Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT
CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH
INFORMATION AS POSSIBLE


https://core.ac.uk/display/42772762?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

HAIATATIRIN ;

PB96-148937 Information is our business.

e

TOWARD AGENT PROGRAMS WITH CIRCUIT
SEMANTICS

STANFORD UNIV., CA

21 JAN 92

U.S. DEPARTMENT OF COMMERCE
National Technical Information Service




BIBLIOGRAPHIC INFORMATION
PB96-148937
Report Nos: STAN-CS-92-1412
Title: Toward Agent Programs with Circuit Semantics. é
Date: 21 Jan 92
Authors: N. J. Nilsson, |
Performing Organization: Stanford Univ., CA. Dept. of Computer Science. :

BEonsoring Organization: *National Aeronautics and Space Administration, Washington,

Contract Nos: NASA-NCC2-494

NTIS Field/Group Codes: 95F (Bionics & Artificial Inte]]igence), 41C
(RobotTcs/Robots), 62 (Computers, Control & Information Theory)

Price: PC AO3/MF A0l ‘
Availability: Available from the National Technical Information Service, Springfield,

Number of Pages: 34p :

Ke%words: *Robotics, *Artificial intelligence, *Electrical circuits, Control systems,
utomation, Teleoperators.

Abstract: New ideas are presented for computing and organizin actions for autonomous
agents Tn dynamic environments-environments in which the agent’s current situation
cannot always be accurately discerned and in which the effects of actions cannot
always be reliably predicted. The notion of 'circuit semantics’ for programs based on
‘teleo-reactive trees’ is introduced. Program execution builds a combinational circui
which receives sensory inputs and controls actjons. These formalisms embody a high
degree of inherent conditionality and thus yield programs that are suitably reactive
to their environments. At the same time, the actions computed by the programs are
guided by the overall goals of the agent. The paper also speculates about how programs
using these ideas could be automatically generated by artificial intelligence plannin
systems and adapted by Tearning methods.




January 1992 Report No. STAN-CS-92-1412

AT

PB96-148937

Toward Agent Programs With Circuit Semantics

by

Nils J. Nilsson

Department of Computer Science

" Stanford University
Stanford, California 94305

REPRODUCED BY;
1y U:S. Department of Commaerce

Servic:
Springfieid, Vicginia 22181

B4 Vg B i s o T A B Ao Rial . 8 rge




TOWARD AGENT PROGRAMS WITH CIRCUIT SEMANTICS

Nils J. Nilsson
Robotics Laboratory
Department of Computer Science
Stanford University
Stanford, CA 94305

Tue Jan 21 1992
ABSTRACT

New ideas are presented for computing and organizing actions for
autonomous agents in dynamic environments—environments in which
the agent’s current situation cannot always be accurately discerned and
in which the effects of actions cannot always be reliably predicted. The
notion of "circuit semantics” for programs based on "teleo-reactive
trees” is introduced. Program execution builds a combinational circuit
which receives sensory inputs and controis actions. These formalisms
embody a high degree of inherent conditionality and thus yield
programs that are suitably reactive to their environments. At the same
time, the actions computed by the programs are guided by the overall
goals of the agent. The paper also speculates about how programs
using these ideas could be automatically generated by artificial
intelligence planning systems and adapted by learning methods.

1. Control Theory and Computer Science

Designing autonomous agents, such as mobile robots, has been a difficult problem for
artificial intelligence because these agents operate in constantly changing
environments—environments which can be sensed only imperfectly and affected with
only uncertain results. Yet, engineers have long been able to build many automatic
devices that function effectively for long periods in the physical world without human
intervention. From the govemors controlling the speed of steam engines to complex
guidance systems, these devices work as well as they do because they have the means for
changing their actions in a way that depends on continuously sensed properties of their
environments. I accept the central notion of control theory that continuous feedback is a
necessary component of effective action.

Perhaps it is relatively easier for control theorists than it is for computer scientists to think
about continuous feedback because control theorists conceive of their controlling

1

et ot T i sl g BT

st s b b gt b S e £

e A S s g




mechanisms as compdécd of electrical circuits or other physical systems rather than as
automata with discrete read-compute-write cycles. The notions of goal-seeking servo-
mechanisms, homeostasis, feedback, filtering, and stability—so essential to control in
dynamic environments—arise rather naturally when one builds control devices with
electrical circuits. Circuits, by their nature, are continously responsive to their inputs,

On the other hand, some of the central ideas of computer science, namely sequences,
events, discrete actions, and subroutines, seem incompatible with the notion of
continuous feedback. For example in conventional programming when one program calls
another, the calling program is suspended until the called program returns control. This
feature is awkward in applications in which the called program might encounter
unexpected environmental circumstances with which it was not designed to cope. In such
cases, the calling program can regain control only through interrupts e.plicitly provided
by the programmer.

To be sure, there have been attempts to blend control theory and computer science. For
example, the work of Ramadge and Wonham [Ramadge, 1989] on discrete-event systems
has used the computer science notions of events, grammars, and discrete statcs to study
the control of processes for which those ideas are app-opriate. A recent book by Dean
and Wellman [Dean, 1991] focusses on the overlap between control theory and artificial
intelligence. But there has been little effort to import fundamental control-theory ideas
into the core of computer science. That is precisely what I set out to do in this paper.

I propose a computational system that works quite differently than do those used
previously in computer science. I also propose a language for writing control programs
that has what I call circuit semantics; the execution of programs in this language
produces (conceptually) electrical circuits, and it is these circuits that are used for

control.] While importing control-theory concepts, I nevertheless want to retain useful
ideas of computer science. The programs will have parameters that can be bound at run
time and passed to subordinate routines, they can have a hierarchical organization, and
they can be recursive. But since they are to be control prograrns, they must respond in
bounded time to environmental changes.

Real-time control of agents in dynamic, uncertain environments is the subject of much
recent attention. Several techniques and architectures have been proposed. I shall be

ccmparing my approach to some of these and citing several relevant papers later.2

10f course, the programs written by computer scientists run on computers made of circuits. But
conventional programmers, while programming, use metaphorical constructs having quite different
properties than do circuits.

2See, for example, the special issue on "Designing Autonomous Systems,” of the journal Robotics and
Autonomous Systems, 6,nos. 1 & 2, June, 1990 . Hanks and Firby [Hanks 1990] give a nice discussion of
the problems.

¢ i TR st d

AR L8, TN

e R o



In this paper, I shall not be discussing the larger issue of architectures for autonomous
agents, although I think that robot control programs written in the language I am
proposing will be important components of future architectures. Certain researchers,
notably Laird and Rosenbloom [Laird, 1990], Maes, [Maes, 1989], Mitchell [Mitchell,
1990}, and Sutton [Sutton, 1990], have proposed agent architectures that nicely integrate
robot control with planning and/or learning programs. Here, I assume robot control
programs are written by human programmers—not by planning systems. Even so, the
form of the programs bears a striking resemblance to that of plans produced by various
automatic planning systems, and toward the end of the paper I shall speculate on how one
might exploit this resemblance to build and modify control programs by planning and
learning methods.

Many of the ideas in this paper are elaborations of earlier work, some of which was done
in collaboration with students [Nilsson, 1989; Nilsson, 1990a].

