
/_/_///L. xc / / 206062
t,' _ L " I,

j,.. 'f-'_ tL_#_ •

Final Report for first year of prime Contract NAS2-14090 _:: / ; _./.

"Research in Computational Aeroscience Applications Implemented

on Advanced Parallel Computing Systems"

Larry Wigton, March 28, 1996

Overview

The primary purpose of the first year of the contract was to improve the numeri-

cal linear algebra routines for use in new Navier-Stokes codes, specifically Tim Barth's

unstructured grid code, with spin-offs to TRANAIR. Professor Yousef Saad, one of the

world's leading authorities on matrix-iterative methods and the originator of the industry

standard GMRES algorithm was used as a subcontractor.

Originally it was intended that all code development work for the new numerical lin-

ear algebra algorithms would be done at Boeing under Saad's supervision. However Saad

was able to hire a research assistant, Andrew Chapman, to do this work, so some of Boe-

ing's direct participation in the contract was delayed until initial coding of fundamental

algorithms was completed. This extra time was devoted by Boeing to write a much needed

fast distance calculation routine for Navier-Stokes codes using the new one-equation tur-

bulence models. Key ideas for this distance calculation were motivated by Tim Barth's

code. However, work on the distance function was an unexpected bonus, not part of the

original contract work statement and thus was not charged to the contract. Even so, the

fast distance calculation routine is being made available to grateful Navier-Stokes code

developers at NASA.

The primary focus of the first year's work, devoted to improving matrix-iterative

methods, was very successful. New algorithms have been developed which activate the

full potential of classical Cray-class computers as well as distributed-memory parallel

computers. The technology which has been developed is having immediate impact on

design processes at Boeing, and is influencing our near term research projects. The

results were so good that the project engineers demanded that the new algorithms be

implemented in TRANAIR right away. A crash program was instigated to accomplish

this just in time for the 747 rewing project. Naturally this activity has received favorable

attention from high-level Boeing mangers. In addition the TRANAIR speed ups should

be well received by NAS officials who have lodged repeated complaints about how slow

TRANAIR runs on the NAS C90.

These excellent results were achieved by having different groups working on similar

tasks communicating with each other via e-mM1. In this manner "critical mass" was

brought together, each group providing a different set of skills and ideas and providing

motivation and encouragement to the other groups. This was an almost text book case

of how NASA/Industry/University collaboration should work. Specific details follow.

https://ntrs.nasa.gov/search.jsp?R=19970041271 2020-06-16T01:34:00+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42772679?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Summary of Significant Technical Results

A list of the some of the most significant technical results achieved during the first

year of the contract are enumerated here. We will follow with sections which discuss each

of these results in detail.

1. Fast Distance Calculation.

2. BILU routines.

3. DGMRES Algorithm.

4. Block GMRES.

5. TRANAIR Speed Up.

As compared to the draft of the final report dated December 21, 1995 but not submitted

until January, 1996 because of the government shutdown, the section on TRANAIR Speed

Up is new. Only minor corrections have been made to the other sections. The reader

may be amused by comparing some of the bold predictions made in the draft of the final

report with the reality, as it exists so far, described in the TRANAIR speed up section.

2

2 Fast Distance Calculation

I will first give a discussion taken from an abstract I submitted for consideration for

the upcoming 15th International Conference on Numerical Methods in Fluid Dynamics,

to be held June 24-28, 1996 in Monterey. I will then provide an answer to questions

brought up during my oral presentation at NASA Ames on December 11, 1995.

Abstract Submitted for Monterey Conference

Recently developed turbulence models such as Baldwin-Barth ([1]) and Spalart-Allmaras

([2]) require the user to compute the distance from each point in the field grid to the

configuration under consideration. For calculations involving millions of grid points, naive

methods for computing the distance function can easily consume hours of CPU time

even on Cray C-90 class computers. These distance calculations are so expensive that

some code developers have chosen to avoid performing a proper distance calculation thus

imperiling the accuracy and convergence characteristics of their codes. In this paper we

wish to discuss efficient methods for computing the distance function. This methodology

not only has applications for Navier-Stokes calculations using recently developed one-

equation turbulence models, but to grid generation as well.

Naive Algorithm

For each of the NF field grid points the naive algorithm simply calculates the distance

to each of the NS surface points and selects the minimum of these distances.

Cost: NF , NS

Faster Algorithm

Construct roughly _ boxes each containing roughly _ surface points. For each

of the field grid points compute distance to each box. Select closest box and compute

distance to each surface point in box. If the minimum distance to points contained in

closest box is smaller than distance to remaining boxes we are done. Otherwise examine

second closest box etc. Experience has shown that on average one must look at 1.5 boxes.

Cost: NF •

Construction of Boxes

No doubt there are many methods for constructing the boxes required by the faster

algorithm. The method we actually use is as follows:

Start with a big box containing all the surface points. Divide box in longest direction.

Choose dividing plane so that half the surface points lie on each side. Proceed recursively.

Stop when box has _ or fewer surface points. As final embellishment, look at minimum

and maximum values of coordinates of surface points contained in box to see if box can

be reduced in size.

A 2 dimensional example of boxes is shown in figure (1). Of course the concept works

just as well in 3D.

3

.....11"".'.II:::.4
, • • e e

• Z]I: I
• • eo

Figure 1: Example of Boxes used in Distance Calculation

Discussion

For a recent Navier-Stokes calculation involving 5 million field grid points and 40,000

surface points, the naive distance calculation required 3 hours on the C-90. The faster

algorithm took just 5 minutes!

