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Hierarchical Parallelism in Finite

Difference Analysis of Heat Conduction

Joseph Padovan, l Lala Krishna I and Douglas Gute 2

The University of Akron, Akron, Ohio

PART I - FORMULATION

SUMMARY

Based on the concept of hierarchical parallelism, this series of papers develops highly efficient

parallel solution strategies for very large scale heat conduction problems. In addition to yielding

a many order of magnitude improvement in computational speed, the methodology reduces round

off as well as introduces a significant solution stabilization when used in conjunction with

iterative procedures. Overall, the method of hierarchical parallelism involves the partitioning of

thermal models into several substructured levels wherein an optimal balance in the various

associated bandwidths is achieved. The solution to the problem is then developed in parallel via

special direct, iterative or mixed (direct/iterative) procedures wherein each partition is monitored

for its intrinsic spectral properties so as to enable the choice of the appropriate local solution

algorithms. Overall, the paper is organized into to parts. The first develops the parallel

modeling methodology and associated multilevel direct, iterative and mixed solution schemes.

Part II establishes both the formal and computational properties of the scheme. Here emphasis is

given to establishing convergence characteristics, spectral properties as well as the choice of the

appropriate solution accelerators.

' Department of Mechanical Engineering, The Univerisity of Akron.
2 Department of Mathematics, The University of Akron.



i. Introduction

In recent years the almost unlimited promise afforded by the first

several generations of sequential type computer architectures has essen-

tially been saturated. Motivated by this, ex_ensive ongoing work has

been undertaken to develop new types of computer architectures [i]

These principally fall into the followin K categories [1,2], i.e.:

i) Vectorized/pipelined systems;

0

ii) Parallel systems; and,

iii) Combined systems.

Many of the new systems will have a hierarchy of operational modes.

Namely, depending on the repetition level of a given block of code, three

operational modes will be possible. Specifically, below a given repeti-

tion level, the code will be performed sequentially. For an intermediate

range, the coding block will be performed vectorially. At yet higher

levels, the coding is copied to a set of parallel processors where it is

performed locally in a multiply vectorized format. Such a many option

scheme is essentially dependent on the intrinsic lower and upper bound

performance characteristics of the associated scalar vector and parallel

processors. Included in the decision making are the associated communi:

cations costs.

While such procedures have added to our current capacities, Kenerally,

the efficiencies have become saturated as vector lengths and/or the number

of processors have grown too large. Prototypically, in parallel systems

employing such schemes as the super cube technology [3], running speeds

tend asymptotically to be diminishing fractions of the number of process-

ors employed [4] Similarly, in vectorized systems generally vector length



is limited to certain lower and upper bound dimensions to yield optimal

results. This limitation also reduces the full potential of such schemes.

Beyond these restrictions, the general tendency today is to attempt

to solve thermal simulation problems in a strictly global manner. As will

be seen, such approaches tend to yield extremely large sets of equations

with their concomitant bandwidth problems. In an attempt to bypass such

difficulties typically some form of bandwidth minimization scheme is

employed [5] While such an approach yields some relief, even optimized

global models represent significant difficulties.

In the context of the foregoing, this series of papers will develop

an alternative architectural strategy to handle very large scale _hermal

simulations. Specifically, a multilevel, i.e., hierarchical form of prob-

lem partitioning/substructuring will be developed. As will be seen, such

a scheme will enable so-called partitional/substructural/local bandwidth

minimization at the various hierarchical levels of the scheme. This will

enable orders of magnitude improvement of the computational speed of finite

difference and element (ED/FE) simulations when separate processors are

defined for each partition. Additionally, when used with direct solvers,

the associated round off error is significantly reduced thereby lightening

machine load.

In addition to establishin E the modelling architecture, several associ-

ated solution methodoloEies are developed. These include:

i) Purely direct schemes;

ii) Mixed direct and iterative procedures; and,

iii) Purely iterative methodologies.

For the mixed scheme, various partiti6ns, i.e. substructure, are handled



via either direct or iterative procedures. Such a treatment being con-

tingent on the associated spectral conditioning of the partition. To

generalize the development, a variety of schemes are considered and modi-

fied, i.e. Jacobi [6], Gauss-Seidel [6], successive overrelaxation (SOR)

[6] and conjugate gradient [7]. As will 5e seen, the hierarchicalism

tends to introduce significant improvements in the stability and efficiency

of iterative schemes.

Beyond the purely developmental aspects, formal numerical properties

will also be given. This will include such items as convergence charac-

teristics, spectral properties,relative efficiencies of the various schemes,

as well as the selection of various optimizing parameters for the SOR and

conjugate gradient methodologies.

To prove out the scheme, the results of a variety of benchmark ex-

amples will be discussed. Overall these include moderate to large scale

heat conduction problems ranging in size from models of i0,000 to 250,000

degrees of freedom.

Overall the two-part series of papers is organized as follows:

Part I

I.l Overview of previous work.

• FD analysis of heat conduction

• New computer environments

I.Z Current Approach

• Substructural parallelism

• Local bandwidth minimization

i)

1.3 Algorithmic Considerations

4



ii) Part II

II.l Algorithmic overview

II.2 Formal numerical properties

• Convergence characteristics

• Spectral properties

• Relative convergence properties

• Selection of optimal acceleration parameters

• Influence of hierarchicalism

II.3 Benchmarking including heat conduction problems.

II.4 Final summary.
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2. Previous Work

As noted in the introduction, FD schemes are widely employed in heat

transfer analysis. Most of such applications have involved the use of

sequential and at best pipe lined/vectorized computers, i.e. CRAY and FPS

[i] To motivate the development of the hierarchical parallel
type systems

scheme noted earlier in the Introduction, this section will

i) Briefly overview FD modelling procedures

ii) Describe new computer environments and their impact on FD analy-

sis; and,

iii) Overview shortcomings of proposed computer configurations, i.e.

pipe lined/vectorized and parallel type systems.

2.1 Overview of FD Analysis

Assuming isotropic media for simplicity, the governing Fourier heat

conduction relation takes the form [8]

v2T + Q = 0 (2.1)

[8]
wherein

= a 2 a 2 a 2

such that T is temperature and x I, x2, x 3 are the Cartesian coordinates.

The boundary conditions associated with (2.1) are either prescribed temp-

[8]
erature, flux or of the convection-radiation type, namely

i) for V _ ¢ aR T

r=÷ (2.3)

ii) for V x caR
- q

aT - (2.4)
-< _--_- ni = qi
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iii) for V x _ DR
- cr

_T

- K a-_-. _ i = H(T-T®) + _(T4-T_) (2.5)

1

where T, q, are the prescribed temperature and heat flux components, and

Q, <, H, T, 7, 8R T, _Rq, _Rcr are respectively the internal heat genera-

tion thermal conductivity, convection coefficient, ambient temperature,

radiation coefficient, and the surface areas defining prescribed tempera-

ture, flux and convection-radiation.

For demonstration purposes, (2.1) will be simulated via 5-point 2D

and 7-point 3D FD expressions. In this context as noted by Verge [6],

(2.1) and its associated boundary conditions, i.e. (2.3 - 2.5) can be

converted into the following FD formulation, namely

[K]T = Q (2.6)

ere T defines the (N,I) column vector of mesh point temperature, Q the

iN,l) column vector defining internal heat generation and boundary condi-

tion effects (purely linear) and lastly IK] is an (N,N) five diagonal

(2-D case) matrix. Since [K] is generally a positive definite symmetric

[g]
matrix it fits in the class of matrices termed Stie!tjean As will .

be seen in Part II, this property will aid us to establish the convergence

properties of the parallel solution strategy.

Note depending on problem size, the bandwidth of [K] will change

accordingly. Furthermore, contingent on the boundary conditions and

connectivity of the problem, the bandwidth need not be uniform. Generally

[10]
(2.6) is solved either iteratively or directly via either a skylined

or frontal scheme [ii]. For extremely large scale problems, typically

7
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someform of out of core blocking [12] is required to handle the direct

inverse. Generally even with the use of say solid state disks, this re-

quires extensive amounts of CPU (central processor unit) and real clock

times. "Hence , large scale problems With even modest average

bandwidths tend to tax mainframe capacities. This is one of the primary

factors motivating the ongoing thrust to develop alternative computer

architectures.

2.2 New Computer Environments

Currently there appears to be essentially two major forms of new

computer architecture, i.e.:

i) Pipe lined/vectorized; and,

ii) Purely parallel

For the pipe lined and vectorized machines, while the overall problem is

still solved in an essentially segmential sense, similar noninterdependent

operations can be performed in vectorized chunks, i.e. matrix multiplica-

tion, subtraction, addition, etc. The vector/pipelined architectures

involve the use of numerous individual processors all preprogrammed for

certain fixed duties. In this context, the size of the chunks operated

on are contingent on the number of available individual processors and

associated memories.

In the case of so-called parallel systems, the overall machine archi-

tecture consists of several to numerous individual processors each with

its own distinct I/O and instruction Set capacities. Currently the cross-

talk between the various separate processors is achieved via various con-

voluted connection schemes, i.e. the super cube methodologies used in

the FPS I00 series [4], the connection machine supported by DARPA, etc.



