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CHAPTER I

INTRODUCTION

I.I Need for Probabilistic Design

The structural design, or the design of machine elements,

has been traditionally based on deterministic design

methodology. The deterministic method considers all design

parameters "to be known with certainty. This methodology is,

therefore, inadequate to design complex structures that are

subjected to a variety of complex, severe loading conditions.

A nonlinear behavior that is dependent on stress, stress rate,

temperature, number of load cycles, and time is observed on

all components subjected to complex conditions. These complex

conditions introduce uncertainties; hence, the actual factor

of safety margin remains unknown. In the deterministic

methodology, the contingency of failure is discounted; hence,

there is a use of a high factor of safety. It may be most

useful in situations where the design structures are simple.

The probabilistic method is concerned with the

probability of non-failure performance of structures or

machine elements. It is much more useful in situations where

the design is characterized by complex geometry, possibility
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of catastrophic failure, or sensitive loads and material

properties.

1.2 Role of Probabilistic Methodology

The probabilistic design methodology (PDM) produces

designs that are robust and allows the quantification of the

level of reliability in the design. Probabilistic methods

enable us to model the uncertainties and random variabilities

and to include them consistently in our computations. Using

probabilistic models, the sensitivity of the failure risk to

different uncertainties (randomness and modelling

uncertainties) in design parameters is rigorously analyzed. It

is becoming substantially evident that the PDM is beginning to

attract more attention. The evidence includes the growing

number of reliability-oriented specialty conferences, short

courses, sponsored research, and technical papers [1-5]. Some

of the reasons for the increasing acceptance of PDM are [6]

i) The deterministic method can provide some basic information

to complex design problems, but it provides no information

with regard to the reliability of the design.

2) Probabilistic computations are becoming simpler and less

expensive because of new software being developed.

3) The PDM and the information it provides are becoming more

widely understood and better appreciated.
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Probabilistic design approach has been successfully

applied to various loading conditions encountered during space

flight. This methodology has successfully been applied to both

large scale and small scale problems such as buckling,

transient dynamics, random vibration and harmonic excitation.

Shaio and Chamois [7] applied this approach to determine

structural reliability and to assess the associated risk due

to various uncertainties in design variables. Using this

approach Shantaram et al [8] studied the effect of combined

mechanical and thermal loads on space strusses. Most of these

works relied on the tool NESSUS, developed under NASA's

probabilistic structural analysis program.

In this project, the PDM has been applied to the design

of a worm gear, to illustrate its applicability to the design

of machine elements. In the design analysis, four failure

modes are considered: bending stress, thermal capacity,

contact stress, and wear. Several trial runs were made using

NESSUS; each trial was aimed at improving the design. The most

sensitive parameter in the design is identified using

sensitivity analysis.

1.3 Organization of thesis

The basic concepts and the statistical parameters applied

in probabilistic design methodology are discussed in Chapter
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2. In Chapter 3, the application of probabilistic design

methodology in the design of worm gears is given. In Chapter

4, the system reliability using PDM is addressed. The finite

element analysis of the stress distribution and the

displacement of the gear teeth due to the applied load are

examined in chapter 5. The conclusion of the project and

suggestions for future research are presented in chapter 6.

The diagram of the worm gear is shown in Appendix-A.

Appendixes B and C contains the step-by-step procedure for

running Nessus, for individual failure mode and system

failure.



CHAPTER II

PROBABILISTIC DESIGN METHODOLOGY

2.1 Function of Probability in Engineering

In engineering designs, decisions are often required

irrespective of the state of completeness or quality of

information and thus are made under conditions of uncertainty.

In other words, the consequence of a given decision cannot be

determined with complete confidence. Additionally information

must often be inferred from similar circumstances or derived

through modelling. Many problems in engineering involve

natural processes and phenomena that are inherently random;

the states of such phenomena are naturally indeterminate and

thus cannot be described definitely. For these reasons,

decisions required in the process of engineering planning and

design invariably must be made and are made under conditions

of uncertainty.

The effects of such uncertainties in design and planning

are important, to be sure; however, the quantification of such

uncertainty and proper evaluation of its effects on the

performance and design of an engineering system, should

include concepts and methods of probability. Further more,

under conditions of uncertainty, the design and planning of

5
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engineering systems involve risks, and the formulation of

related decisions requires them to be risk free. The problems

of uncertainty in design can be overcome by applying the

methods of probability. Thus, the role of probability is quite

pervasive in engineering. It ranges from the description of

information to the development of bases for design and

decision making.

2.2 Tern%s involved with ProbabilisticAnalysis

Many phenomena or processes of concern to engineers

contain randomness; that is, the actual outcomes to some

degree are unpredictable. Such phenomena are characterized by

experimental observations that are different from one

experiment to another, even if performed under identical

conditions. In other words, there is usually a range of

measured or observed values, and within this range, certain

values may occur more frequently than others. Clearly, if

recorded data are of a variable exhibit scatter or dispersion,

the value of the variable cannot be predicted with certainty

[9]. Such a variable is known as a randc_n variable, and its

value or range of values can be predicted only with an

associated probability. When two or more random variables are

involved, the characteristics of one variable may depend on

the other.
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Since there is a range of possible values of random

variables, we would be interested in some central value, such

as the average. In particular, because the different values of

the random variable are associated with different

probabilities, the weighted average is taken into

consideration. This weighted average is known as the sample

mean value of the random variable. Therefore, if X is a

discrete random variable, then the mean value _x is obtained

as follows:

ZX

n

where,

Dx is the mean

X is the random variable.

n is the number of observations.

Besides the sample mean, the next most important quantity

of a random variable is its measure of dispersion or

variability; that is, the quantity that gives a measure of how

widely the values of the variate are spread around its mean

value. This deviation can be above or below its central value.

If the deviations are taken with respect to its mean value,

then a suitable average measure of dispersion is called the



variance and is computed using the following relation:

P.(X- t*_)2
vm.(2") (2-2)

.-I

where,

Var(X) is the variance of the random variable X.

Dimensionally, a more convenient measure of dispersion is

the square root of the variance, or the standard deviation:

where,

o× is the standard deviation of the random variable X.

