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Abstract

In 1995, over six hundred thousand licensed pilots flew nearly thirty-five million flights

into over eighteen thousand U.S. airports, logging more than 519 billion passenger miles.

Since demand for air travel has increased by more than 50% in the last decade while ca-

pacity has stagnated, congestion is a problem of undeniable practical significance. In this

thesis, we will develop optimization techniques that reduce the impact of congestion on

the national airspace. We start by determining the optimal release times for flights into

the airspace and the optimal speed adjustment while airborne taking into account the

capacitated airspace. This is called the Air Traffic Flow Management Problem (TFMP_.

We address the complexity, showing that it is NP-hard. We build an integer programming

formulation that is quite strong as some of the proposed inequalities are facet defining for

the convex hull of solutions. For practical problems, the solutions of the LP relaxation

of the TFMP are very often integral. In essence, we reduce the problem to efficiently

solving large scale linear programming problems. Thus, the computation times are rea-

sonably small for large scale, practical problems involving thousands of flights. Next, we

address the problem of determining how to reroute aircraft in the airspace system when

faced with dynamically changing weather conditions. This is called the Air Traffic Flow

Management Rerouting Problem (TFMRP) .We present an integrated mathematical pro-

gramming approach for the TFMRP, which utilizes several methodologies, in order to

minimize delay costs. In order to address the high dimensionality, we present an aggre-

gate model, in which we formulate the TFMRP as a multicommodity, integer, dynamic

network flow problem with certain side constraints. Using Lagrangian relaxation, we

generate aggregate flows that are decomposed into a collection of flight paths using a

randomized rounding heuristic. This collection of paths is used in a packing integer pro-

gramming formulation, the solution of which generates feasible and near-optimal routes

for individual flights. The algorithm, termed the Lagrangian Generation Algorithm, is

used to solve practical problems in the southwestern portion of United States in which
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Chapter 1

Introduction

The thesis is structured as follows. In Chapter 1, we introduce two dynamic flow man-

agement problems that are the topic of this thesis and review the literature to provide a

framework for our contribution. In Chapter 2, we formally introduce the air traffic flow

management problem, present our formulation, address the complexity, discuss some

modeling variations and examine the theoretical properties of our formulation. We prove

that the proposed constraints are facet defining which provides insight into the computa-

tional performance. In Chapter 3, we report computational results for the air traffic flow

management problem and an important special case called the m_fltiple airport ground

holding problem. In Chapter 4, we disclms the air traffic flow management rerouting

problem and present the Lagrangian Generation Algorithm. In Chapter 5, we present

computational results for the air traffic flow management rerouting problem based on

real data. In Chapter 6, we include some concluding remarks and directions for filture

research. Technical proofs are provided in the appendices.

1.1 The Air Transportation Industry

In 1995, over six hundred thousand licensed pilots flew nearly thirty-five million flights

into over eighteen thousand U.S. airports, logging more than 519 billion passenger miles.
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Sincedemand for air travel is increasingby more than 50% each year and capacity is

stagnating,congestionis a problemof undeniablepractical significance.For U.S.airlines,

the expectedyearly cost of the resulting delayswasestimated at $3 billion in 1995. In

order to put this number in perspective, the total reported losses of all U.S. airlines

amounted to approximately $2 billion in 1991 and $2.5 billion in 1990. In fact, it was

not until 1995 that the total net profit actually became positive. Furthermore, every day

700 to 1100 flights are delayed by 15 minutes or more. European airlines are in a similar

plight.

Faced with the realities of congestion, the FAA has been using ground-holding policies

to reduce delay costs. These short-term policies consider airport capacities and flight

schedules as fixed for a given time period, and adjust the flow of aircraft on a real-time

basis by imposing "ground holds" on certain flights. Such a flight is then held on the

ground at its departure airport even if it is otherwise ready for takeoff.

The basis for ground-holding relies on the fact that while a flight is airborne it incurs

fuel, safety and other costs that are not applicable before the flight takes off. Thus,

airborne delays are much costlier than ground delays. If an aircraft departs on time,

only to encounter airborne congestion as it awaits landing clearance at the destination

airport, it may incur an airborne delay. However, by delaying its departure with a ground

delay, the aircraft arrives at its destination at a later time when minimal congestion is

expected, thus, avoiding the costly airborne delay. Therefore, the objective of ground-

holding policies is to "translate" costlier anticipated airborne delays to the ground.

Unfortunately, merely imposing ground holds only addresses a small portion of the

problem of alleviating congestion. Greater benefit could be realized by taking a more

complete view of the national airspace. We can control the time that a flight reaches the

arrival airport by controlling its speed throughout its route, rather than forcing the flight

to wait on the ground before departure. This may be an attractive option especially if

the departure capacity is decreasing with time. Moreover, we could adjust the route of

a flight. For instance, if there is a bad weather system that creates an airspace region of
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limited capacity,wecould reroute a flight alonga different path to attempt to avoidthe

weathersystem.

1.2 Dynamic Flow Management Problems

In this thesis, we develop optimization techniques that encompass all aspects of the

national airspace in order to minimize cost associated with delay. In particular, we

address two important problems in air traffic control, the Air Traffic Flow Management

Problem (TFMP) and the Air Traffic Flow Management Rerouting Problem (TFMRP).

Besides determining release times for aircraft (ground-holding), the Air Traffic Flow

Management Problem (TFMP) also determines the optimal airspeed adjustment of air-

craft for a network of airports taking into account the capacitated airspace. Thus, the

TFMP determines how to control a flight throughout its duration, not simply before its

departure. This thesis makes the following contributions to this problem.

We build an integer programming formulation whose objective is the minimization

of delay costs. The formulation is quite strong as some of the proposed inequalities are

facet defining for the convex hull of solutions. We address the complexity of the TFMP

and show that it is NP-hard. We illustrate how our models can be adjusted to account

for several variations in the problem's characteristics. When modified for a special case

previously addressed in the literature, called the multiple airport ground holding problem,

we prove that the LP relaxation bound of our formulation is at least as strong as all others

proposed in the literature. For practical problems, the solutions of the LP relaxation of

the TFMP are very often integral, so there is no need to branch and bound. In essence,

our formulations reduce the problem to efficiently solving large scale linear programming

problems. As a result, the computation times are reasonably small for large scale, realistic

size problems involving thousands of flights. Short computational times and integrality

properties are particularly important, since these models are intended to be used on-line

and solved repeatedly during a day.
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If we add the final complication, rerouting of flights due to drastic fluctuations in

the availablecapacity of airspaceregions,we obtain the Air Traffic Flow Management

Rerouting Problem (TFMRP). In this problem, a flight may be rerouted through a dif-

ferent flight path in order to reach its destination if the current route passes through a

region that has very low capacity for reasons usually related to poor weather conditions.

This thesis will make the following contributions to this problem.

We present an integrated mathematical programming approach for the TFMRP,

which utilizes several methodologies, for the problem of minimizing delay costs. In order

to address the high dimensionality, we begin by presenting an aggregate model, in which

the problem is formulated as a dynamic, multicommodity, integer network flow prob-

lem with certain side constraints. Using Lagrangian relaxation, we generate aggregate

flows that are decomposed into a collection of flight paths for individual aircraft using a

randomized rounding heuristic. This collection of paths is then used in a packing inte-

ger programming formulation, the solution of which generates feasible and near-optimal

routes for individual flights. The overall algorithm, termed the Lagrangian Generation

Algorithm, is used to solve real problems in the southwestern portion of United States.

The solutions returned by our algorithm for practical problems are within 1% of the

corresponding lower bounds.

Currently, the FAA implements a national ground-holding policy. This policy consists

of a two-stage process. First, the FAA determines the arrival slots that each airline will

receive using a first-come, first-serve rule. Next, each airline decides which of their

scheduled flights to assign to each arrival slot. From this, the FAA calculates the amount

of ground holding that each flight will incur. In the last decade, several models have

been developed that use optimization techniques to improve upon the current practices

for selecting ground holds. The FAA has investigated the possibility of implementing

these techniques. In the next section, we will discuss how the TFMP and the TFMRP

fit into the framework of previously addressed problems.
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1.3 Literature Review

In Odoni (1987), the problem of scheduling flights in real time in order to minimize

congestion costs was first conceptualized and introduced. Since then several models have

been proposed for solving different versions of this problem. The first and simplest version

considers a single airport and makes decisions about the ground-holds for this Single-

Airport Problem (SAGHP). The Multi-Airport Ground-Holding Problem (MAGHP) was

the next problem to be addressed. It makes ground-holding decisions for an entire network

of airports. Thus, the SAGHP and the MAGHP are distinguished by whether delays are

assumed to propagate in the network of airports as aircraft perform consecutive flights.

As discussed above, the Air Traffic Flow Management Problem (TFMP) fllrther de-

termines the optimal airspeed adjustment of aircraft for a network of airports taking

into account the capacitated airspace. For the Air Traffic Flow Management Rerouting

Problem (TFMRP), a flight may be rerouted through a different flight path in order to

reach its destination if the current route passes through a region that has reduced ca-

pacity primarily due to poor weather conditions. In order to describe the work on these

problems we consider the following modeling variations:

1. Deterministic versus stochastic models, which are distinguished by whether the

capacities of the system (airports and sectors in the airspace) are assluned deter-

ministic or probabilistic.

2. Static versus dynamic models, which are distinguished by whether or not the solu-

tions are updated dynamically during the day.

The deterministic SAGHP (both static and dynamic) was first formulated as a net-

work flow problem in Terrab and Odoni (1991). The stochastic SAGHP was formulated

and solved as a stochastic programming problem in Richetta and Odoni (1993) (static

case) and Pdchetta and Odoni (1994) (dynamic case). A review of optimization models

for the SAGHP is given in Andreatta, Odoni and Richetta (1993).
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The deterministic MAGHP was formulated as a 0-1 integer programming problem

in Vranas, Bertsimas and Odoni (1994a) (static case)and in Vranas, Bertsimas and

Odoni (1994b) (dynamic case). In this thesisand in Andreatta and Tidona (1994),new

formulations for the MAGHP are proposed. These three models are computationally

compared in Andreatta and Brunetta (1995) which concludes that our model performs

the best computationally. We will further prove in this thesis that our model is the

strongest formulation of MAGHP. A heuristic approach to solving the MAGHP is given

in Brunetta, Guastalla, and Navazio (1996). Terrab and Paulose (1993) address the

stochastic MAGHP as a stochastic programming problem. The papers by Matos and

Ormerod (1995) and by Vranas (1995) discuss a problem in the European network. These

papers address the "slot allocation" problem. Vranas (1995) shows that this is equivalent

to the MAGHP in the case where congestion may only arise at the destination airport.

Ball (1993) and Milner (1995) address the problem of banking flights and Gilbo (1993)

addresses the problem of dependent arrival and departure runways.

In this thesis, we present a 0-1 integer programming model for the deterministic,

multi-airport TFMP which addresses capacity restrictions on the en route airspace. Si-

multaneously with our work, models addressing enroute capacities were also introduced

by Lindsay, Boyd and Burlingame (1993). They propose integer programming formula-

tions for a version of TFMP that tracks a flight as it passes from fix to fix in the airspace.

The fixes are points in the airspace, not regions of airspace. So the flights only experience

capacity restrictions at airports and at fixes. As the linear programming relaxations of

these formulations are not very strong, branch and bound is needed to generate integral

solutions. However, by developing a wide array of novel formulation strengthening tech-

niques, the dependence on "pure" branch and bound, as well as the computation times,

are actually reduced. Helme (1994) has presented a method for the TFMP by designing

a multicommodity minimum cost flow model over a network in space-time. This method

has not as yet been fully tested, but it is expected that there will be severe dimensionality

problems.
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The problem of dynamically rerouting aircraft has not been addressedto the best

of our knowledgein the literature. The backboneof our approach is the dynamic net-

work flow formlflation. Ford and l_llkerson (1958)first introduced a dynamic maximlLm

flow problemasa standardnetwork generalizedto includetraversal times betweennodes.

Therearealgorithms for problemsthat work with the dynamicnetwork directly. Fordand

Fulkerson(1958)presentan algorithm that solvesthe dynamic maximum flow problem.

Wilkinson (1971)and Minieka (1973,1974)both presentan exponential time algorithm

to solvethe universallymaximum dynamic flow problem. In addition to theseearly pa-

pers, therehas recently beenconsiderableresearchactivity on theoretical approachesto

dynamicnetwork flow problems. Hoppeand Tardos (1994,1995a,1995b)havedescribed

severalpolynomial time algorithms for discretedynamic network problems including ap-

proximate universally maximum dynamic flows, lexicographically maximum flows and

dynamictransshipment. Fleischerand Tardos (1996)furthered thesealgorithms by look-

ing at the analogouscontinuous-timeproblems. For a complete review of work done

on dynamic network flows see the survey papersof Aronson (1989), Bookbinder and

Sethi (1980)and Powell,Jaillet and Odoni (1995). Theseadvancesare not directly rel-

evant for our problem asour formulation is both mlflticommodity, integer and involves

complicatingside constraints.
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Chapter 2

The Air Traffic Flow Management

Problem

In this chapter, we discuss the air traffic flow management problem. In Section 2.1, we

present an IP formulation for the traffic flow management problem and examine the size

of the formulation. In Section 2.2, we make the connection with the ground-holding

problem, by showing how the TFMP formulation can be reduced to model the MAGHP.

Furthermore, the resulting MAGHP formulation is compared with others proposed in the

literature. In Section 2.3, we provide some analysis of the polyhedral structure of the

linear relaxation of our IP formulation of the TFMP. In Section 2.4, the TFMP is proven

to be NP-hard. In Section 2.5, we extend the TFMP formulation to take into account

several variations of the model, which incorporate the dependence between arrival and

departure capacities, hub connectivity, banks of flights and rerouting of aircraft.

2.1 The 0-1 IP Formulation

The national airspace is divided into sectors. A map of the United States that displays

all of the high level sector boundaries is given in Figure 2-1. Each flight passes through

contiguous sectors while it is en route to its destination. There is a restriction on the

18



number of airplanes that may fly within a sector at a given time. This number is depen-

dent on the number of aircraft that an air traffic controller can manage at one time, the

geographic location and the weather conditions. We will refer to the restrictions on the

number of aircraft in a given sector at a given time as the en route sector capacities.

Consider a set of flights, _v = {1,...,F}, a set of airports, /C = {1,...,K}, a set

of time periods, T = {1,..., T}, and a set of pairs of flights that are continued, C =

{(f', f) • f' is continued by flight f}. We shall refer to any particular time period t as

the "time t." The problem input data are given as follows:

Data:

Ni

P(f,i)

Pf

Dk(t)

Ak(t)

s (t)

dl

rl

sl

ll,j

= number of sectors in flight f's path,

the departure airport, if i -- 1,
= the (i - 1) st sector in flight f's path, if 1 < i < Nf,

the arrival airport, if i = Nf,

= (P(f,i): 1 < i < N/),

-- departure capacity of airport k at time t,

= arrival capacity of airport k at time t,

= capacity of sector j at time t,

= scheduled departure time of flight f,

= scheduled arrival time of flight f ,

= turnaround time of an airplane after flight f,

-- cost of holding flight f on the ground for one unit of time,

-- cost of holding flight / in the air for one unit of time,

= number of time units that flight f must spend in sector j,

-- set of feasible times for flight f to arrive to sector j = [T_,T)],

= first time period in the set T],

-- last time period in the set T].

19
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Figure 2-1: US Map with sector regions.
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Note that by "flight", we mean a flight leg between two airports. Also, flights referred

to as "continued" are those flights whose aircraft relies on an aircraft that has just

completed a previous flight.