II. The Kaelbling-Rosenschein Model

Kaelbling and .i:senschein [Kaelbling, 1990] refer to "computer systems that sense and
act on their environments" as embedded agents or situated automata. Their agents have a
finite-state-machine structure much like that shown in Fig. 1. I base the semantics of my
agent language on the circuitry used in this model, although I use rather different methods
than do Kaelbling and Rosenschein to produce such circuitry.

Sensory input, and some of the agent’s own actions, are processed by an update function
that produces a srate vector with binary-valued components. The update function
performs, continously and in bounded time, the perceptual processing needed by the
agent. In order to emphasize the point that the update function continuously delivers
outputs from changing inputs, it is helpful to imagine that it is implemented by electrical
circuitry. The outputs of this circuitry are available in the state vector. The designer of

- the agent will typically have in mind what each component in the state vector means (to

the designer). In Fig. 1, for example, there is a component whose value is 1 only when
the perceptual system, of a mobile robot say, determines that the path ahead is free of
obstacles. (Of course, the perceptual system may be inaccurate.) The state vector may
also contain information that depends upon previous actions and sensing. In Fig. 1, there
is a component that is equal to 1 when the robot "believes"” that the lights are on in room
17. So even though the robot might not have a sensor that gives it continously updated
information about the status of the lights in room 17, it nevertheless can remember that
they were recently determined to be on and are therefore likely to be on still. With our
intended semantics, we (if not the agent) can think of the components of the state vector
as the agent’s beliefs about its world.




Designer’s Intended Semantics:

PERCEPTION
path clear ahead
state vector /
0 / lights on In room 17
——
1]
1
1 ' ACTION
sensory 1 /
input ™
update output
function > *Beliefs" > function >
(bounded time) g (bounded time,
stateless,
] combinational
. circuit)
e

Figure 1. An Embedded Agent3

The components of the state vector, in turn, are inputs to an output function, implemented
by a combinational switching circuit, that energizes and-sustains actions. These actions
are typically durative rather than discrete; that is, they continue so long as the output
function maintains the values that sustain them. Some of the "actions" may change the
values of certain components in the state vector; some have effects on the world; some
perform sensory functions which ultimately affect the state vector. The output function
can be implemented as a network of logical gates.

An example of a device adhering to these ideas is shown in Fig. 2; it moves a robot over a
flat surface to a point denoted by the x-y coordinates given by the list loc. The update
function continuously computes the predicates:

(equal (position) loc)

and

(equal (heading) (course (position) loc))

3Adapted from Kaelbling and Rosenschein [Kaelbling, 1990].




where (using LISP notation), position and heading are sensory functions that give the

robot’s current position and heading, respectively, and course is a function that

computes the heading the robot ought to take to travel from its current position to loc. (In

this simple example, the state vector does not store internal "state,") The action circuitry

consists of AND and NOT gates that activate the primitive motor-action functions move

. and rotate whenever the robot is not at the goal location. (To avoid "hunting behavior" a
practical circuit should include a "dead zone" in its predicates. Also, its update function
should compute a direction—clockwise or counter-clockwise—that the robot should
rotate depending on the robot’s orientation with respect to the goal.)

loc
goal specification

e

position sensor

compass ——————>»

———3 (0qual (position) lac))

—>
(equal (heading) (course (position) loc))

(equal (heading) (course (position) loc))

(equal (position) loc)) :

3 (move)
(D

Output Function

Figure 2. Circuitry for Moving a Robot to the Point loc

Thebehavior of this device can best be described using a blend of the vocabularies of
control theory and computer science. It exhibits goal-seeking and homeostatic behavior;
it is stable only when the robot is at the goal point, loc. It unceasingly reacts to

5

i i iR




continuous environmental signals. Yet, it has a hierarchical structure and uses
parameters and functions (namely, loc, heading, position, and course) that are bound or
computed at run time and continuously updated. The main program calls the primitive
motor subroutines rotate and move. Note, however, that the called program move will
give way to the program rotate whenever move’s "precondition” (which is continuously
being computed) is not satisfied.

Even though the steps of rotating and moving occur in sequence in this example, the
"program" of Fig. 2 does not explicitly specify a sequence. The appropriate series of
actions simply "emerges" from the interaction of the control system with its environment,
Since action sequences are of prime importance in agent control, I base the language on a
goal-seeking but yet reactive and emergent way of achieving them.

III. Teleo-Reactive Sequences and Trees

We desire to program agents to achieve various goals in their environments. These goals
can be specified in terms of the components of the state vector. (The agent can only tell
whether or not it has achieved its goal through its sensory apparatus, and therefore we
have to specify goals in terms of the agent’s sensory functions.) Usually more than one
action is required to achieve a specified goal. The reasons for multiple actions are, first,
that separate actions might be required to achieve different components of the goal, and,
second, that some of the goal-achieving actions might not be executable in the agent’s
current environment—necessitating the prior performance of enabling actions. And so
on. The agent determines that its actions have had their enabling or final effects by
testing components of the state vector.

Sometimes an action does not have the effect that was anticipated by the agent’s designer,
and sometimes environmental dynamics (separate from the actions of the agent) change
the world in unexpected (even helpful) ways. These phenomena, of course, are the
reason continuous feedback is required. When the world is not completely predictable,
the agent must constantly check to see which, if any, of its goals and preconditions for
actions are satisfied.

We can imagine that such checking can proceed backwards from the goal condition. For
example, the navigating robot of Fig. 2 should first check to see if it is already at the goal
location. That is, it should check to see if (equal (position) loc)) is true. If so, it need

(and should) cause no action. If not, it should check to see if it is perhaps heading in the

appropriate direction:

(equal (heading) (course (position) loc))
If so, it should move (forward). If the heading is not correct, it should rotate. Although I

have described the tests sequentially, they actually can be implemented, as they are in
Fig. 2, by a non-sequential, combinational circuit.




These tests and actions can be represented as a path in a graph, as shown in Fig. 3. The
nodes of the graph are labeled by conditions to be tested, and the arcs by actions that are
to be energized. The bottom node is labeled by T represert. - *-ue. The top node is
labeled by the goal condition, I call such a path a teleo-reactive sequence because the
program it represents is both goal-directed and ever-responsive to changing
environmental conditions (as these conditions are sensed and then represented in the state
vector).

We can imagine the graph of Fig. 3 as constituting a program.4 Such a program is
executed as follows: the interpreter looks for the shallowest true node and executes the
action(s) on the arc exiting that node.

(equal (position) loc))

(move)

(equs’ (heading) (course (position) loc))

(rotate)

Figure 3. A Program for Controlling a Robot

41 am not explicitly advocating here a graphical programming language; the graphs in this section are
pedagogic stepping stones to a language using conventicnal symbol strings that will be described later.