It

large or small,

deviation. For

is difficult to say whether the dispersion is

on the basis of the variance or standard

this purpose, the measure of dispersion

relative to the central value is more useful. In other words,

whether the dispersion is large or small is meaningful only in

relation to the central value. For this reason, coefficient of

variation (COV) is often preferred; COV is a convenient non-

dimensional measure of dispersion or variability. The

coefficient of variation is related to the mean and standard

deviation is as fellows:



0 x

COV . _ (2-4)
P=

where,

o_ = Standard deviation of the variable X.

_= Mean value of the variable X.

The application of probability is not limited to the

description of experimental data, or the evaluation of the

statistics, such as the mean and standard deviation. In fact,

the more significant role of probability concepts is in the

utilization of this information in the formulation of proper

bases for the design.

2.3 Uncertainty associated with design

Engineering uncertainty is not limited to the variability

observed in the basic variables. First, the estimated values

of a given variable (such as the mean), based on observational

data, will not be error-free. Second, the mathematical or

simulation models. For example, formulas, equations,

algorithms, and laboratory models, that are often used in

engineering analysis and design are idealized representations

of reality. Consequently, predictions and calculations made on

the basis of these models may be inaccurate (to some unknown

degree) and thus also contain uncertainty. Human error can
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result from errors made by engineers and technicians during

the design or operations phases. It can be reduced by

improving the quality- of-control program, but it cannot be

avoided entirely. In general, human error is very difficult to

define. In this study, human error will be treated as

modelling error [i0]. In some cases, the uncertainties

associated with such predictions or model errors may be much

more significant than those associated with the inherent

variabilities.

All uncertainties, whether they are associated with

inherent variability or with prediction error, may be

assessed in statistical terms and the evaluation of their

significance on the design can be accomplished by the concepts

and the methods of probability.

2.4 Designing under uncertainty

If there are uncertainties in the design, the next step

is, to ask how should designs be formulated or decisions

affecting a design be resolved? Presumably, we may assume the

worst conditions and develop conservative design on this

basis. From the system performance and safety point of view,

this approach may be suitable. However, the resulting design

would be too costly as a result of over-conservatism. On the

other hand, an inexpensive design may not ensure the desired
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level of performance and safety. Therefore, the decisions

should be made considering cost and safety of the design. The

most desirable solution is one that is optimal, in the sense

of minimum cost and maximum benefits. If the available

information and the models to be evaluated contain

uncertainties, the analysis should include the effects of such

uncertainties [9].

Let us consider a simple example of design of structures

and machines. In structural or machine components that are

subjected to cyclic loads, the fatigue life of the component

is also random, even at constant amplitude stress cycle, as

shown in Figure 2-1. For this reason, the useful life of the

component is to some degree unpredictable. A design will

depend on the life and reliability. For a given design, the

shorter the required service life, the higher the reliability

against possible breakdowns within the specified service life.

Fatigue life is also a function of the applied stress level.

Generally, the higher the stress, the shorter the fatigue

life.

L
o.4_-

/ h I I'-L0q._I : _ ,26.75

,, I ! I I I F-I--b--t--F---,
o 15 3o 45 60 75

• _0 e Cycles

Figure 2-1: Fatigue life of 75 S-t Aluminum [6]
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If a desired life is specified, the components could be

designed to be massive so that the maximum stresses will be

low; thus, the design can have a longer life. This approach

will be expensive in terms of material cost. In contrast, if

the parts are under-designed, high stresses may be induced,

resulting in shorter life and frequent replacements.

The optimal life may be determined on the basis of

minimizing the total expected cost, which would include the

initial cost and the expected cost of replacement (a function

of reliability or probability of less failure). The total

expected cost as a function of probability is given as follows

[11]:

c, . C, • p/C. (2-5)

where,

Ct= Total expected cost.

C_= Maintenance cost.

C_= Initial cost.

Pf= Probability of failure of the design.

Once the desired probability of failure of the design is

decided, the components may then be proportioned accordingly.

Thus, probabilistic design is concerned with the

probability of failure or preferably reliability. This

methodology is most useful when uncertainties in material
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properties and loading conditions are considered. To apply

probabilistic methodologies, all uncertainties are modelled as

random variables, with selected distribution types, means, and

standard deviations [12]. The primitive (random) variables

that affect the structural behavior have to be identified.

2.5 Design Stages of PDM

Every design project demands some sequential stages of

reflection before one can arrive at the final design goal.

This is also the case with PDM. The various design stages of

PDM are as follows:

i. Defining the Problem.

2. Generating design parameters.

3. Relating the defined problem to the design parameters.

4. Assembling data and applying probability concepts.

5. Using probabilistic analysis.

6. Interpreting results.

The design stages of PDM are shown in Figure 2-2.

I. Defining the Problem.

The first step which a designer takes in solving a design

problem is to find out the main objective of the design. After

finding out the objective, the next step is to define in a

precise manner the functional requirements of the system or

component to be designed. These functional requirements should
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be able to completely characterize the design objective by

defining it in terms of specific needs. With a clear

understanding of what one is searching for, the designer then

goes to the next stage.

2. Generating design parameters.

In order to solve the defined problem, acceptable design

parameters that will meet the defined functional requirements

must be generated. To generate the design parameters, one

utilizes an appropriate design model. The various parameters,

such as load, material properties, geometry, crack size, etc,

are taken into consideration. The design parameters to be

selected depend on the objective of the design [13].

3. Relating the defined problem to the design parameters.

After defining the design parameters the designer then

relates the functional requirements in the functional domain

to the design parameters in the physical domain, to be sure

that the objective is satisfied. If the relation is

satisfactory, the designer proceeds to the next stage; if not,

the relation is redefined so that the objective is satisfied.

4. Assembling data and applying probability concepts.

This stage requires assembling the essential data that
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are available on the problem with regard to the design

parameters. If some of the data are unavailable, then it

becomes necessary to perform a computational simulation

analysis to generate the missing details. Once the data have

been assembled, the next stage is to analyze the assembled

data. NESSUS is the computer tool that is used to perform the

analysis. NESSUS has three modules: NESSUS/PRE, NESSUS/FEM,

and NESSUS/FPI.

NESSUS/PRE is a preprocessor which prepares the

statistical data needed for the probabilistic design analysis.