We are really interested in computing the distance between each field grid point and a

triangulation of the configuration. At the present time we locate the closest of the surface

points we are given and then examine the nearby triangles. In some pathological cases

the closest point is not adjacent to the closest triangle, so we get the wrong result. For

each field grid point we really should be computing the distance to each triangle and then

take the minimum of these distances. In the full paper we will discuss fast methods for

performing this more proper calculation of the distance function.

Questions brought up during Oral Presentation at NASA Ames

During my oral presentation some surprise was registered that so much computer time

was being taken with the distance calculation. After all, we are really only interested in

the distance function for field grid points in the viscous layer. For these points we need

only trace along a grid line back to the surface. We can then compute the distance between

the field grid point and the surface point found by tracing a grid line. However it is not

always easy to properly account for a non orthogonal grid. More seriously this short-cut

procedure does not work in the wake region. I am told that in OVERFLOW the distance

function for points in the wake is simply set to some large number (like 1.0e20). Not

only is this wrong, it sometimes causes convergence problems with the OVERFLOW flow

solver. Also I should point out that in any case, it is difficult to implement a short-cut

procedure on an unstructured grid.

Our general dissatisfaction with short-cut procedures for computing the distance func-

tion convinced us of the need for performing this calculation in a proper manner. However

for very large grids, the most obvious methods for properly computing the distance func-

tion were becoming prohibitively expensive (for an n by n by n grid, there are n 3 field

grid points and n 2 points on the surface, so naive algorithms have cost proportional to

nS). Thus we are grateful to have the new, reasonably fast algorithm, available to us.

As mentioned in the abstract, we realize that there is still more work to be done ensure

4

the accuracyof the algorithm in pathological cases. Also no doubt there are ways to
further reducethe cost of the algorithm (put boxesinside boxes for example). However,

in the meantime, we are making our current algorithm available to Navier-Stokes code

developers. The new routines have already been placed by Veer Vatsa into TLNS3D and

by Bob Biedron in CFL3D.

Tim Barth Connection

Tim Barth's code uses boxes and trees in a manner which is suggestive of the algorithm

which is finally employed in our "faster" distance algorithm. Tim may not immediately

recognize the precise manner in which I construct and use boxes in my algorithm. Also

unlike Tim I take care not to use recursive subroutine calls during the final distance

calculation (I found many cases where recursive subroutines worked well on workstations

but not so well on Cray computers. I believe that my code will work well on all computer

platforms). However I have been working on the distance calculation on and off for a few

years, and I did not make significant progress until I saw Tim's code. So it is fair to say

that the "faster" algorithm is motivated by Tim' code.

Another aspect of Tim's codes which has proven to be useful is his method for doing

memory management. Tim uses his own my malloc and my free routines to allocate

and free storage in a manner reminiscent of the malloc and free routines built into C.

However the FORTRAN code in ray malloc and my free is machine dependent. For

workstations they call system routines malloc and free, but on the Cray they call hpalloc

and hpdeallc. Also my_malloc and my free use common blocks to keep track of overall

memory allocation to make it relatively easy for the user to trace down memory leaks.

When allocating memory, Tim makes use of pointers. Though not standard, pointers seem

to be available with all new FORTRAN compilers. Tim follows a useful construction for

pointer names. He takes the name of array he is creating and pre-appends "p" to get

the corresponding pointer name.

At any rate, Tim's method for memory management was heavily used by me and

proved very useful in modifying and writing codes. The reader may find it instructive to

look at the memory management routines in file memory, f and the distance calculating

subroutine bbdist, f.

5

3 BILU Routines

Yousef Saad wrote preliminary versions of the BILU (Block incomplete LU factor-

ization routines) under NASA contract monitored by Alex Woo. However errors in these

codes were detected by comparing with results from the out-of-core sparse library package

SPSLIB which is in TRANAIR. Corrected version of the BILU routines were written by

myself using some of Saad's ILU routines as templates. Heavy use was made of Tim

Barth's memory management methodology. Memory management simplified the calling

sequences to the routines because the user no longer had to create and pass in various

work arrays. Also since memory could be allocated dynamically by the BILU routines,

the user did not have to guess in advance how many entries would be in the approximate

factorizations created by the BILU routines.

It is fair to say that Industry, NASA and Universities all played an essential role in

the creation of the BILU routines.

We now have both basic types of BILU routines in place, BILU(k) where the fill in

locations are essentially pre-specified and BILUT routines where the fill in is determined

based on a drop tolerance. The best way to implement the drop tolerance procedure is

still being investigated, so all results in this report are based on BILU(k). The reader

may find it instructive to look at routines biluk_mem and blusol_mem in file bilu_mem, f.

4 DGMRES

One of the main tasks to be accomplished under this contract was the implemen-

tation of the DGMRES (Deflated GMRES) algorithm. The main idea of DGMRES is

based on the observation that small eigenvalues tend to slow GMRES. Therefore as GM-

RES iterations are performed, DGMRES calculates small eigenvalues and corresponding

eigenvectors. These eigenvectors are added to the Krylov space.

Implementation of DGMRES was carried out by Andrew Chapman under the di-

rection of Yousef Saad. Corrections were made in response to errors found when I ran

DGMRES through some test cases. One of the most notable errors was caused by the

fact that subroutine RG in EisPack does not normalize the eigenvectors it finds. Thus

repeated calls to RG led to arithmetic underflows.

