
NASA-CR-205486 /

Final Report:
NASA Grant NAG 3-1472

Parallelization of the Implicit RPLUS Algorithm

by

j,' _

Dr. Paul D. Orkwis

University of Cincinnati

Abstract

The multiblock reacting Navier-Stokes flow solver RPLUS2D was modified for parallel

implementation. Results for non-reacting flow calculations of this code indicate parallelization

efficiencies greater than 84% are possible for a typical test problem. Results tend to improve as the

size of the problem increases. The convergence rate of the scheme is degraded slightly when

additional artificial block boundaries are included for the purpose of parallelization. However, this

degradation virtually disappears if the solution is converged near to machine zero.

Recommendations are made for further code improvements to increase efficiency, correct bugs in
the original version, and study decomposition effectiveness.

Introduction

Computational Fluid Dynamics (CFD) is a field that continues to expand with each increase in

computer technology. The development of faster, larger memory computers has allowed engineers

to calculate solutions of bigger and more complicated flow fields. Parallel computers are the latest

extension of this technology. Machines of this type use multiple processors to perform more than

one computation concurrently. Computers exist which process multiple data streams using the same

instructions or multiple data streams with different instructions. The total operation counts of these

machines are scaled not only by processor speed but also by the number of available processors.

--best approach to employing parallel machines with CFD solvers is not always readily

• .

Explicit CFD codes are very amenable to parallel machines, but suffer in such applications as

viscous chemically reacting flows because of the inherently restrictive Courant-Friedrichs-Lewy

(CFL) stability condition. High grid resolution and stiff chemical reaction source terms require

extremely small time steps for stable calculations. Implicit CFD solvers, such as the NASA Lewis

RPLUS code [1,2], are popular because they reduce or eliminate the CFL restriction, allowing the

user to employ a time step more closely related to the physical tnechanisms of interest. However,

explicit schemes allow a variety of approaches to parallelization at both the fine and coarse grain

levels. One can efficiently parallelize at the loop level (requiring significant person-hours) or at a

macro or block level (which is convenient for codes already employing a multi-block strategy). On

the other hand, implicit schemes are not readily parallelizable in their original forms and must

https://ntrs.nasa.gov/search.jsp?R=19970041337 2020-06-16T01:34:07+00:00Z

2

typically be modified at the macro level using procedures such as domain decomposition.

In the domain decomposition approach, the solution domain is divided into subdomains that may

be computed on different processors. Examples of this partitioning are easily found in the recent

literature [3,4,5,6,7,8,9,10]. This approach is straightforward when applied to explicit schemes and

the convergence rates of the methods do not suffer typically. The only complication with these

schemes is message passing for the inclusion of out-of-block data. Conversely, implicit schemes

change when decomposed, because the implicit matrix system solution must be'split or altered when

the domain is distributed among the processors. This sometimes leads to degradations in

convergence rates, but is dependent upon the particular splitting employed and the problem being
solved.

Domain partitioning at a macro level is not unique to parallel applications and has been used for

some time in multi-block CFD algorithms for flow domains that do not have rectangular

computational topologies. Simple applications of this strategy are backstep and cavity type

geometries. Multi-block schemes can be parallelized naturally using domain decomposition

techniques because their code structure already incorporates block to block communication. An

example of this parallelization is the current research which has led to a parallel version &the two-

dimensional NASA Lewis R.PLUS reacting Navier-Stokes flow solver, a code currently in use by

NASA researchers and industry engineers in its serial form. Multi-block codes of this type allow

considerable decomposition flexibility but can be constrained by logical complexities if block

_'nditions are communicated to more than one contiguous block per face. Flexibility must

..... _e i_alanced against the inherent inefficiencies of accrued logic overhead. Contiguous

block decompositions simplify this problem by requiring block faces to adjoin at most one other

block face. One dimensional decompositions can also be used to simplify the logical overhead but

suffer because they ot_en reduce the flexibility of the potential decompositions, resulting in possible

load balancing problems.