Objective: The objective in the TFMP is to decide how much each flight is going to be

held on the ground and in the air in order to minimize the total delay cost.

We model the problem as follows:

Decision variables:

(

wilt = _ 1, if flight f arrives at sector j by time t,

/ 0, otherwise.

Note that the w3l,t are defined as being 1 if flight f arrives at sector j by time t. This

definition using by and not at is critical to the understanding of the formulation. Also

recall that we have also defined for each flight a list Pf inchlding the departure airport,

the pertinent sectors and the arrival airport, so that the variable wilt will only be defined

for those elements j in the list P/. Moreover, we have defined T] as the set of feasible

times for flight f to arrive to sector j, so that the variable w_, t will only be defined for

those times within 7']. Thus, in the formulation whenever the variable wJl,t is used, it

is assumed that this is a feasible (.f, j, t) combination. Filrthermore, one variable per

flight-sector pair can be eliminated from the formulation by setting w j- = 1. Since
/,T/j

flight f has to arrive at sector j by the last possible time in its time window, we can

simply set it equal to one as a parameter before solving the problem.

To ensure the clarity of the model, consider the following example pictured in Figure

2-2 which depicts two flights traversing a set of sectors. In this example, there are two

flights, 1 and 2, each with the following associated data:

P1 = (1, A,C,D,E,4) and P2 = (2, F,E,D,B,3).

21



FlightI Flight2

Figure 2-2: Two possible flight routes.

If we consider the current position of the aircraft at time t, indicated by the position of

the airplane icons in Figure 2-2, then the decision variables for these flights at this time

are given by:

w 1 = 1,w A = 1,w_ = 1 w D = 0, w E = 0, w 4 = 0, and1,t 1,t t , 1,t 1,t 1,t

w22,t = 1, w F2,t= 1, w E2,t= 1, w_t = 0, w B2,t= O, w3 t = O.

Having defined the variables w_, t we can express several quantities of interest as linear

functions of these variables as follows:

1. The variable u}, t = 1 if flight f arrives at sector j at time t and 0 otherwise, can

be expressed as follows:

?.tJf,t = wJf,t- WJf,t_l and vice versa, z_), t = E uJLt '"

{t'<t}

(2.1)

As expressed earlier, the variables w_, t are only defined in the time range T], so

that w j = 0. l_lrthermore, the constraint that a flight must arrive at sector
s,(T__,-1)

j at some time t, originally expressed by the restriction _{te_-/} uJI,t = 1 can now

be replaced by the simpler expression w j- = 1. As previously mentioned, this
f,TL,
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canbe handledasa parameterbeforethe problem is solved,thus eliminating many

variablesand constraints. This substitution is flmdamental to the performanceof

this model.

2. Noticing that the first sector for every flight representsthe departing airport, the

total numberof time units that flight f is held on the ground can be expressed as

the actual departure time minus the schedtfled departure time, i.e.,

gf= Z E
U, +[++Tp,

k=P(f,1)} k=P(f,1)}

t(w_,t - kwl,t_l) - d I.

3. Noticing that the last sector for every flight represents the destination airport, the

total number of time units that flight f is held in the air can be expressed as the

actual arrival time minus the scheduled arrival time minus the amount of time that

the flight has been held on the ground, i.e.,

a/-= tu_,t -- r l -- g/ = Z

{tET], {tcr],

k=P(/,nf)} k=P(/,Nf) }

t(w_,t - kwLt- 1) -- rf -- gf"

The objective function

The objective of the formulation is to minimize total delay cost. Using the variables

gf and a I for the amounts of ground and air delay respectively, as defined in items 2.

and 3. above, the objective fllnction can be expressed simply as follows:

Min _ [6g/+c?a/].
{/e_-}

Substituting the expressions we derived in items 2 and 3 above for the variables wJf,t

we obtain the following expression:
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Min

k=P(f,1)}

{tST_,

k=P(f,1)}

k=P(S,N,,,)}

d,))]

Rearranging variables, we can now present the objective flmction along with the

complete formlflation.

(TFMP)

IZTFMP----Min _ [ (dff-c_)

{f _.7r}

subject to

c} E t(,4,-w_,,_,)

k=P(I,NI)}

k=P(f,1)}

+(c}-4)ds-c}rs]

I,,-1) -< Dk(t),
{.f:P(S,U=k}

YkE3g, tET, (2.2)

E (W_,t- W_,t_l) ___ Ak(t),
{f:P(f,Nf)=k}

Vk E1C, t E T, (2.3)

E (-'_,,-,4,)-_s,(,),
{I:P(Li)--j,

P(f,i+l)=j',i<Nl}

VjEJ',tET,

{ Vf EiF, teT],j=P(f,i),
j'=P(f,i+ 1),i < Nf,

(2.4)

(2.5)
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- w_,.t_sl , < O, I V(f', f) E C,t E T_, (2.6)W_,t

[ k = P(f, 1)= P(f',Ni),

_>0, Vf e _,j e Py,t • T], (2.7)

w}, t E {0,1}, Vf E _,j E Pl,t C 7'].

The first three constraints take into account the capacities of various aspects of the

system. The first constraint ensures that the m_mber of flights which may take off from

airport k at time t, will not exceed the departure capacity of airport k at time t. Likewise,

the second constraint ensures that the number of flights which may arrive at airport k

at time t, will not exceed the arrival capacity of airport k at time t. In each case, the

difference will be equal to one only when the first term is one and the second term is

zero. Thus, the differences capture the time at which a flight uses a given airport. The

third constraint ensures that the sum of all flights which may feasibly be in sector j at

time t will not exceed the capacity of sector j at time t. This difference gives the flights

which are in sector j at time t, since the first term will be 1 if flight f has arrived in

sector j by time t and the second term will be 1 if flight f has arrived at the next sector

by time t. So, the only flights which will contribute a value of 1 to this sum are those

flights that have arrived at j and have not yet departed from j by time t.

Constraints (2.5) represent connectivity between sectors. They stipulate that if a

flight arrives at sector j' by time t + If,_, then it must have arrived at sector j by time t

where j and j' are contiguous sectors in flight f's path. In other words, a flight cannot

enter the next sector on its path until it has spent/f,j time units (the minimmn possible)

traveling through sector j, the current sector in its path.

Constraints (2.6) represent connectivity between airports. They handle the cases in

which a flight is continued, i.e., the flight's aircraft is scheduled to perform a later flight

within some time interval. We will call the first flight f' and the following flight f.
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Constraints (2.6) state that if flight f departs from airport k by time t, then flight f'

must have arrived at airport k by time t - sf,. The turnaround time, sf,, takes into

account the time that is needed to clean, refuel, unload and load, and further prepare

the aircraft for the next flight. In other words, flight f cannot depart from airport k,

until flight f' has arrived and spent at least s f, time units at airport k.

Constraints (2.7) represent connectivity in time. Thus, if a flight has arrived by time

t, then w}, t, has to have a value of 1 for all later time periods, t' _> t.

Important Remark

The major reason we used the variables w jf,t, as opposed to the variables u}, t is that the

former variables nicely capture the three types of connectivity in TFMP: connectivity

between sectors, connectivity between airports and connectivity in time. Of course,

given that the two sets of variables are linearly related, the same constraints can be

captured using the u}, t variables. We feel, however, that the variables w}, t not only take

connectivity naturally into account, but also they define connectivity constraints that

are facets of the convex hull of solutions (see Section 2.3). As we report in Section 3.2,

the LP relaxation of (TFMP) is almost always integral, i.e., the given formulation is

a particularly strong one. We believe that the key for this is the use of the decision

variables w}, t in the formulation.

Size of the Formulation

Let

D -- max ITj l,
{fey,J_pl}

be the maximlun cardinality of the set of feasible times for flight f to be in sector j taken

over all f and j, and let

X= max gf
{f E._}

be the maximum number of sectors that a flight passes through along its route, taken

over all flights. Note that X > 2, since the departure and arrival airports are always

counted as sectors on a flight's path. Let I_'1 be the total mmlber of flights, ITI be
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the total number of time periods, I/CIbe the total number of airports, IJI be the total

number of sectors,and ICIbe the total number of flights that are continued.

The actual numberof variablesw}, t is

since each flight has a different number of sectors and nmnber of feasible time intervals

associated with it. An upper bound on the number of variables w_, t will be

I.T't D X.

The exact number of constraints is

21_ll':rl + I,:t1_1 + 2 E E tr}l + E min{Ir_l, Ir}%]}
{f E.T'}{j@_Pf} {(I',I)EC,

a=P(f,1),

a=P(I',N/, )}

An upper bound on the number of constraints can then be calculated as

21K:II_-I+ I,:IITI + 2I._JDX + JClD.

In order to get a feeling of the size of the formulation let us consider an example that

adequately represents the U.S. network:

1. /C = 20 representing the most congested airports in the U.S.

2. 17"1 = 14 • 12 = 168, representing a 14 hour day with 5 minute intervals.

3. ]JI = 200, representing 200 sectors.

4. 19rl = 10000, representing approximately half of the number of daily flights of major

carriers.
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5. ICI= 8000, representing an 80% connectivity among flights.

6. D = 6, representing an upper bound of half an hour that a flight can be late to any

given sector.

7. X --- 5, representing an upper bound of at most 5 sectors in a flight's path.

For this example the number of variables is at most 300,000 and the number of

constraints is at most 688,320. The critical quantities that significantly affect the number

of variables and constraints are D, X, and 15rl. If for example any of these parameters

doubles, the number of variables doubles and the number of constraints nearly doubles.

2.2 The Multi-Airport Ground-Holding Problem as

a Special Case

As mentioned in Chapter 1, the ground-holding problem is a special case of the TFMP. If

we remove the sector capacity constraints and the variables associated with the sectors,

we obtain a new formulation of the MAGHP which, as we demonstrate in Chapter 3.2,

leads to significant computational advantages compared to alternative formulations that

have previously been proposed (see Section 1.3). Notice that N! = 2 for all f E 9v, since

a flight's path consists solely of the departure and arrival airports.

Let us redefine the variables as:

Yf, t = w k for the departure airport, k P(f , 1),f,t, =

zf,t = w k for the arrival airport, k P(f, 2).f,t, =

Also, let Tf be the set of feasible departure times for flight f and let T_ be the set of

feasible arrival times for flight f.

Using the new variables, the formulation (TFMP) specializes to the following new

formulation of (MAGHP):

(MAGHP)
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IZMAGHP = _,I_. Z [ (c}-c_)
{f_P}

+c} Z t(z::- zs:-_)
{tET_}

E t(YLt -- YLt-t)

{teTI}

+(c}-_)d: -cF: ]

subject to _ (Yf, t- y/,t-1) < Dk(t), W_: E K:,t E 7", (2.8)

{::ter]}

__, (zl,t- Zl,t-,) < Ak(t), Vk E K:,t E T, (2.9)

{l:teT])

ZLt -- Y/,t-(r:-d:) <_ O, Vf E .T',t E T_, (2.10)

Yf,t -- Zf',t--sff _ O, V(f',f) E C, t E T], (2.11)

YLt -- Yf,t-1 _ O, Vf E .T',t E T_, (2.12)

ZLt - zl,t_l > O, Vf E _',t E T_, (2.13)

ys,_, zs,t _ {0, 1}, Vf E _,t E'T.

The first two constraints incorporate the capacity restrictions of the departure and

arrival airports. The next constraint is the sector connectivity constraint, which is equiv-

alent to constraint (2.5) in the TFMP formlflation. However, for the ground holding

problem the only elements in the path are the departure airport and the arrival airport.

So this constraint connects these two elements by making sure that flight f cannot arrive

at time t unless it has departed by at least t minus the minimum flight time. The next

constraint is the flight connectivity constraint, which is equivalent to constraint (2.6)
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in the TFMP formulation. The last two constraints are time connectivity constraints,

which are equivalent to constraint (2.7) in the formulation (TFMP).

Usingthe previousdefinitions, an upper bound on the number of variablesis 215"1D

and an upper bound on the number of constraints is 21]CIITI + 319riD+ ICID. For the

sameexampleas in the end of the previoussubsection,an upper bound on the number

of variablesin the aboveformulation is 120,000and an upper bound on the number of

constraints is 234,720.

If weremovethe constraint (2.11)andconsiderthe set]C to be the singleton set, then

we have a valid formulation for SAGHP, which we will call (SAGHP). We define the

feasible regions for the formulations (TFMP), (MAGHP), and (SAGHP) as IPTFMP ,

IPMAGHP and IPSAGHP respectively.

The variables used in the formulation in Vranas et al. (1994a) are defined differently:

u/,t = 1 if flight f takes off at time t and vLt = 1 if flight f arrives at time t. These are

linearly related to variables Yl,t and zf,t as per the relationship given by (2.1). As already

mentioned, the ground-holding delays can be expressed in terms of these variables in the

following manner:

gf = _ tuf, t-df,

{tET]}

as can the airholding delay,

af ----- _ tVf, t -- rf -- gf.

{teT?)

In Vranas et al. (1994a), it is assumed that when the departure capacity is large, without

loss of generality, af = O, thus implying that all of the delay would be taken on the ground

before departure. This gives an equivalent expression for gf as, gf = EteT$ tvf,t - rf,

which contains no departure information, thus eliminating the variables uf,t from the

formulation. Moreover, instead of the flight connectivity constraints (2.11), the following

constraints,

gl'- (dI - s/,- r/,) <: g/, (2.14)
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establishconnectivity betweenthe arriving flight f' and the departing flight f by forcing

the amount of ground-hold for flight f to be at least the amount that flight f' arrives

late, gI', minus the amom_t of slack time, d I - s I, - rf,. The description of the feasible

sp_e in Vranas et al. (1994a) expressed in the zf,t space as per the relationship (2.1) is

as follows:

IPvBo = {zLt

9f =

e {0,1} Z(zf,,- zf:_:) < Ak(t), Z (zf,,- zf,,_,)= 1,
f {te_-?}

E t(Zf,t- Zf,t-1) -- ?_f'gf'- (df - 8f,- rf,) _ gf, zf, t - zf,t_ 1 _ 0}.

{teT 2 }

Terrab and Paulose (1993) use the same variables, vp as in Vranas et al. (1994a).

However, they express the flight connectivity constraints as follows:

Z _'f,,- Z _,f,,.<_o. (2.15)

t' _r-sft-(rf-df )}

Constraint (2.15) forces connectivity, since if the second sum is zero then flight f' has

not landed by time T -- s I, -- (r I -- df), which is time period r minus the turnaround

time, minus the flight time of f. This forces the first sum to be zero so that flight f can

not land before time r. The description of their formulation expressed in the zf,t space

as per the relationship (2.1) is:

IPTp IZf,t _ {0,1} _'_(Zf, t -- Zf,t--1) _ Ak(t), _ (Zf, t- Zf,t--1) _--- 1,
t

f {te'l-?}

E (Zf, t -- Zf, t-l) -- E (Zf, u- Zftt'--l) _ O, zf,t- Zf,t--1 _" 0}.

{teT?,t<r} {t'eT:,,

tt_r--sft--(ri -di) }

If we specialize our formulation for the case of large departure capacities and use only

the variables, zf,t (Yf,t = Zf,t+(_f-df)), we obtain:
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{zs,,e {o,1} _ (zs,,- :s,,-_)<-Ak(t), _ (zs,,- :s,,-,)= 1,IP'MAGHP =

(S:teT]} {tear?}

-- Zff,t_s$ , <_ O, zf, t -- Zf,t_ 1 _ 0_.Zf,t+(ry-dy)
J

In all of these formulations, the expression EteT-?(zf.t - zf,t-1) -_- 1 reduces to the

expression ZS,Ts -- 1. This telescoping property is due to the unique definition of the

decision variables as flights arriving by some time t rather than at time t.