For technical details of the DGMRES algorithm the reader is referred to the paper

([3]) written by Chapman and SaM. In this section we will simply exhibit the ability

of DGMRES to solve some test matrices supplied by Tim Barth associated with 2D

unstructured-grid Navier-Stokes calculations.

Tim adds his one-equation turbulence model to the 4 flow equations (conservation

of mass, momentum in the x and y directions, and energy). Thus Tim has 5 equations

for each point in the grid. Also Tim usually solves equations associated with a second-

order accurate discretization but forms the preconditioner from a first-order accurate

discretization. Thus for the purpose of these tests Tim supplied a second-order matrix

which we were supposed to use for matrix-vector products and a first-order matrix from

which we were to construct the preconditioner. Tim supplied matrices for 2 different

grids. The "small" grid with 3,147 points gave rise to the first-order matrix SDIST1 and

6

second-order matrix SDIST2 with:

Name

SDIST1

n nnz

15,735 498,620

SDIST2 15,735 1,105,164

Table 1: Characteristics of "small" grid Matrices

where n is the number of rows in the matrix and nnz is the number of non zero elements.

The "big" grid with 37,874 points gave rise to the first-order matrix BDIST1 and second-

order matrix BDIST2 with:

Name n nnz

BDIST1 189,370 6,260,236

BDIST2 189,370 13,848,412

Table 2: Characteristics of "big" grid Matrices

In all the tests shown in this section we either run GMRES(50), which is GMRES

with 50 search directions, or DGMRES(50,5) which is DGMRES with 50 search directions

of which the last 5 are approximate eigenvectors associated with the smallest eigenvalues.

The eigenvector information calculated by DGMRES becomes more and more accurate

as the solution process proceeds. The CPU time required by DGMRES to calculate

the eigenvector information is essentially negligible, while the storage required by DGM-

RES(50,5) is approximately 55n (where n is the order of the matrix), while that required

by GMRES(50) is approximately 50n.

Tim usually solves his second-order matrices using a preconditioner formed by apply-

ing BILU(0), mb=5 to the first-order matrix. Here mb refers to the size of the blocks used

in the BILU decomposition. A natural choice is mb=5 since there are 5 equations per

grid point. Unfortunately I found that BILU(0), mb=5 did not work well on the SDIST2,

SDIST1 matrix pair. I found much better convergence when I used BILU(0), mb=10.

However as shown in figure (2) even with this more powerful preconditioner in place,

GMRES(50) is quite slow to converge. Indeed after 250 iterations, GMRES(50) is only

able to reduce the residual 2 orders of magnitude. The eigenvector information available

to DGMRES(50,5) is quite valuable in this case. The first time we apply DGMRES(50,5)

the eigenvector information is beginning to be effective by the end of the third cycle (it-

eration 150). By the end of the fifth cycle (iteration 250) the residual has been reduced

more than 7 orders. I then ran DGMRES again, retaining the eigenvector information

gained during the first run with DGMRES. In this case convergence is helped during the

very first cycle. By the end of the second cycle the error is reduced 4 orders of magnitude,

and 8 orders is achieved in only 180 iterations.

This example is intended to show that as the iteration process progresses, DGMRES

gains more information about the matrix which it is able to apply to aid convergence.

7

This is very useful in cases where we are solving matrix problems with multiple right hand

sides, or in iterative processes where we do not update the matrix.

In his actual code, Tim applies a CFL correction to his matrices. The CFL correction

adds a term inversely proportional to the CFL number to the diagonal entries of both the

first and second-order matrices. This damps the overall Newton iteration and makes the

matrices easier to solve. I simulated this effect by calculating the spectral radius of each

of the 5 by 5 block diagonal matrices associated with the first-order matrices. I took this

spectral radius, divided by the CFL number and added this to the diagonal entries of the

block diagonal matrices in both the first and second-order matrices.

As shown in figure (3) the CFL correction allows us to solve the SDIST2 matrix using

a preconditioner formed by applying BILU(0), mb=5 to SDIST1. In this case we have

no need to resort to mb=10 when forming the preconditioner. Also, as expected, conver-

gence is quite a bit faster for CFL=100 than it is for CFL=1000. In these calculations

we are essentially duplicating the methodology in Tim's code except that we are using

DGMRES in place of GMRES. It was noted that the advantage of using DGMRES in

place of GMRES increased as the CFL number increased. However at extremely large

CFL numbers even DGMRES was not able to ensure convergence when solving SDIST2

using BILU(0), mb=5 on SDIST1 to form preconditioner.

The big Barth matrix BDIST2 was considerably tougher to solve then SDIST2. In

order to obtain satisfactory convergence it was necessary to use CFL=100 and even then

I had to use mb=10 when forming the preconditioner (from BDIST1). Convergence

histories using BILU(k), mb=10 for k=0,1, and 2 are shown in figure (4). Convergence is

satisfactory and it does (slowly) get better as we increase k. As shown in figure (5) when

CFL is increased to 1000 even forming the preconditioner by applying BILU(2), mb=10

to BDIST1 did not lead to satisfactory convergence. In this case DGMRES(50,5) was

run twice. In the second run DGMRES used information gained in the first run. The

convergence rate in the second run is better than in the first run, but as I said, still not

satisfactory.