Each of the various foregoing technologies, while providing signifi-

cant improvements over the traditional single processor frames nonetheless

Organized accordingthemselves possess very important shortcomings.

to architectural type, these include:

i)

ii)

Pipelined/vector architectures

• Extensive memory requirements in main CPU;

Very awkward to program;

• Difficult to employ in multi-user environment;

• Difficult to arrange programing to efficiently handle prob-

lems with multitudinous substructure, i.e. material groups,

boundary conditions, complex boundaries;

• Code structure too dependent on machine architecture to

be economically viable;

Many operations required at local level are scalar, hence

slowing down overall throughput;

• S/O awkward due to multitudinous degrees of freedom;

• Particularly awkward to provide for mesh refinement, namely

wherein any portion of the model may be densified, all

storage and array alignments must be reconfigured during

refinement process; and,

• Concentration of all computing power in one machine is not cost

effective except for large well funded government research

installations.

Parallel machines

• Awkward to program;

• Communication between parallel processors usually awkward,

i.e. the super cube;



• Controlling languages highly machine dependent; coding

lacks portability;

• I/O typically awkward;

• Compute power of given node usually limited; and,

• Parallel architectural methodologies lacking;

Much of the foregoing problems stem from the fact that to date

machine architecture has been dictated by hardware-software considera-

tions as well as the needs of the prevailing bulk user, i.e. the service

industry• Because of this, the natural generic features of the physics

of an engineering problem and its associated analytical numerical formu-

lation must be subverted to satisfy the needs dictated by machine capa-

bilities. The next section will establish a more natural connection

scheme.
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3. Current Approach

For FD simulations such as defined by (2.6), the overall computer

load falls into two main categories:

(I) The generation of mesh point equations and their associated

global assembly, and

(2) The solution of (2.6) with its concommitant large bandwidth.

In the case of large scale simulations, the use of either direct (sky-

line, frontal [i!]) or iterative (least square [13], Jacobi, Gauss-

Seidel, SOR, preconditioned conjugate gradient PCG) schemes tends to

tax even the largest main frames whether pipelined, vectorized, or parallel,

i.e. the CRAY-.k_P, vectorized IBM-3090-400, FPS-200, etc. in this con-

s

text, it follows that as currently envisioned and configured, neither

vectorized/parallelized nor straight parallel systems provide the total

answer to improved computer architectures.

From a purely philosophical point of view, the actions and reactions

in real physical situations whether steady state or transient occur in

an essentially concurrent format. Such behavior is modelled by the equa-

tions of continuum mechanics. Because of this , the ideal computer archi-

tecture should be able to simulate such behavior in its own architecture,

i)

ii)

i.e.:

To be able to handle steady problems wherein all the various

system components are interacting; and,

To handle transient wave front problems wherein the zones of

concurrent interaction grow as the waves signalling the infor-

mation flow spread.

il



Suchmodelling requirements point to concurrent parallel processors

whose individual capacities are enhancedby pipelined/vectorized attri-

butes.

From a purely industrial point of view, as noted earlier, a single

concentrated source of computing would not be economically feasible. A

corporations prototypical overall organization is divided into separate

departments designing/developing/analyzing various componentsof a given

product. Hence; they represent a multiple computer user base.

Generally computer requirements fall into several main categories,

namely:

i)

ii)

To design/develop/analyze individual product components;

To provide a common data base for the various interconnecting

product components; and,

iii) On occassion to enable running highly refined component models

or overall simulations of the entire product.

Such industrial/institutional organizational schemes place competing

somewhat contradictory requirements on the computing facilities, i.e.:

i) The need for localized distributed computing;

ii) Data base networking; and,

iii) Significant central processing capability.

Interestingly, these needs are not unlike those required by a particu-

larly large scale FD simulation, in this case, one involving hea= con-

duction.

3.1 Substructural Parallelism

Based on the foregoing, a so-called hierarchically parallel

methodology and associated direct and iterative solution strategy will be

12



developed. Specifically, the overall problem will be partitioned into

a set of substructures each ac_ing as separate conduction problems.

These partitions constitute the first hierarchical level. Note, each

of the substructural problems will be provided with the appropriate

interlinkin E boundary conditions to provide the proper global conserva-

tion of energy and field variable continuity.

Noting Fi E . 3.1, each separate partition will have its own set

of internal and boundary/external mesh points. Hence, (2.6)

takes the form

[K£IT £ = 9 £ ," £¢ [I,LI

where L is the number of substructure.

-
and [K £] is partitioned in the form

[K £] =

(3.1)

(3.2)

(3.3)

ii lIKI] [KIE] (3.4)

JKEI ]

such that the superscript £ and the subscripts I, E, and IE/EI respectively

define the partition number, internal, external and connection blocks of

[K£]. The mesh points lying on the boundaries of a given substructure may

themselves fall-into two categories, i.e.:

13



i)

ii)

Those boundary mesh points shared by two distinct sub-domains;

and,

Those shared by several, i.e. see Fig. 3.1.

Based on the segregation of variables into internal and those on dual

and multiple boundaries, we see that (3.1) can be recast in the form:

i) Internal Regions;

£ £

[IKI]TI--

£ £
+ C   BI_T B+ C KMBJTMB (3.5)

ii) Dual Boundaries;

£ T £
[DBKDB ]-DB =

£ £ r £ ,T£
DB Q£ + [MBKDB]Ti + LDBKMBJ.M B (3.6)

iii) Multiple Boundaries;

[ _
MBKMB ]TMB =

& £ r £,T £
MBQ _ + [MBKDB]TDB + [MBKiJ_I

such that here:

[IK_] - Conductivity matrix of £th substructure

£
[IKDB ] - Coupling block between ith interior variables and £th

dual boundary variables

[i_] - Coupling block between interior and multiple boundary

variables

(3.7)

14



£
[D_DB | - Conductivity matrix of dual boundary variables

K£
[DB_MB] - Coupling block between dual and multiple boundary variables

[MB_£B] - Conductivity matrix of multiple boundary points

and T_, T_Band TMB respectively are the interior, dual boundary and

multiple boundary temperatures. Due to the structure of [K£] and its

various partitions, it follows that

(3,8)

K_ £B] = (3.9)

£ £

[DBKMB ] = [MBKDB ]' (3.10)

where ( )' designates matrix transposition.

Note, depending on the FD operator employed, i.e. 5, 7, 9, 13 point

or higher order, the various off diagonal blocks [IKD_],... will have

different degrees of coupling. For instance, in the case of low level

operator (5, 7 point), the structure of [IKD_],... will be essentially

empty hence yielding a so called sparse coupling. In contrast, for

higher order FD operators the structure of [iKD_],... will be quite

complex hence yielding a dense coupling. Unlike the FD, use of FE analysis

will prototypically yield a dense coupling between levels.

After direct assembly, (3.5) - (3.7) yields the following global

second level relations, namely:

X(Eq. (3.5)) -_
£ £

[IKI]_!-[IKDB]_DB-[IKMB]TMB = QI (3.11)

15



x (Eq. (3.6))_ --,-
9.

[DBKOB]_DB- [DBKI]_I - [OB_B]TMB = 9OB (3.12)

Z (Eq. (3.7))£-_
£

[MBKMB]_MB [MBKDB]_DB - [MBKI]_I = _MB (3.13)

where for_example [IKI ] is a block diagonal matrix, that is

[IKI] =

!

-IfK_]

[0]

[0]

(3.14)

Furthe_ore, _I takes the following partitioned form

:i1
(3.15)

The size of the various partitions is given by

16



[15] - (NI, NI)

[i%B ] - (NI, NDB)

[I_MB ] - (N i , NMB)

[DBKDB ] - (NDB, NDB)

[DBEMB ] (NDB, NMB)

[MBEMB ] - (NMB, NMB)

(3.16)

where NI, NDB and NMB respectively denote the number of total internal,

dual and multiple boundary mesh points. Note if N is the total number

of degrees of freedom, then

N = N i + NDB + N M
(3.17)

where

L
£

NI= X N I
£

(3.18)

£
such that N i is the number of internal mesh points of the £th

substructure.

Recast in global matrix form, (3.11) - (3.13) yields the expres-

sion

[¥_)]T = @ +([K u] + [KL])_T
(3.19)

where

[KD] =

[iKz] [o] [0] -

[o] [DB_B] [03

. [0] [0] [MB_B ]_

(3.2o)

17



IF,U] + (KL] =

- (o] [i _OB]

[OB_] [0]

_ [MBYX] [HB_3 ]

such that

C_] =

m

- [0] [IKDB ] [IKMB ]

[0] [0] [DBKMB ]

[o] [o] [o]

u

[i_B ]

[DBKMB ]

[0] _

(3.21)

(3.22)

[KL] = [Ku]'

As can be seen from (3.20), [KD] is a block diagonal matrix.

[KU] and [KL] are respectively of upper and lower triangular form with

zero blocked diagonals.

Due to its form, (3.19) provides a two level, i.e. hierarchically

parallel organization to the governing equations. It can be employed

in several ways, namely:

I,

(3.23)

The matrices

If all the internal variables are eliminated, then the extern-

al nodes appearing on the various substructure tend to con-

vert them into super elements, i.e. as per finite element

analysis; note such a procedure would be undertaken prior to

assembly and performed simultaneously, i.e. in parallel;

18



since it only retains external variables, the resulting

assembled global formulation would be significantly reduced

in size and hence more manageable;

2. Equation (3.19) could be used to establish three basic types

of solution algorithms, i.e.

• Direct elimination both locally and globally;

• Enable a mixed procedure wherein the various partitions

are handled either iteratively or directly; and,

• Both levels of the formulation are handled iteratively;

lastly

3. The hierarchical parallelism can be carried out in general

global-local levels which enable bandwidth minimization on a

local rather than a full problem basis, Fig. 3.2.