If we denote the polyhedra corresponding to the hnear programming relaxations of

IP'MAaHP, IPvBo, and IPTp as P_ZAGHP, PvBO, and PTP and denote their corresponding

values as Z IMAaHP, ZVBO, and ZTp, then we can state the following proposition whose

proof is included in Appendix A.

Proposition 1 IPTp IPvBo ' '-= -= IP_IAGHP C _ PTP C-- P;ttAGHP C __ PVBO and corre-

! !

spondingly, ZvBo <_ ZTp <_ ZMAaH P <_ IZMAaH P = IZvBo = IZTp.

Therefore, the LP relaxation of (MAGHP) gives bounds that are at least as strong

as those from the LP relaxations of either Vranas et al. (1994a) or Terrab and Paulose

(1993).

2.3 Insights from the Polyhedral Structure

In Section 3.2, we report computational results for the TFMP based on the formulation

(TFMP). Even for large scale problems and for a variety of problem parameters the

solutions of the LP relaxation of both (TFMP) and (MAGHP) were integral. In the

tradition of polyhedral combinatorics in mathematical programming, we examine the

polyhedral structure of PTFMP and PMAGHP in order to obtain a deeper understanding

of why this formulation performs so well computationally. Given a set S we denote

with cony(S) the convex hull of solutions in S. In particular, we address the following

questions:
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1. Are the polyhedra PTFMP and PMAGHP integral? If not, is the optimal solution to

the optimization problem integral if we impose the simplification that cg = ¢_ and

c_ = c_ for all f E _-?

2. Are the constraints in (TFMP) and (MAGHP) facets of com,(IPrrMp) and

conv( I PM AaH P ) respectively?

We smumarize our findings in the following theorem:

Theorem 2

1. The polyhedra PTFMP and PMAGHP are not integral. Even with the s_mplification

that cg = _ and ca = c} /or all f E .T', integral solutions are not obtained.

2. Inequalities (11), (12), (13) and (14) are facet defining for conv(IPMACHP), while

the constraints (9) and (10) need not be. Inequalities (5), (6) and (7) are facet

defining for Com,(IPTFMP), while the constraints (2), (3) and (4) need not be.

As the proofs of the theorem are somewhat technical, we have placed them in appen-

dices B, and C respectively.

The previous theorem gives some partial insight on the usefulness of the new variables

we introduced, which make it easy to express sharply the various types of connectivity

in the problem. While the formulations are not integral, the inequalities that the three

types of connectivity impose are indeed facet defining. As the solutions obtained were

integral for a wide spectrum of examples and parameters, we did not investigate filrther

the determination of other facets.

2.4 Complexity of the TFMP

In this section we show that the TFMP is an NP-hard problem.

Theorem 3 The TFMP with all capacities equal to 1 is NP-hard.
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Proof. We show that job-shop scheduling(seeGarey and Johnson (1979)) reducesto

TFMP.

JOB SHOP SCHEDULING PROBLEM (JSP)

INSTANCE: Number m E Z + of processors, set J of jobs, each j E J consisting of an

ordered collection of tasks tk[j], 1 <_ k < n3, for each task t a length l(t) E Z + and a

processor p(t) E {1,2,... ,m}, where p(tk[j]) _ p(tk+l[j]) for all j E J and 1 __ k < nj,

and a deadline D E Z +.

QUESTION: Is there a job-shop schedule for J that meets the overall deadline, i.e., a

collection of one-processor schedules ai mapping {t "p(t) = i} into Z +, 1 < i < m, such

that

>

ae(tk+l[j]) >_cr (tk[j]) + l(tk[j]),

and a_(t,_[j]) + l(tnj[j]) < D,

implies a,(t) > ai(t') + l(t),

where i'= p(tk+l[j]),i = p(tk[j])

for all j E J, k E { 1,..., n j},

where i = p(t,_j[j]) for all j E J.

For each job we create an aircraft. For each processor we associate an airport or

sector. Task tk[j] of job j corresponds to a flight segment, fk[j] of aircraft j. Given a

collection of tasks, tk[j] of job j, we associate a list of airports and sectors to be visited

by aircraft j. Furthermore, the processing time of task tk[j] corresponds to the time

required to perform the flight segment, fk[j].

We obtain a list of airports and sectors,

and a list of the flight segment times,

(t_j t 2 t k t k+l tAJ ),, Sj_''', Aj, Sj ,'''_
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for eachaircraft j by the relationships:

AJ = p(t_[1]), t' = l(tj[1])A 3

s_ = p(t_[2]), t_ = l(tj[2]),

S_ = p(tj[3]), t 3 = l(tj[3]),sj

Ay' p(tj[nj]), t "j = l(tj[nj])-= Aj "

So by finding a job-shop schedule that satisfies the given conditions, we will find a

solution to the transformed problem such that all flights are performed by the deadline

D. Also, according to the relationship

cy_,(tk+l[j]) _> c_i(tk[j]) + l(tk[j]) where i' = p(tk+l_']),i = p(tk[j]),

no two tasks will ever performed simultaneously on the same processor, which is equiva-

lent to limiting the capacities of airports and sectors to one. Moreover, the relationship,

cT,(t) > cr,(t') implies cri(t) >_ ai(t') + l(t),

dictates that a task can not be processed unless the previous task has completed.

This stipulation guarantees connectivity between flights, and sectors, as specified by

the set of tasks for each aircraft. Thus, all of the constraints of the TFMP will be satisfied

if and only if there exists a feasible job-shop schedule. •

2.5 Modeling Variations

Our goal in this section is to demonstrate that the formulation (TFMP) can be easily

extended in many directions to take into account several variations of the model.
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2.5.1 Dependence Between Arrival and Departure Capacities

The interdependence between the arrival and departure cap_ities of airports results from

the fact that the same runways are often used for both arrivals and departures. Thus,

the runway allocation will determine how an airport's available capacity is allocated

between the arrivals and departures at a given time. By operating lmder a specific runway

configuration, arrival and departure capacities can be adjusted. This will significantly

influence airport efficiency.

22R

!5_2L

4R 33L

27

Figure 2-3: Complete Rlmway Configuration for Logan Airport.

By choosing a particular configuration of runways for a given time, the capacity

allocation will be fixed. The complete set of nmways for Logan Airport is given in

Figure 2-3. A common configuration used at Logan Airport is to use runways 4L and

4R for arriving flights and use runways 9 and 4R for departing flights. Notice that since

runway 4R is the longest runway and certain types of aircraft require a long runway, it

is used for both arrivals and departures.

In Figure 2-4, we have shown a hypothetical runway allocation. Since it takes longer

for an aircraft to arrive than to depart, if the airport is operating under the allocation

shown in Figure 2-4 and all the capacity at Logan Airport is allocated to arrivals then 52

flights could arrive and if all the capacity is allocated to departures then 62 flights could
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depart within an hour. If only lessthan 50 flights areallowedthe depart within anhour,

then the capacity allocation is given by the equation, 3 Ak(t) + Dk(t) = 3 * 52. Whereas,

if more than 50 flights are allowed to depart within an hour, the capacity allocation is

given by the equation, Ak(t) + 3 Dk(t) = 3 * 62.

We review briefly ideas introduced in Gilbo (1993) and Vranas et al. (1994a). We

represent the runway allocation by a set of linear constraints indexed by i for airport k

at time t of the type

i i
a_tDk(t) +/3ktAk(t) <--7kt, Vk e IC, t C T, i C Ikt, (2.16)

where a_t,/3_t, and 7_t are given constants. In the example of Figure 2-4, there were two

linear constraints. The set Ikt will determine the number of linear constraints for each

airport k at time t.

Ak(t)

52
_.3._k(t )+Dk(O= 3*52

(O+3Dk(t) = 3*62

__ Dk(t)
62

Figm:e 2-4: Runway Departure/Arrival Allocation for a Specific Configuration.

The region formed by the above constraints gives a complete depiction of all the

possible runway allocations at a given time, and likewise, all possible departure and

arrival capacity assignments.

In order to solve this variation, we treat Dk(t) and Ak(t) as variables that satisfy

constraints (2.16) and add them to (TFMP). We can further reduce the size of the
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resulting formulation by eliminating the variablesDk (t) and Ak (t) by incorporating con-

straints (2.2) and (2.3) taken at equality into (2.16) as follows:

k /_i k-- -- "_kt "

[f:t_Tf,k=P(f,1)} {f :teT_,k----P(f ,Ni ))

The addition of this constraint to (TFMP) incorporates the dependence between the

arrival and departure capacity assignments without the addition of any new variables.

2.5.2 Hub Connectivity with Multiple Connections

Given that many airlines now control key hub airports through which most of their flights

are directed, it is no longer obvious which aircraft will fly a subsequent flight. At these

hubs, many airplanes are capable of performing any one of multiple consecutive flights.

We refer to the issue of assigning aircraft to continuing flights as hub connectivity. This

can be achieved by extending the model as follows:

For each arriving flight f' that is continued there is a set of flights R f, that can continue

flight f'. Introducing the 0 - 1 variables xy, f, which take on the value 1 if flight f' is

continued by flight f E R/, and 0 otherwise, we alter constraint (2.6) as follows

W f,tk_ W k, < 1 -- XI,,I ,
f ,t-s I, -- V(f',f) e C, t e T],

k= P(f, 1)= P(f',NI,),

and add the constraint that each contimmd flight f' has to be assigned to a flight in R I, :

Xft,f = 1.

{fen s, }

2.5.3 Banks of Flights

With the evolution of the hub and spoke system, airlines have a set of flights (banks)

that are scheduled to arrive at a hub airport and another set scheduled to depart within a
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small time window of the arrival bank. Each arriving aircraft will be assigned to perform

at most one of the departing flights. This situation is similar to hub connectivity, except

that the objective of hub connectivity is to minimize delay costs, while the objective of

the airlines who rely heavily on banking flights is to minimize the spread between the

arrival times of the first and the last flight in the bank. Let B be the set of flights in a

bank. We define the decision variables

[ 1

YB,t =

t 0

if the first flight f in B arrives by time t

otherwise

t'

= _ 1
ZB,t

[ 0

if the last flight f in B arrives by time t

otherwise

These definitions require the constraints:

YB,t -- w),t >_ O_

__ W k
ZB,t f,t _-- O,

Vf e B,t e T],k = P(f, NI)

Vf • B,t • T],k = P(f, Nf).

We also need the additional time connectivity constraints for these variables

YB,t -- YB,t-1 >_ O, Vt E 7-

ZB,t -- ZB,t-1 >_ O, Vt • 7".

The objective flmction of minimizing the "spread" in the arrival times for the flights in

the bank B can be modeled as follows:

min _ t(zB,t--ZB,t-1)-- _ t(yB,t--yB,t-1).
{re:r} (ten-}
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This is equivalent to determining

k
min _ max t (w_,, - wf,t_:) - min

{teT} {feB, {feB,
k=P(f,N.f ) } k=P(f,Nf )}

kt (wL- wI,,_1)

With the addition of these new variables, new constraints, and new objective function,

banking can be incorporated into the formulation. Alternative approaches to handle

banking constraints are proposed in Ball (1993) and in Milner (1995).

2.5.4 Rerouting of Aircraft

As we already mentioned, very often extreme weather conditions force the capacities of

some sectors (and airports) in the national airspace system to drop significantly or even

to become zero. Air traffic controllers are then forced to use alternative routes for aircraft

passing through these sectors to accommodate these changes in capacities (see Figure 4-1

for an example). Currently, these rerouting decisions are handled through the experience

of the air traffic controllers and not through a formal optimization model. Rerouting

will be discussed extensively in Chapters 4 and 5. We also note that the formulation

(TFMP) can be extended to accommodate dynamic rerouting decisions. However, these

extensions quickly lead to very large formulations, especially when considering realistic

size problems.

There are two approaches that we may take in attempting to formulate the rerouting

problem by extending the TFMP formulation. We have called these the path and sector

approaches. The path approach assumes that each flight has a set of routes to choose

from in deciding which is optimal. The sector approach makes no assumption about the

routes, but rather selects that path as a series of possible sectors.

The path approach first defines Q! as a set of possible routes that flight f may fly.

In the formulation (TFMP) we have assumed that Qf only contains one route, which

we have denoted as Pf. In order for the formulation to be of manageable (but still large)
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size we need to restrict the size of Qf. We extend the TFMP variables in the following

manner:

1, if flight f arrives at sector j by time t along route r,

0, otherwise.

Clearly, the variables w}, t defined in Section 2.1 can be written as:

w},t _ j,r= W f, t •

{reQf}

Moreover, since the departure and arrival airports will remain the same for a given flight

over all routes, P(f, 1) and P(f, Nf) will be independent of the particular route. Using

the newly defined variables we can modify the TFMP to include rerouting with the extra

restriction that only one path may be used per flight. The size of the resulting formulation

will be at most a factor maxf IQ/I larger than the TFMP formlflation. This implies that

we may be able to handle problems with a relatively small mrmber of alternative paths.

The sector approach decides at each sector in its route which sector to enter next.

We need to define N(f, j), the set of s_tors that flight f can enter immediately after

exiting sector j, as well as P(f, j), the set of sectors that flight f can enter immediately

before entering sector j. We extend the TFMP variables in the following manner:

if flight f arrives at sector j' from sector j by time t,

otherwise.

Clearly, the variables wilt defined in Section 2.1 can be written as:

wJ_f,t _., w "¢'J= f,t"

{j'eN(ld))

As before, the departure and arrival airports will remain the same for a given flight over
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all routes; P(f, 1) and P(f, IV/) will be independent of the particular choice of s_tors.

l_lrthermore, by using the newly defined variables, we can modify the TFMP to include

rerouting with the necessary constraints that each flight can only travel from one sector

to one other sector.
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Chapter 3

Computational Results for the

Traffic Flow Management Problem

In this chapter we report the results of a series of computational experiments that we

conducted. In Section 3.1, we provide computational results comparing our formulation

of MAGHP with others in the literature using data from Vranas et al. (1994a). In Section

3.2, we report computational results of the traffic flow management problem using several

datasets including some real data provided by the FAA.

In performing the computational experiments, we aim to address the following ques-

tions:

1. How frequently are the solutions obtained by solving the LP relaxations of (TFMP)

and (MAGHP) integral?

2. How is the integrality of solutions affected by the various problem parameters and

the size of the problem?

3. How is the computational time required to obtain an optimal solution affected by

the various problem parameters and the size of the problem?

4. How does the present approach compare with other approaches in the literature?
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5. Given that the TFMP needsto besolvedon line for controlling air traffic in the US,

perhapsthe most important question to ask is: Can large problemsof realistic

sizebe solved in reasonablecomputational times? In other words, is the present

approacha realistic method to control air traffic in the US?

3.1 Ground-Holding Problem Computations

We performed computational experiments on datasets used in Vranas et al. (1994a) on

the Ground-Holding Problem. Specifically, we looked at the datasets consisting of 2 and

6 airports with 500 flights per airport, totalling 1000 and 3000 flights respectively. Some

adjustments in the data were necessary in order to accommodate the differences between

the two models. In particular, the previous model did not include of any departure data,

as all of the optimization was done with respect to arrivals. Thus, we generated departure

data (times and capacities) that were compatible with the existing arrival data.

As in Vranas et al. (1994a), for each of these cases, four levels of flight connectivity

were considered. These levels give the ratios of continued flight to total flights, ICI/l_'l,

as 0.20, 0.40, 0.60, and 0.80.