I show a general teleb-reactive (or T-R) sequence in Fig, 4, The programmer would
ordinarily arrange: a) that each action in the sequence be executable if the condition at
the tail of its arc is satisfied and b) that the execution of an action nominally achieve,
eventually, the condition at the head of its arc. That is, as Fig. 4 indicates, the condition
at a node is the regression of the condition at the node immediately above through the
action labelling the arc connectirg these nodes. Regression is defined in a way similar to
that used in the automatic planning literature [Nilsson, 1980], namely it produces the
weakest precondition that guarantees that the execution of the action will achieve the

postcondition.5 In reysst of the automatic planning literature, however, actions are
discrete and link discrete states. Here, I assume actions are continuous and will
eventually produce their intended effect. Also, since I am not assuming (yet) that T-R
sequences are produced by automatic planning systems, it is the human programmer who
is (perhaps implicitly) computing the regressions as s/he writes the program.

f A
aN-1

KN-1

K3
ap’
K2
aq
K1
The ai are “actions"”
The Ki are conditions
K =R K
iy = Fleg@, k)

Figure 4. A Teleo-Reactive Sequence

5] use the word guarantee here loosely, of course, In dynamic, uncertain worlds there are no absolute
guarantees; instead the intended effects of actions should be used in defining regression.

ot b




A T-R sequence is converted at run time to a combinational circuit, such as the circuit of
AND and NOT gates shown in Fig. 5. It is for this reason that I say that my agent
programs have circuit semantics; execution of the program produces a combinational
circuit which is then connected to the ageit’s state vector and effectors to control the
agent's actions. I shall discuss this point in more detail after I have given a more precise

definition of T-R programs an¢ how they are executed.6

In earlier work [Nilsson, 1990}, I proposed the notion of an action unit. An action unit is
a T-R sequence consisting of two nodes connected by a single action. T-R sequences are
also related to the intermediate-level actions (ILA’s) used in the SRI robot, Shakey,
[Nilsson, 1984] and to triangle tables [Fikes, 1972]. (I will discuss the relationship with
triangle tables in more detail later,) Neither the ILA's nor triangle tables had circuit

semantics.
KN — > nil
é

KN-1 o ; N\ )———>aN.

Kn-2 ® E A —> aN.2

Ky N\ >""——'> a4

Figure 5. Implementing a T-R Sequence as a Circuit

6A question arises as to whether th-: circuit given in Fig. 5 is the "best" circuit for implementing the T-R
‘sequence of Fig. 4. If, for example, there are repeated sub-expressions in the K, the circuit of Fig. 5 might
have an equivalent with fewer gates. Since circuit optimization is a well understood subject, I will not deal
with it here.

I

B



The reader might notice a similarity between T-R sequences and production systems.
For example, it might appear possible to implement the sequence of Fig. 4 by the
following list of ordered productions:

KN —> nil
KN-1 —> an-1
Ky —a
K1 — 31

Many production-rule interpreters work by scanning the productions in order, looking for
the first true condition, and then executing the corresponding action. There are two major
differences between T-R sequences and production systems. One is that most production
sy-tems are "flat" whereas the actions in a T-R sequence might themselves be coded as
T-R sequences, etc. The more important difference is that T-R sequences have circuit
semantics and production systems do not. For example, suppose action @, in Fig. 4 is

activated (because K2 is the shallowest true node). Perhaps before action &, finishes,
K3 becomes the shallowest true node. In that case, we want a, to be suspended and ag
“called." In a production system, after a5 was called, the conditions wouldn’t even be
checked again until &, finished and returned control. It is correct to think of T-R
sequences as being hierarchical production systems with circuit semantics.

A teleo-reactive (T-R) tree is an obvious generalization cfa T & -quence. Iillustrate
one in Fig. 6. T-R trees are appropriate when there is more thai: one action that might
contribute to achieving a given condition. Execution of a T-R iree proceeds in a fashion
similar to the execution of a T-R sequence. We look for the shallowest true node—

resolving depth ties according to some prespecified (possibly lexicographic) ordering.”
With the ordering specified, a T-R tree can be converted to a T-R sequence (albeit one
without the regression relationship linking adjacent elements of the sequence). For this
reason, it is required only to provide a means for programming and implementing T-R
sequcaces.

7TRather than looking for the shallowest true node, we might instead find that true node whose path from
the goal is the least costly—assuming that all of the actions can be assigned costs. To simplify
terminology, I shall nevertheless use the phrase "shallowest true node.”

10

Ved g

Bkl ot es e ot




Figure 6. A T-R Tree

IV. Hierarchical Programs and Parallel Actions

The actions labeling arcs in a T-R sequence or tree can either be primitive, or they
themselves might be coded as T-R programs. They might also be parallel combinations
of actions. The condition at the tail of an arc labeling a list of parallel actions must be
such that it is appropriate to execute the actions in parallel. That is, parallel actions must
not interfere with each other.

I illustrate a hierarchical program containing parallel actions using an adaptation of
Drummond’s "B-not-last” (BNL) problem [Drummond, 1989]. In that problem, three

11




blocks, A, B, and C, must be placed, respectively at locations, 1, 2, and 3, as shown in
Fig. 7. There are two primitive actions, which can under certain circumstances operate in
parallel. The primitive action Iplace can sweep a block into either positions 1 or 2 from
the left if the target position and position 1 are "free®. The action rplace can sweep a
block into either positions 2 or 3 from the right if the target position and position 3 are
free. Also, a block must be "avai!=ble" in order for rplace or Iplace to move it. Blocks
are made available by some extmal ;3¢ «2ss (perhaps another agent). Block A becomes
available to the left of position }; nlxri 7. lx:comes available to the right of position 3;
and block B could come fiuee. ej . 4w 17t (if position 1 is free) or from the right (if
position 3) is free. Note that vluwi s usreeix be placed last (after A and C). Iassume
perceptual functions for comp ¢y i v.2eced predicates, free, at, and available.

Iplace rplace

A B
1 2 3

Figure 7. The BNL Problem

The programs, shown in Fig. 8, use the higher level parameterized programs rput and
Iput, which are themselves T-R programs that call the primitive rplace and Iplace
actions. I assume that the primitive programs cannot be interrupted while in progress;
once called they run until they either succeed or fail. But rput and iput need to be
sustained by some node in order to continue running. Note that there are circumstances
under which rput and Iput may be executed in parallel. Their execution results in the
paralle] execution of rplace and Iplace if both of the blocks to be moved are available.
Actions to be executed in parallel are indicated by lists. (As an abbreviation in Fig. 8, I
have dropped some occurrences of the and connective; the condition at a node is
assumed to be the conjunction of the individual predicates written in a node.)

12

e




(atB2)
(at C3)

((iput A 1) [(rput C 3))

(Iput A 1) (put C 3)

(atB 2)
(free 3)

{rput B 2)

(atB2)
(at C 3)
(frea 1)

(lput B 2)

((lput B 2) (rput C 3))

(atC3)\ ((mutB 2) (Iput A 1))
(free 1)

free 3
(free 2) (iree 3)

*

(free 1) (free 1)
(free 2) (free 2)
(free 3) (free 3)
{avaliabie B) {avaiiabie B)
(or (not (available A)) {or (not (avaitable C))

(available C)) (available A))

Main Program

(put xy): (putxy):

(rplace x y)

(Zfrfeee 1y)) gree 3;
€ ree
 (avaiable x) (available x)

Subsidiary Programs

Figure 8. Programs for the BNL Problem

13

Lh»{i\aL{-n 3 A et

b ey A ot o AL




Interesting cases arise if all positions are free: the program will do nothing until some
block becomes available. If, in that case, B is the only block available, both of the nodes
marked with a * are true, and the program commits to one of these, say the left one, and
executes the outgoing parallel actions. If A and C are available (whether or not B is) the
program also commits to the left-most node marked with a *. If Cis available, and B and
A are not, then only the left-most node marked with a * is true. If A is available, and B
and C are not, only the right-most is true.