It allows the user to describe the uncertainties in the

structural design parameters. The uncertainties in these

parameters are specified by defining the mean value, the

standard deviation, and the distribution type, together with

an appropriate form of correlation. Correlated random

variables are then decomposed into a set of uncorrelated

vectors by a modal analysis.

NESSUS/FEM is a general purpose finite element code,

which is used to perform structural analysis and evaluation

of sensitivity due to variation in different uncorrelated

random variables. The failure surface, defined in terms of

random variables required for probabilistic analysis in

NESSUS/FPI, is obtained from NESSUS/PRE. NESSUS/FEM

incorporates an efficient perturbation algorithm to compute



the sensitivity of random variables [13].

NESSUS/FPI is an advanced reliability module,
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which

extracts the database generated by NESSUS/FEM to develop a

response model in terms of random variables. In this module,

the probabilistic structural response is calculated from the

performance model [14]. The probability of exceeding a given

response value is estimated by a reliability method. Inside

the NESSUS/FPI module is a sensitivity analysis program, which

determines the most critical design parameters in the design.

The input data for NESSUS/PRE require fundamental

knowledge of statistics or probability theorems. The expected

details will include determining the mean, standard deviation,

median, coefficient of variation, variance, etc., associated

with each random variable. The designer also determines the

probability distribution function that best describes each

random variable. The different modules of NESSUS are shown in

Figure 2-3.

5. Using probabilistic analysis

It is at this stage of the design that the designer

defines a limit state function. The limit state function

defines the boundary between the safe and failure region. In

the limit state function approach for structural reliability

analysis, a limit state function g(_) is first defined. The g-
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I UserQueries

I
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Element
Model

Nessus/Expert

i Nessus/FE_

Random

vectors

t Random IField data
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I Nessus/FDI 14 I

Analysis
results

Figure 2-3: _odules of NESSUS

function is a function of a vector of basic random variables,

X=(Xl, X2,X3, .... Xn) with g(X) = 0 being the limit state surface

that separates the design space into two regions, namely,

the failure g (_0) and the safe g (>0) regions [15] .

Geometrically, the limit state equation, g(X)=0, is an n-

dimensional surface that may be called the "failure surface".

One side of the failure surface is the safe state, g(X)>0,
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whereas the other side of the failure surface is the failure

state, g(X)<0.

The probability of failure in the failure domain, Q, is

given by [16]

Pf = f_...ff_(X) dx (2-6)

where f_(X) is the joint probability density function of X,

and Q is the failure region. The solution of this multiple

integral is, in general, extremely complicated. Alternatively,

a Monte Carlo solution provides a convenient but usually time

consuming approximation.

From the Figure 2-4, as the limit state surface g(X)=0

moves closer to the origin, the safe region, g(X)>0, decreases

accordingly. Therefore, the position of the failure surface

relative to the origin of the reduced variates, should

determine the safety or reliability of the system. The

position of the failure surface may be represented by the

minimum distance from the surface g(X)=0 to the origin. The

point on the surface with minimum distance to the origin is

the Most Probable Point (MPP). This is usually determined by

fitting a local tangent to g(X) and moving this tangent until

MPP is estimated [17]. The limit state function method uses

the Most Probable Point (MPP) search approach. The Most

Probable Point is the key approximation point for the FPI

analysis; therefore, the identification of MPP is an important

task. In general, the identification of the MPP can be
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formulated as a standard optimization problem and solved by

proper optimization methods [18].

\ Initial Sampling

\ region
\

Final Sampling _ \
Surface

MPP(u*)

Failure

region

0
\

\
Safe

\
region \

g(x)=O

Figure 2-4: Illustration of IMost probable point.

In the NESSUS code, MPP is defined in a transformed space

called u-space, where the u's are independent to facilitate

the probability computations. By transforming g(x) to g(u),

the most probable point, u °, on the limit state, g(_)=0, is

the point which defines the minimum distance from the origin

to the limit state surface. This point is most probable (in

the u-space) because it has maximum joint probability density
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on the limit state surface [19]. The required minimum distance

is determined as follows. The distance from a point

u+=(u1+,u2+,...,un ") on the failure surface g(u)=0 to the origin

is

_/ ,2 ,2 +2D - ut + ,++ .............,+. (2-7)

where D is the minimum distance from the point on the limit

state surface to the origin.

The FPI code assumes only one MPP. In general, however,

the possibility exists that there may exist multiple local and

global Most Probable Points. A two MPP problem can occur,

for example, if the g-function is quadratic and the search

algorithm results in an oscillating (non-convergent) search.

The required number of iterations for finding MPP is usually

less than ten.

Several approaches are available to search for the MPP.

The search procedure depends on the forms of the g-function.

One efficient method is the Advanced Mean Value method. This

method blends the conventional mean value method with the

advanced structural reliability analysis method. This method

provides efficient cumulative density function analysis as

well as the reliability analysis. The step wise AMV method can

be summarized as follows [20]

i. Obtain the g(X) function based on perturbations about



the mean values.

2. Compute the
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cumulative density function of the

performance function at selected points using the fast

probability integration method.

3. Select a number of cumulative density function values

that cover a sufficiently wide probability range.

4. For each cumulative density function value, identify

the most probable point.

Another approach that is considered efficient as well is

the Adaptive Importance Sampling Method. This method focusses

on minimizing the sampling domain in the search space after

the MPP is identified. The Adaptive Importance Sampling method

is generally used for system reliability analysis.

The analytical process involved in the limit state

approach can be illustrated by a basic structural reliability

example, where one load effect S, restricted by one resistance

R, is considered.