It is of some interest to see if DGMRES plus the preconditioner we are using is good

enough to solve the BDIST1 matrix. In figure (6) we apply DGMRES(50,0) (this is the

same as GMRES(50)) and then make 2 runs with DGMRES(50,5) to solve BDIST1 at

CFL=10000 using BILU(2), mb=10 preconditioning. The convergence with pure GMRES

may not be deemed satisfactory but the convergence with DGMRES certainly is especially

for the second run which makes use of information gained in the first run. I should mention

that as we reduce the CFL number to say 1000 or 100, the convergence becomes much

faster yet. The point to this example is that even if we do have a good preconditioner for

the BDIST1 matrix, it may not lead to satisfactory convergence for the BDIST2 matrix.

Tim claims that he gets satisfactory convergence for these type of matrices using

pure GMRES with BILU(0), mb=5 preconditioning. We (me and Andrew Chapman)

have Tim's BILU(0) subroutine and have verified that is behaves the same way as my

BILU(k) routine using k=0. This raises the possibility that there is an error in the

matrices Tim gave us. In the first matrix examples Tim gave to Andrew the grid had a

collapsed cell. Other errors are possible (for example not normalizing the matrix by the

local cell volume). This issue will have to be investigated further.

However none of this detracts from the conclusion resulting from a battery of tests

8

that DGMRES representsa very worth while advanceover the pure GMRES algorithm
we now typically usein our CFD codes.

5 Block GMRES

During my oral presentation I made the statement that I did not mention Block

GMRES in my contract proposal. This is wrong, it is discussed in section 3.6. However

it is fair to say that at the time I wrote the proposal, I intended to focus my attention on

eigenvalue translation/deflation, my ideas on how to proceed with Block GMRES were
not well formulated. However in the last few months Block GMRES did indeed attract

my attention and the results turned out to be quite exciting.

The idea behind Block GMRES is that when solving problems with multiple right

hand sides one can combine the Krylov spaces associated with all the right hand sides.

That is, for each right hand side, one finds the best solution over the space spanned by all

the Krylov spaces, not just the Krylov space associated with that particular right hand

side. As compared with standard GMRES, Block GMRES involves more sdot and saxpy

operations to keep all the vectors orthogonal to each other but it reduces the number of

preconditioned matrix vector multiplies, typically by a factor of 2-10 (factor of 2 for easy

cases and factor of 10 for hard cases). In terms of CPU time this is a big win for our CFD

applications because the pre-conditioned matrix vector multiply operations dominate the

cost. However to take advantage of Block GMRES one must be willing to simultaneously

store all the Krylov vectors.

While giving a series of lectures ([4]), Yeremin claimed that the synergism from using

multiple Krylov spaces is so powerful that given a problem with one right hand side, it is

a good idea to artificially add other right hand sides and use Block GMRES in place of

GMRES! I have not yet tested this theory but I did give Yeremin some TRANAIR test

matrices and right hand sides associated with design calculations. I wanted to compare

the performance of Yeremin's BGMRES routine with DGMRES. In order to properly do

these comparisons I gave Yeremin the matrix-vector multiply routine as well as corrected

versions of Saad's ILU routine and Saad's forward-backward substitution routine "lusol".

I had to make sure that the runs Yeremin made with his BGMRES code could be directly

compared with runs I made with DGMRES. In terms of operation count and CPU time

BGMRES proved to be significantly better than DGMRES. However if storage really is at

a premium one may still prefer to use DGMRES which requires very little more storage

than standard GMRES.

Upon hearing the results of comparisons between Yeremin's BGMRES code and Chap-

man's DGMRES code, Yousef Saad gave me source code to his own Block GMRES sub-

routine bgmr. In addition Saad gave me PostScript files blockl .ps and block2, ps which

contain sections of his new book ([6]). These sections discuss Block Krylov methods.

In terms of the number of Krylov vectors required to solve the TRANAIR test prob-

lems Saad's bgmr routine did just as well as Yeremin's BGMRES routine. The CPU issue

is less clear. Saad's code was faster than the first results given to me by Yeremin. Sub-

sequently Yeremin started quoting faster and faster CPU times even though the number

of Krylov vectors was not changing. Finally he was quoting total CPU times which were

9

less than would have been required to do preconditioned matrix-vector multiplies using

the subroutines I gave him.

I know that it is possible to significantly speed up the preconditioned matrix-vector

multiply routines. For example, by using longer vector lengths afforded by a "Jagged-

Diagonal" format as discussed in ([5]) it is possible to speed up the preconditioned matrix-

vector multiply operations by a factor of 3 on Cray computers as compared with the

routines I gave Yeremin. (During my oral presentation Alex Woo indicated that he was

familiar with the jagged-diagonal format, so I will not go into details. However I should

mention that I did not know about the jagged-diagonal format until this year and it is not

yet been exploited by the TRANAIR sparse matrix library SPSLIB). A further factor of 2

is achievable on Cray computers by processing multiple right hand sides inside the loops

(reducing memory operations on matrix elements and elements in the ILU factorization).

Yeremin refused to give me the results of Flowtrace so that I could see how much time was

being spent in the various subroutines, he simply gave me the total CPU time. However

if I support Saad's bgrar code with jagged-diagonal routines and process multiple right

hand sides inside the inner loops, I can easily match Yeremin's total CPU times.

Of course it is possible to further improve Saad's bgmr routine by adding DGMRES

and by dropping unneeded Krylov spaces (some right hand sides are solved faster than

others). However the TRANAIR team was already so impressed with bgmr that they

wanted me to create an out-of-core version and put it into TRANAIR right away. I took

time off from the contract to accomplish this task during the two week period preceding

my oral presentation.