We considered 15 minute time intervals taken over a 16 hour day. All experiments

were performed on a Slm SPARCstation 10 model 41. GAMS was used as the modeling

tool and CPLEXMIP 2.1 was used as the solver. The results that we obtained using the

above datasets and our (MAGHP) formulation are summarized in Tables 3.1 and 3.2.

1000

1000

1000

1000

ICI/I.FI Dep Capacity Arr Capacity

0.20 32 15

0.40 17 10

0.60 20 14

0.8O 2O 2O

Time

262

741

359

283

% Nonint

0

4

0

0

Table 3.1: Results at the infeasibility border for 1000 flights.
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171

3000

3000

3000

3000

ICl/l -I Dep Capacity Art Capacity

0.20 20 20

0.40 20 20

0.60 20 20

0.80 20 20

Time % Nonint

5475 0

4703 0

5407 0

9411 0

Table 3.2: Results at the infeasibility border for 3000 flights.

Tables 3.1 and 3.2 give results at the infeasibility border for each case. The infeasibility

border is the set of critical values for the departure and arrival capacities, in units of

flights per time interval, lmder which the problem becomes infeasible. We expect that it

is in this region that the problem is very relevant practically and is harder to solve. The

critical capacity levels were found by a series of trial and error tests. The times reported

are in CPU seconds and the % Nonint column is the percentage of total flights whose

solution was noninteger. If we compare these results with the results from Vranas et

al. (1994a) (see Tables 3.3 and 3.4), we can see that the largest amolmt of improvement

occurred in the integrality of the solutions. The computational times for solving our LP

for 1000 flights (see Table 3.1; column Time) are comparable to the time required to solve

their LP (see Table 3.3; column LP Time), while for the 3000 flights the LP in Vranas

et al. (1994a) was solved faster. However, our solutions are for the most part already

integral (the only instance where the solution was not integral was the 40% connectivity

instance of the 1000 flight example). The total amo_mt of time required to find an integral

solution from the LP in Vranas et al. (1994a), found in the total time cohunn, includes

the time required to solve the LP relaxation, found in the LP Time column, plus the

time required to perform a Branch & Bound heuristic. If we compare the amount of time

required to find an integral solution, we see a significant improvement in computational

time.

Tables 3.5 and 3.6 were constructed to demonstrate how computational time and in-
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1000

1000

1000

1000

Dep Arr

[C[/[.T] Capacity Cap_ity

0.20 oo (12,14)

0.40 oo 10

0.60 oc 11

0.80 _ 10

LP Total

Time Time

258 374

327 894

377 6958

453 9512

% Nonint

6.3

8.4

12.8

16.8

Table 3.3: Previous Results at the infeasibility border for 1000 flights.

t71

3000

3000

3000

3000

Dep Arr

[C[/[_[ Capacity Capacity

0.20 oc 12

0.40 oc 18

0.60 oo 17

0.80 oo 18

LP

Time

1453

1808

2547

3072

Total

Time % Nonint

11360 not given

13291 not given

17980 not given

25021 not given

Table 3.4: Previous Results at the infeasibility border for 3000 flights.

tegrality are affected by changes in the capacities, i.e., how well does the model perform

when the capacities are not at the infeasibility border? These results suggest that the

computational time did not change significantly at different capacity levels. For the one

case in which the solution was not completely integral, (1000 flights at 40% connectivity),

increasing the capacity resulted in integral solutions.
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171

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

0.20

0.20

0.20

0.20

0.40

0.40

0.40

0.40

0.60

0.60

0.60

0.60

0.80

0.80

0.80

Dep Capacity

32

32

32

32

18

18

17

16

20

20

20

20

30

20

19

Arr Capacity

17

16

15

14

12

10

10

10

18

15

14

13

30

20

19

Obj Value Time % Nonint

50750 342 0

55450 227 0

63525 262 0

inf - -

47000 290 0

79916 521 2.2

88241 741 4

inf - -

22316 369 0

33292 376 0

39266 359 0

inf - -

17000 183 0

28250 283 0

inf - -

3.2

Table 3.5: Results for varying capacity levels for 1000 flights.

Air Traffic Flow Management Problem Compu-

tations

We next performed experiments on a connoted network of four airports: Boston Logan

(BOS), NY LaGuardia (LGA), Washington National (DCA) and a node representing

all other airports (X). Three hypothetical sectors that flights must use before landing

at LaGuaxdia, were also introduced into the model. Flights coming from DCA would

traverse two of these sectors before reaching LGA. Flights coming from BOS would

traverse one of these sectors before reaching LGA. A certain fraction of the remaining

flights would use the two sectors approach, while the other flights would enter through

the one sector. See Figure 3-1.

I
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t 1 ICI/l -[

3000 0.20

3000 0.20

3000 0.20

3000 0.40

3000 0.40

3O00 0.40

3000 0.60

3000 0.60

3000 0.60

3000 0.80

3000 0.80

3000 0.80

Dep Capacity

30

2O

19

30

20

19

30

20

19

30

2O

19

Arr Capacity

30

20

19

30

20

19

30

2O

19

30

20

19

Obj Value Time % Nonint

42000 4537 0

228000 5475 0

inf - -

42000 5062 0

234000 4703 0

inf - -

42000 5629 0

234000 5407 0

inf - -

42000 6021 0

252000 9411 0

inf - -

Table 3.6: Results for varying capacity levels for 3000 flights.

The three airports (BOS, LGA, DCA) and the three sectors were the only capaci-

tated elements in the system. The other sectors were allocated lmlimited capacity. We

performed one set of experiments for 200 flights over a 24 hour time period and another

set for 1000 flights over a 24 hour time period. The 200 flight dataset was obtained from

the January 1993 Official Airline Glfide (OAG). For the larger set of 1000 flights, the

data was generated by the Pseudo-OAG Generator (POAGG) which is flight generation

software developed at Draper Laboratories that realistically mimics the flight schedules

of the OAG. All models were programmed in GAMS, run on a Sun SPARCstation 10

model 41 and solved with the solver CPLEXMIP 2.1. For most of the test cases the

time interval was 5 minutes long. Since some of the sectors could be crossed in under 15

minutes, we tried to select a time interval that would capture as many sectors as possible

without becoming prohibitively large. With this in mind, we decided to use a 5 minute

interval whenever possible.

For the set of 200 flights, the time frame was 24 hours divided into discrete time

units of 5 minutes each. To solve the problem CPLEX requires 234 seconds CPU time.
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Figure 3-1: Sector flow model for test case.

Moreover,the resulting optimal solution wasintegral.

We were able to solve the 1000flights problem at the infeasibility border over a 24

hour time period considering15minute intervals in 436s_onds CPU time. The optimal

solution was onceagain integral. For the completeset of resuits seeTable 3.7. Notice

that thecomputation time in CPUsecondsvariesvery little with the capacityrestrictions

in flights per time interval and that the solutionswere completely integral.

Lastly, we obtained two realistic sizedatasetsobtained directly from the OAG flight

guide. This datasethasalso beenused to solvesimilar problemsat the MITRE Corpo-

ration. The first dataset consistsof 278flights, 10airports and 178s_tors, testedover

a 7 hour time frame with 5 minute intervals. The secondof thesedatasetsconsistsof

1002flights, 18airports, and 305sectorstestedoveran 8 hour time frame with 5 minute

intervals.

The sector crossingtimes, sector and airport capacities,and required turnaround

times were all provided by the FAA. Nothing used in thesedatasetswas generatedor

hypothesized.We believethat thesedatasetsarevery comparableto the problem being

solvedeverydayby the FAA.

For the first problem, consistingof 43226constraints and 18733variables,we found
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SectorCapacity

50
20
20
15
12
11
10
5
4
3
2

Dep Capacity

20
20
10
15
12
11
12
12
12
12
12

Arr Capacity

20
20
10
15
12
11
12
12
12
12
12

Obj Value Time % Nonint

31975 425 0
31975 427 0

inf - -
68725 427 0
244225 450 0

inf - -
24225 456 0
24350 432 0

250975 466 0
295225 459 0

inf

Table 3.7: Resultsfor varying capacity levelsfor 1000flights.

an optimal solution in 1141seconds,l_lrthermore, the solution obtained wascompletely

integral. The secondand larger dataset consistingof 151662constraints and 69497vari-

ables, was solved to optimality in 29920s_onds, again achieving completely integral

solutions.

In summary, to addressthe questionswe raised in the beginning of this chapter we

remark:

1. In all but one instancein MAGHP and all instancesof TFMP the relaxations of

(MAGHP) and (TFMP) wereintegral.

2. The integrality of solutions was not affected by problem parameters, nor the size

of the problem, except for the one instance in which the solution was non-integral.

3. The computational time required to obtain an optimal solution increases with the

degree of connectivity as well as with the size of the problem.

4. Our approach improves upon earlier work particularly in obtaining integral solu-

tions. This is evident from the fact that our formulation was almost always integral
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especiallyin realistic instances.In contrast, for similar test cases(they usedfixes

while weusedsectors)the formulation of Lindsay et al. (1993)wasnot integral, so

they neededto improvetheir formulation by lining automatic constraint generation

techniquesand also to usebranch and bound.

5. We areable to solvelarge, realistic sizeproblems in a reasonableamount of time.

In addition, becausewewereableto solvethe two instancesof the TFMP with real

data, we arevery optimistic that our approachcan effectivelyaddressthe TFMP.

Indeed, the reasonwe did not solvebigger problems is the difficulty of obtaining

real data and memory restrictions of the SPARCstation.

51



Chapter 4

The Air Traffic Flow Management

Rerouting Problem

This chapter addresses the traffic flow management rerouting problem (TFMRP), i.e.,

the problem of dynamically rerouting aircraft in the air traffic control system in order to

avoid airsp_e regions that have reduced capacities primarily due to bad weather. The

overall objective being the minimization of delay costs. In Section 4.1, we formulate

the TFMRP as a integer multicommodity dynamic network flow problem. In Section

4.2, we discuss the multiple airline problem. In Section 4.3, we present the Lagrangian

Generation Algorithm for solving this problem. In Section 4.4, we model the TFMP and

the MAGHP as dynamic network flow problems.

In the United States, the control of air traffic is centered on 22 regional control

centers. These centers receive information from aircraft and ground-based radars on

location, altitude, and speed of aircraft, as well as weather information. When the

weather conditions are poor, the capacities of some airports and sectors in the national

airspace are forced to drop significantly or even to become zero. In this situation, the Air

TraffÉc Command Center (ATCC) initiates a process to reschedule and reroute flights so

that the delay costs caused by the weather conditions are kept to a minimum. Aircraft

must then fly alternative routes if they were scheduled to pass through airspace regions of
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Figure 4-1: Alternative Routes Taken as Flights Avoid a Low Capacity Region.
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reducedcapacity (seeFigure 4-1 for anexample). Currently, thesererouting decisionsare

determinedthrough an iterative processbetweenthe ATCC and the Airline Operations

Centers (AOC). The ATCC contacts each airline's AOC concerning the necessityof

rerouting. EachAOC then determinesaset of new flight paths that they would like to use

to complete their scheduled flights given the new limited capacity scenario information.

This problem that each AOC faces when poor weather conditions limit the capacity of

the national airspace, is the topic of this chapter.

4.1 The Integer Multicommodity Dynamic Network

Flow Formulation

In this section we present an integer, multicommodity dynamic network flow model of

the TFMRP. There are several components to the model. These include the dynamic

network, the aggregated flow variables, the non-aggregated variables, and the capacity

constraints. We will describe e_h of these in detail below.

We first describe the dynamic network that models the air traffic system. We create

a graph which represents the actual geographical picture of the airport/airspace system.

The nodes of the graph represent both airports as well as sectors. The example in Figure

4-2 of four airports and six sectors demonstrates how the nodes and arcs of the network

are constructed.

The outlined regions are the sectors and the stars are the entrance and exit points

for the sectors. We define one node for each of these sector crossing points. The circles

are the airports. Each airport is represented by four nodes as described below. The arcs

connect the entrance and exit points of a sector as well as these sector crossing points

and the airports. Each arc (i, j) has a corresponding travel time, ti,j. We assume that

each sector has a limited number of entrance and exit points. In order to represent delay

in the network we define self-loops with a travel time of one.

The commodities in the network are defined as origin-destination pairs of airports.
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0 = at rports

_, = sector crosst ng poi nts

Figure 4-2: A network corresponding to four airports and six sectors.

So, if there are A airports and flights between all airports are flown, then there are exactly

A(A - 1) commodities. However, if we wanted to distinguish between certain character-

istics of flights such as aircraft type, we could do this by breaking the commodities down

even filrther. We will discuss the multiple airline problem in Section 4.2.

In order to model airport i we use four nodes iA, iB, ic, and it) (see Figure 4-3).

flow into flow out of

airport/ airport/

Figure 4-3: An airport is modeled with four nodes.

Node iA is used to track all the incoming flights to airport i. Once a flight has landed

at the airport, it is initially at node iA. It can either proceed to node iB or to node ic.

Node iB represents the situation in which an aircraft has completed all of its required
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flights for the day. Consequently,the flow into node iB is removed from the network for

the remaining time. Node ic represents the situation in which an arriving aircraft must

perform at least one more flight during the day. We use k to index the commodities

of incoming flights and by k' the commodities of outgoing flights. At node ic flow is

exchanged from commodity k to commodity k'. The delay arc at node iv models the

situation in which an aircraft arrives before the continued flight is scheduled to depart.

Flow then proceeds from node ic to node iD. At node iD, new aircraft are introduced

to the network and all the flights departing from the airport leave from this node. The

delay arc at this node represents grolmd holding of flights.

Let A/" = (S, $) be the network formed from airports and sectors, as described above.

The set of commodities is denoted by {1,..., A(A - 1)}, where A is the number of

airports. We discretize the time horizon into a set of time periods, T -- { 1,..., T}. We

refer to any particular time period t as the "time t." Note that by "flight", we mean a

flight leg between two airports. A flight that is "continued" relies on an aircraft that has

just completed a previous flight. The problem input data are given as follows.

Data:

t_,j

c (t)

orig(k)

dest(k)

g(k)

jz

d!

cs

Ca

= minimum travel time along arc (i,j),

= capacity of sector i at time t,

turnaround time required to refuel, reload and clean an aircraft at airport i,

airport of origin for a commodity k flight,

airport of destination for a commodity k flight,

set of arcs that a commodity k flight can use,

set of flights,

scheduled departure time of flight f E .T',

cost of holding a flight on the gro_md for one unit of time,

average cost of flying an aircraft for one unit of time,
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H

C

Tf

k(f)

k'(f)

Derek(t)

= total amount of scheduled flying time for all flights,

= set of flights that are continued,

= set of feasible departure times for flight f where f E C ,

= commodity of flight f where f E 5_ ,

= commodity of the flight which preceeds flight f where f E C ,

= number of flights of commodity k that are scheduled to depart at time t,

that are not continued,

= number of flights of commodity k that are scheduled to land at time t,

at the latest, and do not continue to a later flight this day.

In order to reduce the dimensionality of the problem, we aggregate some of the vari-

ables over flights. By doing this, we lose the ability to distinguish some of the data

over the flights. In particular, for the TFMP in Section 2.1, the costs of ground and

air delay depended upon the flight, _ and c}. Since we are aggregating over flights in

this formulation, this is no longer the case. The delay cost variables given above are

simply cg and c" which contain no flight information. Moreover, the turnaround times

for the TFMP also depended upon the flight, ss, whereas the turnaround times in this

aggregated formulation can no longer depend upon the flight. Instead, the turnaround

time depends upon the airport, r(i).