If one considers a case when R and S are independent,

the limit state equation can be expressed as,

g = R - S (2-8)

and the probability of failure can be expressed as,

pf = P(R-S_0) = SSfR(r)fs(s)dr ds (2-9)

For any random variable the cumulative density function

F(x), is given by



Fx(x) = P(X _ x) = ffx(y)dy

provided that x a y

Therefore Pf is expressed as

Pf = P(R-S_0) = fFR(x)fs(x)dx

(2-10)

(2-11)
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Assuming a special case of normal random variables, for

some distributions of R and S, it is possible to integrate the

equation (2-11) analytically and determine the probability of

failure. If S and R have mean DR and Zs and variances oR 2 and

os: respectively, the g-function has a mean Zg and variance og 2,

given by

_a = _R - _s (2-12)

Og2 = OR2 + O/ (2-13)

Hence, the probability of failure is given as,

PI . P(a-s,o) . P_O) . ,I,[-._]
og

(2-14)

Which reduces to,

@[ _ ( P._-Ps)] - @ C-P) C2-15)
• 2 2

where _ is defined as the safety index and is given by,

(2-16)



Thus the probability of failure is given as

P/- _(-p)

which can be written as:

(2-17)

.P/ . t - 4_(P) (2-]g)

The reliability of the system is given by

p, . ] - p.f (2-19)

where P_ is the reliability of the system.
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6. Interpreting results:

This is the last stage in the methodology. When the

designer approaches this stage, he interprets the results

obtained with reference to the initial objective. If the

results do not satisfy the functional requirements in the

stage i, the designer may make necessary adjustments in order

to achieve the set objective.

2.6 Probability Sensitivity Factors

In engineering performance analysis, many sensitivity

measures can be defined. It is important for the designer to

know the effect of each random variable in the analysis. The

sensitivity information is quantified by sensitivity factors.
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Sensitivity factors indicate which random variables are

crucial and require special attention. In order to perform a

sensitivity analysis of the effect of each of the random

variables, one uses the generic material property degradation

model, known as the Multifactor Integration Equations, given

by Shah et al [21]. A specific form of this model is given as

r.- r s:- o
_p . M_(-z---)(__F(___ ")q

r f - r. S: - Oo io r ,¢ - ..
(2-20)

where,

Mp = Degraded material property

M_o = Reference material property

T = Temperature

T: = Final temperature

Tc = Reference Temperature

S: = Strength

o = Stress

oc = Reference Stress

N m = Mechanical cycles

Nm: = Final Mechanical cycles

Nmo = Reference mechanical cycles

The exponents n, p, and q are determined from

available experimental data or can be estimated from the
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anticipated material behavior due to the particular primitive

random variables. Each term inside the bracket in the equation

(2-20) is called an effect. Any number of effects can be

included in the equation. In general, the generic form of

equation (2-20) is

Mp . N _- V e

where V denotes an effect and the subscripts o and _ represent

conditions at reference and final stages. The variable in the

above equation can be random and have any probability

distribution.

The commonly used sensitivity in deterministic analysis

is the performance sensitivity, @Z/aXi, which measures the

change in the performance due to the change in a design

parameter. This concept can be extended to the probabilistic

analysis in which a more direct sensitivity measure is the

reliability sensitivity, which measures the change in the

probability/reliability relative to the distribution

parameters, such as the mean and the standard deviation.

Although not automated in the code, this analysis can be

performed by varying the parameters [22].

Another, perhaps more important, kind of probability or

reliability sensitivity analysis is the determination of the

relative importance of the random variables. This analysis can
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be done, for example, by repeated probabilistic analysis in

which one random variable at a time is treated as a

deterministic variable. The results of the analyses, for

example, are a number of cumulative density function curves or

reliabilities. Based on the results, the relative importance

of the random variables can be analyzed. The standard FPI

output includes a first order sensitivity factor which

provides approximate relative importance of the random

variables. The probability sensitivity factors are defined as

follows.

At the most probable point, U" = (ul', u2, ... u n ), the

first order probability estimate is _(-_) where

u: +u2 _+.. u_ (2-22)

The sensitivity factor _ is defined as:

_i = ui'/B (2-23)

which is the direction cosine of the OP vector (from the

origin to the minimum distance point) as shown in Figure 2-5.

Thus,

_i _ +_2 + ..... _n 2 =I (2-24)

which implies each _i2 is a measure of the contribution to the

probability (since the probability is related to _). Higher

indicates higher contribution and vice versa.

Based on a geometrical analysis in the u- space, it can

be shown that [I0]
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_xl_-[ ag ]o, (2-2s)
_Xt •

where ai is the normal standard deviation. It can be concluded

that _ depends on both the performance sensitivity and the

uncertainty. In general, the sensitivity factors depend on the

g-function as well as the probability distribution.

U2

Initial Sampling )
5urface

Adjust curvature to
cover failure region

Ul

\

Figure 2-5: Illustration of 5ensitivity Factor



CHAPTER III

APPLICATION OF PROBABILISTIC METHODOLOGY IN DESIGN

The probabilistic design methodology described previously

was applied to design worm gears, to illustrate its

application in machine design The worm gear Figure with the

terminology is shown in Appendix-A. In the analysis of the

design, four different failure modes of the worm gears were

considered: bending stress, thermal capacity, contact stress

and failure due to wear. An overview of these failure modes

is given as follows.

3.1 Failure modes of Worm Gear

3. I. 1 Bending stress: When worm gear sets are used

intermittently or at slow gear speeds, the bending strength of

the gear tooth may become a principal design factor [23]. The

teeth of worm gears are thick and short at the two edges of

the face and thin at the central plane, and this makes it

difficult to determine the bending stress. The equation for

the bending stress given by Buckingham is as follows:

F, • P
(3-i)

ab b • ]'
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where,

ob = Bending stress, psi

F d = Dynamic load, ib

P = Axial pitch, in

b = Face width of the gear, in

Y = Form factor of the gear.

3O

3.1.2 Thermal capacity of worm gear set: One of the

major problems associated with worm gear sets is the question

of how much heat is developed during operation and whether the

gear case is capable of dissipating this heat. In fact, most

worm gear units have their horsepower capacity limited by the

heat dissipation ability of the casting. The transfer of heat

is accomplished by both radiation and convection [24]. In

arriving at an equation to determine how much heat can be

dissipated, such factors as housing area, temperature change

between lubricant and ambient air, and a combined heat

transfer coefficient must be considered. The usual heat

transfer equation can be written as

H = Cr*Ar*_t (3-2)

where,

H = The energy dissipated through the housing, ft-lb/min

C_ = Combined heat transfer Coefficient, ft-lb/min in 2 F

A_ = Area of housing exposed to ambient air, in 2
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At = Temperature difference between oil and ambient

air, F

The heat energy that must be dissipated from the casing

can be determined by considering the frictional or lost horse-

power. The heat energy which must be dissipated is given by

Hd = HP*(l-e) (3-3)

where ,

Hd = The heat energy developed, ft-lb/min.