Parallelizatiort, while straightforward for implicit multi-block algorithms, is not seamless. That is,

the parallel and serial versions of a code may not behave in exactly the same manner. This is because

the splitting generally requires more subdomains than one would naturally use for a complicated

flow field, since the number of subdomains are determined by the available processors. The presence

of the additional subdomain boundaries changes the matrix structure and can lead to reductions in

convergence rates as information must be lagged at the block interfaces. This discrepancy is usually

outweighed grea:!?' by the advantages inherent in parallelization, but must be accounted for when

considering parallelization options. In particular, systems with relatively small numbers of

processors (like workstation clusters) are well suited to this approach.

Other difficulties with parallelization are the architecture and operating system variations between

potential computing platforms. The considerable time investment for porting a serial code to a

parallel machine or developing a parallel algorithm from scratch must be repeated in many cases

because of these differences. Fortunately, this issue has been addressed in part by the appearance

of parallelization protocols like PVM, MPI and APPL. These approaches define a standard set of

commands that can be used when writing an application that will, in effect, translate the code to the

actual commandsof the current system.This allowstheuserto write one setof code andport it
almostindiscriminatelyto otherparallelmachineswith availabledrivers.Theuseof the systemthen
requiresthat a translationpackagebewritten oncefor that particularmachine.Usersthenwrite
commandsin theprotocolscriptandlink to thetranslationsoftwareat compilationtime. Of course,
theseprotocols do requiresomeoverheadandwill reducesomewhatthe speed-upachievedby
parallelization.

Our parallelversionof theRPLUS codeusestheMPI parallelizationprotoc61.This protocolwas
chosenfor manyreasonssuchasefficiency,functionalityandportability to manyof the available
computerarchitectures.Anotherveryimportantreasonfor choosingMPI is that it is a standard.This
meansthatall futurereleases&this protocol should be compatible with the old ones, hence a code

written using an older version of MPI will not become obsolete if a newer version is released.

The MPI standard does not specify every aspect of a parallel program. Some aspects of parallel

programming are left to the specific implementations such as process startup, scope of error handlers

and the amount of system buffering provided for messages. Some of these specific implementations

are: MPICH (developed by Argonne National Laboratory and Mississippi State University), LAM

(developed by Ohio State University) and CHIMP (developed by Edinburgh Parallel Computing

Center). Our parallel version of the RPLUS code uses MPICH version 1.0.12.

.... _',lrrent work a parallel version &the implicit RPLUS2D solver was developed for application

.. :,.IPI protocol. An automatic two-dimensional domain decomposition approach was

employed as a means of static load balancing. Residuals and convergence rate issues were briefly

explored. The following sections describe the approach employed, give the details for running the

algorithm, review the experimental approach used, discuss the findings of the research, and

recommend future directions to be taken for improving the code.

Approach

The RPLUS2D code is an implicit reacting Navier-Stokes flow solver incorporating a multiple block

strategy. This approach makes the code very amenable to a macro-level domain decomposition

strategy as opposed to a finer grain parallelization at the loop level. The code is therefore geared

toward parallel machines with relatively few processors, such as the Cray C-90 or workstation

clusters. The current research capitalized on the block-block boundary data structures that are

already in place in RPLUS for parallelization of the code. The data exchange at the block

boundaries is implemented using the MPI_SENDRECV subroutine. This is a blocking subroutine,

therefore, tight synchronization is achieved among the blocks. A flow chart of the parallel version

of the RPLUS code is given in Figure 1.

Two options are included for domain decomposition, an automatic domain decomposition (ADD)

approach and a user defined approach. Both approaches assume contiguous block faces. The ADD

approach assumes only a Cartesian topology so far. Other topologies will hopefully be implemented

in the future. In this approach, if the size of the domain is evenly divisible by the number of

processors, then the domain is split into blocks of equal sizes. However, if the domain size is not

4

evenlydivisibleby the numberof processors,thenthedomainis split in suchaway to give optimal
load balancing.This is doneusingthe subroutineMPE_DECOMP1Dwhich is included in this
report. The user defined approachallows the code to be implementedwith some external
decompositionstrategy. If thisapproachischosen,thenthe useremploysthe originalprocedurein
theRPLUS codeto supplytheboundsof eachblock explicitly.

It is importantto recognizethat sincethe formerrepresentsa staticload balancingapproachno
mechanismexiststo includeload balancingalterationscausedby inclusion'of the reacting flow
equations.This canbeaproblembecausethe ADD assumesequalwork pernode.Thismaynot be
thecaseif thereactionsdonotoccuratall nodesor if work involved with the iterative determination

of the reaction rate source terms is nonuniform. The current research does not address these issues.