The reader might want to imagine some of the various combinations of circumstances
under which this program would operate and check to see that its actions are reasonable.

V. The T-R Language and its Interpreter

A. Syntax

Now that we have seen some examples of T-R programs I next propose a syntax for a
programming language in which to write them. I give a partial definition of the language
here and later point to a possible extension that might be useful.

The syntax for a T-R program is:

<T-R-Prog> :: <T-R-Sequence> | <action-list> | <actiorn>

<action-list> :: (..., <action> ...)
i

<ac;tion> :': <energized-action>|<ballistic-action>
<energized-action> :. <primitive>| <T-R-Prog>
<ballistic-action> :: <primitive>
<T-R-Sequence> :. (defseq <name> <arg-list>

(<K > nil)
N

(<K > <T-R-Prog >)
{ i

(<K > <T-R-Prog >))
1 1
)

14

5Pt ekl (D AR




We see that a T-R program might consist of a single T-R sequence, an action, or of a list
of actions. All of the actions in a list run concurrently and asynchronously in parallel.
The individual actions may be energized or ballistic. Energized actions are the kind that
must be sustained by an enabling condition to continue operating; ballistic ones, once
called, run to completion. We may as well assume that ballistic actions are primitive (for
example, LISP code) since they need none of the T-R mechanisms. (Recall that the BNL
problem used ballistic actions as primitives.)

A T-R sequence is defined using the construct defseq followed by a list of arguments
that are bound when the program is called. A T-R program is "called" either as a top-
level program or by virtue of some condition being true. Binding of arguments is, of
course, looser than conventional binding; the value of the parameter to which an
argument is bound is subject to continuous re-computation. The scope of the arguments
includes the T-R program and all of its subsidiary programs (dynamic scoping). Then
follows a list of condition-T-R program pairs. The conditions, K;, are boolean

combinations of components of a state vector as described previously. (Although this
syntax looks something like a LISP cond statement, recall that the execution of a T-R
sequence assumes circuit semantics. I will discuss how these programs are interpreted
and executed in the next section.)

A T-R program for controlling a robot according to the scheme of Figs. 2 and 3 can be
written thus:

(defseq gdto (loc)
(

((equal (position) loc) nil)
((equal (heading) {course (position) loc)) (move))
(T (rotate))
)
)

The program takes an argument, loc, which although bound to an initial pair of x-y
coordinates at run-time can be dynamically changed during running. The values of the
subsidiary functions position and heading are continuously being updated by sensors—
even while goto is rurning, and goto always uses the current values! The function
course continuously computes the direction the robot shouid take to go from the current
value of position to the current value of loc. The functions move and rotate energize the
appropriate robot motors. ‘
This example illustrates that it would be useful to allow the use of local variables within
T-R sequences. One way to do this would be to use a construction similar to the Common
LISP let*. With that modification, our program would become:

15

e e e ke b e $




(defseq goto (loc)
(let* (
§pos (position))

((equal pos loc) nil)
((equal (heading) (course pos loc)) (move))

(T (rotate)) '
)

)
)

Unlike the case in LISP, however, the values of the local variables must be continuously
computed.

B. Program Interpretation and Circuit Simulation

Even though I have already informally discussed how T-R programs are to be executed,
there are some additional points to be made. Execution of a T-R program involves the
dynamic interaction of an interpreter and a circuit simulator. I give here a brief summary
of essentially what the interpreter and simulator must accomplish.

When a program is called (by the user or by another program), the interpreter binds the
parameters in the program’s definition and creates circuitry similar to that shown in Fig. 5.
The values of any of the program’s local variables and predicatcs (the K;) are computed

from the basic predicates and terms produced by the perceptual processes. The circuit thus
produced is then simulated by the simulator. The action called for by the circuit (if any) is
then energized. If this action is itself a T-R program, the interpreter binds its parameters,
additional circuitry is produced, and the process continues until some primitive acticn is
energized. Everything that happens up until the first primitive action is energized is called
a simulation cycle.

The interpreter/simulator then waits for some pre-specified, small sampling interval during
which time whatever primitive actions are being executed have had some incremental
effect on the world, and the sensing apparatus has updated the state vector. At this time,
another simulation cycle begins: the values of all predicates and functions in the networks
are re-computed as necessary, actions are computed by the circuitry, and additional
network is created until another primitive action is energized. Thus, at all levels, the
circuitry operates at the beginning of each sampling interval—simulating continyzus
operation. Note that primitive actions active during one sampling interval might not be
active during the next. At any level, sustained activation depends on the appropriate
predicates being true. Typically, I assume that the time required for a simulation cycle is
short compared to a sampling interval which is short compared to the pace of events in the
world.

16

AR A e deadic




An efficient implementation of the interpreter/simulator need only recompute at the end of
each sampling interval those functions whose values depend on sensed or stored data that
have changed since the last sampling interval. Assumption-based truth maintenance
systems [deKleer, 1986] would be useful in this regard.

In the example robot control program, goto, all of the actions specified in the program are
primitive, so the interpreter constructs a circuit similar to that shown in Fig. 2 by the end
of the first simulation cycle, and no more circuitry need be created.

When a T-R program calls a non-primitive program, the situation is a bit more
complicated. Consider the following recursive program:

(defseq amble (loc)

((equal (position) loc) nil)
((clear (position) Icg) (goto loc))
(T (amble (new (position) loc)))

)

The subsidiary sensory function clear checks to see if there is a clear path between the robot’s
current position and its goal location. If there is a clear path, the function goto is called. If not,
amble is called recursively with a new location computed using the sensory function new, which
we can assume selects some sub-goal location on the way around the obstacle perceived to lie
between the robot’s current position and the goal.

The circuit constructed by the interpr:ter depends on the configuration of robot, obstacle (if any),
and goal. In Fig. 9, 1show an early stage of circuit construction.

17

B A g s nb L g




(equal (position) loc) _ :: ‘
. J

(clear (position) loc)

>

(goto loc)
Daa

Ei ‘ > /\: {amble (new (position) loc))

Figure 9. Early Stage of Circuit Construction

If the robot is not already at loc, and if there is a clear path to loc, then (goto loc) is
interpreted, and more circuiiry is built as in Fig. 10.

(equal (heading) (course (position) loc))

(equal (position) loc) C

(clear (position) loc)

™

>

‘ (rotate)
O3

(amble (new (position) loc))

A

5=

Figure 10. The Circuit at the End of a Simulation Cycle

18




Now, if the value of heading is not equal to the value of course, the primitive action
(rotate) is selected by this circuitry—ending a simulation cycle. The circuit of Fig. 10
continues to contro! the robot so long as there is a clear path to loc.

If the path to loc becomes blocked for some reason, the circuitry of Fig. 10 calls for the
execution of the non-primitive program (amble (new (position loc)), which requires
interpretation and another simulation cycle—resulting in the circuit of Fig. 11. Under the

?_)D_g:ove)

(equal (heading) (course (position) loc))

Y

(equal (position) loc) ‘
(clear (position) loc) g >>__.