HP = Horse power input.

e = Efficiency.

The efficiency is computed using the relation

,. (3-4)

where,

¢n= Pressure Angle

k_= Lead Angle.

f, coefficient of friction is

following equation

f = 0.32/V_ °-36

where,

V= is the Sliding velocity in ft/min.

computed using the

(3-5)

Clearly the heat energy developed, Hd, must be equal to

or less than the heat energy dissipation capacity H.
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3.1.3 Contact stress: The contact stress is developed due

to the contact between two members. To design for a safe

contact stress, the working contact stress must be less than

the endurance strength of the gear material. The contact

stress for the worm gears is given as follows:

D is given by

2 • F_
o: (36)

_.c t • D

D
2F_ E (3-7)

_.C tILl__

dg d.

where,

o c = Contact stress developed, psi

F d = Dynamic load, ib

C_ = Contact Length, in

= Poisson ratio

E = Youngs modulus of the material, ib/in 2

d_ = Diameter of the worm, in

dg = Diameter of the gear, in

3.1.4 Wear: An approximate equation suggested by
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Buckingham is usually used to determine the allowable wear

load. The limiting wear load is given by

= Dg*b*K (3-8)

where,

Fw = Limiting wear load, ib

Dg = Pitch diameter of the gear, in

b = Face width, in

K= A constant dependent on the material used, ib/in 2

The functional requirement in the design is to reduce the

probability of failure or increase the reliability of the

system. In order to achieve this, each failure mode is

considered separately, and the corresponding probability of

failure is computed• After finding the individual probability

of failure, the combined effect of the failure modes is

computed. But before going actually into PDM, the problem

solved by the deterministic method is given to show the

contrast between the two methodologies.

3.2 Deterministic method

Problem Statement: Design a worm gear set to deliver 15

hp from a shaft rotating at 1500 rpm to another rotating at 75

rpm. Assume that normal pressure angle is to be 20 degrees.

The lead angle should not exceed 25 degrees. Allow 6 degree

per thread of worm. The worm could have 4 or less teeth [25].
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The design parameters and the deterministic design values

are shown in Table 3-1

Table 3-1: Deterministic Design Values

Design Parmater

Sb (psi)

F_ (Ib) 173 l

P (in) 3.23

b (in)

Y

C, (fi-lb/min in. °F)

A_ (in 2)

D, CF)

HP (hp)

e

"Value

12000

2.0

0.392

0.43

2766.6

350

16.7

0.92

S, (psi) 40000

CI (in) 5.004

E (psi)

D,,, (in)

D, (in)

K (lb/in 2)

0.4

0.18E+08

4.0

19.1

80

* Mean Values taken from [25]



where,

S_ = Bending stress, psi

Sc = Contact stress, psi

Mu = Poisson ratio
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Summary of Results [25]:

Bending

Oblmax_= 12000 psi

0 K = 7131.54 psi

F.S = 1.682

Thermal

(845.4 kg/cm 2)

(502.41 kg/cm 2)

Wear

Fw = 3056 ib (1389.09 kg)

Fd = 2500 Ib (1136.36 kg)

F.S = 1.344

H = 119,000 ft-lb/min (30050.505 kg-cm/sec)

H d = 378521.18 ft-lb/min (13095.95 kg-cm/sec)

F.S = 2.29

Contact

OcCmax)= 40000 psi (2818 kg/cm 2)

O_ = 37924.3 psi (2671 kg/cm 2)

F.S = 1.05
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3.3 Algorithm for Probabilistic Design Methodology.

Step I. Determine the objective and functional requirement of

the design.

_. Identify the design parameters involved.

_._p____. Obtain the statistical parameters such as mean,

standard deviation and the distribution type of the design

parameters.

Step 4. If (the mean is known) then (Go to step 5)

else

Do a computer simulation to calculate the mean or

get the mean from a deterministic design without

factor of safety.

end if

__t_. If (the standard deviation is known) then (Go to

step 6).

else

Calculate the standard deviation by probability

method or assume acceptable standard deviation.

end if

,q_. If (the distribution type is known) then (Go to

step 7)

else

Determinte the distribution from probability paper

or assume the distribution type.
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end if

Stem 7. Identify the major failure modes present in the

design.

___. Formulate the limit state functions of the failure

modes.

Stem 9. Do probabilistic analysis with available software.

Stem 10. Obtain the most critical parameters from the

sensitivity analysis.

_Lt_. Obtain the safety index and probability of failure

calculated from the analysis.

_it_. If (the safety index is low or if the probability of

failure is high)

then ( the values of the critical parameters are

adjusted). Go to step 9 to repeat the process till acceptable

probability of failure is obtained

else

Get the probability of failure and design values.

end if

_p__/_. If (the number of failure modes is more than one)

then ( Go to step 14)

else

Go to step 17

end if
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___. System reliability is to be done. Fault -Tree

analysis is performed to compute system reliability.

,q_. Do the system reliability analysis with the available

software.

___. Get the reliability of the system, probability of

failure.

_. Stop the analysis

The flow chart representation of the algorithm is shown

in figure 3-1.

3.4 Application of the algorithm in the Design of Worm Gear.

Step I. The objective is to design a worm gear set and the

functional requirement is to increase the reliability of an

existing worm gear design.

,q_. The design parameters are shown in Table 3-1

__t_. The mean values of the design parameters are taken

from an existing design [25]

_R__4. The standard deviation of the design parameters were

not known. The standard deviation was assumed.

Step 5. The distribution type was not known, hence the

distribution type was assumed.

_. The major failure modes in worm gear design are

bending stress, thermal capacity, contact stress, and failure

due to wear.
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__t_P___Z. The limit state functions for the four failure modes

of worm gear design are:

Bending Stress

F_.P
El " Sb = 0 (3-9)

b.Z

Thermal Stress

g2 " C,.A.D, HP (l-e) = 0 (3-10)

dontact Stress

2 .F a
g3 = S

.C t.D
- 0 (3-11)

where D is defined by equation (3-7).