The following changes were made to the code to enable parallelization and to enhance efficiency.

The makefile for the original RPLUS code was replaced by a makefile for the parallel

version. Compilation of the different pieces of the code and linking to the appropriate

libraries is done in this file. Changes made to a certain part of the code will not necessarily

require a complete recompilation.

The file grid.dat is the same as that used in the original RPLUS code; no changes have been

made.

_npif.h is necessary in every MPI Fortran program and subprogram to define various

constants and variables. This file comes with the MPI implementation MPICH.

The file PAR.F contains only a parameter statement to define the size of the problem,

number &species, number &reaction steps and number of blocks. The user should be sure

to change this file when changing any of these parameters. A complete recompilation will

be required when this file is changed.

When changing the number of processors needed for running a certain problem, make sure

to change the number of blocks in the file PAR.F to match this number. Actually, any value

for the number of blocks which is equal to or greater than the number of processors will

suffÉce since the number of blocks is used only for memory allocation purposes. Therefore,

if'the number of blocks is larger than the number of processors, there will be some memory

waste, but the code will run fine without the need for complete re-compilation if the number

of processors is changed to any other value which is still less than the number of blocks

given in the PAR.F file.

The original RPLUS code was segmented into various *.f files for better readability and

improved functionality. This also enhances efficiency since changes made to the files do not

force a complete code recompilation. A complete set of these codes is included with this

report in a hard disk as an attachment.

The input2d.f file is a modifiedversionof the original. The following
rememberedwhenrunningtheparallelversionof the code.
1.

,

changes must be

A logical variable AUT_SPLIT was added to switch on the automatic domain

decomposition option. If this variable is set to .TRUE., the user no longer needs to

specify the values of IBEG, lEND, JBEG and JEND for any blocks. If a user defined

decomposition is employed, this variable should be set to .FALSE. and IBEG, IEND,

JBEG and JEND should be supplied for each block.

In relation to #1, the arrays defining the boundary condition typ6s on the edges of the

blocks have been changed. The user now gives the boundary condition type only on

the boundaries of the domain without reference to any particular block. The code will

automatically map these values to the appropriate blocks and take care of the internal

block interfaces. All interior block edges were assumed to have boundary condition

type 6. The change is summarized below

Original changed to New

[FCBEG(J,NB) IFCBEA(J)

IFDBEG(J,NB) IFDBEA(J)

IFCEND(J,NB) IFCENA(J)

IFDEND(J,NB) IFDENA(J)

-'-e original arrays shown above appear in the common block BNDIDX and their

placements can be found in BNDIDXA. Likewise, the common blocks BNDPPI

and BNDPPJ are replaced by the common blocks BNDPPIA and BNDPPJA,

respectively. Both the original and replacement common blocks remain in the code.

Run-Time Details

To compile and run the code using MPICH the following sequence must be followed after the above

modifications have been accounted for.

or

1 make rplus2d compiles the code

2. mpirun -np <number of processors> rplus2d • runs interactively while the

system chooses the machines for running the code.

2b. mpirun -p4pg <file name> rplus2d runs interactively but forcing the

code to run on a list of machines given in the <filename>. The default <filename>

is procgroup. A sample of procgroup is given below:

6

or

lace01 0 /homel/fsnidalJAPPL/PARA/rplus2d

lace05 1 /homel/fsnidal/APPL/PARAJrplus2d

lace08 1 /homel/fsnidal/APPL/PARA/rplus2d

lacel2 1 /homel/fsnidal/APPL/PARA/rplus2d

In this sample file, the executable rplus2d available in the directory
/homel/fsnidal/APPL/PARA will run on the machines lace01, lace05, lace08

and lacel2. The job has to be submitted from lace01 (the first entry in the first

row which corresponds to a zero entry in the second column of the same row).

2c. bsub -n <# of proc.> mpichjob rplus2d • runs in batch mode

You have a choice in this approach of the number of processors. Note that you should give the full

pathname to the executable when using LSF on the cluster. The file mpichjob is a simple script file

to run batch jobs using MPICH under LSF. For more details, please check the location

http://www.lerc.nasa.gov/WWW/ACCL/mpi.html. The file mpichjob is listed below

#!/bin/sh

mpichjob

#

#

#

This sample scoot is a wrapper for running MPICH jobs under lsbatch.