Naturally exploiting the jagged-diagonal format and processing multiple right hand

sides inside loops will be the next TRANAIR project. Overall, for design calculations in-

volving many right hand sides, we are expecting an order of magnitude improvement over

the standard version of TRANAIR which relies on pure GMRES to solve one right hand

side at a time and uses row-wise storage of the matrix and ILU factorization. These algo-

rithmic improvements are quite significant to Boeing because we use a very large amount

of Cray CPU time running TRANAIR for our new airplane designs. These algorith-

mic improvements promise to be even more significant than the hardware improvement

realized when we replaced our Y/MP with a Triton.

The Block GMRES concept also lends itself to coarse grained parallelism. Certainly

the preconditioned matrix-vector multiplies for multiple right hand sides can be done in

parallel. On Cray class computers the idea of placing multiple right hand sides inside

inner loops during matrix-vector multiplies (or forward-backward substitutions) so as to

minimize I/O activity with the matrix elements saves about a factor of 2. Saad was

surprised that it was only a factor of 2, but this is because Cray computers have such a

good memory subsystem supported by SSD so it is not so very important to reduce I/O

activity on Cray class computers. I have a discussion of this point in the next section. On

other types of computers the reduced I/O activity (whether between disk and memory or

between memory and cache) is likely to produce much greater savings.

Compared with pure GMRES, using Block GMRES to solve problems with multiple

right hand sides reduces the overall CPU time, because fewer pre-conditioned matrix-

vector multiply operations are needed, and these operations can be performed more ef-

ficiently because I/O activity with matrix elements can be reduced (this latter effect is

10

most important for non Cray class computers). However, as already mentioned, the price

that must be paid for using Block GMRES is that one must be willing to simultaneously

store multiple Krylov vector spaces.

For a real-life TRANAIR design problem solved on the Triton with 500,000 unknowns,

pure GMRES required 50 Krylov vectors to solve each right hand side. When I used bgmr

to solve the problem 10 right hand sides at a time, only 23 Krylov vectors per right hand

side were required. The CPU time was reduced by a factor of 2 (much more than this

will be saved when we add jagged diagonal) but the required storage increased by 90Mw.

Since we typically use 200Mw of SSD for TRANAIR runs anyway, we do not consider an

additional 90Mw to be overly burdensome considering the CPU savings (especially since

more CPU savings are in the offing).

Non Cray computers do not have SSD so we may have to use disk instead. However

Yeremin claims that with his BGMRES code he can get by with using disk even on Cray

class computers with no noticeable degradation in performance. Also Yeremin claims to

solve 3000 right hand sides at a time. With this many right hand sides the orthogonaliza-

tion costs in bgmr would be prohibitive. Yeremin's claims indicate that the Block GMRES

methodology can be implemented in a manner which minimizes orthogonalization costs

and permits one to use disk even on a Cray class computer. This indicates that there is

still much more we can learn about Block GMRES methodology. In a latter section I will

discuss my thoughts on supporting Block GMRES with disk.

11

Multiple Right Hand Sides Inside Loops

This is part of an e-mail message I sent to Saad concerning the impact of processing

multiple right hand sides inside loops on the Cray.

We always say that the Gray is a vector machine, but it really is a pipeline machine.

It is able to pipeline:

2 fetches from memory

1 addition

i multiply

i store to memory

After an initialization cost of starting this pipeline it is able to produce the results

in one clock period per result. Cray refers to all the operations which can be pipelined

together as a chime, and they like to measure the execution cost of executing a vector

loop in terms of chimes. So if we look at the loop (this is the type of loop which one

encounters when doing a matrix vector multiply using a jagged-diagonal format):

i0

do iO i=l,n

k=ip(i)

y(i)=y(i)+a(i)*x(k)

continue

In one chime the Cray can fetch ip(i) and a(i). At this point it can not do any multiply

or add operations, so this is all that happens during the first chime. During the second

chime the Cray will fetch y(i) and x(k) (2 fetches), multiply a(i) by x(k), add to y(i) and

store to y(i). During the second chime it actually does 2 fetches a multiply, an add and

a store. Bottom line is the single right hand side loop does 2 floating point operations in

2 chimes.

A multiple right hand side loop:

2O

do 20 i=l,n

k=ip(i)

y(i, I)=y(i, I)+a(i)*x(k. i)

y(i, 2)=y(i, 2)+a(i) *x(k, 2)

y(i, 3)=y(i ,3)+a(i) *x(k, 3)

y(i, 4)=y(i ,4)+a(i)*x (k,4)

continue

We do 8 floating point operations in 5 chimes. Thus multiple right hand side loop with

4 right hand sides handled simultaneously is 1.6 times as fast as single right hand side
mode.

If we take SSD transfer of matrix information of "a" and "ip" into account, then we

have to add 2 chimes to each of these loops (one chime to read a, one chime to read ip,

we will store x and y in core). In this case the do 10 loop does 2 floating point operations

in 4 chimes, while the do 20 loop will do 8 floating point operations in 7 chimes. In this

12

case multiple right hand side is more efficient by a factor of (8/7)/(2/4) = 32/14 which

is why I say placing multiple right hand sides inside inner loops is worth a factor of 2.

In this e-mail message I should have mentioned that asymptotically for a very large

number of right hand sides placed inside the inner loop we can save a factor of 3 on Cray

class computers, but of course this depends on having a lot of memory. Also for non

Cray class computers (no SSD) the effects of reducing the I/O operations will be more

significant.