Wear

g4" Dg- b • K F a- 0 (3-n)

£L_. The probabilistic analysis was done using Nessus. The

step-by-step procedure for running Nessus is given in

Appendix-B
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Step 9. The critical design parameters were found from the

sensitivity analysis. From figures 3-2 through 3-5, it can be

seen that the critical parameters are, b, face width, ci,

contact length, e, thermal efficiency

___. The probability of failure for the four failure modes

obtained after the first trial are shown in Table 3-2.

,q_. The probability of failure was high after the first

trial. The design values of the critical parameters were

adjusted and four trial runs were made with each trial aimed

at improving the design.

,q_. The probability of failure of the failure modes after

the fourth trial are shown in Table 3-2.

Table 3-2: Probability of failure of the failure modes.

FAILURE MODE PROBABILITY OF FAILURE

Initial Final

Bending Stress 0.1311524E-02 0.55279E-05

Thermal Capacity 0.1508843 0.704601E-01

Contact Stress 0.2206627 0.813815E-01

Wear 0.117788 0.111040E-03

,q_. The final probabilistic design values obtained after

the fourth trial are shown in the Table 3-3.
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Fig 3-2: Sensitivity analysis of variables

in bending failure mode (Pf = 0.55279E-05)
Fig 3-3: Sensitivity analysis of variables

in contact failure mode (Pf = 0.813815E-01)

0,4_ ..............

i
0.2-- ..............

om mm ..__ _ ,_ _
Cr _ O_ h'P e

Variants

1.2 .....................

I ....

o.e .....

0.2

_ b

Fig 3-4: Sensitivity analysis of variables

in thermal failure mode (Pf = 0.704604E-01)

Fig 3-5: Sensitivity analysis of variables

in wear failure mode (Pf = 0.III04E-03)

Table 3-3 : Final Probabilistic Design Values for Worm Gear

Design

Design Probabilistic Design

Parameter Value

Sb (psi) 12000

Fd (lb) 1731

P (in) 3.23

2.6b (in) *

C,(fl-lb/

min in°F)

0.43

Standard Distribution

Deviation Type

1200 NORMAL

173.1 NORMAL

0.323 NORMAL

0.26 NORMAL

0.043 NORMAL
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Table Continued:

Y 0.392 0

A_ (in z) 2766.6 276.6 NORMAL

D, (°F) 350 35 NORMAL

229000 229 NORMALHP(fl-
Ib/min)

e * 0.97

S, (psi) 40000

0.097 NORMAL

400 NORMAL

C, (in) * 5.504 0.5504 NORMAL

1Vl. 0.4 0.04 NORMAL

E (psi)

Dw (in)

D, (in)

0.18E+08

4

19.1

80K (Ib/in 2)

0

0.4

1.91

NORMAL

NORMAL

NORMAL

* Critical Design Parameter

__t_P__J_. The number of failure modes is more than one. So

system reliability is done.

._. The design values obtained in step 13 are used to do

system reliability.

_p___. Fault-Tree analysis is used to compute the system

reliability. The methods used are

i. Adaptive Importance Sampling Method

2. Monte-Carlo Method.
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_6t_. The analysis is done using Nessus software. The step-

by-step procedure for running Nessus to compute system

reliability is shown in Appendix-C

_7_. The probability of failure of the system and the

reliability computed are shown in Table 3-4.

Table 3-4: System Probability of failure and Reliability

Method Probability of failure Reliability

Adaptive Importance 0.666591E-01 0.933341

SampSng method

Monte- Carlo Method 0.66657E-01 0.933343

3.5 Explanation of results.

The analysis yields a probability of failure for the

defined limit state function. From the sensitivity analysis of

the bending stress, it can be interpreted that the face width,

b is the most sensitive parameter, shown in Figure 3-6. The

value of the face width is increased from 2.0 to 2.2, and the

analysis is done for the second trial. Four trials were made

during the analysis. The Figures 3-6, 3-10, 3-14, and 3-2 show

the sensitivity analysis and the probability of failure.

The results of the sensitivity analysis of the thermal
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capacity of the gear set are shown in Figures 3-7, 3-11, 3-15,

and 3-4. Figure 3-7 indicates that power efficiency is the

most sensitive parameter. The value of the efficiency is as

shown in equation (3-4) is increased to reduce the probability

of failure. The efficiency can be increased by reducing the

churning loss of oil in the gear casing. Four trial runs are

made, and the corresponding values are shown in Tables 3-6, 3-

I0, 3-14 and 3-18.

In contact stress, the contact length, C_ is found to be

the most sensitive parameter. The value of the contact length

is increased and the second trial is made. Four trials are

made in a similar way. The sensitivity analysis and the

probability of failure are shown in Figures 3-8, 3-12, 3-16,

and 3-3. The values of the design parameters are shown in

Tables 3-7, 3-11, 3-15, and 3-19.

In wear failure mode the most sensitive parameter was

found to be K, a constant dependent on the material. Since

this parameter is a constant, which depends on the material,

the next sensitive parameter face width, b, is taken into

consideration. The value of the face width is increased from

2.0 to 2.2. The second trial is made with the new values, and

the corresponding sensitivity analysis and the probability of

failure are noted down. Four trial runs were made, and the

sensitivity analysis is shown in Figures 3-9, 3-13, 3-17, and
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3-5. The values of the variables are shown in Tables 3-8,3-12,

3-16, and 3-20.

The values of the most sensitive design parameter in the

design are reduced slightly to study the effect on the

probability of failure. The reduced values of the four failure

modes are shown in Tables 3-21, 3-22, 3-23, and 3-24. The

sensitivity analysis and the probability of failure for these

values are shown in Figures 3-18, 3-19, 3-20, and 3-21. It is

found from the present analysis that as the value of the most

sensitive design parameter is reduced, the probability of

failure increases, which is undesirable.

The data which was put into the NESSUS for the four

failure modes are shown in Tables 3-5, 3-6, 3-7, and 3-8. The

sensitivity analysis of this trial is shown in Figures 3-6, 3-

7_ 3-8, and 3-9. From the results of the present design

analysis, it can be concluded that the system fails mainly by

contact stress.
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3-5. The values of the variables are shown in Tables 3-8,3-12,

3-16, and 3-20.