Note, due to the restructuring of (2.6), (3.19) is in P-cyclic

form [6] for five and seven point FD simulations. Specifically, noting

(3.20) and (3.21), it follows from Varga [6] that (3.19) is weakly 2-

cyclic. As will be seen in Part !I, this property will enable us to

establish a very well defined range of choices for parameters to acceler-

[6]
ate the successive overre!axation (SOR) scheme

In a similar context, for FD simulations the various matrices appear-

ing in (3.19) are Stieltjean [9] Hence, the powerful results of M-matrix

theory [6] will enable us to establish formal considerations which define

the convergence properties of a wide variety of iterative schemes, i.e.

Jacobi, Gauss Siedel, SOR, as well as preconditioned conjugate gradient

schemes. These considerations will also enable comparisons between

variations of the foregoing techniques.

19



3.2 Local Bandwidth Minimization

For the foregoing two level partitioning process, the appropriate

choice of the number of substructure can yield optimal results. As an

example, noting Fig. 3.3, consider the case wherein separate processors

and dedicated to the individual local substructure as well as to the

assembled global level external formulation. While the optimal balance

between the requisite number of processors and simulation size is problem

dependent, as will be seen from the following example, the central control-

ling factor is the Balance between first and second level bandwidth mini-

mization. In particular, consider the 2-D rectangular uniformly differ-

enced domain defined in Fig. 3.4. For simplicity, the region will be

partitioned into _i<2 first level, i.e. local domains. In this context,

if ng I and ng 2 denote the total number of degrees of freedom per edge

then it follows from Fig. 3.4 that

n gI = _l(nl-l) + 1 (3.24)

ng 2 = _2(n2-i) + 1 (3.25)

where n I and n2 denote the number of degrees of freedom along the edges

of the local substructure.

Based on (3.24) and (3.25), the total number of degrees of freedom

is given by the expression

N = n
g g]. ng2

or in terms of n I and n2 we have that

Ng = (_l(nl-l) + i)(_2(n2-I) + i)

In the square case (_i = _2' nl = n2) then

Ng = (<(n-l) + 1) 2

(3.26)

(3.27a)

(3.27b)

2O



For situations wherein (n,<)>>l such that n>><, (3.27) reduces to

(rectangular) (3.28)

(square) (3.29)

After global assembly the minimum bandwidth associated with the non-

substructured full formulation is given by the expression

Bg = Kl(nl-l) + 2

where here ¢l(nl-l) + 1 < _2(n2-i) + i.

reduces to

Bg = <(n-l) + 2

In the case that (_,n)>>l; <<<n then

Bg _ _n

Based on (3.26)

(3.30)

For the square region, (3.30)

(3.31)

(3.32)

(3.32), the computational effort associated with

the direct calculation of (2.6) takes the form

i
Cg % _ Ng ((Bg) 2 + Bg) (3.33)

Considering the square and rectangular regions, we yield that

1 (_l(nl_l)+l)(_2(n2_l)+l){(_l(nl_l)+l)2 + _l(nl_l)+l }cg _

i
Cg _ _ (_(n-l)+l)2{(<(n-l)+l) 2 + <(n-!)+l} (3.35)"

Again for the case where (_,n)>>l such that K<<n, then

1
Cg % _ (_inl)3 _2n2 (3.36)

1
Cg _ _ (_n) 4 (3.37)

For the local substructural setup, the bandwidth is given by

B£ = nl+l (3.38)

(3.34)

21



B£ = n+l

The total number of degrees of freedom are

(3.39)

NZ = nln 2 (3.40)

N z = (n) 2 (3.41)

Note for the £th substructure, the nearly optimal bandwidth is

_£ _ n (3.42)

If a Gaussian scheme [i0] is employed to solve the internally�externally

£

partitioned version, then the connectivity block, i.e., [_IE ] tends to

yield an increased bandwidth. In particular, from an asymptotic point

of view

_£ _ 3n (3.43)

Hence, the asymptotic computational effort associated with the local

block is given by

9 4
C£ % _ n (3.44)

The optimal version yields

1 4

C£optimal % _ n (3.45)

Thus asymptotically

C£/C£optimal % 9 (3.46)

This state of affairs can be improved with the use of nested dissection [14]

to condense the local partition.

Considering the second level of the partitioned scheme, the estima-

tion of calculation load is complicated by the sparse nature of the

region under consideration. Noting Fig. 3.5, the total number of external

degrees of freedom is given by the expressions

N
e : (_l(nl-l)+!)(<2+!) + (_2(n2-i)+I)(_I+i) - (<i+i)(_2+I) ,

(3.47)

: 2(_(n-l)+l)(<+l) - (4+1) 2 (3.&8)N
e

22



In the case that (n I, n2, _i' _2) >> I; nI > _I' n2 > _2 then

Ne % _l<2(nl+n2 ) (3.49)

N % 2(_)-n (3.50)
e

To establish the bandwidth of the assembled external level formula-

tion, several factors must be taken into account. Specifically, noting

FiE. 3.6, the second level formulation consists of families of horizontal

and vertical mesh points. In this context, bandwidth is contingent on:

i) Vertical positioning of horizontals;

ii) Location within either verticals or horizontals

Based on this, the bandwidths associated with the various external degrees of

freedom are given by the following external family of expressions, namely:

i) First vertical,

B 1 = i (3.51)
evij

j¢[l,<l], ig[l,nl-l)

ii) 2nd, 3rd .... ' _2 +l verticals,

Bk
ev_ = _l(nl -I) + (_l+l)(n2 -2) + i

i¢[2,ni], k_[2,_2+l],j¢[l,_ I]

Bk = _l(nl-l) + (<i+i)(n2-2) + 1evol

ka[2, r2+l]

(3.52)

(3.53)

iii) First horizontal,

B 1 = _l(nl-l)+l + (_i+1)(i+i)
eh_j

i_[i,n2-2], j¢[l,_ 2]

(3.54)
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iv) 2nd, 3rd ..... <i+i horizontals,

Bkehij = _l(nl-l)+J+(<l+l)(i-i ) - (j-2(nl-l)) (3.55)

iE[l,n2-2], k_[l,_ 2]

jc[2,_l+l]

such that the subscripts e, h and v define external, horizontal and vertical.

Averaging the above noted bandwidths we yield the expressions

i) First vertical; _l(nl-l) entries,

n 1
<B 1 ..> :-- (3.56)

ev:j 2

ii) 2nd, 3rd .... verticals,

<B k >
evx 3

n I

= _l(nl-l) + (_i+i)(n2-2) +i+ -_

El_2(nl-l) entries
(3.57)

<B_vol> = _l(nl-l) + (<I+i)(n2-2) + i

E2 entries
(3.58)

iii) First horizontals; (n2-2)_ 2 entries;

n2-1

<Behij • = El(nl-l) +i+ (El+l) 2 (_i+i) (3.59)

iv) 2nd, 3rd,... horizontals, (n2-2)_iE2 entries

ek EI+I n2-1<B hij> = _l(nl-l) +i+-_---+ (El+l) 2 (_i+i)

KI+!

+ 2(nl-l) - (nl-l)(l + -_----) (3.60)
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For the square region, we yield that

<B1
ev_

<B;v_ >

<B k >
evol,

<B_hij >

<B_h _ >

> = n/2

= _(n-l) + (_+l)(n-2) +l+ n/2

= _(n-17 + (_+i)(n-27 + 1

= <(n-l) +I+ (<+i) n----!l- (<+i)
2

= <(n-l) +I+ _---!l+ (_+17
n-i

2

_+I
2(n-l) - (n-l)(l + -_--)

(<+i) +

(3.617

In the case that (nl, n 2, _I' _2 ) >> i; (n I, n 2) >> (_I' _2 ) then

<B_vij> % nl/2

<B_vij> _ _inl + _!n2

<Bkevol> % _inl + _in2

<Bk> % _inl +en!J _in2/2

<B_hij> % _inl + <in2/2 nl<i/2

and

<B 1 ..> % n/2
evzj

<B k > % 2_n
.,

ev13

<B_vol> _ 2_n

el 3<B hi j> _" _ k:n

<B_hij > % _n

25
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Based on the foregoing averages of the individual vertical and

horizontal external level bandwidths, the overall average takes the form

<Be > % _el {_l(nl-l) <Blevi_> + _l_2(nl -I) <Bkvi3>" + _2(Bkvol ) +

(n2-2)<2 <Blehij> + (n2"2)_2_i <Bkehij>"_ (3.64)

For the square region, (3.64) reduces to the form

<B > % 1
e _- {_n <B_v:3> + <2(n-l) <B k .> + _ <B k > +"" evi3 evol

e

<(n-2) <B 1 > + _2(n-2) <B k, .>}
ehij enij

(3.65)

As before, for the asymptotic case wherein (<i' <2' nl' n2) >> i; (n I, n 2) >

(_I' _2 )' we yield the simplified expression

<Be > _ _i {_ _+n <2n(2< n) +
e

3
_(2_n) + _n (_ Kn) + _'n(<n)} (3.66)

Since

N % 2_-n ,
e

(3.67)

it follows that

<B>% 3
e _ Kn (3.68) "

Employing the foregoing relations, we are now in the position to

establish the calculation effort at the 2nd global level. In particular

l ((<Be>)2Ce = _ N e + <Be >) (3.69)

To simplify the forthcoming discussion of optimization we will confine

our development .to the asymptotic forms. These can easily be upgraded
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for all possible choices of nI, n2, _i' _2' i.e. after someextensive

algebraic manipulations.