_ saying "bsub [otheroptions] -n k mpichjob command line",

-_ ,,: e k is me number of hosts to use, mpichjob is the name of this script,

command line is the command to run. Note that you must use the

full path name to your MPI program if it's not in your normal search path.
#

e.g. bsub -n 3 mpichjob cpi
#

Note the variable LSB_HOSTS is assigned by lsbatch system when this script

is started by Isbatch.
#

Written Aum:_t 3, 1995

COM',_ ,_,DL ,E="$@"

z '-' :: ,,.u.u .: :. i1I_ !__!I; II :! t Itt
• ' "_ _ff?'_'Y" r-,, H Ji ii 11 xl H iJ fl if

#Generate procgroup
#4###'/I///////l/"/}/I'/I"/####

PROCGROUP=$HOME/.lsbatch/host$ $. "hostname'

rm -f $PROCGROUP

nhosts=0

for word in SLSB HOSTS
do

if [$nhosts-eq0] ; then
echo"local 0 $COMMANDLINE" >> $PROCGROUP
FIRST=Sword

else
echoSword"1 $COMMANDLINE" >> $PROCGROUP

fi
nhosts="expr$nhosts+ 1'

done

echo'RUNNING ON' $FIRST
echo'PROCGROUPSTART'
cat $PROCGROUP
echo'PROCGROUPEND'
echo

2" Jl Ir If If II _ ;r I,' t_ H r/ tf fl it _'1 tr ,! ;i ,t H _! r! JI tJ ,! i, tl _t ,,i fr

:- __a mpi job and save exit status

rsh $FIRST "SCOMMANDLINE -p4pg $PROCGROUP"

exstat=$?

It J, t! 1! I! ii tl ,r ii Ii _t !, _ _1 It Jt fl t!

cleanup and exit
_._d. zf ff /r r! _! Ir _1 f! _ f_ ,r _r H _ fr If

rrn -f SPROCGROUP

exit $exstat

Experimental Procedure

The perfe,-_.ance indicator used here is the total execution time needed for running the code alter

establi_i_ng :ae connections among the different machines. This time includes two IJO periods: the

first period is at the beginning of the code to read the grid file, block bounds and restart files if

_;ee,' _ vhile the second period is at the end of the code to write the output and restart files.

..,,_rcting to the MPI 1.0 standard, there is no standard parallel I/O yet. However, it is hopefully

going to be a part of MPI 2.0 which is expected to be released in the near future. Therefore, the I/O

portions of the code were done in a serial manner where a master processor controls the

synchronization of the different messages. Even though the I/O part was done serially, it was found

that this part takes a negligible amount of time (less than 0.1%) compared to the total running time.

The execution time was measured using the MPI function MPI_WTIME() which gives the wall

clocktimebetweentwo differenttimestamps.For eachnumberof processors,the test problemwas
run at least three timesandthen the executiontimeswere averaged.Runningthe problemwith
varyingnumberof processors,we canmeasurethe speedup.Speedupfor p processorsis normally
definedas

The paraUelization
Execution time for 1 process calculated as

Speedup = ,.
Execution time for p prcocesses

efficiency was

Parallelization Efficiency =
Actual Speedup

Ideal Speedup
Where Ideal Speedup = p

All the experiments were conducted in a single user mode. The next section will discuss the results

of some of these experiments.

Results

The results of this research are presented in the form of a supersonic flow at (M_ =4.0, P=0.01 arm)

past a 10 degree half angle cone at zero incidence test case problem. Two grids were tested with a

variety of processor configurations. Non-reacting flow simulations and simulations of the cone with

an H 2 -Air chemical reaction model are included. The data illustrate the flow field results
obtained in both cases and present a variety of parallel statistics from runs on a Cray Y-MP and on

the NASA Lewis Workstation Cluster known as Lewis Advanced Cluster Environment (LACE). The

changes in parallelization efficiency due to the number of processors and the change in the

vonvergence behavior of the scheme are illustrated.