(rotate)

6“5“* A >——>

(equal (heading) (covise (position) (new (position) loc)))

3 /\ (move)
>
f ——>D\ ;
(equal (position) (new (position) loc)) ; @ 5 A

(clear (position) (new (position) loc))

(rotate)
(A>—>

(amble (new (position) (new (position) loc)))

i

Figure 11. The Circuitry for Navigating Around an Obstacle
3

control of this circuit, the robot will detour around a single obstacle until the path to loc is
clear. If another obstacle blocks the detour, then another recursive call to amble is made.

19

H
b
§
if:




(The reader should uhderstand that I am not necessarily recommending amble as an
actual robot navigation strategy; I use it simply as an example to illustrate how recursive
T-R programs are interpreted.)

VI, Preliminary Experiments

I have carried out some early experiments with agents programmed in this language,
Although an interpreter/simulator for T-R programs that works precisely as described in
the previous section has not yet been implemented, we can use LISP cond functions
(with primitive action increments and short sampling intervals) to simulate the execution
of T-R progr. as. (In earlier work [Nilsson, 1990a] an interpreter/simulator for a related
language with circuit semantics was constructed.)

The agents I am working with are simulated robots acting in a two-dimensional space,

called Botworlds, of construction materials, structures made from these materials, and
other robots. I show a scene from this world in Fig. 12. The construction materials are

Figure 12. Botworld

bars, and the robots are to build structures by connecting the bars in various ways. A
robot can turn and move, can grab and release a suitably adjacent bar, can turn and move

8The original Botworld interface, including the primitive perceptual functions and actions for its robots, ]
was designed and implemented by Jonas Karlsson for the NeXT computer system [Karlsson, 1990]. *
Subsequently, Patrick Teo has implemented a v#ysion that runs under X-windows on any of several
different workstations [Teo, 1991). The latter version allows the simulation of several robots
simultaneously—each under the control of its own independently running process.

20




a grabbed bar, and can connect a bar to other bars or structures, The robots continuously
sense whether or not they are holding a bar, and they "see" in front of them (giving them
information about the location of bars and structures). Because of the existence of other
robots which may change the world in sometimes unexpected ways, it is important for
each robot to sense certain critical aspects of its environment continuously.Some of the
T-R programs (in graphical form) for controlling a robot in grabbing a bar are shown in
Fig. 13. The primitive actions, in LISP notation, are (grab bar), (move), (tum-cw), and

(get bar): (grab-raady bar):

(grabbing bar)

(grab.bar)

(positioned-at bar) )

(grab-ready bar)
W, /

(go-near-and-align-with bar):

@ bar) (aligned-@

(pointat bar)

positloned-at bar)

'\ (move)

(aligned-with bar)

(go-near-and-align-with bar)

(near bar)

(goto (place-near bar))

Figure 13
. Some T-R Programs for Grabbing a Bar

(turn-ccw). The programs pointat and goto are themselves T-R programs (similar to but
somewhat more complex than the one illustrated in Fig. 3). The predicates and terms
used are defined roughly as follows:

21




grabbing the bar named bar. (Bars are named by their position-orientation coordinates.)

(positioned-at bar): a predicate which is true if the robot is within the grabbing
distance of bar and facing it

(aligned-with bar): a predicate which is true if the robot is facing bar and positioned
on a line perpendicular to it

(near bar): a predicate which is true if the robot is positioned on a line perpendicular to
bar and within a certain distance of it

(place-near bar): a computed location from which the robot can move toward bar to
grab it

A robot controlled by this program exhibits interesting homeostatic behavior, So long as
the robot is grabbing bar the system is stable. If a grabbed bar is taken from a robot
under the control of this program, the robot will become active and persist until it grabs it
again, If the target bar moves while the robot is heading toward it, the robot will
appropriately correct its own course (although I have not yet implemented programs that

try to predict the bar’s course).

The programmer need only be concerned with inventing the appropriate predicates from
the available perceptual functions and how they are to be used as goals and subgoals.
S/he does not need to worry about providing interrupts of lower level programs so higher
level ones can regain control. Debugging T-R programs presents some challenges,
though. Since they are designed to be quite robust in the face of environmental
uncertainty, they also sometimes work rather well even though they are not completely
debugged. These residual errors might not have undesirable effects until the programs
are used in higher level programs—making the higher ones more difficult to debug.

VII. Other Approaches for Specifying Behavior
There have been several formalisms proposed for prescribing sensory-directed, real-time

activity in dynamic environments, Many of these are closely related to the T-R language
proposed here. In this section I point out the major similarities and differences between

T-R programs and a representative, though not complete, sample of their closest relatives.

A. Production Systems

As has already been mentioned, production systems [Waterman, 1978] with ordered
production rules lock very much like T-R programs. The intermediate-level actions
(ILAs) used in the robot Shakey [Nilsson, 1984] were programmed using production
rules and were very much like T-R sequences except that the ILAs did not have circuit
semantics. Neither do other production systems. Also a programmer would ordinarily

22

R M TR AT D,

At AT bl dWe e " Saaudl



write a T-R program in such a way that the actions specified by the i-th rule would
typically cause the condition in a ruie higher in the ordering to become true,

B, Situated Automata and Other Circuit-Based Systems

Kaelbling has proposed a formalism called GAPPS [Kaelbling, 1988; Kaclbling, 1990],
involving goal reduction rules, for implicitly describing how to achieve gozls. The
GAPPS programmer defines the activity of an agent by providing sufficient goal
reduction rules to connect the agent’s goals with the situations in which it might find
itself. These rules are then compiled into circuitry for real-time control of the agent.
Rosenschein and Kaelbling [Rosenschein, 1986] call such circuitry situated automata.

A collection of GAPPS rules for achieving a goal can be thought of as an implicit
specification of a T-R tree in which the computations needed to construct the tree are
performed when the rules are compiled. The GAPPS programmer typically exerts less
specific control over the agent’s activity—leaving some of the work to the search process
performed by the GAPPS compiler. For example, a T-R tree to achieve a goal p, can be
implicitly specified by the following GAPPS rule:

(defgoair {(ach 7p)
(if ((holds ?p) (do nil))
((holds (regress ?a ?p)) (do ?a))
(T ach (regress ?a ?p)) ))

The recursion defined by this rule bottoms out in rules of the form:

(defgoalr (ach ¢)
((holds v) (do a)))

where ¢ and v are conditions and o is a specific action.

The compiling process needed to transform GAPPS rules into circuitry might exceed the
time bounds required for real-time control in dynamic worlds, and for this reason
compilation must be done before run time. Pre-run-time compiling means that more
circuitry must be built than might be needed in any given run because all possible
contingencies must be anticipated at compile time. Since T-R programs already provide
an explicit (though highly conditional) >ecification for action, they can be interpreted to
create just the circuitry needed in bounded time at run time. The two formalisms do
share, however, the important notion of using circuitry for run-time control.

In implementing a system to play a video game, Chapman [Chapman, 1990] compiles
production-like rules into digital circuitry for real-time control using an approach that he
calls "arbitration macrology.” As in situated automata, the compilation process occurs
prior to run time.