9 )3(<)4(n
Ce

In this context, C takes the form
e

(3.70)

To chose the optimal values of < and n, we must establish the net

effort of the hierarchica!ly parallel scheme. In this context, noting

the local and external efforts defined by (3.46) and (3.70), we yield

that Ct the total hierarchical effort is defined by the relation.

Ct = C£ + C e

9 4 9
= _ (n) + _ (K)4(n)3 (3.71)

At this juncture it is worthwhile determining the ratios between local,

external and total hierarchical efforts to the straight full nonsubstruc-

tured approach. Recalling (3.37), this yield the following expressions

R£/g = C£/Cg _ 9/(4) 4 (3.72)

Re/g = Ce/Cg _ 4.5/n (3.73)

and

Rt/g = Ct/Cg % 4.5/n + 9/(_) 4 (3.74).

where R£/g, Re/g and Rt/g define the respective ratios between the first,

second and total dual level efforts and that of the full nonsubstructured

simulation.

Employing (3.72) - (3.7_), we need to establish the optimal choices

of n and < for a given Bg. Two approaches can be taken to achieve this,

namely:
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i)

ii) Minimize Rt/g with respect to _.

For case (i) namely computer load equalization, we require that

Ce = C£

Equalize problem sizes at both local and external levels; or,

This leads to the expression

= 5_ 2 B E

For case (ii), we require that

d__dE(Rt/g) _ 0

(3.75)

(3.76)

(3.77)

Recasting (3.74) in terms of < and B , we yield the relation
g

9 (3.78_
Rtlg _ 4.s _- + -7

g

In terms of (3.77), (3.78) yields the expression

5 [ 8B (3.79)

Note while (3.76) balances the computing load among processors,

(3.79) optimizes, i.e. minimizes the overall computational effort. For

instance, noting Table 3.1, as would be expected, as problem size in-

creases, the number of processors needed to balance local and external"

computing load increases. Concomitant with the increase in processors

and problem size, we also see that the relative advantages of hierarch-

ical parallelism also grow significantly. This is a direct outgrowth

of the localized bandwidth minimization afforded by the procedure.
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For the case of overall load minimization, i.e. (3.17), Table 3.2

illustrates the improvements afforded by the current form of parallelism.

As would be expected, (3.17) yields somewhat improved results over the

load sharing scheme. This, of course, is at a cost of requiring a modest

increase in the number of processors. A comparison of the two schemes

illustrates that the increased number of processors is

somewhat offset by the decrease in relative loading. In particular,

comparin E the Re/g ratios noted in Tables 3.1 and 3.2, it follows that

the local processor load is reduced by 300 percent for the optimized

scheme. In this context somewhat less powerful individual processors

could be employed for the work load optimized approach.

To yield more optimal results, a multilevel hierarchicalism may be

employed. Considering a three level system, Figs. 3.7 and 3.8 , two

levels of partitioning are required. After extensive manipulations, it

follows that the asymptotic ratio between the straight classic and the

hierarchical methodology takes the form

C3 (3.80)
Rt/g = C_/g + C_lg + e/g

wherein

(_243)4 (3.81)

_2

c /g )3 (3.82)
Bg(_ 3

C 3 _ (_) 43e/g E-
g

(3.83)

)2
such that (42)-, (43 denote the number of substructure at the 2nd and

C 3
3rd levels. Furthermore C_/g and e/g represent the calculation load

defined by the 2nd and 3rd levels.

29



To establish an optimal choice of substructuring, the appropriate

values of _2 and <3 must be established. This is achieved by taking

the requisite partial derivatives, namely

(St/g) = 0
(3.s4)

i_ (Rt/g)= o
_3

(3.85)

Employing (3.80) (3.85) we yield the expressions

0 % - 36 + 4__99 1 (3.86)

(_3)4(_2)5 4 Bg (_3)3

36 147 _2 9
0 _ ..... (3.87)

(_2)4(_3)5 4 Bg (_3) + 2Bg

Solving (3.86) for _2 yields the relation

49 _3

Since _2 is non-negative and real, (3.86) can be reduced to the form

a9 _3

In terms of (3.89), we yield the following expression for <3' namely

(3.88)

(3.89)

9__ _. 36__ ( 49 k:3

2_ (,_3)5 144 _g

1 1

z___.._Z_._144 _ )s
) 5+4Bg_3 ( _3 C3.90)
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As can be seen from the preceeding development, the three level arch-

tecture yields a several fold improvement, namely:

i) Significantly increased overall speed;

ii) Loading per individual local processors can be reduced several

orders of magnitude;

iii) Due to reduced loading of local level, the associated proces-

sors can be reduced in number and reused in a series format.

In the context of iii), fewer processors are required by the local level.

9

For the optimal case , since C£/g << C_/g, rather than having

separate processors for each substructure, some may be reused. For such

situations, (3.80) takes the following modified form, namely

Rt/g = flK2 C£/g + f2_3 C2e/g + C3e/g
(3.91)

where here fl and f2 denote factors defining the inverse ratio of the

number of processors. In particular

fl¢ [i, i/_]
- (3.92)

f2 _ [i, i/_ 3]

In terms of the foregoing, the hierarchical strategy can employ a degre_

of serialism without any real sacrifice in overall speed.

Note the 3-D cube analogy shows even more significant improvements

when the hierarchical substructuring strategy is employed. In this con-

text, it follows that employing the concept of local bandwidth minimiza-

tion in conjunction with the appropriate mix of local and external vari-

ables, significant improvements can be achieved. These can be further

enhanced as the number of levels is increased.
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&. Al_orithmic Considerations

As noted in the previous section, the solution to say the two level

architecture can be performed in several ways, namely:

i) Direct at both levels;

ii) Direct locally and iterative globally or vice versa; and,

iii) Mixed direct and iterative at both levels.

Since the purely direct method has essentially been outlined earlier,

this section will consider cases ii) and iii). In this context, we shall

develop mixed direct/iterative and purely iterative solutions to the two

level formulation defined by (3.19).

Note the local level associated with (3.19) involves taking the in-

verse of the block diagonal matrix _D ]. In terms of (3.20) and (3.1&),

we see that the inverse of [KD] can be achieved as a number of independent

partitions. Depending on the associated matrix conditioning, i.e. spectral

radius, either direct or iterative procedures could be employed. In this

context

[KDI.-i=

-[i<i 1-I [01

[0] [DBKDB ]

[0] [0]

where for instance

-i
[iKil =

"lIKe]"I

[0]

-i

[0]

[0]

[MBKMB ]-I

m

[0]

[]KI]
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Here the various partitions making up [i_i ], [DBKDB ] and [MEKMB] could be

handled by entirely separate schemes, i.e.:

i) Direct; or

ii) Ire[afire, for example:

Jacobi

• Gauss-Seidel

• SOR

• Steepest descent

• Conjugate gradient

At the global level, (3.19) can be solved via either a direct or

ire[afire methodology. For the simplest formulation the Jacobi type

method, (3.19) yields the algorithm

[KDI_n+I = 9 + ([Ku] + [KLllTn (4.21

or after local inversion

Tn+l = lED]-1 {Q + (rKU] + [KL])T n } (4.3)

For the Gauss-Seidel methodology, (3.19) yields the expression

_n+l = (IKD] - [KL])-I {9 + [Ku] _n } (4.4)

As will be seen in Part II of this series, since

[El = [Ko] - ([KL] + [Ku] ) (4.5)

represents a regular splitting of [K], the $tein-Rosenberg theorem [15]

can be employed to show that the Gauss-Seidel version is superior to the

Jacobi.
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In the case of SOR type methodologies, (3.19) yields the following

algorithm, namely

(i-_)[_] _n + m[_] T_n + wQ_ (4.6)

such that the optimal choice of the over/under relaxation parameter _ can

yield super Gauss-Seidel convergence rates. Again, as will be seen in

Part II, since [K] is cyclic, i.e. 2-cyclic, it follows that wz(l,2).

In the case that w _ i, the Gauss-Seidel method is retrieved.

For the five point finite difference operator, prototypical simila-

tions yield [K] which are Stieltjean type M matrices. As such, the con-

vergence of the Jacobi and Gauss-Seidel schemes are guaranteed. This is

also true of the SOR method for optimal choices of m. Note, if the SOR

method is employed at the local level, each distinct block of [KD] could

have its own _. Much of this will be formalized in Part !I.

Note each of the various partitions of [K D] are symmetric and positive

definite. Hence, it follows that locally the conjugate gradient will

yield convergent inverses.

To yield a stable and efficient convergence process, the initial

guess/starting values need to be relatively accurate. For example,

the initial seeding of the iteration process can be achieved via a multi-

grid type procedure wherein interpolation�extrapolation is used to

obtain the necessary information. For the case of local partitions in-

volving direct solvers, the information flow would occur at partition

boundaries. In the case of iterative solvers, information should be

generated throughout the interior and on the boundaries of the pertinent

partitions.
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As will be seen later, in addition to optimizing bandwidth minimiza-

tion, i.e. processor loading, the hierarchical methodology improves the

convergence characteristics of iterative schemes. For instance, consider

the conjugate gradient procedure. Like the steepest descent method [7 ],

the derivation of the conjugate method is rooted in the quadratic form,

namely

i _ - ' £
i

f =_(T) I1 ITI (Q) TI+c
(z,.7)

where herewe consider the inverse of the [_i ] diagonal block of [KD].