Figure 3 demonstrates the near equality of the pressure contours obtained with the non-reacting

computations of the cone obtained with single and multi-block computations. A 61X41 grid was
used. Small differences can be seen between the two results which were due to the block-to-block

internal boundary point interpolation procedure existing in both versions of the code. This

contention was verified by computing the multiple block case on both. single and multiple

processors, and the results were found to be identical. In addition to the differences in the equality

of the results the convergence rate of the scheme decreases considerably as the number of domains

increases, as illustrated in figure 2. However, it is remarkable to note that the convergence plots of

the five runs eventually join together for IIpu 112_ 3.10-6, whereas, above this value the same

parameter was consistently less steep as the number of processors increased. This result indicates

9

a penalty for utilizing the parallel algorithm apart from any communication overhead as a result of

simply splitting the problem up for parallelization. This issue was not explored further, but must be

considered when one wishes to consider parallelizing a code. It is also important to recognize that

the "level" to which one wishes to converge the solution is an issue in this regard, since convergence

levels near machine zero are relatively unaffected by the parallelization.

Figures 4 and 5 show the different timing results for the cases and their percentage variations from

the mean. Timings with and without the I/O portion are included. It is seen that results vary nearly

0% from the mean value for the 61x41 grid test case. However, this number drops to less than

*-+2% from the mean value for the 12 lx81 grid, where block-to-block communication represents a

smaller fraction of the total workload.

It should be noted that this test was made using only the Ethernet connection and not the other

available communications ports. It was felt that this type of connection would be more representative

of those testing workstation clusters for the first time, and would provide a more meaningful

,:omparison.

Figures 6 and 7 illustrate the execution time versus number of processors for the 61 x41 and 121 x81

grids, respectively. These plots compare observed times versus those expected with ideal speed-up

and versus results obtained on a single processor of a Cray Y-MP. The results clearly indicate that

the actual execution time is slightly greater than the ideal, as expected. The reader will also see that

in both cases approximately 4 LACE cluster workstations were needed to effectively match the

performance of a single Y-MP processor. The results are slightly better for the larger grid size. We

should state here though that the runs were performed using a single precision on both the

workstations and the YMP. This is an unfair comparison since single precision on the YMP

nds to double precision on the workstations (64 bit versus 32 bit.) However, an effort will

•e to run the problems using double precision on the workstations to determine the effect on

ale tmamg results. It is expected that there will be minimal impact because the IBM machines do all

arithmetic operations in double precision format. Hence, the only impact will be on communication

overhead (which will double). However, this is a small fraction of the workload for the envisioned

applications.

The improved performance experienced with the larger grid is further evident in figure 8, which

plots for both grids the speed-up obtained with parallelization versus the ideal speed-up. These

results are plotted in terms of a parallelization efficiency in figure 9. Both figures indicate that the

smaller grid is beginning to experience communication bottle necks when large numbers of

processors are used.

It is important to note that although the LACE cluster is made up of 32 machines only 16 are the

faster 590s. Figure 10 illustrates speed-up when the entire cluster is utilized with equal partition of

work. Clearly this situation can be improved with a simple static load balancing approach that

accounts for differences in processor speed. However, the current code does not yet do this

automatically.

10

Another area requiring an improved load balancing technique are the reacting flow cases. Figure

11 contains the pressure contours for the same cone as above in an H2-Air reacting mixture with

a stoichiometric air to fuel ratio and T_ ---1200 K ° . The reacting flow option was tested late in this

research and parallelization statistics are not yet available.

In _mnary, the above resuks demonstrate the effectiveness of the parallel RPLUS2D code for non-

reacting calculations. Improvements to the scheme are still required and are being pursued.

Parallelization efficiencies greater than 84% were achieved with the larger grid"size and indicate that

the technique would be more useful for even larger grids. No attempt was made to study the effect

of different block sizes, shapes or orientations. Convergence rate degradation was experienced but

was not a factor if the code was converged near to machine zero. Specific convergence performance

is therefore subject to desired convergence level.

Additional Modifications

Apart from the changes made to allow parallelization and improve implementation efficiency, a

modification was made to the basic solver to install Roe' s flux difference splitting as a solver option.