The most important data that is affected by the aggregation concern the continued

flights. For the TFMP, each continued flight is assigned a unique flight to precede it.

In the following formulation, each continued flight is assigned a unique commodity to

precede it. Thus, for each continued flight, f E C, we define the commodity of flight f as

k(f) and we define the commodity of the corresponding flight that precedes flight f E C

as k'(f). So, instead of forcing flight f E C to be a continuation of flight f', we ensure

that for every continued flight there must be aircraft of commodity k'(f) available for

flight f E C to use.
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The aggregatedvariablesare definedas:

---- number of flights of commodity k that depart from

node i at time t and arrive at node j at time t + ti,j.

Note that these variables are flow variables and not flight variables. So, in order

to recommend flight paths we must have a method for disaggregating, i.e. for convert-

ing these flow variables to flight variables. In Section 4.3.2, we propose a method for

performing the disaggregation, namely, the randomized rounding heuristic.

We also introduce flight variables for continued flights as follows:

y:(t) = {
1, if the aircraft performing flight f E C is ready for departure at time t,

0, otherwise.

By defining these non-aggregated variables, it becomes necessary to create the additional

constraints that specify that there must be an aircraft available for each flight f E C
i

at some time. The reason we need these non-aggregated variables is to ensure that the

necessary transfers of commodities occur at the flight level for continued flights. There

are other methods of ensuring this transfer, but they involve adding a large nmnber of

side constraints to the formulation. Whereas, this method only requires the addition of

[C[ constraints.

The objective of the TFMRP is to minimize the total delay cost of flying all the

required flights. Any flight may experience delay resulting from ground holding, decreas-

ing speed while in the air, and selecting a route that is longer than the sched_fled route.

Moreover, a continued flight may also experience delay if there is no aircraft available for

use at its departure time.
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The objective flmction canbe written in the following form:

CqXkD,i_(t)+ _ (t -- d/) y/(t) + _ cax_,,(t) + _ cati,jx_j(t) - :H.
{k,t,i=orig(k)} {(k,t,f):fEC, {k,i,t} {k,t,(i,3)EY(k)}

k(y)=k}
(4.1)

The first term represents the cost of ground holding delay. The second term represents

the cost of delay incurred by continued flights that were unable to depart on time as

there were no available aircraft. The third term represents the cost of air delay due to

speed reduction. Finally, the cost of delay caused by rerouting is obtained when the total

cost of all scheduled air travel is subtracted from the total actual cost of air travel. The

fourth term gives the total actual cost of all air travel and the fifth term is simply a

constant representing the total cost of all scheduled air travel.

The constraints are given below.

(TFMRP)

- Z
{j:(i,j)CN(k)} {j:(j,i)EN(k)}

- tj,,)=o, Yi E S, k, t, (4.2)

xk zk (t) o,E X_,iA(t--tj,ia)-- _A,,s(t) - .a,_c =
(j: (j,i A )EN(k)}

Vk, t,i=dest(k), (4.3)

X_a,i.(t ) + X_s,_.(t--1) -- Xk2B,,. (t) = Dernk(t), Vk, t,i=dest(k), (4.4)

53 y/(t) + x_c,ic(t ) - x_c,_c(t-1) - x_A,,c(t-r(i))= O,
{ScC:k=k'(S)}

E x_,j(t)- E ys(t)- xikD,w(t--1)= Supk(t),
{j:( iV,j)EN ( k ) } { f EC:k=k(f) }

Yk, t,i=dest(k), (4.5)

Vk, t, i=orig( k ), (4.6)

53 53 53 k,z,,j(t ) <_C,(t), vi, t, (4.7)
k {j:(i,j)EN(k)} {t':t-t_,j<t'<t}
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y_ yl(t)= 1, Vf E C, (4.8)
(teTs}

X .k.w(t) > 0, Vi, j,k,t, (4.9)

y/(t) • {0, 1}, Vf, t. (4.10)

Constraint (4.2) represents dynamic flow conservation for the sectors. There is a

constraint for each sector node, i • S, commodity k, and time t.

The next four constraints represent flow conservation at each of the airport nodes

iA, iB, iC, and iD. Constraint (4.3) forces flow conservation at node iA of airport i. At

node iA, we sum over all the nodes that can arrive at airport i from some sector j of

commodity k, _-_{j:(j, iA)eN(k)} xk.3,_A(t -- tj,iA)" The time index is t - tj,iA since this is the

time that the flow leaves j if it is to arrive at i at time t. This flow must be equal to the

flow out of node iA at time t. This flow goes to either node iB (where it will be removed

from the network) or to node ic (where it will be transferred to another commodity).

Constraint (4.4) forces flow conservation at node iB of airport i. The flow into node

iB at time t equals the flow from node iA, X k . (t) plus any flow that is held on the
tA,_B

ground from the previous time period, XkB,iB (t -- 1). This must equal the flow out which

is Derek(t) plus x_8,_B(t ). In other words, if flow arrives at node is from node iA prior

to the latest time that it is scheduled to arrive, it lands and then is held on the ground

at no cost until the time that the flow can be removed with a nonzero vahm of Derek(t).

Thus, every aircraft is removed from the network at its scheduled latest arrival time.

Constraint (4.5) forces flow conservation at node ic. The flow into this node is of

commodity k and the flow out of this node is a different commodity. The flow into node

x _. . (t - r(i)). The term r(i)ic only comes from node iA, giving the term, _{k:_=dest(k)} ,_,,c

is the turnaround time at airport i. This is the time necessary in order to refuel and

otherwise prepare the aircraft for the next flight. There is a delay arc at node ic which

captures those aircraft that arrive at airport i and are cleaned and refueled before they
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are neededto fly the next flight. There is no cost for using this delay arc, it simply

representsan aircraft waiting at an airport for its next flight. Lastly, the flow out of

node ic is given by _U:k=k'(f)} YI(t)" This captures all the flights that are continued

from commodity k flights that may depart at time t.

Constraint (4.6) forces flow conservation at node iu. At this node, all the flow leaving

iu to some node j minus the flow into iD must equal the supply at airport i at time t for

commodity k such that i = orig(k), which is denoted by Supk(t). The flow leaving node

iu is simply given by _{j:(,D,j)cN(k)} X_Dd(t ). This summation includes ground holding

when j = it). The flow into node iD is either from node ic or from ground holding in the

previous time period. In the former case, the flow from ic passes through non-aggregated

flight arcs. So this flow into node iu comes from all the flights of commodity k(f) = k

that are continuations of previous flights. The ground holding value from the previous

time period is given by x_u,i D (t - 1).

Constraint (4.7) captures the capacity restrictions. There is a capacity on the number

of aircraft that can be within sector i at time t given by Ci(t). To represent this in terms

of the flow variables, we need to sum over all commodities and all arcs that represent

travel in sector i of commodity k at time t.

Constraint (4.8) forces the flights that are continued to occur. It states that for every

flight that is a continuation of a previous flight, that flight must occur at some time, t,

within a time window, T I.

The remaining two constraint sets specify that the zk (t) variables are nonnegative,

and that the yf(t) variables are binary. Note that if yf(t) is binary, then zk (t) would be
%3

integer.

The above formulation of the TFMRP is a multicommodity, integer variation of the

minimum cost dynamic network flow problem. There are some important differences.

First, the capacity constraint (4.7) is blmdled over commodities, arcs and time peri-

ods, not just over commodities. Second, the disaggregated variables yl(t), are not flow

variables, and finally there are additional side constraints (4.8).
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4.2 Modeling the Multiple Airline Problem

The model proposed in the previous section can be used to solve the rerouting problem

for a single airline. However, if we took the viewpoint of the FAA in which several airlines

are occupying the airspace at the same time, then we need to modify the formulation

slightly. The reason that the multiple airline problem is not the same concerns the

continued flights.

In the formulation of Section 4.1 we stipulate that a contimmd flight does not rely

on a unique flight, rather the formulation guarantees that an aircraft of the correct

commodity will be available before the continued flight can depart. Once we introduce

multiple airlines, we need to make sure that not only is the incoming aircraft of the

correct commodity, but also that it belongs to the correct airline. For instance, obviously

an American Airlines aircraft could not continue a Delta Airlines flight.

To do this we will need to redefine the commodities such that there is a unique com-

modity distinguished by each origin-destination pair and by each airline. By redefining

the commodities in this manner, we can now ensure that a continued flight will rely on

an aircraft whose commodity corresponds to the correct airline. This would increase the

number of commodities by a multiple equal to the number of airlines.

We further need to consider the issue of fairness. It may be globally optimal to assign

all the delay to a single airline, but of course, this solution is not acceptable. Thus, we

would need to ensure that the delay is allocated in a fair manner across the airlines. This

could be accomplished though modifying the Packing Formulation discussed in Section

4.3.3 by adding constraints that guarantee that each airline receive no more than a given

percentage of the total delay.

4.3 The Lagrangian Generation Algorithm

In this section we use Lagrangian relaxation of the formulation outlined in S_tion 4.1,

randomized rounding, and a packing formulation to propose near-optimal solutions for
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the TFMRP. The overall algorithm is outlined below. We then explain each step in

detail.

The Lagrangian Generation Algorithm

1. (Lagrangian relaxation of the LP) Starting with the formulation of TFMRP,

i.e., the problem of minimizing (4.1) subject to the constraints (4.2)-(4.10), we relax

the capacity constraints (4.7) into the objective function with multipliers, A. We

further relax the integrality constraints (4.10), i.e., we solve the relaxed problem as

a linear program. We initialize the lower bound by solving the linear programming

relaxation of the formulation for the TFMRP. The initial upper bound is infinity.

2. (Solution of the relaxed problem) We solve the relaxed problem and obtain a

potentially fractional solution y/(t), xk, j(t).

3. (Randomized Rounding) We randomly round the variables yf(t) to zero-one

solutions, and randomly decompose the flow into routes for flights. These routes

are then added to a list of paths.

4. (Packing formulation) We formlflate and solve an integer packing problem, in

which we are attempting to pack the elements of the list of paths into the capaci-

tated airspace system. If a new solution is found, we update the upper bolmd.

5. (Stopping criterion) If the upper and lower bolmd are within a desired accuracy

e, we stop.

6. (Update of multipliers) We update the multipliers A and go to Step 2.

In the following subsections we describe each of the steps of the algorithm in detail.
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4.3.1 Lagrangian Techniques

During Step 2 of the algorithm, we solve an uncapacitated multicommodity dynamic

network flow problem as a linear program. Using the network flow solver of CPLEX,

we solve the problem quickly (see Chapter 5). The main motivation of this step is to

generate attractive routes for flights.

We update the multipliers using the iterative approach of Everett (1963) as follows.

We represent the capacity constraints (4.7) as Ax <_ b. Let a_ be the jth row of the

matrix A, and let bj be the right hand side value for this row. Let x k be the vector of

solutions at the kth iteration. Let A_ be the value of the lagrange multiplier for the jth

constraint at iteration k:

If ' k k+l k kayX > bj then A3 =(I+Sj)Ay.

If ' k k+l (1 k k_ = -ajx < bj then ,_j

where the parameters 6k are updated by the rule:

If (a_x k - b3)" ' k-1 k+l 0_.t%x - bj) > 0, then 5_ =

If (a_x k - bj)(a_x k-1 - b3) < 0, then -75k+I= e25;.k

If (a_x k - bj)(a_z k-1 - bj) = 0, then ,sk+l = 6_.k

The values of el and e2 are fixed parameters where el > 1 and e2 < 1.

The motivation for this method is as follows. If a'jx > bj then the solution x uses too

much of the available amolmt of the jth resource; thus, we increase the lagrange multiplier

in order to penalize the violation more. In this method, the lagrange multiplier would be

increased by a factor of (1 + 5_). Likewise, if a_x < bj then the solution x uses a feasible

amount of the jth resource; thus, we decrease the lagrange multiplier. It is decreased by

the factor (1 - 5k) as shown above. The amount of increase or decrease at each iteration
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is determinedby 5], called the step size,which is controlled at eachiteration.

The valuesof 5_areupdated in the following manner. If a constraint is not satisfied

iteration after iteration, then the step size is gradually increased based on the assumption

that the value of )_ may still be quite far from its optimal value. If the constraint

fluctuates between feasibility and infeasibility, then the step size is reduced substantially

based on the assumption that )_ has come close to its optimal value. It is interesting

to note that updating the lagrange multipliers depends only upon whether or not the

constraint was satisfied, not on the magnitude of the difference.

Everett's Method does not guarantee convergence. However, it has been shown to

perform very well computationally; see Pugh (1993).

4.3.2 Randomized Rounding Heuristic

The objective of this step is to generate a rich set of paths for individual flights from

the aggregated flow solutions. The motivation for using randomization is to generate

a broader set of solutions. After completing the Lagrangian relaxation step of the La-

grangian Generation Algorithm, we have a potentially fractional solution yi(t), x_,j(t).

Basically, this heuristic randomly walks through the network for every flight looking

for a positive flow path. Starting at the departure airport of flight f and at the departure

time of flight f, the heuristic randomly picks the next arc that has a positive flow on it.

If this turns out to be a self-loop, then it remains at the airport for another time period

and then makes another random decision about where to move in the next time period.

Perhaps the next step places it at a new sector after it has completed the travel time for

that arc. It then, once again, will randomly pick another arc that has some positive flow

on it. It will walk through the network in this manner until it reaches its destination.

With this in mind, we will now describe the process in f_fll detail.

We will create a list of paths as follows:

p = {pl,... ,p,,},
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wherePi = {(si(O),ti(O)),. . ., (si(ni),ti(ni))},

where si(m) is the ruth element of path Pi, and ti(m) is the time that the flight arrives

at si(m), m = 0,... ,ni. We define N as the total number of paths in the list and ni + 1

as the total number of elements in path p_.

We sel_t the first element in each path si(O) in a deterministic manner. For every

noncontinued flight, we can create a path in which si(O) is equal to node iD of the

departure airport and t_(0) is equal to the scheduled departure time. For every continued

flight, we select the earliest time such that y/(t) is non-zero and set this equal to one.

Now we can create a path for each continued flight where si(0) is equal to node io of the

departure airport and ti(0) is equal to the time at which yi(t) is equal to one.

To build the rest of each path, we step through the network for every flight beginning

at the node given by s,(0) at the time ti(0). We will refer to the commodity of our flight

as commodity k. Next, we randomly select from all arcs emanating from si(O) that have

a positive flow value, i.e. kxs,(0), j (t_(0)) > 0. This may include the possibility of selecting

the arc that represents ground delay. Let the arc that we randomly select by denoted by

(si(O),)). We set

si(1) = 3 and ti(1) = ti(0) + ts,(o), 5.

We then need to decrease the flow value on the variable, x_,(0),)(t_(0)) , by one.

We continue in this manner lmtil we reach the node representing node i m of the

destination airport. Since these flows respect the flow conservation constraints in the

Lagrangian relaxation, there will always be flow out of a node that the heuristic reaches.

There are a number of ways that we could set the probabilities used to select paths.

Currently, we simply assign an equal probability to each node that has a positive flow.

The rationale for this is simply to place a higher probability on obtaining alternative

paths. Another possible method of randomizing would be to assign each arc a probability

based on the flow on the arc. In particular, we could assign a probability Pj to arc (a, j)
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definedby x_,j (t )

We could then use these probabilities to determine which arc to select at each step.

After this heuristic is completed we have a set of path and time specifications that

are added to a list of paths and used as input data for the Integer Packing Problem.

Note that the heuristic only produces paths that satisfy flow conservation constraints.