Overall the algorithms various steps are defined by the following sequence

of operations namely

£ = (g£)'gk/((dk)'[_ ££_ _ i]dk )_k -k

£ £ £

g-k+l= g-k+ _k[_lldk

_ 'g_+ll(( _)'Sk = (_k+l) _ _k _k)
(4.8)

_+i £ £= - _k+l + _k_k

such that here

_ (_)k (4.9)_k = [IKI]

Note that:

i)

ii)

£
Tk defines the optimal step size alone the search direction

£

defined by dk ; and,

£ defines the parameter which yields the optimal search direction.
_k
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Whenthe conjugate gradient method is applied globally, there exists

but one set of Tk and Sk, i.e. the global set. In this context they re-

flect the needs of the globally assembled set. Prototypically, the needs

of a given partition may differ hence leading to convergence problems.

£
For the current hierarchical methodology, the (_, 8k) pair is optimized

on a local partition basis. In this context they reflect the intrinsic

substructural requirements. As will be seen, this greatly improves the

convergence characteristics of the overall problem. This is especially

true for problems wherein the conjugate gradient methodology is used

locally and say the SOR is employed globally.

To improve the overall convergence process, prototypically after the

initial seeding, the local iteration process is allowed to converge to a

predetermined accuracy. Subsequently, the global iteration is commenced.

This enables the refinement of the seed values. As noted earlier, the

Part II of this series will develop the formal properties of the foregoing

solution procedures. This will also include benchmarking.
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Table 3.1 - Computational Effectiveness for Load Balance Equalized

System: Two Level Hierarchy.

B
g

500

5000

i0000

50000

tO0000

3.98

6.31

7.24

i0.0

11.48

2
I¢

15.8

39.8

52.5

i00

131

I'I

125.6

792.4

1379.0

5000

8710

Relg

.0358

.00568

.00326

.0009

.000516

Rt/g

.0717

.0113

.00652

.0018

.00103

13.9

88.5

153.

555.5

967.7
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Table 3.2 - Computational Effectiveness for Effort Optimized System:

Two Level Hierarchy.

B

g

500 5.25

5000 8.32

i0000 9.56

50000 13.2

LO0000 15.2

2
n

27.5 95.2

69.3 600.9

91.5 1046

174 3787

229 6579

Re/g

.0118

.00187

.00107

.000296

.000168

Rtlg

.059

.00935

.0053

.00!_7

.00085

(_tlg)-1

16.9

106.8

185.9

677.3

1178.4
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PART II - FORMAL CONSIDERATIONS AND BENCHMARKING

SUMMARY

In Part I of this series, a hierarchically parallel finite difference modeling methodology and

associated solution scheme was developed. The main purpose was to establish a logical and

efficient procedure for use in parallel computer environments. In this part, consideration is given

to establish the formal numerical properties of the scheme. Specifically; several theorems and

associated proofs are discussed which consider the convergence characteristics of the various

solutions algorithms developed in association with the parallel methodology. These are backed

up with large scale benchmark experiments performed on a VAX 785, a vectorized IBM 3090-

200 and a CRAY-X.MP.
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I. INTRODUCTION

As noted in Part I, the main thrust o£ this series has been

the development of an hierarchically parallel modelling and

solution strategy for finite dl£ference analysis of heat

conduction. The basic emphasis of Part I is to formulate the

overall strategy and solution methodology. In this part. formal

consideration and benchmarking will be undertaken.

Included for consideration will be an evaluation of:

i) The formal structure o£ the governing heat conduction

equations and associated solution algorithms;

ii) The convergence properties;

iii) Spectral properties; and

iv) A comparison of convergence rates.

The benchmarking of the parallel scheme will consider the

various versions of the procedure, i.e., the direct, mixed, and

purely iterative formulations.

Note, the formal evaluation of properties will employ the

various theoretical aspects of P-cyclic, Stieltjean, nonnegative

and M-matrices [I,2,3]. Overall this will enable a very detailed

and comprehensive evaluation of the requirements for convergence,

the spectral properties of the various versions of the parallel

algorithms as well as the relative behavior among the various

formulations.

Overall this part is organized into three major sections

which:
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i)

li)

overview the algorithmic structure and properties of

the various coefficient matrices;

give a detailed consideration of the formal numerical

properties and

iii) thoroughly benchmark the various versions of the scheme

on IBM 3090, Vax 895 and CRAY XMP systems.

2. ALGORITHMIC OVERVIEW

Recalling Part I of the paper, the global assembled version

o£ the governing FD equations o£ heat conduction take the form

[KD] - [KU] - [KL]] T = Q (2.1)

where [KD]. [KU]. and [KL] respectively contain the block

diagonal, upper and lower triangular elements of [K] the global

conductivity matrix. Overall the forms are given by the

expressions

[KD] =

[IKI ] [o] [o3

[o] [DBKDB] [0]

[0] [0] [MBKMB]

(2.2)
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[KU] = [KL]

[o] [ZKDB] [IK_B]

[0] [0] [DBKMB]
[0] [0] [0]

(2.3)

Equation (2.1) can be solved in either of three ways,

namely:

i) direct inversion;

ii) purely iteratively or;

iii) by mixed direct and iterative procedures.

As seen earlier, this can be achieved at a variety of

hierarchical levels. For such a formulation, the various

partitions o£ [KD] can be interpreted as follows, namely:

i) [IKI ] is a diagonal block matrix whose diagonal

elements are nonslngular submatrices corresponding to

the internal variables of each substructure.

ii) [DBKDB ] is a diagonal block matrix whose diagonal

elements are nonsingular submatrices corresponding to

dual shared boundaries between submatrices; and

iii) [MBKMB ] is a nonsingular diagonal matrix corresponding

to multlply shared boundaries.

In a similar context, [IKDB ] . [IKMB ] [DBKMB ] and their transposes

define the assembled connectivity matrices linking the various

substructure.

For the direct procedure. (2.1) can be solved either in its

global form or at the various substructural levels using static
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condensation and forward elimination and backward substitution

steps as discussed in Part I.

In the case of matrix Iteration, as noted earlier, eirher a

mixed or fully Iteratlve solution methodology can be employed.

Overall the solution process involves several levels. These

primarily consist of local and global phases of calculation. At

the global level, an Iterative scheme is employed, i.e., either

Jacobl, Causs-Seldel or SOR methods [1,2]. For the local level,

inverses o£ the various substructural matrices can either be

obtained via direct means or by say the robust preconditioned

conjugate gradient methodology [4,5].

As an example, consider the Jacobi type o£ a global

formulation. Here (2.1) takes the form

[KD] T = ([KU] + [KL]) _n __n+l T + Q (2.4)

or more directly

_n+l = [KD]-I {(Ku] + [KL])_n + ~Q} (2.5)

Overall, (2.5) consists of two levels o£ calculation, namely:

i) The local inversion of [KD], and

ii) The evaluation of T after the appropriate matrix
_n+l

multiplication steps.
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Note the inverse of [KD] can be established partition by

partition. This is possible since there is no coupling between

the various blocks making up [IKI ]. [DBKDB ] and [MBKMB ]. Hence.

[KD]-I '[IKI ]-I [0] [0]

]-i[03 [DBKDB [03

-I

[0] [0] [MBKMB ]

(2.6)

As noted earlier, the inversion of the various 51ocks can be

achieved either directly, or via mixed direct and iterative

schemes. Here the conjugate gradient method with preconditioning

could be applied to great advantage especially for well

conditioned partitions.

For the Gauss-Seidel styled methodology, (2.1) takes the

form

T - = ([KD] - [KL]) -I ([Ku]Zn + Q) C2 7)~n+ 1 ~ "

Here the inversion process is somewhat more awkward.

To determine the various formal numerical characteristics of

such algorithms, the properties of the various coefficient

matrices must be defined. To simplify the development, without

loss of Eenerallty. we shall consider formulations involving the

use of 5-point 2-D and 7-polnt 3-D finite difference

representations [I,2]. In this context it follows that [K] is

positive definite Hermitlan and [KL]. [Ku] are nonnegatlve
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strictly lower and upper triangular matrices. Such properties

also apply at the substructural level, The next section will

employ these properties to formally illustrate the convergence

characteristics of the hierarchical methodology.

3. FORMAL CONSIDERATIONS

Overall the formal considerations will have four main

thrusts, i.e.:

i) convergence properties;

ii) spectral properties;

iii) comparison of convergence rates among full iterative

and mixed approach, and;

iv) local global attributes.

This will be established in a series of theorems and their

associated proofs.

First we will show that the global Jacobi and Causs-Seldel

(GS) iteratlve method defined by (2.5) and (2.7) respectively

converEes for any arbitrarily initial vector T , i.e., if T is
nO

the true solution of (2.1) and {In} are the sequence derived from

(2.5) or (2.6). then llm T n = T.
n -_ _

From (2.5) and (2.7). the Jacobl and CS iteration matrices

respectively are given by

-i
J = [K D] {[K L] + [Kv]}

Z = {[KD] - [KL]}-I [Lu].

(3.1)
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It is well known that an iterative method converges

theoretically to the solution for any arbitrarily starting vector

T if and only if the spectral radius, p(C), of the iteration
_0

matrix G is less "than unity. Here

p(:) = Nax Iki[ k is an eigenvalue of G.

