
NASA Technical Memorandum 113124

f

_;4 ",1/f"3

Vibrational Analysis of Engine Components
Using Neural-Net Processing and
Electronic Holography

Arthur J. Decker, E. Brian Fite,

Oral Mehmed and Scott A. Thorp

Lewis Research Center

Cleveland, Ohio

Prepared for the

90th Symposium

cosponsored by the Advisory Group for Aerospace Research

and Development and the Propulsion and Energetics Panel

Brussels, Belgium, October 20-24, 1997

National Aeronautics and

Space Administration

https://ntrs.nasa.gov/search.jsp?R=19970040184 2020-06-16T01:36:02+00:00Z



Trade names or manufacturers' names are used in this report for identification

only. This usage does not constitute an official endorsement, either expressed

or implied, by the National Aeronautics and Space Administration.



Vibrational Analysis of Engine Components

Using Neural-Net Processing

and Electronic Holography

Arthur J. Decker, E. Brian Fite, Oral Mehmed and Scott A. Thorp

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135
United States

1. SUMMARY

The use of computational-model trained artificial neural

networks to acquire damage specific information from
electronic holograms is discussed. A neural network is
trained to transform two time-average holograms into a

pattern related to the bending-induced-strain distribution of

the vibrating component. The bending distribution is very
sensitive to component damage unlike the characteristic

fringe pattern or the displacement amplitude distribution.
The neural network processor is fast for real-time

visualization of damage. The two-hologram limit makes the
processor more robust to speckle pattern decorrelation.

Undamaged and cracked cantilever plates serve as effective
objects for testing the combination of electronic holography

and neural-net processing. The requirements are discussed
for using finite-element-model trained neural networks for

field inspections of engine components. The paper

specifically discusses neural-network fringe pattern analysis
in the presence of the laser speckle effect and the
performances of two limiting cases of the neural-net
architecture.

2. INTRODUCTION

As NASA's Turbomachinery Center of Excellence, Lewis
Research Center (LeRC) is involved in the testing of various

types of rotating machinery including compressors, turbines,

fan blades and propellers. Blades are tested in an electronic
holography laboratory to obtain frequency and mode shape
information for use in wind tunnel and test cell research

programs. Over time, this process has been found to be a

reliable way of predicting frequencies and mode shapes of
blades as well as other test articles. Laboratory electronic

holography has become an integral part of the turbomachinery
testing, design and fabrication process.

One way to reduce the cost of wind tunnel testing is to inspect

components in situ rather than the laboratory. Non-
interference inspection to detect crack damage in blades is

needed after high vibration stress amplitudes and cycles occur
during testing with rotating blades. High stress amplitudes

and cycles have been encountered at resonance, flutter and
stall conditions during mapping and operability testing of
turbojet engine fan models at LeRC. A blade inspection is
wise when the stresses exceed the safe stress limits that have

been preset.

Removing the blades from a rotor for laboratory inspection
for damage or changed vibration characteristics is expensive
in terms of lost test time and facilities costs. Hence, whole-

field, real-time, in-situ optical inspections using electronic

holography are especially attractive. Electronic holography is
non-intrusive and has the potential to reduce the number of

expensive-to-install, intrusive strain gages needed for wind
tunnel testing and for detection of damaged regions.

One defect of electronic holography is that the display of the

displacement distribution of a vibrating component may
• . • l Arequtre as many as twelve prewously acqmred frames.

pipeline processor maintains the illusion of a real-time
display, but the speckle patterns must remain correlated
between members of sets of twelve frames. That requirement

is hard to maintain outside a laboratory. Regardless, neither

the characteristic fringe patterns of classical time-average
holography nor the displacement distributions that can be
calculated from electronic time-average holography are ideal

for inspecting for damage. Instead, the bending induced
strain distribution 2 has been shown to be a much better

indicator of damage to composites as well as cracking in

metals. 3 But the bending distribution must be calculated from

a very accurately known displacement distribution.

Artificial neural networks are being tested as alternative

processors for electronic holography at LeRC. The goal is to
extract damage specific information from as few frames as

possible so that electronic holography will be convenient to
use for structural inspections in the 9X15 wind tunnel and

spin rigs at LeRC. In fact, an electronic hologram can be
recorded during a single, electronically shuttered field of a

television frame using a continuous wave laser. Short-

exposure, time-average holograms can be recorded
electronically to achieve the goals suggested for flashlamp

pumped dye lasers at another AGARD conference more than
• 4

ten years earher. That paper proposed using time-average
holography for measuring velocity field information in a flow

rather than for measuring structural displacement and strain
fields.