23

N .




C. Situated Control Rules

Drummond [Drummond, 1989] introduces the notion of a plan net which is a kind of
Petri net [Reisig, 1985] for representing the effects of actions (which can be executed in
parallel). Taking into account the possible interactions of actions, he then projects the
effects of all possible actions from a present state up to some horizon. These effects are
*rpresented in a structure called a plan projection. The plan projection is analyzed to
see, for each state in it, which states possibly have a path to the goal state. This analysis
is a forward version of the backward analysis used by a programmer in producing a T-R
tree. Situated control rules are the result of this analysis; they constrain the actions that
might be taken at any state to those which will result in a state that still possibly has a
path to the goal. But they don’t guarantee a shortest (or least costly) path, and neither
they nor Petri nets embody circuit semantics.

D. Reactive Plans

Several researchers have adopted the approach of using the current situation to index into
a set of pre-arranged action sequences. This set can either be large enough to cover a
substantial number of the situations in which an agent is likely to find itself or it can
cover all possible situations. In the latter case, the plan set is said to be universal
[Schoppers, 1987]. Georgeff and Lansky [Georgeff 1987] have implemented a system
called PRS in which plans for action sequences can be cached and those appropriate to
the current situation can be retrieved and executed. Firby [Firby, 1987] has proposed
modules called "reactive action packages." The "routines" and "running arguments" of
Agre [Agre, 1989] are of a similar character. As with T-R sequences, time-space trade-
offs must be taken into account when considering how many different conditions must be
anticipated in providing reactive plans. Ginsberg has noted that in several domains, the
number of situations likely to be encountered by the agent is so intractably large that the
agent is forced to postpone most of its planning until run time when situations are
actually encountered [Ginsberg, 1989].

E. Other Languages and Formalisms

Brooks has developed a behavior language, BL [Brooks, 1989], for writing reactive robot
control programs based on his "subsumption architecture” [Brooks, 1986]. A similar
behavior description language, BDL, has been implemented by Gat and Miller [Gat,
1990]. Programs written in these languages compile into structures very much like
circuits whose action computations are performed in bounded time. Again, compilation
occurs prior to run time. It has been relatively straightforward to transiaiec examples of
subsumption-architecture programs into the T-R tree formalism, although I think my run-
time interpretation has advantages over their design-time compilation.

24




ESTEREL {Berry, 1983] is a computer language whose programs compile into finite-
state machines. These machines are inserted into the environment along with the
processes they control. The ESTEREL formalism is based on discrete states and events
in contrast to the durative actions and circuit semantics of the T-R language. ACORE
[Manning, 1989] is a language for writing asynchronous and concurrent programs that
have many features in common with T-R programs.

Research has also been directed at problems in which the dynamic environment itself can
be either fully or partially described as an automaton; control actions can then be based
on anticipated environmental conditions. For a representative, though incomplete,
sample see: [Pneuli, 1989; Ramadge, 1989; Lyons, 1990; and Harel, 1988].

VIII. Automatic Planning and Learning

In this section I suggest som :reas for incorporating planning and learning systers in
agents using T-R programs. Atthough these ideas are relatively straightforward, their
implementation in a complete agent architecture would require extensive additional work.

A. Planning

A T-R sequence is much like a plan represented in triangle-table form constructed by
STRIPS [Fikes, 1972]. Each of the K; of a T-R sequence corresponds to a triangle table

kernel. In the PLANEX execution system for triangle tables, the action corresponding to
the highest-numbered satisfied kernel is executed. The major difference between T-R
sequences and triangle tables is that T-R sequences have circuit semantics and triangle
tables do not. This similarity suggests that T-R sequences could be automatically
constructed by an automatic planning system suitably modified to deal with durative
(rather than discrete) actions. This modification may require that the planning system
use a temporal logic in order to be able to represent the effects of durative actions.

Both triangle tables and T-R sequences can be thought of as representing solution paths
in a search space generated by a backward-directed planning system. After the planner
completes the search and finds a solution path, this path can be converted into either a
triangle table or a T-R sequence. A T-R tree can similarly be thought of as the entire
search tree (including the solution path) produced by a regression-based planner. Thus, a
T-R tree for achieving some particular goal can be generated by a backward-directed
automatic planning system. (The idea of a triangle table can be generalized to a triangle-
table tree [Nilsson, 1989]. I have also proposed a scanning algorithm for triangle table
trees [Nilsson, 1990b].) I believe that one of the potential advantages of the T-R
formalism (over other reactive languages) is this similarity between T-R trees and
planning search trees.

B. Leaming
I imagire that a human programmer might initially supply some T-R programs for an

25




agent and that automatic planning and learning systems would incrementally modify and
add to these programs. There are two major issues to discuss related to such incremental
modification. One is coverage, and the other is accuracy. The coverage problem
concerns the fact that the human programmer might not anticipate the precise set of
situations or goals that the agent will ultimately face. I would like the automatic planning
system to be able to add and to modify programs as new goals and situations are
encountered. The accuracy problem concemns the fact that the human programmer might
not have a sufficiently correct model of the agent’s actions—neither as s/he has used
them in hand-coded T-R programs nor as described to the planner. One might attempt to
apply machine learning techniques to the problem of learning more accurate descriptions
while the agent is actually behaving in its world. These modified descriptions would then
be used by the planner in subsequent T-R program generation.

I discuss the matter of T-R program generation and modification first. Suppose there is
no T-R program available in the agent’s repertoire of cached programs to achieve a goal
given to the agent. In this case the planning system can be called to generate one, and a
T-R program can be produced from the resulting search tree. Or suppose, there is a
cached T-R program but no conditions in that program are true. That is, there are no true
nodes in the corresponding T-R tree. In this case it is as if the search process employed
by an automatic planner had already produced this T-R tree but had not yet terminated
because no subgoal was already satisfied in the current state. In this case the planning
system can be called upon to continue to search; that is, the T-R tree will be expanded
until a true node is produced.

In both of these processes, explanation-based generalization [Mitchell, 1986] (similar to
the version of it used for substituting variables for constants in creating generalized
triangle tables [Fikes, 1972]) can be used to generalize the new trees and tree portions.

The reader might object that there is no reason to suppose that the search trees produced
by an automatic planning process will contain nodes whose conditions are those that the
agent is likely to encounter in its behavior. The process for incremental modification of
the T-R trees, however, should gradually make them more and more matched to the
agent’s environment. Trees are modified by the planning system in response to situations
not represented in the existing trees. The trees can be made to match the agent’s needs
even more by keeping statistics on how often their nodes are satisfied. Portions of the
trees that are never or seldorn used can be erased. Such a process would, of course, have
to be sensitive to the relative costs of storage space versus computation time.

Suppose next that the action descriptions implicitly represented in the T-R trees and
explicitly given to the automatic planner might be too often incorrect. In such a case, the
node at the head of an action arc will not usually be the next shallowest true node after
executing that action. Such a possibility prompts us to keep statistics on the efficacy of
actions in a T-R tree. Suppose we associate with each arc aj in the tree a number g that

is equal to the fraction of the cases in which the activation of action a; on that arc led to

26




the activation of the action associated with the expected next arc in the tree. Then, if g
fell below some threshold, the sub-tree hanging below arc aj could be pruned from its
current position and perhaps reattached in a more appropriate place.