Before giving results on the convergence of the block iterative

method, we give the following definitions [i].

Definftlon. A real n x n matrix A = (ai,j) with ai, j _ O for
-i

all i _ j is an M-matrix if A is nonsingular, and A _ O.

Definition. A real n x n matrix A = (ai.j) with ai. j _ 0 for

all i _ j is a Stielt,jes Matrix I£ A is symmetric and positive

definite.

Definition: For n x n real matrices A. M, N. A = M-N is a

regular splitting o£ the matrix A if M is nonsingular with M-1 2

O, and N >_ O.

Suppose a matrix A has the following special partitioned form

(block tri-diagonal):

AI'I AI'2 0

A2,1 A2,2 A2,3

• Aq_ 1 ,q
A A
q,q-I q.q

(3.2)

where the diagonal submatrlces Ai, i, l_i_q are square and

nonsingular. This give rise to a block Jacobl matrix of the form
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JCA)

0 B

B2.1

1.2 0

0 B2. 3

• Bq_l_ q

B 0
q,q-1

C3.3)

corresponding to the partitioning of A. Note J(A) is defined as

weakly cyclic of index _ and A as 2-cyclic.

Lec J(A) = L + U, where L and U are strictly the lower and

upper triangular parts of J(A) in block form.

Definition. If the matrix A of (3.2) is 2-cyclic, then the

matrix A is consistently ordered if all the eigenvalues o£ the

matrix

Ja(A) = =L + =-Iu, (3.4)

are independent o£ a, for a _ O.

How we give the following convergence theorem for the Jacobi

and Gauss-Seidel iterative methods.

Theorem A. The block Jacobi and block Causs-Seldel Iterative

methods defined by (2.5) and (2.7) are convergent for the block

system of linear equations (2.1) for any initial vector

approximations T . Moreover the Causs-Seldel Method converges
_0 •

faster than Jacobl method.
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Proof. For the matrix [K] of (2.1) derived from the five point

finite difference formula applied to self-adjoint elliptic (Heat

conduction) equation, it is known from Theorem 6.d of Varga [1]

that [K] is positive definite Hermitlan and a Steiltjes matrix.

We remark thac every Steiltjes matrix is an M-matrix.

Define

M 1 = [KD]. N 1 = [KL] + [Ku]:

M2 = {[K D] - [KL] }, N 2 = [Ku]. (3.s)

Since [K] = [KD] - [KL] - [Ku] is an M-matrix. It follows from

Theorem 3.14 o£ Yarga [I] that M 1 and M 2 are also M-matrices.

Thus. it follows that [K] = M 1 - N 1 = M 2 - N2 are two regular

splittings of [K]. Moreover N 1 > N2 _ O. Hence by theorem 3.15

o£ Varga [I].

w

o < p (M;I _2) < p (Mli NI) < i (3.S)

From (3.1). It follows that

J = N 1 .

= M21 N2"

(3.7)

Thus.

o < p (z) < p (j) < I. (3.8)
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this implies that both the Jacobi and Causs-Seldel Iteratlve

methods converge. Moreover Causs-Seidel Method converges faster

than Jacobi Method since p(_) < p(J)

In view o£ the above theorem, the Causs-Seldel scheme offers

improved converEence rates over the aacobl version. If the

over/under relaxation parameter Is properly defined, the SOR

prototypically yields improved results over the JacobI and

Gauss-Seldel methods. For the current hierarchlcal formulation.

the SOR takes the followinE form namely

([KD] - e [KL] I ~n+iT = (l-e) [KD] _nT+e[K.]Tu ~n+_ ~Q (3.9)

where e is the relaxation parameter.

I£ we use the five point finite difference scheme to

simulate the heat conduction equation, then [IKMB ] = 0 In

equation (2.3). Hence. from the earlier definition, it follows

that [K] = [KD] - [KL] - [Ku] Is a 2-cyclic consistently ordered

matrix. The SOR Iteration matrix corresponding to (2.1) is then

defined by

Me = ([KD] - _ [KL ])-I {(l-e) [KD] + e [Ku] ). (3.10)

The convergence and optimal e for the SOR method defined by (3.9)

is given in the following theorem which involves the properties

of 2-cycllc and consistently ordered matrix theory [1.2.3].
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Theorem B. Let the matrix [K] = [KD] - [KL] - [Ku] of (2.1) be a

consistently ordered 2-cycllc matrix with nonslngular diagonal

submatrices [KD]. If all the eigenvalues of the second power of

the associated block Jacobl matrix J are real and non-negative,

and 0 _ p(J) < I, then with

2
= , (3.11)

I + d i - p2(j)

it follows that

pCZ ) = (%-i)

and

for all e _ eb: Moreover, the block successive overrelaxation

matrix _e is convergent, i.e., p(_ ) < i, for all e with 0 < _ <

2.

Proof. Note from Theorem A. we have 0 _ p(J) < I. Since the

block Jacobi matrix J is symmetric, all its elgenvalues are real.

Hence elgenvalues of j2 will be non-negatlve. Thus, all the

conditions of Theorem B are satlslfled.

Since the Causs-Seldel procedure converges faster than

lacobi's, we shall glve an outline of the parallel version of the

block Causs-Seldel Iteratlve method for the flve-point finite
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difference formula. It is expensive to find the optimal e for

the SOR iteratlve method. However, we also give the analogue

version for the SOR method.

There are three levels o£ computations. Level 1 consists of

solving for all unknowns inside the substructures. Level 2

consists of all points on the double boundaries and level 3

consists of all points on the multlple boundaries.

Equations (2.1) can be written in the block form as follows:

[IKI] -[IKDB] [0] -

-[IKDB ] [DBKDB] -[DBKMB]

[O] -[DBKMB ] [MBKMB]

T I

T II

~TIIt

QI

QII~

QIII

(3.12)

Here superscript denotes the levels,

Block Gauss-Seldel Version (Algorithm I)

For n = O, I, 2 ...

Solve:

T I TII QI
i. __[IKIQ ~(n+l) = --[IKDBl ~(n) + ~ '

(3.13)

.

TII T I . II_ QII[DBKDB ] ~(n+l) = [IKDB ] ~(n+l) + [DBKMB]_(n + ~ ' (3.14)

.

_llI
[MBKMB ] a~(n+l)

TII + QIII
= [DBKMB ] ~(n+l) ~ (3.15)

GO



Block SOR Version (Algorithm 2)

. T I
1 [IKI 3 ~(n+l) =

TI TII QI
(l-w) [IKI 3 _(n} + w[IKDB] ~(n) + w ~

(3.is)

.
TI% T I T II

[DBKDB ] ~(n+l) = _[IKDB ] ~(n+l) + (l-w) [DBKDB ] ~(n)
(3.17)

_III QII+ _[DBKMB ] l(n) + _
(3.1s)

° [MBKMB ] TIII~(n+l)
T II

= W[DBKMB ] ~(n+l)

+ _ QIII

_III

+ (i-w) [MBKMB ] _(n)

(3.19)

The number o£ processors required to solve (3.13) are equal to

the number o£ substructures. Number o£ processors required to

solve (3.14) are equal to the number o£ double boundary lines.

Finally, the number o£ processors required to solve (3.15) are

equal to the number o£ multiple boundaries. The same number o£

processors are also required for the SOR method.

Note. theorems A and B are based on the assumption that _he

inverse o£ [IKI ]. [DBKDB ] and [MBKMB ] are obtained via direct

methods, i.e. Gauss elimination, Cholevsky decomposition etc.

However, as will be seen later, such local inverses can be

obtained by a converEent Iteratlve scheme, i.e. the conjugate

gradient scheme. This gives the overall scheme two phases of

iteration, the local and Elobal.
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The previous formalism pertained primarily Co the global

level of the iteration process. As such. It is uneffected by

converged local calculatlons o£ [KD_-I Specifically the global

level formalism remains intact i£:

i) The complete inversion of [KD] is performed directly;

il) The complete inverse o£ [KD] is obtained via a

convergent local iteration process and;

iti) I£ the inverse of [KD_ is obtained via a mixture of

direct and convergent iterative scheme.

Note since all the various partitions and associated blocks

of [KD3 are StieltJean. convergence is guaranteed for such

iteracive methodologies as:

i) conjugate gradient with and without preconditioning.

or:

ii) the more classical Jacobi and Causs Seidel and SOR

schemes.

With the use o£ five-point 2-D and seven-point 3-D

difference repTesentations, the preconditioning follows directly

from the structure of the partitions o£ [KD3. For instance.

considering the £ive-polnt 2-D difference formulation, the

various substructural blocks making up the [IKI ] partition of

[KD] are £1ve diagonal. For this case. the preconditioning used

in conjunction with the conjugate gradient method would be

structured accordingly, i.e. to preserve the five diagonal

format [53.
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As will be seen during the benchmarking procedure, for the

mixed and completely iteratlve hierarchical methodologies, the

overall iteration process can be performed in several different

ways, i.e.:

i) for each cycle of the global iteration, all the

distinct blocks are iterated until locally converged;

ii) for each cycle of the global iteration, various of the

local iteration processes are consequential that is,

for certain designated blocks, each cycle of local

iteration is followed by a global one, and;

iii) each cycle of all iterated blocks are followed by a

global iteration.