13

Reducing I/O for orthogonalization operations

A copy of part of another e-mail message I sent to Yousef Saad concerning I/O

associated with orthogonalizing a set of vectors.

I think I figured out how Yeremin supports BGMRES with disk on the Cray. The

disk, using striping, is about 20 times slower than the SSD (on the Triton SSD transfer

rate is about 600Mw/sec, versus 30Mw/sec transfer rate for disk with striping). However

if we work on 2 groups of k vectors at a time for the orthogonalization operations (sdot

and saxpy), reading a new group requires reading k vectors but then we will have to do

k 2 sdot and saxpy operations. Ratio of floating point operations to read operations is

k2/k = k . If we use SSD then k = 1 works fine as verified by our pure GMRES runs on

the Cray. If we use disk to support Block GMRES then k = 20 should work fine.

This method would require us to store 40 vectors simultaneously in core. On the

Cray, we could use SSD to reduce the in core storage required. One possible strategy is

to pass vectors in groups of 20 between disk and SSD and in groups of say 5 from SSD

to memory. In this way the memory only has to hold 10 vectors at a time, SSD only has

to hold 40 vectors at a time and disk can hold as many as needed. The main point is

that even if we happen to use thousands of Krylov vectors with Block GMRES, these can

be stored on disk. The amount of SSD required will be no more than that used by pure

GMRES.

Even if we can not hold 2 * k vectors each of length n in core at one time, then we

can split the vectors up into sections of length ns. In this case we would read in 2 * k * ns

numbers associated with the first section of each vector. We would then do the parts of

the sdot operations associated with the first section of each vector. We then read in the

second section from each vector and so on. We would then have to make a second pass to

do all the saxpy operations. Reading vectors in sections would require 4 times the number

of read operations of the first method, but should still work efficiently using disk if we

can takek=4*20=80.

In the above message to Saad I was talking about using Cray computers, but it applies

equally well to the SP2. In fact, one of the problems in porting TRANAIR to the SP2

is that the I/O associated with orthogonalizing vectors for GMRES (in this case passing

information between processors) dominates the cost of the floating point operations. Using

a block version of GMRES with the strategy discussed above can overcome this problem.

Thus the Block GMRES idea gives us a way to take full advantage of both Cray class

computers and distributed memory parallel computers.

Saad responded that the ideas I presented are very much in the spirit of the BLAS3

package where one trys to efficiently support floating point operations with a hierarchical

memory. Saad points out that a detailed discussion of orthogonalization operations using

hierarchical memories appears on pages 55 and 56 of the book ([7]).

14

6 TRANAIR Speed Up

TRANAIR is the primary design/optimization code used at Boeing. The cost of

running TRANAIR in design mode is dominated by the cost of solving matrix problems

with multiple right hand sides. These multiple right hand side problems arise because

TRANAIR must compute the change in the solution caused by changing each of the

design variables (so called "sensitivity" calculation). Thus the number of right hand sides

depends on the number of design variables used to represent changes in the geometry.

In order to properly represent an entire wing we would like to use about 500-1000

design variables. However even large 50000 second runs on our newly acquired Triton

only allow us to use 100-200 design variables for transonic optimization runs. With the

all important 747 rewing effort coming up, the project people were very interested when

they discovered that as a result of this NASA contract I had some technology in hand

which could significantly reduce the cost of running TRANAIR.

The process of upgrading TRANAIR was high risk because TRANAIR is a complex

out-of-core code, and the modifications had to be made very quickly/correctly in a high

pressure environment. The modifications were made step by step and thoroughly tested

after each step.

Naturally the first improvement was to add bgmr in an effort to reduce the number of

iterations required to solve the problems as compared to using pure GMRES. As expected

bgmr did make a substantial difference for cases which were hard for the pure GMRES

algorithm. Sometimes bgmr by itself improved convergence by a factor of 6. These

were usually transonic cases involving boundary-layer coupling. Very easy cases such

as supersonic HSCT cases were helped very little, but this hardly matters because pure

GMRES was already converging in only 4 iterations for these cases anyway.

The other changes were aimed at reducing the cost of performing iterations and to

reduce I/O. The reduction in I/O has obvious advantages on SP2 class computers but

could also be helpful on the CRAY because it could allow one to use disk in place of

SSD for very large calculations. At any rate, jagged diagonals were added to the matrix-

vector multiply routines. On the Triton this is a factor of 4 faster than the standard

routine based on a row formatted storage scheme. It is also more than a factor of 2

faster than the "fast" matrix-vector multiply routine which was recently introduced into

TRANAIR by Forester Johnson. An in core code which compares these different methods

for matrix-vector multiply is available on request.

As a first step towards putting jagged diagonals into the backward/forward substitu-

tions (equivalent to triangular matrix solves) we did introduce a column format to replace

the row format. Since short saxpy operations are faster than short sdot operations on the

CRAY we found that the new triangular matrix solves are 35%-4o% faster than the old

row formatted triangular matrix solves.

For both the matrix-vector multiplies and the triangular matrix solves we do process

multiple right hand sides inside inner loops. I was expecting this to improve performance

by a factor of 2. In fact, using the cf77 compiler the performance was improved by

only 25%-33%. A Cray representative agreed that we should have seen at least a 50%

improvement and suggested that I try the new f90 compiler. Cray Research has been

focusing most of its recent attention to the f90 compiler since it is supposed to replace

15

cf77. Much to our surprise, f90 performed even worse than cf77! This was not supposed

to happen, so my coding examples have been brought to the attention of the compiler
writers. In the mean time it looks like if we are to derive full CPU reduction benefit from

placing multiple right hand sides inside inner loops we must resort to CAL.