In particular, the capacity constraints (4.7), and as well as the airport constraints that

handle continued flights (4.5), may not be satisfied. The path and time specifications

will satisfy constraints (4.2), (4.3), (4.4), (4.6), (4.8), (4.9), and (4.10). By not forcing

these paths to satisfy all the constraints in (TFMRP), we create, after a few iterations,

a list of paths that has more flexibility. The Integer Packing Formulation will then select

from this list a combination of paths that will satisfy all the constraints in (TFMRP).

4.3.3 The Integer Packing Formulation

The goal of the packing problem is to pack the paths generated by the randomized

rounding heuristic into the air traffic system, so that all the necessary flights occur at

correct (though not necessarily on time) times, and so that the capacity constraints are

satisfied.

A path, pi = (Si(0),ti(0)),..., (8i(rti),ti(r_.i)), specifies the elements and the times of

a given route. The elements are both airports and s_tors. Obviously the first element,

s,(0) is the departure airport and the last element s_(n_) is the arrival airport. However,

ground holding is represented in these paths. So, if path p_ includes g units of ground

holding then the elements s,(rn), m = 0, ..., g- 1, all represent the departure airport and

the times t,(m), rn = 0, ..., g - 1, are each separated by one time _mit. Thus, time t_(0) is

not the actual departure time, rather it is the time at which an aircraft becomes available

to perform the flight represented by path p_. If this is a flight that is not continued, then

t_(0) will be the same as the scheduled departure time. If the path represents a flight
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that is continued,then t,(O) may be later than the scheduled departure time, since it is

possible that there was no aircraft available for a continued flight to use at its departure

time.

The decision variables in the packing formulation are as follows:

/ 1, if path/time pair pi is used to fly flight f E .T',
zf,i [ 0, otherwise.

Let Z be the set of feasible combinations of path/time pairs and flights.

Z = {(f,i) • f • C,p_(O) = orig(k(f)), pi(n,) = dest(k(f)), ti(O) >_ dI} U

{(f,i) • f • ._\C,p_(O) = ori9(k(f)), p,(n_) = dest(k(f)), t_(O) = dr}.

The objective of the packing problem is to minimize the cost of delay in the air as

well as the ground holding cost of departing after the scheduled departure time. Let g

once again be the mlmber of units ground holding associated with path p,. Then the

delay cost of path pi is given by

c, = ca[ti(ni) - ti(g)] + cg[ti(g - 1) - ti(O)],

which includes both the amount of time spent ground holding and flying.

The objective function is as follows.

N

Ec, E
i=l {f:(f,i)eZ} - {l:(Li)ez}

The first term captures the cost resulting from grolmd holding delay and from air

travel. When combined with the final term, which is a fixed cost of scheduled air travel,

we capture the cost of delay resulting from ground holding, decreasing speed while in the

air, and selecting a route that is longer than the scheduled route. The only remaining

delay occurs if there is no aircraft available for a continued flight to use at its departure

68



time. To capture this delay,wesumoverall the timesat which aircraft becomeavailable

to perform the flight representedby path p_ and subtract the sum of all the scheduled

departure times.

The constraint set is given by the following equations.

(pp) _ zs,_ <_ Cj(t), Vj 6 S, t, (4.11)

{ ( f ,i)E Z :3mlj=s i ( rn ),

t,(rn)<_t <t,(m+ l ) }

zy,_ = 1, Vf 6 9v, (4.12)

{i:(f,i)6Z}

zLi < _ z/,e, Vk, t, (4.13)

{(y,i)ez: y_c, {(y',¢)cZ:k(y')=k,

k'(f)=k,t,(O)<t} t¢ (n,, )+r(s,, (n¢))_<t}

zy,_ C {0,1}, Vi = 1 .... ,N.

Constraints (4.11) represent the capacity constraints. They stipulate that for every

sector j and every time t, the sum over all the flights that are in this sector at time t

must be less than or equal to the sector capacity. A flight is within a sector at time t if

it entered the sector before time t, ti(m) <_ t, and has not yet entered the next sector in

its path before time t, t < ti(m + 1).

Constraints (4.12) ensure that each flight will be assigned to exactly one route.

Constraints (4.13) gamrantee that a continued flight will not depart before a suitable

aircraft has arrived for it to use. The left hand side of constraints (4.13) represent the

number of continued flights whose preceding flight is of commodity k, k'(f) = k, and

whose possible departure time is less than or equal to t. This number must be less than

the number of flights of commodity k, k(f') = k, that arrive before time t mimls the

turnaround time, r(si,(ne)).

!
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The final constraint set simply forcesthesevariablesto be binary.

4.4 TFMP and MAGHP as Special Cases

The air traffic flow management problem (TFMP) and the mlflti-airport ground-holding

problem (MAGHP) can be seen as special cases of the rerouting problem. For instance,

if we consider the TFMRP in which the choice of route through the network of sectors

is fixed, then we have the TFMP. If we consider the TFMP in which the route consists

of only a departure airport and an arrival airport, then we have the MAGHP. As both

of these problems are of importance, it is reasonable to ask whether the Lagrangian

Generation Algorithm could be used to efficiently solve these problems.

4.4.1 The TFMP Dynamic Network Flow Formulation

We shall start by describing how to model the TFMP as a multicommodity dynamic

network. For TFMRP, we had variables of the following form.

= number of flights of commodity k that depart from

node i at time t and arrive at node j at time t + ti,j.

The TFMP does not have as many choices for node j. In fact, for the TFMP, when

the flow leaves node i there will be two options. It could be delayed at node i for one

more time unit or it could proceed along its predefined path towards the next element

in its path. If node i is one of the four airport nodes, then we have the exact same

situation as we had for the rerouting case. If we define a path for each commodity as

Rk = {rk,iD, rk,o,..., rk,nk, rk,iA}, where nk is the number of sectors, then we can modify

the variables in the following manner.
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x k

x k

= number of flights of commodity k that are held at node rk,,

from time t to time t + 1,for i = 0, ...,nk,

= nmnber of flights of commodity k that leave node rk,i

at time t and arrive at rk,,+l at time t + t k,, for i = 0, ..., nk.

The remaining variables are identical to the definition used for the rerouting problem.

y:(t) = {
1, if an aircraft scheduled to perform flight f arrives at time t,

O, otherwise.

By using these variables in (TFMRP), we obtain the following objective fimction for the

traffic flow management problem.

MIN _ c9 x_,,v(t ) + _ (t - di) yt(t)+ _ c"X[o(t).
{k,t,i=orig( k ) } {t,f EC } {k,t,O<_i <nk }

The constraints are given by:

X[o(t ) + xikl(t) - X[o(t - 1) - xki_l,l(t - tki_l) = O, Vk, t,i = 1,...,nk,

x k (t k- t,_) - xk .nk,1 ,A,,B(t) -- X_A,ic(t) -= O, Vk, t,i = dest(k),

Xk,A,,S-(t) + Xk,s,,S. (t -- 1)- Xiks,iS (t) = Demk(t), Vk, t,i=dest(k),

Y_ YI(t) + Xkic,ic(t) - Xkic,ic(t-1)- xkiA,ic(t--r(i))=O,
{f:k=k'(l)}

Vk, t,i=dest(k),
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{f:k=k(f)}

E E k r X k(X_,o(t) + _,,(t'))<_cj(t),
{k:3itj=r,k } {t':t-¢ <t' <__t}

Vk, t, i =orig(k),

_j, t_

yI(t) = 1, Vf E C,
{t6T I }

z_j(t) > o, vi, y, k, t,

v_(t)e {0,1}, vf, t.

Note that many of the constraints are exactly the same as in (TFMRP). However,

the majority of the constraints in (TFMRP) are due to the flow conservation constraints

at sectors, (4.2) and from the capacity constraints (4.7). Both of these constraints are

simplified for the TFMP due to the specification of the routes. We could now apply the

Lagrangian Generation Algorithm to this dynamic formulation by relaxing the capacity

constraints. The Integer Packing Formulation would be exactly the same as in Section

4.3.3.

4.4.2 The MAGHP Dynamic Network Flow Formulation

For the ground holding problem we disregard the s_tors and only consider the airports.

So for the formulation we simply need the four node depiction of the situation at an

airport as well as the corresponding constraints. We obtain the following objective.

MIN __, c9 x_v,iv(t ) + __, (t - dl) yI(t).
{ k,t,i=orig( k ) } { t,l EC }

The constraint set is given by the following.
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x k . (t--tk)--X_A,,B(t)--X_A,_c(t)=O, Vk, t,i=dest(k)iD,_ A

Xk.,A,,B(t) + Xlc"B,*B(t -- 1) -- Xkis,is(t) =Derek(t), Vk, t,i=dest(k),

_ . _k _,,_ (t- to)=y:(t) + ,¢,,c(t) - ,_,,c(t- 1)- O,
{f:k=k'(f)}

Vk,t,i=dest(k),

{I:k=k(l)}

Vk, t,i=orig(k),

X kZ (,o,,.(t) < Q(t),
{k:,v=o_ig( k )}

ViD, t,

Z _,,,,B(t)+ z_,,,,_(t))<_c,,,(t), wA, t,
{ k:i A =dest( k ) }

yf(t) = 1, Vf E C,
{teTI}

x[j(t) >_o, vk, t,(i, j)eN(k),

yf(t) • {0,1}, Vf, t.

This formulation differs from the last in that there are no sector flow conservation

constraints and the capacity constraints have been separated into only departure and

arrival capacity, given above as C, D (t) and C_A(t), respectively. Once again, we can now

apply the Lagrangian Generation Algorithm to this formulation by relaxing the capacity

constraints.
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Chapter 5

Computational Results for the

Lagrangian Generation Algorithm

In this chapter, we report on the computational performance of the Lagrangian Gener-

ation Algorithm. In Sections 5.1, 5.2, and 5.3, the Lagrangian Generation Algorithm is

applied to solve three instances of the air traffic flow management rerouting problem.

These instances model a bad weather front passing through a portion of southwestern

United States. This region consists of four airports, located at Denver (DEN), Phoenix

(PHX), Las Vegas (LAS), and Salt Lake City (SLC). There are 42 sectors that lie in the

vicinity of these four airports as shown in Figure 5-1. This data, that was provided by

the FAA, includes the travel times for the sectors as well as the necessary turnaround

times. Each of the three instances has a different capacity scenario determined by the

movement of a weather front through the region.
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\

5.1

Figure 5-1: Sector map of the US with southwest region shown.

Computations for Weather Scenario I

For this instance, flight schedules for 71 flights between the 4 airports shown in Figure

5-1 are extracted from a dataset provided by the FAA that covers an 8 hour time frame

with 5 minute time intervals. We simulated a weather front passing from the northeast

corner of this region to the southwest corner. We set the sector capacities according to

a uniform distribution.

During normal weather conditions, the sector capacities were generated using a _mi-

form distribution with a mean determined by the size of the sector and a standard devi-

ation of one. Figure 5-2 shows the sector capacities during normal weather conditions.

At the cusp of the storm, the capacities were generated using a uniform distribution with

a mean of zero. All of the resulting negative values were set to zero. As the weather
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Figure 5-2: WeatherScenarioI at 8amrepresentingnormal operating conditions before
the weather front hashit this region.

front gradually passesthrough, the meanslowly increasesuntil it reachedthe level dur-

ing normal weather conditions. Figure 5-3 showsthe different weatherscenariosthat

evolveover time for this first capacity scenarioasthe weather front passesthrough the

region. The shadedareasshow the cuspof weather front with the numbers being the

correspondingsectorcapacities.

To achievea lower bound on the solution, we solvethe LP relaxation of the multi-

commodity dynamicnetworkformulation, whichconsistsof 24,509constraints and 61,912

variables. Finding a solution to the LP requires 181 seconds. The solution is highly non-

integral with an objective value of 2498.5.

We ran the Lagrangian Generation Algorithm setting the parameter values as q = 2

and e2 = 0.33. The starting values for A° and 6° were set to 10 and 0.8 respectively.

We did not perform extensive trials to determine the best starting values for A and

6, however, a few different settings were tried. The results presented reflect the stated

starting conditions, which converged in the shortest number of iterations. The Lagrangian

relaxation solves a network problem with 15,279 nodes, 54,427 arcs and 26 of the side
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(a) (b)

(c) (d)

Figure 5-3: Weather Scenario I at: (a) 9:45am (b) 10:35am (c) ll:25am (d) 12:15pm.

constraints (4.8). The size of the integer packing problem grows at each iteration as

the size of the hst of paths increases. At the final iteration, the formulation consists of

2209 constraints and 145 variables, which reduces to 424 constraints and 125 variables

by using some presolving routines in CPLEX. Table 5.1 tracks the performance of the

Lagrangian Generation Algorithm as it steps through the algorithm. All of times are

given in seconds.

The total amount of time needed to solve this problem, including the subproblem

times for the Lagrangian relaxation and the integer packing problem given in Table 5.1,
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Iteration
0
1
2
3
4
5
6
7

Time
25.01 -113062
24.22 -12572
24.70 1321.46
24.42 2073.94
24.58 2248.13

24.40 2324.27

24.65 2286.42

24.67 2377.25

Lagrangian Packing

Obj Value No. Infeas. Presolve Time IP Time Obj Value

89

65

77

54

64

68

61

66

0.03

0.03

0.07

0.12

0.18

0.18

0.18

0.18 15.26

Table 5.1: Computational Results for weather scenario I.

Inf.

Inf.

Inf.

Inf.

Inf.

Inf.

Inf.

2509

was 330 seconds. The solution value found, 2509, is within 0.4% of the lower bound.

The total amount of ground holding imposed upon this solution was 810 minutes and

the total amount of airholding was 15 minutes.

Numerous routes were used for each particular commodity. As an example, we will

consider one of these commodities, Las Vegas to Phoenix, in detail. Three different routes

were used over the course of the day to fly flights of this commodity. Two routes are

shown and labeled in Figure 5-4. Most of the time when this commodity is flown, route

Figure 5-4: Two routes used at different times to fly from Las Vegas to Phoenix.

1 is used and ground delay alone is assigned to avoid any anticipated capacity problems
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while in the air. However, we will examine two flights that use route 2. The important

times for these two flights are depicted in Figure 5-5 and explained below.

Flight 1 actual actual
departure arrival

45 rains I'2:35 I hr,air35travelmins 2:10

ground holdinsl_
< I "1 1 I ''

11:50 12:50
scheduled scheduled
departure arrival

Flight 2
actual

arrival of actual actual
aircraft departure lhr, 45mins arrival

11:25 [1 ._35 air travel i _20
II I I I

12:2011:00 11:20
scheduled scheduled scheduled
arrival of departure arrival
aircraft

Fig_tre 5-5: Time lines of two flights that use route 2 on Figure 5-4.

At ll:50am a flight is scheduled to depart from Las Vegas. This flight is scheduled

to arrive at Phoenix one hour later. The flight is held on the grolmd for 45 mimltes and

actually departs at 12:35pm. It reaches Phoenix at 2:10pm making the total amount

of time spent traveling equal to 1 hour and 35 minutes, which is 35 minutes more than

scheduled. The total delay of 80 minutes resulted from 45 minutes of ground holding and

35 minutes of rerouting delay.

At ll:20am, a continued flight is scheduled to depart from Las Vegas. It is relying on

an aircraft that is scheduled to arrive at Las Vegas at ll:00am. However, this incoming

flight experiences delay and does not arrive at Las Vegas until ll:25am. The aircraft

is immediately refueled and boarded, and the continued flight actually departs at time

ll:35am, 15 minutes after the scheduled departure time. There is no ground holding

assigned to this flight. The flight travels along route 2 and is filrther delayed in terms

of airspeed reduction. When the flight reaches the shaded sector in Figure 5-4, its speed
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is reduced such that the travel time through this sector is increased by 10 minutes. It

reaches Phoenix at l:20pm, a total of 1 hour after the scheduled arrival time. This

total delay of 60 minutes resulted from 10 minutes of airspeed reduction, 35 minutes of

rerouting delay and 15 minutes of departure delay due to the late incoming aircraft.