The neural network processor requires a computational-model

generated training set. The model consists of a

phenomenological model and a model of the optical
measurement process. A finite element model is the
phenomenological model used to compute the predicted
vibration modes of a fan blade. 5 A crack model is

incorporated for predicting damage. The electronic

holography process must be modeled realistically to include a
fluctuating laser speckle effect, variations in the sensitivity
vector, variations in the CCD camera response and variations

in vibration amplitude. 6 A training set consists of records,
and a record contains input and output patterns. The input

pattern is the characteristic fringe pattern generated by the

electronic holography process. The output pattern is a
distribution of a component of the bending induced strain.

The trained neural network is then tested for robustness by

presenting it with model generated test patterns that vary
these factors. Then the neural network is tested with patterns
recorded from real structures. The final stage is to encode,

compile and link the neural network with the electronic

holography video•

The next section discusses the setups, computers and facilities

where the work is being done.

3. FACILITIES AND EXPERIMENTAL

EQUIPMENT
Graphics workstations containing various hardware and
software video and graphics options 7 perform the electronic

holography and the neural-net processing. The neural

networks are generated and trained using a commercial
software package, s The trained nets are then converted to C

language code for linking with the electronic holography
software. The performances of the workstation resident
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neuralnetworksandelectronic holography are discussed
later.

Trained neural networks are tested with both model generated
and experimental data. The experiments are performed in a

holographic vibration analysis laboratory with a large
vibration isolation table; argon-ion, helium-neon, diode and

Nd:YAG lasers; and several means for mounting and

vibrating turbomachinery blades and other components.
The laboratory is used routinely for electronic holographic
surveys of turbomachinery components and has been used for

holography in general since 1976. Lewis Research Center's
Low Noise Fan Program and outside industries 9 have been

frequent, recent customers.

Electronic holograms are transferred directly to the
workstations using ordinary NTSC (American television

standard) 30 frame-per-second, 60 field-per-second, CCD
(charge coupled device) cameras. The workstations handle as

easily PAL (the European television standard). The hardware

employs DMA (direct memory access) to transfer the
television frames to RAM (random access memory). The

workstations axe intended specifically to implement color
graphics such as OpenGL l° on color monitors. Hence pixels

are packed in multiple byte format. The work reported in this
paper used RGBA format consisting of red, green, blue and

alpha bytes or RGB 332 P format where three colors are
packed into a single byte. These formats are really very

inefficient for electronic holography which depends on
single-byte Luminance values.

Processing the holograms in RAM prior to displaying the

results can slow down the response considerably. However,
we can process a few hundred to a few thousand large pixels

(finite element resolutions) while maintaining the 30 frame-
per-second display.

A more serious potential problem is frame-to-frame or field-

to-field extraneous motions and speckle-pattern de-
correlations, particularly outside the laboratory. The actual

hologram exposure time can be controlled by the electronic

shutters in the CCD cameras. For electronic time-average
holography, the shutter needs to be open only for about one
vibration cycle. The time between frames can be similarly

short, if a locally available high-speed array of CCD cameras

is used. Then, bursts of 50,000 or more frames per second
become feasible.

LeRC's 9x 15-foot wind tunnel is a target facility for applying
neural-net processing and electronic holography. Some of the

authors have recently been involved with tests of advanced
fan models in this wind tunnel. Two of the fan models

required blade inspections for crack damage after vibration
stresses exceeded preset limits.

Accurate and complete models are critical for effective use of

neural-net processing in electronic holography as discussed
in the next section.

4, STRUCTURAL AND ELECTRONIC-

HOLOGRAPHY MODELS FOR TRAINING
ARTIFICIAL NEURAL NETWORKS

The models contain phenomenologicai and optical
components and must generate representative sets of training

records. The neural networks must also be trained, by
example, to ignore irrelevant variations. For example, the

neural networks might be trained to ignore irrelevant
variations in mode shapes caused by blade mounting

variations. The neural networks must be trained to perform
accurately in the presence of the laser speckle effect.

Modeling introduces a multidisciplinary expert requirement

for using neural networks in electronic holography.

A finite element model is the phenomenological component
for this discussion. Finite element models can be used to

generate about the first six vibration modes of a blade with

good engineering accuracy. A simple cantilever plate serves
as the object for this discussion.

Three analytical flat plate models were developed and used as
training sets for the neural network. The models simulated

both damaged and undamaged plates. All three flat plate
models are 7.62 cm (3") wide by 15.24 cm (6") long and have
a thickness of 0.254 cm (0.1"). A finite element model was

generated consisting of a 20x42 mesh of quadrilateral

elements along the mid-thickness of the plate ( Figure 1 ). The
plate models were idealized as cantilevered plates with the

bottom edge constrained in all six degrees of freedom. The
material is 6061-T6 Aluminum with a Young's Modulus of
66.19 GPa (9.6x106 psi) , a Poisson's Ratio of .33, and a

Mass Density of 2712.832 kg/m 3 (2.536x10 4 lbs sec2/in4).

