallization whereas Cornelrs structure requires 19 layers. Consequently

our structure is easier to fabricate and may be more integratable with other devices. Furthermore, the

theoretical predictions suggest that the f'messe of our structure can be competitive with Cornell's provided

that the mirror flatness and parallelism of our Fabry-Perot are improved. As previously mentioned, the low

finesse of our structure is attributable to the curvature of the cantilever top mirror and the misalignment of

the bottom mirror. The replacement of the thermal oxide with either a low temperature oxide or silicon

nitride should result in lower stress and a much straighter cantilever. Tighter tolerances on the wafer

alignment will reduce the misalignment of the bottom mirror. With these improvements in place, the

theory predicts a more competitive finesse of 13 for our structure with a gold top mirror and nickel bottom

mirror. The finesse of 13 of course is for an ideal structure and represents an upper bound for the achievable

finesse. However we can go one step further and substitutionally replace the nickel on the lower mirror

with the higher reflectivity gold. This improvement increases the finesse of our structure to 30 which is

comparable and competitive to Cornelrs 35. Furthermore, by reducing the air gap of our structure to 1 /a m

a CMOS compatible 5 V can provide 175 nm of tuning range.

5.3 References

1. Tran, A. T. T. D., et al., Surface Micromachined Fabry-Perot Tunable Filter, Photonics Tech. Ltrs., 8(3),
pp. 393-395, 1996.

89





Comprehensive List of References

Archer, R. R., et al., An Introduction to the Mechanics of Solids, 2nd ed. T.J. Lardner, ed., McGraw-Hill,

New York, pp. 511-555, 1982.

Bassous, E., H. H. Taub, and L. Kuhn, Ink jet printing nozzle arrays etched in silicon, App. Phys. Ltrs.,

31, p. 135, 1977.

Born, M. and E. Wolf, Wave Propagation In A Stratified Medium. Theory of Dielectric Films, in

Principles of Optics, Pergamon Press, New York, pp. 51-70, 1980.

Brackett, C. A., Dense wavelength division multiplexing networks: Principles and applications,

Journal of Selected Areas in Communications, 8(6), pp. 948-964, 1990.

Burstyn, H. P., Critical point drying: Application of the physics of the PVT surface to electron

microscopy, Am. J. of Phys., 43(5), pp. 414-419, 1975.

Chang-Hasnain, C. J., E. C. Vail, and M. S. Wu, Widely -tunable micro-mechanical vertical cavity lasers

and detectors in IEEEA,EOS 1996 Summer Topical Meetings: Optical MEMS and Their Applications,

Keystone, CO, pp. 43--44, 1996.

Choa, F. S., et al., InGaAs/InGaAsP integrated tunable detector grown by chemical beam epitaxy, App.

Phys. Ltrs., 63(13), pp. 1836-1838, 1993.

Choi, W. S.. and J. G. Stairs, A method to etch undoped silicon cantilever beams, J.of Microelectromech.

Sys., 2(2), pp. 82-86, 1993.

Finite Element Structural Modeling Software, Version 67, MSC/NASTRAN, MacNeil Schwendler

Corporation, Los Angeles, CA, 1993.

Fowles, G. R., Reflection and Refraction at the Boundary of an Absorbing Medium, in Introduction to

Modern Optics, Holt, Rinehart, and Winston Inc., New York, pp. 165-168, 1968.

Fowles, G. R., Theory of Multilayer Films, in Introduction to Modern Optics, Holt, Rinehart, and Winston

Inc., New York, pp. 95-100, 1968.

Fricke, J. and E. Obcrmeier, Surface Micromachined Accelerometer Based On A Torsional Moving Structure

in The 8th International Conference on Solid-State Sensors and Actuators, Stockholm, Sweden, pp. 542-

545, 1995.

Gere, J. M. and S. P. Timoshenko, Deflections of Beams, in Mechanics of Materials, R. Kingman, Editor,

Wadsworth Inc., Belmont, CA, pp. 405-407, 1984.

Goldman, K. and M. Mehregany, A Novel Micromechanical Temperature Memory Sensor, in The 8th
International Conference on Solid-State Sensors and Actuators, Stockholm, Sweden, pp. 132-135, 1995.

Harris Jr., J. S., M. C. Larson, and A. R. Massengale, Coupled -cavity laser diode with micromachined

external mirrors, in IEEF_/LEOS 1996 Summer Topical Meetings: Optical MEMS and Their Applications,

Keystone, CO, pp. 31-32, 1996.

Ho, S. -T., et al., High index contrast mirrors for optical microcavities. App. Phys. Ltrs., 57(14), pp.
1387-1389, 1990.

Hornbeck, L. J., Digital Light Processing and MEMS: An Overview in IEEE/LEOS 1996 Summer Topical

Meetings: Optical MEMS And Their Applications, Keystone, CO, pp. 7-8, 1996.