Processing multiple right hand sides simultaneously has of course reduced I/O activity.

The old version of TRANAIR had to read in the matrix and its decomposition from SSD

each time it performed a GMRES iteration on one right hand side. The parallel version

of bgmr allows us to reduce this I/O activity by a factor of nrhs, the number of right

hand sides we choose to solve simultaneously. Actually the gain is more than this because

bgmr takes fewer iterations to converge than does pure GMRES. To complement the

reduced I/O activity associated with reading in the matrix and its decomposition, I have

also implemented the suggestions in the section on reducing I/O for orthgonalization

operations. Actually it turns out that instead of doing orthogonalizations block against

block one can simply hold the nrhs newly created vectors in core, and then read the other

Krylov vectors from SSD one by one. Each time a Krylov vector is read in, nrhs saxpy

and sdot operations are performed to orthogonalize the nrhs new vectors against this

old Krylov vector. After all this the nrhs new vectors are orthonormalized against each

other. At any rate, compared with the original modified Gram-Schmidt subroutine the

parallel version reduces I/O by a factor of nrhs.

Giving TRANAIR the ability to process multiple right hand sides simultaneously

required writing "parallel" versions of key subroutines, the first step towards an effective

port to the SP2.

The process of upgrading TRANAIR is still on going. In the near future we plan to

add eigenvector deflation to bgmr and to add jagged diagonal to the forward/backward

substitutions. However enough has already been accomplished that it has met with the

enthusiastic approval of the project engineers. Speaking conservatively, for the 747 rewing

runs, the number of iterations for solving multiple right hand side problems is being

reduced by a factor of 2. In addition the CPU operations are being speeded up by a

factor of 2 so we are getting an overall factor of 4 reduction in CPU time for the multiple

right hand side problem. Again, speaking conservatively, the multiple right hand side

problem accounted for 70% of the TRANAIR CPU time during a design run. Thus the

improvements we are making are already reducing the cost of a complete TRANAIR

design run by a factor of 2. All this has attracted the attention of upper-level Boeing

managers. A factor of 2 improvement is all we got when we replaced the Y/MP with the

Triton!

16

7 Significance of Results Obtained During this Con-

tract

During the first year of this contract, emphasis was placed on algorithm development.

This was done because an opportunity to meaningfully improve our algorithms presented

itself. Also this strategy guaranteed that something useful would come out the contract

should it not be continued into the second and third year (a very prudent precaution in

these uncertain times). From the Boeing perspective the algorithms produced during the

first year of the contract are indeed useful. This is evidenced by the successful crash effort

to put them into TRANAIR right away. We are fortunate that what is supposed to be a

3 year contract produced high profile tangible results during the very first year. This is

something the Boeing managers always ask for, but we are seldom able to deliver.

Although this research activity was motivated by the desire to improve the pure GM-

RES methodology in Tim Barth's unstructured grid Navier-Stokes code, the new DGM-

RES and Block GMRES algorithms have proven so effective that they were incorporated

immediately into TRANAIR for use in our on-going airplane design processes. Moreover,

in the near term, we plan to engage in follow up research to improve these algorithms. We

fully anticipate much needed order of magnitude improvements in the numerical linear

algebra routines used in our TRANAIR airplane design code.

The fast distance calculation was an unexpected bonus which has already been incor-

porated in our Navier-Stokes codes at Boeing and is being given to Navier-Stokes code

developers at NASA. Veer Vatsa supplied the following testimonial:

Dear Larry,

These are some of the findings from full-fledged run using your latest

distance function for an HSCT wing/body configuration:

1. The new procedure took about 150 secs of cpu on YMP vs. 2000 secs.

with the old procedure.

2. The integrated force and moment coefficients are within 0.2_ of each other

3. The convergence rate was unaffected

I am asking Ed Parlette to look into converting the C-routines into Fortran

so that I can have a pure Fortran code, which is easier for me to maintain

and port to other machines. I have also passed these routines to

Chris Rumsey and Bob Biedron, our CFL3D group.

Thanks again for sharing this breakthrough with us. It will help promote

the use of S-A model in CFD codes.

Sincerely,

Veer Vatsa

Ibelievethattherealvalue ofthefast distance calculationliesinthe _ctthat Navier-

Stokescode developers willnolongerhaveto betempted by"short-cut" procedures which

17

jeopardize the accuracy and convergence characteristics of thier codes.

As for the main thrust of the effort devoted to enhancing GMRES, I believe that both

DGMRES and Block GMRES will be very well received by the CFD community. As was

shown with the Tim Barth test matrices, DGMRES often offers significant convergence

improvements over the commonly used pure GMRES algorithm. Moreover the benefits

provided by DGMRES require very little more in terms of storage and CPU time than pure

GMRES. When solving problems with multiple right hand sides, Block GMRES seems to

be even more effective than DGMRES. Block GMRES does require considerable storage

to simultaneously store Krylov vectors associated with each right hand side. However

Block GMRES offers much opportunity for coarse grained parallelism, and strategies can

be devised which allow one to efficiently use disk for the Krylov vectors even on Cray

class computers.