Hote the proceeding theoretical development guarantees the

convergence of case {i) schemes. As will be seen from the

benchmarking, during the initial phases of the solution process,

case {i) iterations are employed to obtain a better approximation

to the solution. Once the desired accuracy is achieved, case

[ii) and (iii) procedures can then be used to complete the

solution. Such an approach is particularly advantageous to use

when conjugate gradient procedure are employed locally. This.

follows from the fact that the rate of convergence of the

conjugate gradient method improves in close neighborhoods o£ the

solution. Recalling Part I, the basic conjugate gradient

algorithm [6] takes the following form locally, namely:
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e e )/ /Tk = C_k _/(d e e d_...k ) [IKI ] ...k
(3.2o)

(3.21)

e : e _ d _
_k+l = _k + Vk [IKI ] ~k

(3.22)

,e e / ,e e / ,_
/3k = (_k+1) gk+i/((_k ) _k )

(3.23)

d e @ e d e/
~k+l = - _k+l + _k+l ~k _k

(3.24)

such that here the gradient _ is defined by the expression

g_k = [ k
(3.2s)

Specifically g_ represents the gradient of the quadratic form

Typically, for the method of steepest descent, _k is

define the search direction. For such an algorithm the

_ubsequent g_ are mutually orthogonal, i.e.

used to

_/ a
(_k) Z.k-I = o
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For the conjugate gradient version of the scheme, the search

direction is modified in the manner defined by (3.24). Since _k

is chosen to satisfy optimality conditions, the subsequent search

directions are no longer perpendicular but rather are £ree to

range within the optimal bounds.

defines the optimal step size along the optimized
Overall 7 k

search direction defined by _k" Note, these parameters pertain

to the _th subdomain. Since the [IKI] may all be distinct, the

associated search direction and step sizes may all vary. This

also applies to various diagonal blocks making up [DBKDB ] and

[MBKMB ] . The overall £amily o£ ~7 and ~_ represents one o£ the

distinct advantages o£ the hierarchical scheme. Namely. rather

than one global (7, _) pair, the hierarchical scheme provides for

locally de£ined (T _. _8) pairs, i.e. £or the sets o£

substructural interior degress of £reedom. as well as for dual

and multiply connected boundary variables. Since such pairs more

properly re£1ect the local optimality conditions required £or

local convergence, the stability and efficiency o£ the CG is

greatly enhanced. Such advantages can be £urther enhanced

through the use o£ a preconditioned version o£ the CG. i.e., the

PCG. This will be discussed in the next section.

As noted earlier, slmilar comments apply to the SOR scheme.

Namely, distinct _ could be generated for each o£ the various

substructure and dual and multiply connected diagonal blocks.
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In addition to enabling localized optimization, the

hierarchical methodology tends to provide a means to decrease the

effects of roundoff generated in all computer hardware. This

applies both to the direct as well as iterattve schemes. For the

direct method, roundoff is decreased due ro the significant

reductions _n bandwidth and problem size associated with

substructurtng Another improvement in the roundoff problem

follows from the fact that the partitioning process associated

with the hierarchical strateEy tends to zonalize such effects.

This is especially true for the iterative schemes. For instance.

recalling the various inner products associated with the CG. i.e.

those defined by (3.18) and (3.21). partitioning can introduce

significant reductions in the associated roundoff. Due to the

substructuring process, such roundoff is somewhat zonally

contained.

Such roundoff containment will have very significant impact

on computer hardware. Specifically. to contain roundoff, many

significant places must be carried for each number stored. This

severely impacts memory data transfer, arthimetic operations.

etc. By reducing roundoff, the hierarchical scheme can increase

usable memory as well as simplify arthlmetic and data transfer

and storage operations.
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4. HIERARCHICAL PRECONDITIONING

To enable a further enhancement of iterative schemes, often

times preconditioning is employed to associated matrix equation.

This idea has Been commonly used [4,5,7,8,9] in conjunction with

iterative method such as conjugate Eradient and symmetric

successive overrelaxatlon (SSOR) methods at the Elobal level. In

the context o£ the hierarchical methodology developed herein,

separate individualized preconditioning can be applied to each

distinct local substructures. In this context, the appropriate

local characteristics can be taken into account. In what

follows, the concept of hierarchical preconditioninE will Be

developed. For demonstration purposes, the preconditioning for

the CG iterative method (PCG) will be discussed since it has a

number of attractive properties such as

i) it does not require any estimation o£ iteration

parameter,

ii) it takes advantage of the distribution of the

eigenvalues of the iteration operation,

iii) it requires fewer restrictions on the matrix for

optimal behavior than does such methods as the SOR

method.

For the sake of notational convenience, let us assume that

the system of linear equations correspondin E to a given

substructure are defined by
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A x = b (4.1)

_here A is a m x m positive definite Hermtttan matrix. Let

A = _ - N be an incomplete factorization of A [10] such that N is

the error matrix and

M = L u (4.2)

where L and U are lower and upper triangular matrices and M is

nonsingular Note L and U are selected so as to possess

approximately the same sparse structure as the original matrix.

This is in constrast to direct factorization which yields densely

filled subdlagonal with the upper bounding bandwidth. Such a

choice usually yields improved convergence characteristics.

The error matrix

N = M - A (4.3)

is acceptable if it reduces the spectral condition number which

is the ratio of the extreme eigenvalues of (LU)-IA. Note

reductions In the condition number enhance the rate of

convergence of the conJuzate gradient method. Before giving the

error estimates, we give the algorithm for the PCG applied to

(4.1) [4.5J.
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PCG Al_orithm

x (0) be a given vector and arbitrary define the vectorLet

C-i)
q

For k = 0.1.2 ....

(a) solve L U z(k) = b - A x(k) .

(b) compute bk =

/

z(k) L u _(k)

z (k-lyL V z (k-l)
. k _ I.

b o = O. ~q(k) = ~z(k) + bk 3
(k-z)

(c) compute
ak =

zCk)/ Ck)L gz

q(k)/ A q(k)

_(k+l) = _(k) + ak q
(k)

For The model problem, there are several ways Eo obtain the

incomplete factorization [4.7,10] of A in the form

A = LL - N.

We will use a particular one given by Krishna [d] since it is

inexpensive and more stable. The outline is given below.

69



Suppose we are using a five point difference formula to

represent the general heat equation [11.12] then the graph o£ the

nonzero entries o£ A corresponding to (i,j) mesh point is given

by

A:

(i-l.j)

Ci-l.j

(i.j+1)
t
i.j

(i.j) (i+l,j)

bl,j ci.j

(i.j-l)

t.
l.j-1

Let us represent the graph of nonzero entries of L corresponding

to (i.j) mesh p'oint by

L:
(l-I.j)

Si-l.j

(i.j)

vi.j
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Then the nonzero entries o£ LL T are given by the graph

To

LL

(i-l.J+l)

Si-l,j ti-l,j

(i-l.j)

vi-l.J ti-l,J

(i.J+l)

V
i,j ti.j

(i.j)

v .+Si_l .+ti,j_l

(i.j-1)

vi,j-I ti,j-I si,j-I

(i+l,j)

vl.j

(k+1.j+1)

1.i-i

S .

l,j

We define v i,j, si, j and t.l.j by

vi j = _/bl j - s2' ". i-l.j

si,J vi. j "
f .

ti,j vi. j

(4.4)

It has been shown in [4] that vl, j > O. We remark that in the

error matrix N we have at most two non-zero entries in each row.

In step (a) o£ conjugate gradient algorithm, we can obtain the

unknown vector z (k) very easily by using back and £orward

substitution.
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For the error estimate let the weighted error function after

(_ + i) iterations be given by

/

e(_ (e+t)) = ½(x - x Ce+l)) A(,- x (e+l))

Then it is known [4] that

(4.s)

ec×C'e+l)
.,. 2Ce+l)

eCx C°)) _q + i
(4.6)

J)-IA.where a is the spectral norm of (LL

5. BENCHMARKING

In Part I of this series, a hierarchically parallel

modelling methodology was developed. Overall, a given problem is

partitioned into a number o£ separate substructure each with its

own distinct internal and interconnecting conductivity matrices.

In a parallel computer environment, these can be formulated

simultaneously. As has been seen, the solution to the problem

then contains at least two phases, i.e. the local and global .

wherein each substructure can be evaluated in a distinct

processor. The solution to the resulting £ormulation would then

be achieved either by:

i) static condensation and back substitution locally and

global assembly and direct solution o£ the resulting

statically reduced global matrix;
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ll) static condensation and back-substitutlon locally and

global assembly and iterative solution of statically

reduce matrix globally;

lii) statically reduce and back-substltute certain chosen

local substructure while Iteratlvely solving others in

conjunction with global level iterations and

iv) perform local parallel iterations approximately

sequenced with the global phase of iteration.

For problems with poor conditioning, i.e. large spectral

radius, method i) would yield the most stable results. In the

case that certain substructure are well-conditioned spectrally.

then methods ii) and iii) would be of greater advantage. Lastly,

if all the various substructural partitions are spectrally

well-conditioned, then method iv) would be of greatest advantage.

This follows from the fact that the amount o£ data flow between

substrucure and the global level is reduced in the flow of

calculations associated with the iterative process. Rather than

whole matrices, pre and post multiplication reduces most o£ the

data £1ow to vector form. Secondly, since the iteration process

preserves the original matrix sparcity, the storage requirements

are significantly reduced. Last, but not least, the direct

method suffer from the fact that as problem size grows, roundof£

is significantly accelerated. Hence, it requires more

significant places thereby further reducing available machine

storage.
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To benchmark the hierarchical procedure described earlier.

the following example problem was chosen namely:

i) For all o < x < I. 0 < y < I.