Fig. 1-Finite Element Model.

The first model is a fiat plate with no damage included. The
second and third models include a vertical and horizontal

crack, respectively. Both cracks are located 3.81 cm (1.5")

from the long edge and 2.54 cm (1") from the bottom edge.

The crack was simulated by creating two coincident grids at

this location. The connectivity for the adjacent elements

surrounding this location was defined to generate an idealized

horizontal crack for the second model ( Fig. 2 ) and a vertical

crack for the third model ( Fig. 3 ).

Coincident G£Ld PoLnt_

(Shown Seperated for Clarity)

Fig. 2-Horisontai Crack.
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Fig. 3-Vertical Crack.

MSC/NASTRAN Solution 103 was used to solve for eight

normal modes and frequencies. The eigenvectors were
normalized with respect to the generalized mass. An output

file of the eigenvalues, eigenvectors, and modal strains was

then provided to train the neural network.

The optical model of electronic holography in the presence of

the laser speckle effect has been discussed in another
publication, v A training record contains input and output
vectors to be received and generated, respectively, by a feed
forward artificial neural network. The input vectors contain

finite element resolution characteristic fringe patterns. Figure
46 shows characteristic fringe patterns, respectively, from an

old silver-halide-emulsion time-average hologram of

a vibrating blade, from two electronic holograms of a
vibrating cantilever plate, from model-generated, finite-

element-resolution holograms of a vibrating cantilever plate,
and from two finite-element-resolution, electronic holograms

of an actual vibrating cantilever plate. The mode shown is the
first chord-wise mode of interest in tip cracking of blades.

The model generated and measured characteristic fringe
patterns appear very similar.

(a) (b) (c) (d)

Fig. 4-First Chord-Wise Mode: (a) Silver Halide

Hologram, (b) Electronic Holograms, (c) Model

Generated Holograms at Finite Element

Resolution, (d) Electronic Holograms at Finite

Element Resolution.

Electronic holography has been discussed in various forms by

many authors. Electronic time-average holography is
explained very well, for example, by Stetson and Brohinsky. 4

The holographer records image plane holograms consisting
of the interferences between smooth reference beams and

speckled object beams from vibrating structures. The
vibration amplitude distribution can be estimated from twelve

holograms containing combinations of hologram-to-
hologram phase shifting and phase modulation, if the speckle

patterns remain correlated between holograms. The simplest
application of electronic time-average holography is

accomplished with two frames, where the reference-beam
phase is shifted by _ between two frames and the frames are

subtracted. These actions provide visualization of the
characteristic fringe patterns as shown in fig. 4.

The two-frame (or two-field) method of electronic time-

average holography supplies the input records for training
neural networks. The input patterns are given mathematically

by

(Speckle Pattern) X J0(2_K-_)

where 8 is the displacement vector in wavelengths provided
by the finite element modeler and K is the sensitivity vector

given as the difference between the input and reflected light-
ray directions. Speckle patterns in general are modeled with a

negative exponential intensity distribution and a uniform
phase distribution. The workstations have pseudo random

number generators with enormous periods to assure sample-
to-sample independence of the speckle patterns. The input

patterns are generated from the absolute value of the zero
order Bessel function J0 and are usually normalized between
0 and 1. A saturation effect is sometimes introduced by

multiplying the patterns by an arbitrary factor followed by
setting inputs greater than 1 at 1 .

The model generated output vectors of the training records
could contain the displacement amplitude distribution, but a

quantity proportional to the bending induced strain is more

useful for inspection. Bending induced strain, computed from
fringe patterns reconstructed from double-exposure

holograms, has been shown to be very sensitive to damage
such as cracking. 3 Performing inspection for damage is the

principal reason for using neural networks for processing
electronic holograms. In fact, visual inspection of

characteristic fringe patterns is not a very sensitive way to
look for damage. Figure 5 shows characteristic fringe

patterns computed from the structural model of a damaged
cantilever plate. The damage induced variation in

displacement changes by an order of magnitude from picture

to picture. Not until the final picture does the characteristic
pattern show a significant visual change. Artificial neural
networks can be trained to recognize damage much earlier.

Fig. 5.Characteristic Patterns for Crack Induced

Displacement Changes of (a) 1X, (b) 10X, (c) 100X

(d) 1000X the model value.

h

Fig. 6-Strnin Patterns for (a) Undamaged and (b)

Cracked Cantilever Plates.