Jenkins, F. A. and H. E. White, Dispersion, in Fundamentals of Optics, McGraw-Hill, New York, pp. 464-

487, 1957.

Jolly, R. D. and R. S. Muller, Miniature Cantilever Beams Fabricated by Anisotropic Etching of Silicon, J.

of the Electrochem. Soc., Solid State Science and Technology, 127(12), pp. 2750-2754, 1980.

Larson, M. C. and J. S.Harris Jr. Broadly-tunable, narrow linewidth resonant cavity light emitter in 53rd

Annual Device Research Conference, Charlottesville, VA, pp. 130-131, 1995.

Lo, Y.H., et al., Integrated micro.optical interferometer arrays, in IEEFJLEOS 1996 Summer Topical

Meetings: Optical MEMS and Their Applications.. Keystone, CO, pp. 25-26, 1996.

91



Martinet, E., et al., Electrical tunability of infrared detectors using compositionally assymetric

GaAs/AIGaAs multiquantum wells, App. Phys. Ltrs.,. 60(7), pp. 895-897, 1992.

Mastrangelo, C. H. and C. H. Hsu, Mechanical Stability and Adhesion of Microstructures: Part I: Basic

Theory, J. of Micro-mech. Sys., 2(1), pp. 33-43, 1993.

Middelhoek, S., J. B. Angell, and D. J. W. Noorlag, Microprocessors get integrated sensors, IEEE Spect.,

17(2), p. 42, 1980.

Nathanson, H. C. and R. A. Wickstrom, A Resonant-Gate Silicon Surface Transistor With High-Q Bandpass

Properties, App. Phys. Ltrs., 7, p. 84, 1965.

Nathanson, H. C., et al., The Resonant Gate Transistor, IEEE Trans. Elect. Dev.,. ED-14, p. 117, 1967.

Neikirk, Y. K. A. D. P., Monolithically integrated optically interrogated pressure microsensor. Acoustic

Society of America, p. 2353, 1992.

Petersen, K. E., Dynamic Micromechanics on Silicon: Techniques and Devices, IEEE Trans. Elect. Dev.,

ED-25, p. 1241, 1978.

Petersen, K. E., Micromechanical light modulator array fabricated on silicon, App. Phys. Ltrs., 31(8), pp.

521-523, 1977.

Petersen, K. E., Silicon as a mechanical material, Proceedings of the IEEE, 70(5), pp. 420-457, 1982.

Queau, E., et al., Electroless Metal Deposition as a Useful Tool For Microelectronics and Microstructures,

J. of the Electrochem. Soc., (1), p. 65-69, 1994.

Schwartz, B., Chemical Etching of Silicon, J. Eiectrochem. Soc.,. (12), pp. 1903-1909, 1976.

Seidal, H., et al., Anisotropic Etching of Crystalline Silicon in Alkaline Solutions, J. Electrochem. Soc.,

137(11), pp. 3626-3632, 1990.

Seidal, H., Crystalline Semiconductor Micromachining, in Transducers '87 Rec. of the 4th Int. Conf. on

Solid-State Sensors and Actuators, pp. 120-125,1987.

Stokey, W. F., Vibrations of Systems Having Distributed Mass and Elasticity, in Shock and Vibration

Handbook, C. M. Harris, Editor., McGraw-Hill, New York. pp. 7-1 to 7-15, 1988

Sze, S. M., Oxidation and Film Deposition, in Semiconductor Devices: Physics and Technology, Murray

Hill, NJ, pp. 360-362, 1985.

Sze, S. M., Physics of Semiconductor Devices, John Wiley & Sons, New York, 1969.

Tran, A. T. T. D., et al., Electro-mechanically tunable micro Fabry-Perot filter array, in 53rd Annual Device

Research Conference, Charlottesville, VA, pp. 128-129, 1995.

Tran, A. T. T. D., et al., Surface Micromachined Fabry-Perot Tunable Filter, Photonics Tech. Ltrs., 8(3),

pp. 393-395, 1996.

Transene Inc., Advanced Materials For Electronics, Rowley, Mass. p. 126-127, 1981.

Transene Inc., Advanced Materials For Electronics, Rowley. Mass. p. 138-139, 1981.

Uenishi, Y., Coupled -cavity laser diode with micromachined external mirrors, in IEEE/LEOS 1996 Summer

Topical Meetings: Optical MEMS and Their Applications, Keystone, CO, pp. 33-34, 1996.

Waggener, H. A., R .C. Kragness, and A. L. Taylor, KOH Etching of Si, Elect.,. 40, p. 274, 1967.

Waynant, R. and M. Ediger, Electro-Optics Handbook, 1st ed., McGraw-Hill, New York, pp. 11.56-11.75,

1994.