8 What about Follow on Contract

Much has happened in the 2 years since the contract proposal was submitted. It was

our original intention to use Steve Allmaras and Mark Drela in the second year of the

contract to further development of the Tim Barth code. However because of unexpected

pressure on man power, Boeing engineers are forced to focus their attention on projects

of near term benefit to the company.

In order to convert Tim Barth's code into a practical engineering tool we would have

to make advances in grid generation, upgrade the flux routines to handle non-tetrahedral

meshes, and implement a transpiration boundary condition or some sort of grid adjust-

ment strategy for design. It is not clear that all these items could be accomplished in
the near future with the resources we have available under this contract. We have not

given up on the idea of working on an unstructured grid Navier-Stokes code. Indeed Jou

is planning to ask upper level Boeing managers for funding to support a critical mass of

Boeing engineers to work with outside people to work on just such a project.

In the mean time it would be a good strategy to have the contract follow up on

the first-year successes by supporting our effort to parallelize the enhanced version of

TRANAIR. NASA is already supporting a contract for a straight port of the standard

version of TRANAIR to the SP/2. However the new technology developed as part of

this contract, the Block GMRES algorithm in particular, gives us a better opportunity

to take advantage of parallel computers. Boeing is well motivated to pursue this project

because TRANAIR is our engineering design tool of choice, and we are constantly looking

for ways to improve TRANAIR and increase the number of design variables we can use.

NASA's support of this project would allow it to share in the advanced technology which

will naturally result.

18

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Baldwin, B. S., and Barth, T. J., "One-equation turbulence transport model for high

Reynolds number wall-bounded flows," AIAA paper 91-0610.

Spalart, P. R., Allmaras S. R., "A One-equation turbulence transport model for

Aerodynamic Flows," AIAA paper 92-0439.

Andrew Chapman, and Yousef Saad, "Deflated and augmented Krylov subspace

techniques," October 10, 1995.

Alex Yeremin, "Recent Advances in Iterative Solution Methods", notes passed out

at lectures presented at Embassy Suites Hotel in Santa Clara, November 8-9, 1993.

Anderson and Saad "Solving Sparse Triangular Systems on Parallel Computers,"

International Journal Of High-Speed Computing, vol. 1., num. 1, pp. 73-95 (1989).

Yousef Saad, "Iterative Methods for

lished by PWS Publishing Company,

http:/www.cs.umn.edu/saad/book.html

Sparse Linear Systems", Book pub-

January 1996. Information available at

K. A. Gallivan and M. T. Heath and E. Ng and J. M. Ortega and R. J. Plemmons

and C. H. Romine and A. H. Sameh and R. G. Voigt, "Parallel Algorithms for Matrix

Computations", book published by SIAM, 1990.

19

GMRES(50) Applied to BARTH Matrix, followed by:

DGMRES(50,5) applied to same matrix, followed by,

another DGMRES run keeping info from first DGMRES run.

0.1

0.01

0.001

0.0001

03
IJJ
n"

1 E-05

1E-06

1 E-07

1 E-08

1E-09

1-plot2.ran

0 100 200
ITS

Figure 2: Solving SDIST2 using BILU(0), mb=10 applied to SDIST1 as preconditioner

a

20

0.1

0.01

0.001

0.0001

r./)
LU
rr-

1 E-05

1E-06

1E-07

1 E-08

1E-09

1-10cfl.ran

Solve SDIST2 using BILU(0), mb--5 preconditioning
Applied to SDIST1 for CFL=100 and 1000.

O_

0 100 200
ITS

ITS RES
1-I0c100
1-10c1000

Figure 3: The effect of CFL in solving SDIST2 using BILU(0), mb=5 applied to SDIST1

as preconditioner

21

1

0.1

Solve BDIST2 with CFL=100 using BILU(K), mb=10

Applied to BDIST1 as Preconditioner using

K=0,1,2.
ITS RES

1-10clO0 +

1-11c100 ---x----

1-12c 100

0.01

0.001

0.0001

m
ILl
I:C

1 E-05

1E-06

1 E-07

1E-08

1E-09

1-1kcl00.ran

0 100 200

ITS

Figure 4: The effect of k in solving BDIST2 using BILU(k), mb=10 applied to BDIST1

as preconditioner at CFL=100

22

0.1

0.01

0.001

0.0001

O)
I.U
n-

1E-05

1 E-06

1E-07

1 E-08

Solve BDIST2 with CFL=1000 using BILU(2), mb=10

Applied to BDIST1 as Preconditioner

1E-09

• 0 100 200

1-12cl000mbl0.ran

ITS

ITS RES

,1-run001

_-run002 ---K---

Figure 5: Attempt to solve BDIST2 at CFL=1000 using BILU(2), mb=10 applied to

BDIST1 as preconditioner. Use DGMRES(50,5) twice. DGMRES does slightly better

the second time around.

23

o'J
LU
rc

0.1

0.01

0.001

0.0001

1 E-05

1E-06

1 E-07

1E-08

Solve BDIST1 with CFL=10_ using BILU(2), mb=10
First with DGMRES(50,0), then with DGMRES(50,5)

and finally with DGMRES(50,5) again.

mwnl_qwmn_rR_wl_

==_

[]1E-09

0 100 200
ITS

1-12cl0000s.ran

ITS RES

1-12mblOeO ---e---
1-12mb I Oe5 ---x---

1-again

Figure 6: Solve BDIST1 at CFL=10000 using BILU(2), mb=10 applied to BDIST1 as

preconditioner. Use pure GMRES then try DGMRES(50,5) twice.

24