Surface bending induced strain is computed from the second
derivatives of the normal component of displacement. 2

Holography visualizes the quantity K-5, but K often varies

slowly enough that the second derivatives of 8 are adequate.
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Figure6 shows model generated, chord-wise bending induced

strain patterns for the mode shown in fig. 4. The patterns are
shown for undamaged and cracked samples.

The vertical crack model (Fig. 3) was used to generate the

patterns.

The formats, training, testing and performances of the neural
nets are discussed next.

5. NEURAL NETWORKS FOR DETECTING

DAMAGED VIBRATING STRUCTURES

This work is based exclusively on feed forward neural

networks with one hidden layer. These networks have been
divided into two classes: sparse and dense. Sparse neural

networks, where the number of hidden-layer nodes is less
than 10 percent of the number of inputs, have been discussed

for vibrational analysis in another publication. 6 Sparse neural
networks train rapidly and can be linked to a workstation's

video without degrading the real-time performance. The
number of hidden-layer nodes, by contrast, in a dense neural

network approaches the number of input nodes or nodes in

the finite element model. The parallelized code (loop free)
for these networks requires large resources for compilation
and linking with the workstation video. The dense nets train

slowly and degrade the real-time performance of the
workstation video. But the dense nets are more immune to

variations in vibration amplitude. The sparse nets yield false

readings outside a narrow range of vibration amplitudes.
Regardless, the neural networks must be trained to be immune
to the laser speckle effect.

The remaining discussion in this section refers to a cantilever

plate with the displacement given at 903 nodes. The chord by

span arrangement of the nodes is 21 X 43 . Blade designs
typically use between a few hundred and a few thousand

finite elements. The speckle pattern problem can be placed in
perspective by noting that there are 2569o3 possible input

patterns given an 8-bit dynamic range for representing
luminance. But there are only 903 linearly independent

patterns. Response surface methods used in the study of
sparse nets for vibrational analysis showed that very few

hidden-layer nodes and about 10 percent of a set of linearly
independent speckle patterns confer immunity to the speckle

effect. Only 100 speckle patterns and 6 hidden-layer nodes
were needed to train a speckle-effect-immune net to recognize

the difference between damaged and undamaged cantilevers.
The bending induced strain distributions for this test are

shown in fig. 6. Samples of the performance of the neural-net
video are discussed in the next section.

The conditions under which the sparse nets can be used to
inspect for blade damage are restricted. The nets were able to

learn to distinguish only two or three distinct characteristic

patterns (different vibration amplitudes) in the amplitude
range from 0.25 waves to 0.75 waves of maximum

displacement. The sparse nets were actually unable to learn
the minimum crack contained in the original models. In fact,
successful training required that the effect of the crack be

amplified. The modeled damaged and undamaged

distributions were subtracted; the difference was multiplied
by a factor; and the amplified difference was added to the

undamaged amplitude distribution. Figure 5 shows the effect
of this process on the calculated characteristic fringe pattern

for factors ranging from 1 to 1000. The minimum factor for
successful training was 7 . The sparse nets still responded

with a false identification rate of 20 percent at an
amplification factor of l0 (Fig. 5b). The false identification

rate was 0 percent for an amplification factor of 100 (Fig.

5c). A more difficult restriction on the use of sparse nets has
been the need to control the vibration amplitude to avoid false
readings. A network that was model trained at a maximum

vibration amplitude of 0.5 waves responded accurately to a

set of test examples only when the test amplitudes were
controlled within _+0.05 wave of 0.5 waves. A point to be
noted is that these inspections were used to detect cracks near

the base of the cantilever approximation to a blade. A crack

was simulated in a physical cantilever by grinding a groove
near the position of the modeled crack. The first chord-wise

mode (lyre mode) is most sensitive, in fact, for detecting tip
cracks.

The response surface study used to optimize the sparse nets
showed that the generalization (interpolation and

extrapolation) capability of the neural networks improved
slowly as the number of hidden-layer nodes was increased.

This improvement was found to continue as the number of
hidden-layer nodes exceeded 10 percent of the inputs.

Subsequently, neural nets were tested on both model
generated and measured characteristic patterns where the

number of hidden-layer nodes equaled or exceeded 100. The
performances of the nets for training and crack identification

depended on the crack amplification factor as in the case of

the sparse nets. But the dense nets were able to separate
damaged from undamaged samples over a larger range of

amplitudes than the sparse nets. Non optimized compilation
of the parallelized C language code for the neural nets was

limited to nets containing about IO0 hidden-layer nodes.
The object file for a sparse net is tess than a megabyte. The

object code for a dense net containing 100 hidden-layer
nodes is about l0 megabytes. The memory and swap space

required for compilation are orders of magnitude larger.
Research continues on the use and performance of dense nets
as well as sparse nets.