Wilmsen, C. W., E. G. Thompson, and G. H. Meissner, Buckling of Thermally-Grown SiO2 Films. lEE//

Trans. Elect. Dev., (1), p. 122, 1972.

Wipiejewski, T., et al., Tunable extremely low threshold vertical cavity laser diodes, IEEE Photonics Ltrs.,

5(8), pp. 889-892, 1993.

Wolber, W. G. and K. D. Wise, Sensor development in the microcomputer age, IEEE Trans. Elect. Dev.,

ED-26, p. 1864, 1979.

92



Wu, M. S., et al., Widely and continuously tunable micromachined resonant cavity detector with

wavelength tracking, IEEE Photonics Tech. Ltrs., $(I), p. 98-100, 1996.

Wu, M.S., et al., Widely tunable micromachined gallium arsenide fabry-perot filters in IEE,F_A_OS,

Keystone, CO, (Post Deadline Paper), 1994.

Yariv, A., The Propagation of Rays and Beams, in Optical Electronics, M. E.V. Valkenburg, Editor.,

Saunders College Publishing, a division of Holt, Rinehart, and Winston Inc., Philadelphia, PA, pp. 35-71,
1991.

Zeghbroeck, B. J. Van., Micro-Mechanics in Principles Electronic Devices, University of Colorado,

Boulder, pp. AI.I-A1A, 1995.

93



I FormAppcovea
REPORT DOCUMENTATION PAGE o_No.0"_-o1=

Publicreportingburden_orthiscollectionofinformationis estima_:J to average 1 hourperresponse,includingthe timefor rev_ Instn_tlons,searchingexisting data sources,
gathering and rnaJntalnJng the data needed, and corltpleting and reviewing the coUection of klfon'na_on, Send comnlents rl_l_llng _ bufl_l e_lrn_e or _y other aspect of _1_8

coeectmr_of _rnaeon, inc_ud_ ,e_gee_onse_xr_uc_ng_ I_m_en,to W,eWw_t_ Headquarte__, Directorate_r Jr,_'n'm_n Qperat_ anti Repot, _215_
DavisHighway,Suite 1204, Arlington,VA 22202-4302,andtothe OfficeofManagementandBudget,PaperworkReduc'_ Protect(0704-0188),Washington,DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

September 1997 Technical Paper
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Micro-Mechanical Voltage Tunable Fabry-Perot Filters Formed in (111)
Silicon WU 274-00-97-01

'6.AUTHOR(S)

James D. Patterson

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(F-S)

NASA Langley Research Center

Hampton, VA 23681-2199

9. SPONSORING/tdONrrORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

8. PERFORMING ORGANIZATION
REPORT NUMBER

L-17646

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA TP-3702

11. SUPPLEMENTARY NOTES

The information in this report was offered as a thesis in partial fulfillment of the requirements for the Degree of

Doctor of Philosophy in Electrical Engineering, University of Colorado, Boulder, Colorado.

1211.DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified-Unlimited

Subject Category 33

Availability: NASA CASI (301) 621-0390

13. ABSTRACT (Maximum 200 words)

The MEMS (Micro-Electro-Mechanical-Systems) technology is quickly evolving as a viable means to combine

micro-mechanical and micro-optical elements on the same chip. One MEMS technology that has recently gained

attention by the research community is the micro-mechanical Fabry-Perot optical filter. A MEMS based Fabry-

Perot consists of a vertically integrated structure composed of two mirrors separated by an air gap. Wavelength

tuning is achieved by applying a bias between the two mirrors resulting in an attractive electrostatic force which

pulls the mirrors closer. In this work, we present a new micro-mechanical Fabry-Perot structure which is simple

to fabricate and is integratable with low cost silicon photodetectors and transistors. The structure consists of a

movable gold coated oxide cantilever for the top mirror and a stationary Au/Ni plated silicon bottom mirror. The

fabrication process is single mask level, self aligned, and requires only one grown or deposited layer.

Undercutting of the oxide cantilever is carried out by a combination of RIE and anisotropic KOH etching of the

(111) silicon substrate. Metallization of the mirrors is provided by thermal evaporation and electroplating.

The optical and electrical characteristics of the fabricated devices were studied and show promissing results. A
wavelength shift of 120nm with 53V applied bias was demonstrated by one device.

14. SUBJECT TERMS

Micro-Electro-Mechanical Systems (MEMS), Fabry-Perot Filters,

Silicon Micro-Machining

17. SECURITY CL, I_SIFICATION 18. SECURITY CL./_SIRCATIO_ 19. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified

NSN 7540-01-280-5500

15. NUMBER OF PAGES

10?
iii
16. PRICE CODE

A06
20. LIMITATION

OF ABSTRACT

Standard Form 296 (RIw. 2-8g
prencr_ by ,'UCSlsta. z-3s-_8
298-102