The values of the most sensitive design parameter in the

design are reduced slightly to study the effect on the

probability of failure. The reduced values of the four failure

modes are shown in Tables 3-21, 3-22, 3-23, and 3-24. The

sensitivity analysis and the probability of failure for these

values are shown in Figures 3-18, 3-19, 3-20, and 3-21. It is

found from the present analysis that as the value of the most

sensitive design parameter is reduced, the probability of

failure increases, which is undesirable.

The data which was put into the NESSUS for the four

failure modes are shown in Tables 3-5, 3-6, 3-7, and 3-8. The

sensitivity analysis of this trial is shown in Figures 3-6, 3-

7, 3-8, and 3-9. From the results of the present design

analysis, it can be concluded that the system fails mainly by

contact stress.
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TABLE 3 - 5 : BENDING STRESS FAILURE MODE DATA

INPUT TABLE

TRIAL-1

Design

paramters

Mean Standard

Deviation
Distribution type

Sb (psi) 12000 1200 NORMAL

Fd (lb) 1731 173.1 NORMAL

P (in) 3.23 0.323 NORMAL

b (in) 2.0 0.2 NORMAL

Y 0.392 0
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SENSITIVITY ANALYSIS (BENDING STRESS)

Probability of failure=O 1311524E02
08 ......

oo
c_
0

(J
(0
4-

>

-,N
_o
t-

O0

0

Sb Fd p b

Variables

Figure 36: Bending Stress Analysis Trial 1



49

TABLE 3 - 6 : THERMAL CAPACITY FAILURE MODE DATA

INPUT TABLE

TRIAL -1

Design paramters Mean Standard Distribution type
Deviation

Cr (fi-lb/min in °F) 0.43 0.043 NORMAL

A_ (in 2) 2766.6 276.6 NORMAL

Dt (°F) 350 35 NORMAL

HP (fi-lb/min) 0.229E+06 0.229E+03 NORMAL

e 0.92 0.092 NORMAL
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SENSITIVITY ANALYSIS (THERMAL CAPACITY)

Probability of failure = 0.1508843

0 J

Or Ac Dt HP e

Variables

i

Flgure 3-7: Thermal Capaclty Analysls Trlal -1
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TABLE 3-7 : CONTACT STRESS FAILURE MODE DATA

INPUT TABLE

TRIAL -1

Design Parameters Mean Standard Distribution Type
Deviation

St (psi) 40000 400 NORMAL

F_ (Ib) 1731 173.1 NORMAL

Ci (in) 5.004 0.5004 NORMAL

M_ 0.4 0.04 NORMAL

E (psi) 18E+06 0

Dw (in) 4.0 0.4 NORMAL
i

138 (in) 19.1 1.91 NORMAL
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SENSITIVITY ANALYSIS (CONTACT STRESS)

£_
0

>

4_

_o
¢-

09

Probability of failure = 0.2206621
0.8 .........

1

L

0.6 _ .......

0
Sc Fd C1 Mu Dw Dg

Variables

Figure 3-8: Contact Stress Analysts Trial-1
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TABLE 3 - 8 : WEAR FAILURE MODE DATA

INPUT TABLE

TRIAL -1

Design paramters Mean Standard Distribution type
Deviation

Dg (in) 19.1 1.91 NORMAL

b (in) 2.0 0.2 NORMAL

K (lb/in 2) 80 8 NORMAL

F d (lb) 1731 173.1 NORMAL
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SENSITIVITY ANALYSIS (WEAR)

Probability of failure =
0.8 .....

O. 11 7788

_o
L
0

0
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O0
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!
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Dg b K Fd
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Figure 3-9: Wear Analysis Trial -1
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TABLE 3 - 9 : BENDING STRESS FAILURE MODE DATA

INPUT TABLE

TRIAL -2

Design paramters Mean Standard

Deviation
Distribution type

Sb (psi) 12000 1200 NORMAL

Fa (lb) 1731 173.1 NORMAL

P (in) 3.23 0.323 NORMAL

b (in) 2.2 0.22 NORMAL

Y 0.392 0
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SENSITIVITY ANALYSIS (BENDING STRESS)

Probability of failure=0.2009162E-03
0.8 ......

O

O
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Figure 3-10: Bending Stress Analysis Trial -2



57

TABLE 3 - 10 : THERMAL CAPACITY FAILURE MODE DATA

INPUT TABLE

TRIAL -2

Design paramters Mean Standard Distribution type
Deviation

Cr (fl-lb/min in °F) 0.43 0.043 NORMAL

/% (in z) 2766.6 276.6 NORMAL

D, (OF) 350 35 NORMAL

HP (tt-lb/min) 0.229E+06 0.229E+03 NORMAL

e 0.95 0.095 NORMAL
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SENSITIVITY ANALYSIS (THERMAL CAPACITY)

Probability of fallure = 0.9734099E-01
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Figure 3-11:Thermal Capaclty Analysls Trial-2
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TABLE 3-11 : CONTACT STRESS FAILURE MODE DATA

INPUT TABLE

TRIAL -2

Design Parameters Mean Standard

Deviation
Distribution Type

E (psi)

Dw (in) 4.0 0.4 NORMAL

D 8 (in) 19.1 1.91 NORMAL

Ci (in) 5.204

M_ 0.4

18E+06

0.5204 NORMAL

0.04 NORMAL

0

So (psi) 40000 400 NORMAL

F d (lb) 1731 173.1 NORMAL
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SENSITIVITY ANALYSIS (CONTACT STRESS)
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Flgure 3-12: Contact Stress Analysls Trlai-2
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TABLE 3 - 12 : WEAR FAILURE MODE DATA

INPUT TABLE

TRIAL -2

Design paramters Mean

Dg (in) 19.1

b (in) 2.2

K (lb/in 2)

F d (lb)

8O

1731

Standard Distribution type
Deviation

1.91 NORMAL

0.22 NORMAL

173.1

NORMAL

NORMAL
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SENSITIVITY ANALYSIS (WEAR)