5.2 Computations for Weather Scenario II

For this instance, the same flight schedules for the 71 flights between the 4 airports

shown in Figure 5-1 were used. However, to simulate the weather front passing from the

northeast corner of this region to the southwest corner, the sector capacities were set

deterministically.

During normal weather conditions, we fixed the capacities according to the size of the

sector. At the cusp of the storm, the sector capacities were set to zero. One hour later,

as the storm front moves along, those sectors that had zero capacity during the last hour,

now have a slightly increased capacity of one. The sector capacities would continue to

increase hourly until they have resumed the level of normal weather conditions. Figure

5-6 shows the different sector capacities that evolve over time for the second capacity

scenario as the weather front passes through the region. Figure 5-6 (a) through Figure 5-

6 (f) show the sector capacities between the times 8:20 to 9:20am, 9:25 to 10:25am, 10:30

to ll:30am, ll:35am to 12:35pm, 12:40 to l:40pm, and 1:45 to 2:45pm, respectively. The

shaded areas show the cusp of the weather front in which the sector capacities are zero.

The front appears to move along gradually spending one hour before each progression.

To achieve a lower bound on the solution, we solve the LP relaxation of the multicom-

modity dynamic network formulation. The size of the formulation is not affected by the

change in the weather capacity scenario. Thus, the number of constraints and variables

is the same as specified for weather scenario I. Solving the LP requires 59 seconds and

gives a solution that is highly non-integral with an objective value of 2387.
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(a) (b)

(c) (d)

(e) (f)

Figure 5-6: Weather Scenario II: (a) 8:20 to 9:20 am, (b) 9:25 to 10:25am, (c) 10:30 to

ll:30am, (d) ll:35am to 12:35pm, (e) 12:40 to l:40pm, (f) 1:45 to 2:45pm.

81



Iteration

0

1

2

Lagrangian Packing

Time Obj Value No. In%as. Presolve Time IP Time Obj Value

24.72 -107072 72 0.12 - Inf.

24.63 -11148 60 0.10 - hff.

24.72 1618.38 20 0.42 17.51 2418

Table 5.2: Computational Reslflts for weather scenario II.

We ran the Lagrangian Generation Algorithm setting the parameter values as el = 2

and e2 = 0.33. The starting values for A° and 6° were set to 10 and 0.8 respectively.

Table 5.2 tracks the performance of the Lagrangian Generation Algorithm as it steps

through the algorithm. The problem sizes are the same as for weather scenario I. All of

times are given in seconds.

The total amount of time needed to solve this problem, including the subproblem

times for the Lagrangian relaxation and the integer packing problem given in Table 5.2,

was 116 seconds. The solution value found, 2418, is within 1.2% of the lower bound.

The total amount of ground holding imposed upon this solution was 480 minutes and no

airholding was used.

Iteration Time

0 24.72 -107072

1 24.63 -11148

2 24.72 1618.38

3 26.18 2104.20

4 25.98 2231.75

5 25.98 2295.00

6 25.98 2317.74

7 25.43 2345.69

8 25.88 2327.27

9 25.82 2360.46

10 25.88 2304.59

11 25.78 2367.44

12 26.55 2375.27

13 25.93 2378.53

14 26.45 2379.18

Lagrangian Packing

Obj Value No. Infeas. Presolve Time IP Time Obj Value

72

60

20

25

32

18

19

21

21

22

22

10

12

14

21

0.12

0.10

0.42

0.48

0.53

0.53

0.57

0.62

0.65

0.65

0.68

0.72

0.68

0.72

0.67

17.51

17.42

18.02

19.10

19.35

18.46

19.56

19.89

19.99

20.03

20.36

21.58

21.60

Inf.

Inf.

2418

2408

2396

2393

2392

2389

2389

2389

2389

2389

2389

2389

2389

Table 5.3: Computational Results for weather scenario II for 15 iterations.

j
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We ran the algorithm for one hundred iterations, without the e stopping condition,

to see if we could find a solution which is even better than the one found above. The

results from the first fifteen iterations are given in the Table 5.3. The remaining eight-

five iterations did not find a solution with a lower solution value less than the value at

the fifteenth iteration, and were thus not including in the table. Within 7 iterations we

generate the best solution that we were able to find. This value is 2389, which is within

0.08 % of the lower bolmd of 2387.

Figure 5-7: Three routes used to fly between Salt Lake City and Phoenix.

Numerous routes were used for each particlflar commodity. In Figure 5-7 we look at

a few of the routes used to fly between Phoenix and Salt Lake City. Route 1 travels from

Salt Lake City heading towards Phoenix. This flight is scheduled to depart at 9:30am,

but is held on the gro_md until ll:30am, incurring a two hour ground delay. At that

point, the flight departs from Salt Lake City and follows a reasonably direct route, route

1, to Phoenix, basically trailing the storm front.

Routes 2 and 3 go north from Phoenix to Salt Lake City. The flight that travels along

route 2 is scheduled to depart at 9:25am, but is held on the ground for 1 hour. It then

departs and follows a circuitous route due to the limited sector capacities. The flight
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that travelsalong route 3 is scheduledto depart at ll:30am and only suffersa 20minute

ground delay. This flight passesthrough its route immediately after the weather front.

The capacitiesarestill quite limited, however,forcing this flight to significantly deviate

from the shortest path. In order to appreciatehow this affectstravel time, wenote that

route 1 requires 1 hour and 55 minutes of flying time, route 2 requires2 hours and 25

minutesof flying time and route 3 requires2 hours and 35 minutes of flying time.

5.3 Computations for Weather Scenario III

The final weather scenario that we tested uses the same geographic area as shown in

Figure 5-1. However, we increased the number of flights to 200 flights and scaled the

normal weather sector capacities accordingly. To simulate the weather front passing from

the northeast corner of this region to the southwest corner, we set the sector capacities

deterministically.

During normal weather conditions, we fixed the sector capacities according to the

size of the sector. At the cusp of the storm, the sector capacities were set to zero. The

front once again gradually moves along spending forty minutes, before each progression.

As the cusp of the storm front moves through the region, the available sector capacity

increases by two each forty minutes. So this weather front moves more quickly and does

not leave such bad conditions behind it, as does the previous weather scenarios. Had we

kept the capacity levels at that of either the two previous scenarios, then the problem

would have been infeasible, meaning that there would have been no way to complete all

of the 200 flights during the time frame without cancelling some flights. Figure 5-8 shows

the different weather scenarios that evolve over time for the third capacity scenario as

the weather front passes through the region. Figure 5-8 (a) through Figure 5-8 (f) show

the sector capacities between the times 8:20 to 9:00am, 9:05 to 9:45am, 9:50 to 10:30am,

10:35 to ll:15am, ll:20am to 12:00pm, and 12:05 to 12:45pm, resp_tively. The shaded

areas show the cusp of the weather front in which the sector capacities are set to zero.
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(a) (b)

(C) (d)

(e) (f)

Figure 5-8: Weather Scenario III for 200 flights: (a) 8:20 to 9:00am, (b) 9:05 to 9:45am,

(c) 9:50 to lO:30am, (d) 10:35 to ll:lSam, (e) ll:20am to 12:00pm, (f) 12:05 to 12:45pm.
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To achievea lower bound on the solution, we solve the LP relaxation of the multi-

commoditydynamic networkformulation, which consistsof 25,881constraints and 66,489

variables. Solving the LP requires 86 seconds and gives a solution that is highly non-

integral with an objective value of 6513.5.

We again ran the Lagrangian Generation Algorithm with the same starting values

as before. Table 5.4 tracks the performance of the Lagrangian Generation Algorithm

as it steps through the algorithm. All of the times given in Table 5.4 are in seconds.

The Lagrangian relaxation solves a network problem with 16,219 nodes, 57,294 arcs and

138 of the side constraints (4.8). The size of the integer packing problem grows at each

iteration as the size of the list of paths increases. At the final iteration, the formulation

consists of 2394 constraints and 1197 variables, which reduces to 879 constraints and

1078 variables by using some presolving routines in CPLEX.

Iteration

0

1

2

3

Time Obj Value

36.52 -283953

36.49 -26652

36.31 5772.76

36.56 6152.06

Lagrangian

No. Infeas.

91

54

39

44

Packing
Presolve Time IP Time

0.19

0.26

0.81

0.83 18.11

Obj Value

Inf.

Inf.

Inf.

6574

Table 5.4: Computational Results for 200 flight dataset.

The total amount of time needed to solve this problem, including the subproblem

times for the Lagrangian relaxation and the integer packing problem given in Table 5.4,

was 169 seconds. The solution value found, 6574, is within 0.92% of the lower bound.

The total amount of ground holding imposed upon this solution was 700 minutes and no

airholding was used.

Once again, we ran this problem for more iterations to see if we could obtain a better

solution, even though we already folmd a solution that is well within the tolerance. Table

5.5 gives results that show all the solutions that we generated. Of these, the best solution,

6520, is within 0.09% of the lower bound, 6513.5.

Again, we can see how well the Lagrangian Generation Algorithm performs in terms
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Iteration
0
1
2
3
4
5
6
7
8
9
10
11

Table

Time
36.10 -283953
36.16 -26652
36.14 5772.76
36.26 6152.06
36.08 6291.80
36.03 6327.60
35.97 6307.54
35.83 6370.08
36.51 6453.82
36.26 6458.95
35.90 6319.08
36.22 6380.18

Lagrangian Packing
Obj Value No. Infeas. PresolveTime IP Time Obj Value

91
54
39
44

42

39

42

37

36

47

41

36

0.19

0.26

0.81

0.83

0.92

0.94

1.00

1.04

1.08

1.09

1.10

1.10

18.11

18.78

18.63

19.00

19.12

19.58

19.64

20.01

20.82

Inf.

Inf.

Inf.

6574

6545

6529

6527

6523

6520

6520

6520

6520

5.5: Computational Results for 200 flight, dataset for 12 iterations.

of speed and accuracy of solutions. This last dataset is quite large, but the size of the

multicommodity dynamic network flow formulation is not drastically increased by an in-

crease in the number of flights. Only the number of non-aggregated variables is increased;

the number of aggregated variables remains the same. The only set of constraints that is

affected by this increase is constraint (4.8), which comprises a very small amount of the

total nmnber of constraints.
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Chapter 6

Conclusions

In this thesis, we have presented what we believe to be interesting and practical ap-

proaches for solving the Air Traffic Flow Management Problem and the Air Traffic Flow

Management Rerouting Problem. In S_tion 6.1, we summarize the contributions of the

research presented in this thesis. In Section 6.2_ we discuss some remaining issues of

concern to the FAA.

6.1 Contributions

The Air Traffic Flow Management Problem determines how to allocate ground holds to

flights as well as how to control the enroute speed of an aircraft while taking into account

all the capacitated elements in the system (arrival, departure and sector cap_ities). We

built an integer programming formulation to minimize delay costs. The formulation is

quite strong as some of the proposed inequalities are facet defining for the convex hull

of solutions. We addressed the complexity of the TFMP and showed that it is NP-hard.

The formulation easily extends to incorporate the dependence of airport runway capacity

of departures and arrivals, hub connectivity, and banking of flights. When specialized for

the multiple airport ground holding problem, we proved that the LP relaxation bound of

our formulation is at least as strong as others proposed in the literature. The solutions
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of the LP relaxation of the TFMP were almost always integral, so there was no need

to branch and bound. In essence,our formulations reduced the problem to efficiently

solvinglargescalelinear programmingproblems.As a result, the computation timeswere

reasonablysmall for large scale, realistic size problems involving thousandsof flights.

Short computational times and integrality properties are particularly important, since

thesemodelsare intendedto be usedon-line and solvedrepeatedly during a day.

The Air Traffic Flow ManagementRerouting Problem (TFMRP) determineshow to

reroute flights through different flight paths in order to reach their destinations if the

current routespass through a region that is unusableas a result of poor weather con-

ditions. This is the first researchthat has taken a global look at rerouting. We not

only determinedthe best routes for the aircraft to follow, but alsothe amount of ground

holding, and the amount of speedadjustment while taking into considerationthat the

entire national airspacesystemisoperatingunder astrict capacityrestriction. To address

this problem, we presentedan integrated mathematical programming approach,which

utilizes severalmethodologies,for the problem of minimizing delay costs. In order to

addressthe high dimensionality,webeganby presentingan aggregatemodel, in which

the problem is formulated as a dynamic, multicommodity, integer network flow prob-

lem with certain sideconstraints. Using Lagrangianrelaxation, we generatedaggregate

flows that aredecomposedinto a collectionof flight paths for individual aircraft using a

randomizedrounding heuristic. This collectionof paths wasthen usedin a packing inte-

gerprogrammingformulation, the solution of which generatesfeasibleand near-optimal

routes for individual flights. The overall algorithm, termed the Lagrangian Generation

Algorithm, was used to solve real problems in the southwestern portion of United States.

The solutions returned by our algorithm were within 1% of the corresponding lower

bounds. However, there are several remaining issues that need to be addressed before

this approach can be implemented. In Section 6.2, we discuss some of these issues.

In the course of this research, we obtained some general insights that may have

wider applicability. First, we have shown through our formulation of the TFMP, that
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by redefiningtraditional time assignmentvariables as "by time t" rather than "at time

t", some of the proposed inequalities are likely to be facet defining for the convex hull

of solutions, which in turn leads to considerable computational improvement in terms of

achieving integrality. We believe that this redefinition may potentially be beneficial for

other scheduling problems where we are assigning items to specific time intervals.

Second, the algorithmic design of the Lagrangian Generation Algorithm could be used

in other problem contexts. The idea of extracting solutions using randomization and

combining these solutions using integer programming may be useful in other problems

as well.

Although we have presented our formulations in the context of air traffic control, we

envision other applications of our models in any area in which goods are dynamically flow-

ing through a system with several types of capacitated elements such as manufacturing,

telecommunications and ground transportation systems.

6.2 Other FAA Issues

For several years, the FAA has been operating an Air Traffic Control System Com-

mand Center (ATCSCC) in Washington, D.C. This center is eqifipped with outstanding

information-gathering capabilities that dynamically keeps track of all the information

about capacities, flight information, weather, etc. As we have mentioned earlier, the FAA

uses a computerized procedure to allocate ground holding delays based on a first-come-

first-serve rule. We believe that the optimization-based approaches that are described in

this thesis are well suited to be the optimization "brain" for this system. However, there

are important issues that need to be addressed before applying an optimization based

approach in a real world environment.

1 Interaction with airlines.

After the ground delays are issued, the airlines have the opportunity to propose

modifications to these delays through a cancellation and substitution process. It
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would be important to elucidatethe effectsof this interaction.

2 Passengerand flight crewconnections.

There are more connectivity requirementsthan just the aircraft connectivity. In

particular, there are the connectionsof the passengersand the flight crew. On

occasiondelaywill be incurred if many of the passengershave not yet arrived due

to delay encounteredduring the first leg of their journey. Moreover,if the delay

involvesthe flight crew,either an alternative flight crew must be reassignedor the

flight will experiencea delay in waiting for the crew to arrive.

3 MechanicalDiffioflties.

Flights are often fllrther delayedby mechanicalfailures of the aircraft. Research

could be done that allows for the possibility of randomly occurring delay from

equipmentfailure.