The reason for this is that it was found that the Van Leer's flux vector splitting currently installed

in the code is too dissipative especially when contact discontinuities are encountered. A shock-

boundary layer interaction problem was run with both the Van Leer's flux splitting technique and

" .'_ '_ux difference splitting technique. Much more accurate results were obtained with the

:._specially within the separation zone inside the boundary layer.

Recommendations

Several issues have not been addressed in the current work and should be pursued for more useful

application of the parallel RPLUS2D code.

• More efficient use of memory should be made. Currently, memory locations are

included for the entire grid on each processor. This must be changed so that each

processor reserves memory for only those data on which it will operate.

• A study should be made of the effect on the convergence rate and solution of grid

block orientation. It is possible that partitioning in only 1 direction might enhance

the convergence rate, i.e. ira dominant flow direction is present (as with boundary

layers) it might be possible to decompose the solution domain such that block

interfaces are aligned with and do not cross this direction.

• A dynamic load balancing approach needs to be incorporated to achieve efficient

load balancing on heterogeneous clusters, multiuser environments, and flow fields
with an uneven distribution of chemical reaction source terms work. An historical

approach is possible for this need.

• Additional test cases should be computed to assess the ability of the parallel code to

perform.

• Studying the performance of the different communication networks available on the

cluster especially when considering larger problem sizes and having communication

11

bottlenecks.

Running the parallel version on different architecture such as the Cray T3D, IBM

SP2 and assessing the performance on these architectures.

Project Personnel

The following personnel were funded by the research.

• Dr. Paul D. Orkwis (PI)

• Mr. Daniel B. Kim

• Mr. Nidal Ghizawi

Mr. Kim left the university before completing his degree. Mr. Ghizawi is a Ph.D. candidate under

the co-direction of Dr. Orkwis and Dr. Abdallah. Unfortunately, considerable amounts of data and

"-de were lost in the transition between the two students.

.

,

,

°

.

.

References

Tsai, Y.-L. P., "Recent Update of the RPLUS 2D/3D Codes," AIAA Paper 91-0094, 1991.

- K.C. and Tsai, Y.-L. P., "Comparative Study of Computational Efficiency of Two

_,.,,emes for Non-Equilibrium Reacting Flows," AIAA Paper 90-0396, 1990.

Keyes, D., "Domain Decomposition: A Bridge Between Nature and Parallel Computers,"

Adaptive, Multilevel, and Hierarchical Computational Strategies, ASME, AMD, Vol. 157,

ASME, New York, NY, pp. 293-334.

Zapach, T.G., and Djilali, N., "Study of Accuracy and Parallel Efficiency of Domain

Decomposition Applied to a Finite Volume Method," Advances in Computational Methods

in Fluid Dynamics, ASME, FED, Vol. 196, 1994, ASME, New York, NY, pp 167-176.

Shimano, K., and Arakawa, C., "Numerical Simulation of Incompressible Flow on a ParaUel

Computer with the Domain Decomposition Technique," Transactions of the Japan Society

of Mechanical Engineers, Part B, Vol. 59, No. 567, November 1993, pp. 3340-3346.

Drikalds, D., and Schreck, E., "Parallel Multi Level Calculations for Viscous Compressible

Flows," CFD Algorithms and Applications for Parallel Processors, ASME, FMD, Vol. 156,

1993, AS/VIE, New York, N'Y, pp. 9-23.

Schreck, E., and Peric, M., "Computation of Fluid Flow With a Parallel Multigrid Solver,"

International Journal for Numerical Methods in Fluids, Vol. 16, No. 4, February 1993, pp.

303-327.

.

.

10.

12

Bhogeswara, K, and Killough, J.E., "Domain Decomposition and Multigrid Solvers for Flow

Simulations in Porous Media on Distributed Memory Parallel Processors," Journal of

Scientific Computing, Vol. 7, No. 2, June 1992, pp. 127-162.

Ewing, R. E., "Survey of Domain Decomposition Techniques and Their Implementation,"

Advances in Water Resources, Vol. 13, No. 3, September 1990, pp. 117-125.

Braaten, M. E., "Solution of Viscous Fluid Flows on a Distributed'Memory Concurrent

Computer," International Journal for Numerical Methods in Fluids," Vol. 10, No. 8, June

1990, pp. 889-905.

Figure Captions

Figure 1

Figure 2

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Flow Chart of the New RPLUS Code.

Comparison of pressure contours for single and multi-block domain decompositions.