The real-time performance of the neural networks in the video

system is discussed next.

6o PERFORMANCE OF WORKSTATION
RESIDENT NEURAL NETWORKS FOR

DAMAGE INSPECTION

Real-time vibrational analysis and inspection using electronic

holography and neural-net processing imply image update

rates measured in frames per second. The following results
were obtained with holograms and synchronization provided
by an off-the-shelf monochrome CCD camera and processed
and displayed by one of the workstations. H

(a) (b) (c)

Fig. 7-Video Displays of (a) Characteristic Pattern,

(b) Neural-Net Output for Undamaged Cantilever,

(c) Neural-Net Output for Cracked Cantilever.

Figure 7 was created from inputs and outputs processed at

about V2 frame per second. Pairs of holograms were
captured of cantilevers vibrating in the lyre or fast chord-wise
mode. A vibrating mirror was synchronized with the CCD

camera and was used to shift by n the reference-beam phase

between holograms. The 640 X 480 pixel holograms were
cropped to the size of the cantilever image (about 153 X 303

pixels); subtracted; zoomed without filtering to the 21 X 43
pixel finite element resolution; converted to binary format;

normalized; and processed by the neural network. The output
of the neural network was converted to image format, stored,

and displayed. Post capture processing was accomplished
with the workstation's standard image processing commands

and with a slightly modified version of the image subtraction

command. This slow processor is very convenient for storing
a statistically relevant sample of frames for measuring the
false positive and false negative rates for crack detection as
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wellasmeasuringtheperformanceofelectronicholography
in thepresenceofenvironmentaldisturbances.Figure7a
showsacharacteristicpatternataboutthe153X 303pixel
resolution;fig.7bshowsadensitypatternoftheoutputofthe
neuralnetworkforanuncrackedcantileverplate;andfig.7c
showsanoutputof theneuralnetworkfor a cracked
cantileverplate.Theoutputsof theneuralnetworkare
displayedatthe21X43pixelresolution.
Thedisplayformatatthehigherframeratesisthesameas
shownbyfig.7,buttheneural-netandimageprocessing
routinesmustbelinkedwiththeworkstation'svideolibrary.
Themeasuredframerateisabout30framespersecondfor
thesparsenetscontaining6 hiddenlayernodesand903
inputs.Themeasuredframeratedecreasestoaboutl0
framespersecondwhenthenumberofhidden-layernodesis
increasedto 100. Synchronizationof thecamera,the
workstationvideo,the neural-netprocessingandthe
workstationgraphicscanbechallengingatthehigherframe
rates.
7. CONCLUDINGREMARKS

Artificialneuralnetworkshavebeenusedtoprocessfinite-
element-resolutiontime-averagefringepatternsatvideorates.
Thefull videoratesareavailableto neuralnetworks
containingafewhidden-layernodes.Neuralnetworkswith
manyhidden-layernodesgeneralizebetter,butatslightly
lowerframerates.Theprocedurewasdevelopedfor
electronicholographyandvibrationanalysis,butcanbe
generalizedto otherapplicationswheretherearegood
phenomenologicalandvisualizationmodels.
Thestructuralapplicationhasproventobeverysensitiveto
smallchangesin themodeshapes.Perhaps,themajor
challengein usingtheholographiclaboratoryhasbeen
realisticmountingof bladesandothercomponentsfor
vibrationanalysis.Themountingandexcitationtechniques
aswellasdamageproducesubtlevariationsinthevibration
modeshapes.Someoftheartificialneuralnetworksarevery
sensitivetothesesubtlevariations.Theworksofarhas
shownthatneuralnetworkscanbetrainedtogeneralizeon
thelaserspeckleeffectandthatdensenetscanhandle
vibrationamplitude variations. Whether neural networks can
be trained to ignore irrelevant variations in mode shapes
remains to be discovered.

To perform a holographic inspection without removing blades
from the rotor requires the blades to be seated properly in
their retention and vibrated. In model designs at NASA, the

blades are normally loose in their retention when the rotor is

stationary and are seated during rotation. Thus, a means has
to be devised to conveniently seat installed blades to do in-

situ damage inspection. This is another challenge that must
be overcome to make this method of inspection practical.

As demonstrated in this paper, artificial neural networks can
serve as high-speed interfaces between computational models

and experiments or tests that generate optical patterns.
Whether these interfaces will be efficient, practical and cost
effective remains to be discovered.
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