2
v T = 2[(5 + x + y) sln(x + y) - 2 cos (x + y)] (5.I}

82 82
v2C ) = -- C ) + -- C ) C5.2)

@x 2 8y 2

iS) For all 0 < x < I. y = 0 or i;

T = (5 + x + y) sin(x + y) (5.3)

iii) For all 0 < y < i. x = 0 or I;

T = (5 + x + y) sin (x + y) (5.4)

During the evaluation phase, coarse to very refined FD

meshes were tested. The most refined model consisted o£ some

250.000 mesh points representing a like number of total

equations. Program development and testing was initiated on an

IBM 3090-200 with a vector facility. To enable the largescale

evaluations, the program was migrated to a CRAY XMP with an 8

megaword memory, i.e.. The University of Pittsburgh machine.

While actual parallel processing was not possible (except for

four partitions, i.e. CRAY limitations) the overall scheme was

run sequentially, i.e. local phase requisite assembly, data flow

and global phase.
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Three types of solution procedure were considered, namely:

i) direct global as well as local, i.e.

condensation-backsubstltution locally and direct

solution of reduced global matrix;

i£) locally direct and iterative globally and lastly;

ill) local iteration and global iteration.

Note all the local iterations were performed employing the

preconditioned conjugate gradient methodology ES_ noted earlier.

Here we recall that the preconditioner preserved the five

diagonal form of the various substructural blocks making up the

EIKI] partition.

Note for all test cases involving either global on local-

global iterations, an initial guess was employed along the

boundaries of the various substructure. The guess was obtained

by employing a course mesh to generate a preliminary solution.

This was then extrapolated/interpolated onto the boundaries of

the substructure, i.e. on their associated boundary mesh points.

As will be seen, such an approach greatly improves the

numerical efficiency of the iterative scheme. This follows for

several reasons, namely:

i) if direct inversion is used at the local level, the

roundoff error associated with the backsubstitution

procedure tends to destabilize the global iteration

process for very largescale problems. In this context,

seeding the solution with a reasonable initial guess

tends to limit the roundoff; and

?5



ii) if iterative techniques are employed at the local

level, say the conjugate gradient, the convergence

process is significantly speeded up; this is a natural

consequence of the fact that such schemes tend to

converge more rapidly in small neighborhoods of the

solution.

Based on the £oreEolnE. the main thrust o£ the benchmarkln E

is several £old. i.e.:

I) to establish the £easibility of the hierarchical scheme

to handle larEe scale simulations in a parallel

setting:

(2) to compare the direct, mixed and fully iterative

versions of the strateEy; and

3) to compare the parallel and traditional nonparallel

solution algorithms.

Note. the main purpose of the comparisons between the various

parallel schemes and the traditional nonparallel approach is to

ascertain whether any improvements in converEence rate. stability

storaEe requirements and run times are obtained.

For the present purposes, converEence is ascertain by "

employin E the normed ratio test. In terms o£ the hierarchical

partltlonin E of T we recall that

T

T I

_TDB

_TMB

(5.s)
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where !I denotes all the internal points of the substructures and

!DBand !MB correspond to the points on the double and multiple

boundary5 respectively.

The ratio test takes the form

IIT - T II
~n+ 1 .,.n 2

liT II
.,,n+1 2

< TOL. (5.6)

To quantify which of the various substructural partitions are

encountering convergence difficulties, local checks can be

undertaken. This is achieved through the use of the expression

[[ T e _ T _
"In+l _i n ! [ 2

II T_ il 2
~In+ I

< TOL (5.7)

such that a e[l. L] where L denotes the number of substructural

partitions.

Based on the foregoing. Tables 5.1 and 5.2 illustrate

various aspects of the convergence requirements of the mixed _nd

purely Iteratlve schemes. For instance, considering the case of

local direct calculations. Table 5.1 illustrates the iterative

requirements. As can be seen, the requirements remain
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essentially stable insplte of the rather dramatic increases in

problem size. For the four subdomaln problems considered in the

parallel mode. the overall runnlnE time was essentlally I/3 that

of the sequential version of the partltlonlnE. The improvement

was a direct outErowth of the parallel calculation o£ the local

inverses. _hi[e in theory, an even better improvement should

have been afforded by the parallelism, the recurrent

backsubstitution and overall overhead due to data flow increased

the time requirements.

Note. the locally iteratlve version of the partitioned

methodoloEy represents a siEnificantly smaller storaEe burden

over the purely direct approach. In particular, for a variable

property, problem defined by an (n.n) square reEion.

decomposition into (m.m) partitions reduces the storaEe

requirements by a factor of e(I/m) such that the total is

proportional to the ratio e(n3/m). In the case of uniform

properties, the reduction is proportional to e(i/m 3) where in the

total storage _s 8(n3/m3). For the four partition benchmark

problem just considered, the storaEe needs are essen_ially I/8

that of the straight global approach. This sIEnificant reduction

enabled the running of even the largest problem (250.000) in the

core of the 8 meEaword CRAY. Such storaEe efflclencles enable

the maximized usage of the hlghspeed core. As Is well known.

once secondary storage is required, i.e.. hard and solid state

disks, the resultlng out of core solutlon, is generally very

expensive.
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Table 5.2 illustrates the convergence requirements of the

totally Iteratlve scheme. Seen graphically in fig. 5.1, it

follows quite surprisingly that for the given benchmark problem,

that proportionately less iteratlve burden is encountered as

problem size was Increased. In particular, as can be seen, the

problem size t_ iteration count is a softening curve. Beyond the

improved numerical efficiency, the parallel methodology enabled

the solution of problems whose size yield either unstable or

significantly less efficient iterative processes. In this

context, the use of hierarchical parallelism:

I) siEnificantly improves the stability of the iterative

approach;

2) reduced computational time due to the capability of the

procedure to perform simultaneous calculations, i.e.

the numerical effort for the four partition test care

was essentially I/3 that of the full formulation per

iteration; and

3) improved iterative efficiency.

Note, the improved iterative efficiency is a direct

outgrowth of the partition size reduction introduced by the use

of parallelism. Additionally. it should be noted that if the

proper ratio between internal substructural and boundary mesh

points is obtained, the overhead associated with the data flow

between levels can be sIgnlflcantly minimized.
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In comparing the mixed and completely iterative schemes, it

should be noted that

1) for very large scale problems, the mixed method is

somewhat sensitive to roundoff error; this is an

outgrowth of the direct inversion employed at the

variQus local level substructural partitions: for large

scale partitions the number of calculations performed

during the forward elimination and backsubstltution

-phases of calculatlon tax the place accuracy of even

the CRAY system;

2) the direct inversion phase o£ inversion is inherently

more storage intensive than the iterative scheme;

3) for spectrally ill-conditioned partitions, the direct

method can prototypically bypass problems of iteratlve

efficiency and stability;

4) due to roundof£ errors, the mixed methods are somewhat

more sensitive to inaccuracies in the starting guess

defines along substructural boundaries. This follows

directly from the fact that roundof£ initially

generated in the foward step and continuously in th_

backward phase act to disturb the overall convergence

process; such behavior is clearly demonstrated by the

fact that modest changes in the initial guess accuracy

{I0%) causes major increases in the iteration count of

the mixed method wherein the global level is Iterative

while the local is direct.
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6. CONCLUDING REMARKS

Parts I and II of this series of papers has developed a

hierarchically parallel modelling methodology and associated

solution procedure. Overall, the procedure enables a logical and

efficlen_ use _f parallel computer environments. The scheme

provides a wide variety o£ solution procedures including direct,

mixed, direct-lterative and completely iterative type procedures.

_ote, due to the local par_Itioning afforded by the parallelism,

the overall stability and efficiency of the iterative phases of

computation are greatly enhanced over the classical full single

level modellin E approach. As has been seen in this part of the

series, such behavior has been both formally and empirically

verified.

Note, due to the manner of organizing the scheme, it can be

directly incorporated in conjunction with a wide variety of

general purpose FD codes for example CIHDA [12]. Such an

undertaking would reduce a code like CIHDA to a subroutine

residing at a given parallel processor. Here it would generate

the appropriate governing FD equations for the given

substructure. These would then be locally solved either

iteratlvely or If ill-conditioned directly. The upper solution

would be established via a global level which performs the task

of overall problem assembly, direct or iteratlve solution as well

as data transfer between iterations and among the various

substructual components. In such an undertaking, the main task

would be to develop the upper level code.
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Note in future activities, the current approach is being

generalized for use in finite element type applications. Work is

also ongoing to adapt the methodology to use in nonlinear

problems.

•

1.

°

•

_o

°
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Table 5.1 - Iteration of Requirments of Mixed Direct-Iterative
Hierarchical Scheme.

Problem Size

h = .005

39601DOF

Tolerznce No. o£ Iterations

10 -6 113

h = .003125

101761DOF

10 -6 I18

h = .00270
136161DOF

10 -6 118

DOF - Degrees of Freedom

Table 5.2 - Requirements of Purely Iterative Hierarchical Scheme

Problem Size

h = .01

9801DOF

h = .005
39601DOF

h = .003125
101761DOF

h = .0025
159201DOF

h = .002
249001DOF

Tolerance No. o£ Iterations

'5
I0 31

-5
I0 65

-5
I0 92

-5
I0 117

-5
10 1SO
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