Non-reacting mixture.

Norm-2 of ZXpu for the 61x41 grid obtained with various processors.

Variation in Time Measurements, 61x41 grid.

Variation in Time Measurements, 12 lx81 grid.

Execution Time for the 61x41 Grid.

Execution Time for the 121x81 Grid.

Speedup for Different Grid Sizes.

Parallelization Efficiency.

Speedup Versus Number of Processors, Full LACE Cluster.

Comparison of the Pressure Contours for the H_-Air Reacting Case (a) On a Single

Processor (b) on 16 Processors.

o

c_
r_

I

E
1-
0

c_

!°
o_

_..--i

r._

0

0
Z

0

_J

0

o°

,L

o_

Z

04 CO
w.- '_- CO ",-- v-

i

i I
i I
i I
i I
I
i I

-- 0

0
0

c-
O

o_

0

0 ,4-
O4 0

0
0

CD
0
c-
O

I.-

CD
>
c-
O
0

0

D_

Z
v

0_

0

0
0
0

¢L

0
I,...

E
= E

Z -_
t-

o
c-

o

o
o

LU

c-&

o_

LL.

0 Q 0 0 0 0 0

lenp!se_l(nJ)

0 0
cO 0_

o >- o

0

0

0 0
cO O_

0 >- 0

0

0

O

_)

C_

0_

0

O
O

O

C_

Od

O

O
O

0

00

0
00

(J
0

(0

0

e_

0
m
m

0
0

e-
ou

e-

0

v

0

e-

o

rr

0
Z

e-

o

o

e-
o

0

c-

o

e-
o
ffl

°m

E
0
0

°_

U.

0

O_

EE
_m om

c-- c-
O 0

r,D 0

X X
l.iJIII

I
| I I I

0

<_.4 4 4<I 4_

_4

I , , , I I , I I , I
L_ O If)

I

I I I I

O
@,I

<.O

5,--

O

",'- crj

{..)

£
13_

O

O
O

I

"O

X

v

ct)

E
1,,,,.

c/)
c_

E
°_

i--

r-
O

C_
1...

om

L.I_

(%) ueelAI eq_,LUOJJu0p,e!AeCl

-0
O--

EE

0 0
°--

x

I I I I I I I I , T I , T , T I
0 m

I

I I 1 I

o
- od

c_

- co

o

0

I

to

0

0
0

0
L,.

.Q

"0

O_

CO

X

T'--

V

E

c_

E

Z

E

t-

c-
O

c_

c_
>

c_
L__

(%) ueelAleq_ woJ; uo!_e!Ae(]

I
I

/
/

/
/

/
/

rJ9
0

g,)

0
0
1=_

in

o
'L

..Q
E

z

.i
,L

X
,,,,i,.=

¢..0

I,m.

0

E
I--
c-
O

0

x
LU

0')
.m

LL

0
_m

O4

o

(oes) ew!l uop,noex3

0

O_

>-

w 8
o o

o_

±

/

/
/

I
I

C_

0

/
/

/

m -o

O3

0

cO
(D

0

0

0

0
'L

0..

0

(D
..Q
E

z

"0

¢0
X

0

(D

E

t-
O

x
mlm

tJ_

(oes) ew!l uo!;n0ex3

I I

i I , I l T I , I , I I I l l

0

c/)

0

0
0

13.

0

c_

E

Z

U
°_

O0

c-

a

0

c_

c_

t_

dnpeeds

i

",-"CO
_" X
X _._

o

I=..

0
¢/)

0
I,..

O_
cC) ,,_

0
I,,--

E

Z

O

1.1.1

N

I,...

C_
IJ_

(%) Xou_!o!;;3uo!;_Z!l_ll_d

"\\

x__ _

, ! _\

0 _ 0 _ 0

dnpeeds

o

o

o o
co c_
o >- 0

o

c_

c) o

c)

c_

o

c_

co
c)

c)

o
o
o

co
o

o

o
o

0

_o
0

n

cO

C)

.0

0
_0
0_
_)
¢.)
0

n

r

r.-
C)

v

_)

rr

!

-'r

I,._

0

0
r"
0

_)
_)

-!
_)

_)

n
_)

0
t-
O

o_

E
0
0

d)
U_