In addition to keeping statistics on how often the action associated with arc g; led to the

expected next action, we can create shadow arcs between nodes in the tree that are
sequentially the shallowest true nodes and keep statistics on these shadow arcs. When a
shadow arc becomes sufficiently strong (which will happen at the same time or after the
actual arc becomes sufficiently weak), we can reattach the corresponding tree portion
using the shadow arc.

s Lok o St

I give examples of these changes to a T-R tree in Fig. 14.

b

Broken Link New Link

*Unused" Tree Portion

New Tree Pottion

Figure 14. Modifications to a T-R Tree

27




In Fig. 14, I show a portion of the T-R tree that can be removed because it has been
relatively unused and another portion that is added by a planning system. After adding
the new subtree we might break link a and add link b.

Of course, when a tree portion is re-attached, we have evidence that the corresponding
STRIPS rule is inaccurate. We must also invent mechanisms for changing this rule.
Although I will not deal with this matter in this paper, perhaps techniques similar to those
suggested by Vere [Vere, 1978] for learning relational production systems and/or Shen
[Shen, 1989] for learning the effects of actions will be useful in this regard. (See also
{Christiansen, 1991].)

IX. Conclusions and Future Work

I have presented a formalism for specifying actions in dynamic and uncertain domains.
Since this work rests on ideas rather different than those of conventional computer
science, I expect that considerable more analysis and experimentation will be required
before the T-R formalism can be fully evaluated. The need in robotics for control-
theoretic ideas such as homeostatis, continuous feedback, and stability appears to be
sufficiently strong, however, that it seems appropriate for candidate formalisms
embodying these ideas to be put forward for consideration. An appropriate next step
would be the specification of a comprehensive language based on the T-R formalism and
the implementation of an interpreter and circuit simulator for this language.

The language ought to embody some features that have not been discussed in this paper.
Explicit reference to time in specifying actions might be necessary. For example, we
might want to make sure that some action a is not initiated until after some time t{ and

ceases after some time to. Time predicates, whose time terms are evaluated using an

internal clock, may suffice for this purpose. Also, in some applications we may want to
control which nodes in a T-R tree are actually tested. It may be, for example, that some
conditions won’t have to be checked because their truth or falsity can be guessed with
compelling accuracy.

Experiments with the language will produce a stock of advice about how to write T-R
programs effectively. Already, for example, it is apparent that a sustaining condition in a
T-R sequence must be carefully specified so that it is no more restrictive than it really
needs to be; an overly restrictive condition is likely to be rendered false by the very
action that it is supposed to sustain before that action succeeds in making the next
condition in the sequence true.

It will be interesting to ask in what sense T-R programs can be proved to be "correct.” It
would seem that any verification analysis would have to make assumptions about the
dynamics of the environment; some environments might be so malevolent that agents in
them can never achieve their goais.

28

5]




The question of what constitutes a goal is itself a matter that needs further development.
I have assumed goals of achievement. Can mechanisms be found that continously avoid
making certain conditions true (or false) while attempting to achieve others? Or suppose
priorities on a number of possibly mutually contradictory conditions are specified; what
are reasonable methods for attending to those achievable goals having the highest
priorities?

1 have already speculated about how to integrate planning and learning methods in an
agent architecture that uses T-R programs. Besides extending planning programs to
handle durative actions, we will want them to be able to plan parallel actions. For a
backward-directed planner this ability would seem to require regressing conditions
through parallel actions.

Lastly, I think that it would be fruitful to inquire whether temporal-difference, delayed-
reinforcement learning algorithms [Sutton, 1990] could be used to generate or modify T-
R programs. Related work on learning robot control programs using delayed-
reinforcement methods appears promising [Mahadevan, 1990; Lin, 1991].

X. Acknowledgements

I trace my interest in reactive, yet purposive, systems to my early collaborative work on
triangle tables and ILAs. The present manifestation of these ideas owes much to several
Stanford students including Jonas Karlsson, Eric Ly, Rebecca Moore, and Mark
Torrance. I also want to thank Matt Ginsberg, Leslie Kaelbling, and Karen Myers for
useful comments about earlier versions of this paper. I gratefully acknowledge the
supportive settings provided during part of a sabbatical year by Harvard University and
Prof. Barbara Grosz; and the Massachusetts Institute of Technology and Prof. Rodney
Brooks. Pattie Maes and Maja Mataric at MIT gave me many helpful suggestions. A
week spent at Camegie-Mellon University with Prof. Tom Mitchell and colleagues was
also very enlightening.

This work was performed under NASA Grant NCC2-494; Monte Zweben, Mark
Drummond, and Peter Friedland at NASA-Ames supplied valued constructive criticism.
REFERENCES

Agre 1989

Agre, P., The Dynamic Structure of Everyday Life, MIT Al Lab Technical Report TR
1085, 1989. (Also to be published by Cambridge University Press.)

Berry 1983
Berry, G., Moisan, S., and Rigault, J. P., "ESTEREL: Towards a Synchronous and

29




Semantically Sound High Level Langauge for Real-Time Applications," Proc. IEEE 1983
Real-Time Systems Symposium, 1983.

Brooks 1986
Brooks, Rodney A., A Robust Layered Control System for a Mobile Robot," IEEE
Journal of Robotics and Automation, March 1986.

Brooks 1989 '
Brooks, R. A., "The Behavior Language User's Guide," MIT Artificial Intelligence
Laboratory Seymour Implementation Note #2, October, 1989.

Chapman 1990
Chapman, D., Vision, Instruction and Action, MIT Al Lab Technical Report 1204,

Massachusetts Institute of Technology, April, 1990 .

Christiansen 1991
Christiansen, A., Mason, M., and Mitchell, T., "Learning Reliable Manipulation Strategies
without Initial Physical Models," Robotics and Autonomous Systems, 1991.

deKieer 1986
de Kleer, J., "Problem Solving with the ATMS," Artificial Intelligence, 28, pp. 197-224,
March, 1986. '

Dean 1991
Dean, T., and Wellman, M., Planning and Control, Morgan Kaufmann, San Mateo, CA
1991

Drummond 1989

Drummond, M., “Situated Control Rules," Proc. First International Conf. on Principles
of Knowledge Representation and Reasoning, Toronto, May 1989, Morgan Kaufmann,
San Mateo, CA 1989.

Fikes 1972
Fikes, R., Hart, P., and Nilsson, N., "Learning and Execution of Generalized Robot Plans,"

Artificial Intelligence, 3, 1972.

Firby 1987
Firby, R., "An Investigation into Reactive Planning in Complex Domains," Proc. AAAI-
87, Morgan Kaufmann Publishers, San Mateo, CA, 1987.

Gat 1550

Gat, E., and Miller, D. P., "BDL: A Language for Programming Reactive Robotic Control
Systems," unpublished paper, California Institute of Technology/Jet Propulsion
Laboratory, 1 June 1990.

30




Ginsberg 1989
Ginsberg, M. L., "Universal Planning: A (n Almost) Universally Bad Idea," AAAI Magazine,
10, no. 4, pp 40-44, Winter, 1989.