4 Flight cancellations.

When weatherconditions becomebad enoughto warrant extrememeasures,flights

are often cancelledor forced to land at alternative destinations. This situation

causesmany diffimflties throughout the air traffic system. However,it is a viable

option that hasnot yet beenconsidered.

5 Dynamic updating of decisions.

Both grolmd and enroutedelaysaredeterminedsimlfltaneouslyseveralho_trsbefore

a flight leaves. In practice, however,enroutedelaysare not known until after the

aircraft is in the air. Clearly more researchis neededto clarify the implications of

consideringenroute delayson a much shorter time scaleand to demonstratehow

to effectivelyupdate the previoussolution to incorporate any new information.

6 Stochasticmodeling.

The model presentedin this paper assumesa deterministic environment. More re-

searchis neededto accountfor stochasticitiesinherent in a systemthat is strongly

91



dependentupon weatherconditions.
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Appendix A

On the Polyhedral Relationships

Between Ground Holding

Formulations

We intend to establish Proposition 1. Since IP_IAGHP , IPvBo and IPTp are valid integer

programming formulations, it is clear that IPtMAGHP = IPvBo = IPTp. Moreover, since

_r i tthe IP is more restrictive than its relaxation, PhlAGHP _ P_IAGHP"

To show the relationship PAIAGHP _ PTP we will start with a feasible point in

PtMAGHP, -Zft, and show that this is indeed feasible to PTP. The first two constraints

and the last constraint are identical in the two models. So what remains to be shown

is that any point, -2:t, that satisfies the third constraint of PAIAGHP will also satisfy the

third constraint of PTP. So

(::,- ::,,-,)- Z (::','-::',,'-_)
teTT,t<r t'eT-: ,t'<r-s l, -(rf -dl)

=-ZIT ---Zf',r-sf,-(rf-df) = -Zf,t+(rf-df) ---Zf,t-sf, _ 0

So the point, -Zft, satisfies the third constraint of PTP and all of the constraints of
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PTP hold. Thus, the point 7it does indeed lie in the polyhedron PTP. This establishes

the relationship PhIAGHP _ PTP.

Now we need to prove the relationship PTP _ PVBO. To show this we will start with

a feasible point in PTP, -2#, and show that this is indeed feasible to PVBO. Once again,

the first two constraints and the last constraint are identical in the two models. So what

remains to be shown is that any point, -2it, that satisfies the third constraint of PTP will

also satisfy the third and fourth constraints of PVBO. So

gs= E t(:s_- _s:-_)- _'s
tET_

gs' -- dl + sl' + rl' - gl

= _ t(:s,t - ::,,t-,) - rS,- _S+ s:, + rS,- E t(_St- :S,__,)- rS
SET;, tET;

= ---51,,., I-...--2l,:,I+_:,_ l+r I,+T l,-r l,-d IT8 l,+r I,

+-2I,r / + ... -t- -2i,r:+y/_ 1 -- r I -- T/+ r I

= --5I, Mj - ... - -5l,x,I+_:,_ 1 + T I, - d I + s I, + r I, + -5i,_: +... + -2I,r:+y]_ 1

_< -(r S,+T S,-1-(r S-s S,-(r S-dS) )+I)+T S,-dl+s S,+r S,

+(T: + rz - 1 - _: + 1) - Tz

= -(r I,+T l,-r l+s l,+r l-dl)+T l,-dl+s l,+r I,+0

= -r s,-s s,+d s-d S+s S,+r S,

= 0

- Ts

where TI is maximum amount of time that flight f may arrive late. So all of the con-

straints hold and the point _It does indeed lie in the polyhedron PVBO. This establishes

the relationship PTP C_ PV BO. •
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Appendix B

On the Non-integrality of the

Poly]hedron PMAGHP

In this section we prove Theorem la, i.e., the polyhedron PMAGHP is not integral, by

providing the following example which has a fractional extreme point. Consider the case

in which there are two flights arriving and being continued by two flights departing from

a given airport during a restricted time window. The data of the problem is as follows:

[]C[ = 1, T= {1,2,3,4}, C= {(1,1),(2,2)},

i.e., the arriving flight i is continued by departing flight i. The turnaround times are

sl = 0, s2 = 1. The time windows are:

T_ = {1,2}, T2_ = {1,2}, T1d = {1,2}, T { = {2,3}.

Notice that flight 2 can only depart during time slots 2 and 3 since the turnarolmd time

for the second flight is 1. The decision variables are:

Yll, Y12, Y22, Y23, Zll, Z12, Z21, Z22,
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with the interpretation that yij = 1 if flight i departs by time j and zij = 1 if flight i

arrives by time j. Because of the time windows, we know that

Y13 = 1, Y24 = 1, Z13 _--_ 1, Z23 = 1.

The capacities are:

D(1) = D(2)= D(3)= 1, A(1)= A(2)= A(3)= 1.

The resulting formulation (MAGHP) is:

Yll --_ 1,

Y12 -- Y11+Y22 __ 1,

1 --Y12+Y23--Y22 <_ 1,

Zll +z21 _ 1,

Zl2--Zll +Z22--Z21 _ 1,

1--Z12+l--z22 <_ 1,

YI2--Yll _0,

Z12--z11 _>0_

Yli --Zll <:0_

Y12-- z12 _ O,

Letting

X = (Yll, Yl2, Y22, Y23, Zll, Z12, Z21, Z22)'

b = (1,1,0,1,1,-1,0,0,0,0,0,0,0,0)'

Y23--Y22__0,

z22--z21 _ 0_

Y22--z21 <0,

Y23--z22 __0

and
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A

Yll Y12 _2 Y23 Zll z12 Z21 z22

(1 0 0 0 0 0 0 0

-1 1 1 0 0 0 0 0

0 -1 -1 1 0 0 0 0

0 0 0 0 1 0 1 0

0 0 0 0 -1 1 -1 1

0 0 0 0 0 -1 0 -1

1 -1 0 0 0 0 0 0

0 0 1 -1 0 0 0 0

0 0 0 0 1 -1 0 0

0 0 0 0 0 0 1 -1

1 0 0 0 -1 0 0 0

0 1 0 0 0 -1 0 0

0 0 1 0 0 0 -1 0

0 0 0 1 0 0 0 -1

the feasible space can be written as Ax <_ b.

Notice that matrix A is not totally unimodular since the submatrix consisting of the

columns corresponding to the variables y12.y22, z12, and z21 and the third, fifth, twelfth

and thirteenth rows:
Y12 _22 Z12 z21

-1 -1 0 0

0 0 1 -1

1 0 -1 0

0 1 0 -1

has determinant of 2. The objective function

Min 2 yll - 4 y12 + 2 y22 - 6 y23 - 3 Zll + 6 z12 - 3 z21 + 6 z22
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gives an optimal solution of

1 1
Yll = 0 Y22 _--- 0 Zll = _ z21 _---

1 ] 1 1
Y12 ---- _ Y23 : _ Z12 : _ z22 :

that shows that the polyhedron PMAGHP is not integral. Furthermore, this is the objective

function that is obtained when we let _ = 1, c_ = 3 for all f E 9v. So, even with the

restriction that % = _ and ca = c_ for all f C _-, the polyhedron PMAGHP is not integral.
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Appendix C

Facet Defining Constraint Proofs

In this section we analyze the polyhedral structure of the COn2_(IPMAGHP) and provide

the proof of the first half of Theorem lb that establishes which constraints are facets

of COnv(IPMAGHP). The proof of the second half of Theorem lb concerning problem

(TFMP) is similar, but more algebraically involved. We first show that the constraint

Z (Y#- yI,_-:) < D_(t),
{f:teT]}

Vk E K:,t E .T"

is not a facet of conv(IPMAGHP) by constructing a counterexample with two flights, one

arriving at airport k and one departing from airport k, three time periods and D(t) = 1,

A(t) = 1. Then only the variables Yn, Yl_, Y13, z11, z12, and z13 are defined. The complete
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set of feasible solutions to IPMAGHP is given by:

Yll Y12 y13 Zll Z12 z13

000000

000001

000011

000111

001001

001011

001111

011011

011111

111111

In this case, dim(IPMAGHP) ---- 5 which can be determined by checking the rank of

the matrix of solutions. We define the set

Then,

Ht={(y,z) e IPMACHP " _ (YYt -- YY,t-1) = l}, for sometET".

(::tcT]}

/-/3 = {(0,0, 1,0,0, 1), (0,0, 1,0, 1, 1),(0,0, 1, 1,1, 1)}.

In this case, the maximum number of affinely independent points in H3 is less than the

dim(IPMAGHP) -- 1. We conclude that the constraint E{I:teT]} (Yft - Yf,t-1) <_ Dk (t), Yk E

]C, t E .g" is not a f_et. The same result can be checked in a similar manner for the

constraint _"_{I..tET]I(Zft- Zf, t_l) __ Ak(t), Yk, t. []

For ease of exposition we consider instances of (MAGHP) such that

• ITfl is that same for all f and therefore D = maxlITiI = ITfl,

• s/=O, VfE9 r,

100



• Ak(t),Dk(t) >_ 1,Vk, t.

We consider an instance of (MAGHP) with {9rl flights in which [C I (< I_-I) of these

flights are continued. These flights were arranged such that the first ICI flights are

continued by flights ICI + 1,..., 21CI < 19rl, with flight 1 being followed by flight ICI + 1,

flight 2 being followed by flight IC[ + 2, and so on.

We first determine dim(IPMmaHP) by constructing the following matrices of solutions,

in which each row represents a solution to (MAGHP), (see Figures C-1 and C-2). The

rows of these matrices are affinely independent and there are 219riD + 1 such rows.

So, we have exhibited 219riD + 1 affinely independent points in IPMAGHP and thus,

dim(IPMACHP) = 2t.TID.

We next consider the set.

Gp = {(y,z) GIPMAaHP'yft--yI,t-1 =0}, for somefE9r, tCT-.

If f C {1,..., ICI} then there are four distinct solutions from the matrices of Figures

C-1 and C-2 which do not belong to Gp. For each of these rows, replace the 0 in the

yf,t-1 colmnn with an 1.

If f E {[¢1 + 1,... ,21CI} then there are two distinct solutions from Figures C-1 and

C-2 which do not belong to G ft. For each of these rows, replace the 1 in the y.f,t column

with a 0.

If f E {2[C[ + 1,..., [9rl} then there are two unique solutions from Figures C-1 and

C-2 which do not belong to G ft. For each of these rows, replace the 0 in the Yl,t-1 column

with a 1.

For all of these cases, we have constructed a matrix with 19rl D affinely independent

rows, proving that dim(Glt ) _> 19riD - 1. Since Gp is a proper face of IPMAGHP, we

know that dim(Glt ) < dim(IPMAGHP). So, dim(Gp) = ]griD- 1 and thus, Gp is a
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facet of IPMAGHP. []

We next consider the set

Kit = {(y, z) E IPMAGHP" Z/t -- Zf, t-1 = 0}, for some f E 5r, t E T.

If f E {1,..., ICl} then there are three distinct solutions from the matrices of Figures

C-1 and C-2 which do not belong to GSt. For each of these rows, replace the 1 in the Yf,t

colmun with a 0.

If f E {IC] + 1,..., IFI} then there is only one distinct solution from Figures C-1 and

C-2 which does not belong to Gft, so remove this row.

For each of these cases, we have constructed a matrix with ]_'l D affinely independent

rows, proving that dim(Kit ) _> ]_-I D - 1. Since Kit is a proper face of IPMAGHP, we

know that dim(Kp) < dim(IPMAGHp). So, dim(Kit ) = IbriD - 1 and thus, Kit is a

facet of IPMAGHP. D

We next consider the set

Mlt = {(y, z) E IPMAcHP " Zp -- yl:_(,.:_dS) = 0}, for some f E .T', t E T.

For all f E { 1,..., ]_']} there are t -_T I + 1 distinct solutions from the matrices of Figures

C-1 and C-2 which do not belong to Mft. For each of these rows replace the O's in the

columns corresponding to zp,, t <_ t _ <_ T I with l's. T/and T I are the last possible and

the earliest possible times that flight f could arrive, resp_tively.

The remaining matrix will have ]_'l D affinely independent rows, proving that dim(M/t) >_

].7-1D-1. Since MIt is a proper face oflPMAGHP, we know that dim(MIt ) < dim(IPMAGHP).

So, dim(Mtt ) = I_'l D - 1 and thus, MIt is a facet of IPMAGHPO.

Finally, we consider the set

NI,ft = {(y, z) E IPMAcHP " YIt -- ZI't = 0},
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For all f E { 1,..., ]9rl } there are t-__Tf + 1 distinct solutions from the matrices of Figures

C-1 and C-2 which do not belong to Nf, ft. For each of these rows replace the O's in the

columns corresponding to yp,, t < t _ < Tit with l's.

The remaining matrix will have ]_] D affinely independent rows, proving that dim (NI,It) >

19riD - 1. Since Nl,ft is a proper face of IPMAGHP, we know that dim(Nl,p) <

dim(IPMaGgp). So, dim(Nf,p) = ]griD - 1 and thus, Nf,lt is a facet of IPMAGHP.
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Yl,t Yc,t Yc+l,t

0...0 0 0...0 0...0

1...1 0 0...0 0...0

01 ......

0...1 0 0...0 0...0

0...0 ' 0...0 0...0

0...0 0 1...1 0...0

.... 0".1

0...0 0 0...1 0

1...1 0 0...0 1...1

0".1 .... 0".1

0...1 0 0...0 0...1

0...0 ' 0...0 0...0

0...0 0 1...1 0...0

::: : 0 .1 i'i

0...0 0 0...1 0...0

0...0 " 0...0 0...0

0...0 0 0...0 0...0

0...0 0 0...0 0...0

Y2C,t YF, t gl,t

0 0...0 0 0...0 0...0

0 0...0 0 0...0 0...0

0 0...0 0 0...0 0...0

" 0...0 " 0...0 0...0

0 0...0 0 0...0 0...0

00...000...00...0

00...000...01...1

:::: O1

0 0...0 0 0...0 0...1

" 0...0 " 0...0 0...0

0 1...1 0 0...0 0...0

" 0.1 " ::: :!:

0 0...1 0 0...0 0...0

0...0 0...0 0...0

0 0...0 0 1...1 0...0

.... 0 1

0 0...0 0 0...1 0...0

of Matrix ofFigure C-I: First Half

Zc,t

0 0...0

0 0...0

0 0...0

• 0...0

0 0...0

0 0...0

0 0...0

0 0...0

0...0

0 1...1

. 0.1

0 0...1

0...0

0 0...0

0 0...0

Solutions

ZC+ l.t Z2,Ct ZF, t

0...0 0 0...0 0 0...0

0...0 0 0...0 0 0...0

0...0 0 0...0 0 0...0

0...0 " 0...0 " 0...0

0...0 0 0...0 0 0...0

• :. • ::: : ...

0...0 0 0...0 0 0...0

0...0 0 0...0 0 0...0

0...0 0 0...0 0 0...0

0...0 " 0...0 " 0...0

0...0 0 0...0 0 0...0

"'i : iii i ::i

0...0 0 0...0 0 0...0

0...0 " 0...0 " 0...0

0...0 0 0...0 0 0...0

• .. : ::: : ---

0...0 0 0...0 0 0...0

tOI_IAGHP.
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1...1

0 1

0...1

0...0

0...0

:::

0...0

1...1

01

0...1

0...0

0...0

:::

0...0

0...0

0...0

• . )
. , =

0...0

_C,t _C+l,t Y2C,t

0 0...0 0...0 0 0...0
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' 0...0 0...0 0...0
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Figure C-2: Second Half of IViatrix of Solutions to IPMAGHP.
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