Georgeff 1987
Georgeff, M., and Lansky, A., "Reactive Reasoning and Planning," Proc. AAAI-87, Morgan
Kaufmann Publishers, San Mateo, CA, 1987.

Hanks 1990

Hanks, S., and Firby, R. J., "Issues and Architectures for Planning and Execution," in Sycara,
K. (ed.), Proc. Workshop on Innovative Approaches to Planning, Scheduling, and Control,
Defense Advanced Research Projects Agency, November, 1990, pp. 59-70, Morgan
Kaufmann, San Mateo, CA, 1990.

Harel 1988
Harel, D., "On Visual Formalisms," CACM, 31, no. 5, pp. 514-530, May, 1988,

Kaelbling 1988
Kaclbling, L. P., "Goals as Parallel Program Specifications," Proceedings AAAI-88, Saint
Paul, MN, pp. 60-65, American Association for Artificial Intelligence, 1988.

Kaelbling 1990
Kaelbling, L. P., and Rosenschein, S. J., "Action and Planning in Embedded Agents,"
Robotics and Autonomous Systems, 6, nos. 1 & 2, pp. 35-48, June, 1990.

Karlsson 1990 ..
Karlsson, J., "Building a Triangle Using Action Nets," unpublished project paper,
Stanford Computer Science Dept., June 12, 1990.

Laird 1990
Laird, J. E., and Rosenbloom, P. S., "Integrating Execution, Planning and Learning in Soar
for External Environments," Proc. AAAI-90, pp. 1022-1029, July, 1990.

Lin 1991
Lin, Long-Ji, "Programming Robots Using Reinforcement Learning and Teaching," Proc.
AAAI-91, AAAI Press, 1991.

Lyons 1990
Lyons, D., "A Formal Model for Reactive Robot Plans," Philips TR-90-038, Autonomous
Systems Dept., Philips Laboratories, 345 Scarborough Road, Briarcliff Manor, NY 10510,
May, 1990.

Maes 1989
Maes, P., "How to do the Right Thing,” Connection Science, 1, no. 3, pp. 291-323, 1989.

31




Mahadevan 1990

Mahadevan, S., and Connell, J., "Automatic Programming of Behavior-based Robots
Using Reinforcement Learning," IBM Research Division Report RC 16359, T. J. Watson
Research Center, Yorktown Heights, NY 10598, December 7, 1990

Manning 1989

Manning, C.R., "Introduction to Programming Actors in Acore,” in Hewitt, C. and
Agha, G. (eds.), Concurrent Systems for Knowledge Processing, MIT Press, Cambridge,
MA 1989,

Mitchell 1986
Mitchell, T. M., Keller, R. M., and Kedar-Cabelli, S, T., "Explanation-based
Generalization: A Unifying View," Machine Learning, 1, 47-80, 1986.

Mitchell 1990
Mitchell, T. M., "Becoming Increasingly Reactive," Proc. AAAI-90, pp. 1051-1058, July,
1990.

Nilsson 1980
Nilsson, N. J., Principles of Artificial Intelligence, Morgan Kaufmann, San Mateo, CA
1980.

Nilsson 1984
Nilsson, N. (ed.), Shakey the Robot, SRI Technical Note 323, April 1984, Menlo Park,
CA 94025.

Nilsson 1989

Nilsson, N., "Action Networks," Proceedings from the Rochester Planning Workshop:
From Formal Systems to Practical Systems," Tenenberg, J, et al. (eds.), University of
Rochester, Computer Science Technical Report 284, April, 1989.

Nilsson 1990a

Nilsson, N. J., Moore, R., and Torrance, M. C., "ACTNET: An Action Network Language
and its Interpreter (A Preliminary Report)," unpublished Stanford Computer Science Dept.
Memo, February 22, 1990.

Nilsson 1990b
Nilsson, N. J., "A Scanning Algorithm for Triangle-Table Trees," Unpublished memo,
Stanford Computer Science Dept., August 23, 1990.

Pneuli 1989

Pneuli, A., and Rosner, R., "On the Synthesis of an Asynchronous Reactive Module,"
Proc. 10th Int’l Colloq. on Automata, Languages, and Programming, 372, pp. 652-671,
Lecture Notes in Computer Science Series, Springer-Verlag, Berlin, July 1, 1989.

32




Ramadge 1989
Ramadge, P. J. G., and Wonham, W. M., "The Control of Discrete Event Systems,"
Proceedings of the IEEE, 77, no. 1, January 1989, pp. 81-98,

Reisig 1985
Reisig, W., Petri Nets: An Introduction, Springer Verlag, 1985.

Rosenschein 1986

Rosenschein, S. J. and Kaelbling, L.P., "The Synthesis of Machines with Provable
Epistemic Properties," In J. F. Halpern, editor, Proceedings of the 1986 Conference on
Theoretical Aspects of Reasoning about Knowledge, pp. 83-98, Morgan Kaufmann
Publishers, Inc., Los Altos, California, March 1986. (Updated version: Technical Note
412, Artificial Intelligence Center, SRI International, Menlo Park, California.)

Schoppers 1987
Schoppers, M. J., "Universal Plans for Reactive Robots in Unpredictable Domains,”’
Proceedings of [JCAI-87, 1987.

Shen 1089
Shen, Wei-Min, Learning from the Environment Based on Percepts and Actions, PhD

thesis, CMU-CS-89-184, Carnegie-Mellon University, School of Computer Science, 1989.

Sutton 1990

Sutton, R. S., "Integrated Architectures for Learning, Planning, and Reacting Based on
Approximating Dynamic Programming," Proc Seventh Int'l Conf. on Machine Learning,
Morgan Kaufmann, San Mateo, CA, June 1990.

Teo 1991
Teo, P., "Botworld," Stanford University Robotics Laboratory, Unpublished Memo,
December 10, 1991.

Vere 1978

Vere, S. A., "Inductive Learning of Relational Productions," in Pattern-Directed
Inference Systems, Waterman, D. A. and Hayes-Roth, F. (eds.), pp. 281-295, Academic
Press, New York, 1978.

Waterman 1978

Waterman, D. A. and Hayes-Roth, F., "An Overview of Pattern-Directed Inference
Systems," in Pattern-Directed Inference Systems, Waterman, D. A. and Hayes-Roth, F.
(eds.), pp. 3-22, Academic Press, New York, 1978.

33




	1997047568.pdf
	0019B02.tif
	0019B03.tif
	0019B04.tif
	0019B05.tif
	0019B06.tif
	0019B07.tif
	0019B08.tif
	0019B09.tif
	0019B10.tif
	0019B11.tif
	0019B12.tif
	0019B13.tif
	0019B14.tif
	0019C01.tif
	0019C02.tif
	0019C03.tif
	0019C04.tif
	0019C05.tif
	0019C06.tif
	0019C07.tif
	0019C08.tif
	0019C09.tif
	0019C10.tif
	0019C11.tif
	0019C12.tif
	0019C13.tif
	0019C14.tif
	0019D01.tif
	0019D02.tif
	0019D03.tif
	0019D04.tif
	0019D05.tif
	0019D06.tif
	0019D07.tif
	0019D08.tif
	0019D09.tif
	0019D10.tif
	0019D11.tif
	0019D12.tif