Probability of fallu re - O. 766744E- 02

0
Dg b K Fd

Variables

Figure 3-13: Wear Analysls Trlal -2
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TABLE 3 - 13 : BENDING STRESS FAILURE MODE DATA

INPUT TABLE

TRIAL -3

Design paramters Mean Standard Distribution type
Deviation

Sb (psi) 12000 1200 NORMAL

F d (lb) 1731 173.1 NORMAL

P (in) 3.23 0.323 NORMAL

b (in) 2.4 0.24 NORMAL

Y 0.392 0
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SENSITIVITY ANALYSIS (BENDING STRESS)

Probability of
0.8

failure = O. 3044897E- 04
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Flgure 3-14: Bendlng Stress Analysls Trlal-3
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TABLE 3 - 14 : THERMAL CAPACITY FAILURE MODE DATA

INPUT TABLE

TRIAL -3

Design paramters Mean Standard Distribution type
Deviation

Cr (fi-lb/min in °F) 0.43 0.043 NORMAL

A_ (in 2) 2766.6 276.6 NORMAL

D t (°F) 350 35 NORMAL

I-IP (fi-lb/min) 0.229E+06 0.229E+03 NORMAL

e 0.96 0.096 NORMAL
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SENSITIVITY ANALYSIS (THERMAL CAPACITY)

Probability of fallure =
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- Flgure 3-15: Thermal Capacity Analysls Trlal -3
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TABLE 3-15 : CONTACT STRESS FAILURE MODE DATA

INPUT TABLE

TRIAL -3

Design Parameters Mean Standard Distribution Type
Deviation

Sc (psi) 40000 400 NORMAL

Fd (lb) 1731 173.1 NORMAL

C, (in) 5.404 0.5404 NORMAL

M_ 0.4 0.04 NORMAL

E (psi) 18E+06 0

D,_ (in) 4.0 0.4 NORMAL

D e (in) 19.1 1.91 NORMAL
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SENSITIVITY ANALYSIS (CONTACT STRESS)

_o
L
0
.i_

>

¢-

O3

Probability of fallure = O. 1110817

0
Sc

Flgure 3-16:

Fd C1 Mu

Variables

Contact Stress Analysls

Dw

Trial -3

Dg



69

TABLE 3 -16 : WEAR FAILURE MODE DATA

INPUT TABLE

TRIAL -3

Design paramters Mean Standard Distribution type

Deviation

Dg (in) 19.1 1.91 NORMAL

b (in) 2.4 0.24 NORMAL

K (lb/in 2) 80 8 NORMAL

Fd (lb) 1731 173.1 NORMAL
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SENSITIVITY ANALYSIS (WEAR)

Ppobability of failupe = 0.767372E-03
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Figure 3-17: Wear Analysis Trial -3
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TABLE 3 - 17 : BENDING STRESS FAILURE MODE DATA

INPUT TABLE

TRIAL -4

Design paramters Mean Standard

Deviation
Distribution type

Sb (psi) 12000 1200 NORMAL

Fd (lb) 1731 173.1 NORMAL

P (in) 3.23 0.323 NORMAL

b (in) 2.6 0.26 NORMAL

Y 0.392 0
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TABLE 3 - 18 : THERMAL CAPACITY FAILURE MODE DATA

INPUT TABLE

TRIAL -4

Design paramters Mean

C, (it-lb/min inoF) 0.43

& (in 2) 2766.6

D, (°F) 350

0.229E+06

Standard

Deviation

HP (fi-lb/rnin)

e 0.97 0.097 NORMAL

Distribution type

0.043 NORMAL

276.6 NORMAL

35 NORMAL

0.229E+03 NORMAL
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TABLE 3-19 : CONTACT STRESS FAILURE MODE DATA

INPUT TABLE

TRIAL -4

Design Parameters

St (psi)

Mean Standard

Deviation

Distribution Type

M_

E (psi)

D,, (in)

D B(in)

18E+06 0

4.0 0.4 NORMAL

19.1 1.91 NORMAL

Fd (lb)

CI (in) 5.504 0.5504 NORMAL

0.4 0.04 NORMAL

40000 400 NORMAL

1731 173.1 NORMAL
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TABLE 3 - 20 : WEAR FAILURE MODE DATA

INPUT TABLE

TRIAL -4

Design paramters Mean Standard Distribution type

Deviation

D s (in) 19.1 1.91 NORMAL

b (in) 2.6 0.26 NORMAL

K (lb/in 2) 80 8 NORMAL

Fd (lb) 1731 173.1 NORMAL
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TABLE 3 - 21 : BENDING STRESS FAILURE MODE DATA

INPUT TABLE

TRIAL -5

Design paramters Mean Standard Distribution type
Deviation

S b (psi) 12000 1200 NORMAL

Fd (lb) 1731 173.1 NORMAL

P (in) 3.23 0.323 NORMAL

b (in) 1.8 0.18 NORMAL

Y 0.392 0
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SENSITIVITY ANALYSIS (BENDING STRESS)

Probability of fallure = 0.0792031E-02
17 ..........................

0
Sb Fd P b

Variables

Flgure 3-18: Bendlng Stress Analysls Trlal-5
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TABLE 3 - 22 : THERMAL CAPACITY FAILURE MODE DATA

INPUT TABLE

TRIAL -5

Design paramters Mean Standard Distribution type

Deviation

C_ (fi-lb/min in °F) 0.43 0.043 NORMAL

A_ (in 2) 2766.6 276.6 NORMAL

D, (°F) 350 35 NORMAL

HP (fi-lb/min) 0.229E+06 0.229E+03 NORMAL

e 0.90 0.090 NORMAL
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SENSITIVITY ANALYSIS (THERMAL CAPACITY)

Probab±lity of fa±lure = O. 198981E+00
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Figure 3-19: Thermal Capacity Analysis Trial -5
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TABLE 3-23 : CONTACT STRESS FAILURE MODE DATA

INPUT TABLE

TRIAL -5

Design Parameters Mean Standard Distribution Type
Deviation

Sc (psi) 40000 400 NORMAL

Fj (lb) 1731 173.1 NORMAL

Ci (in) 4.804 0.4804 NORMAL

M_ 0.4 0.04 NORMAL

E (psi) 18E+06 0

Dw (in) 4.0 0.4 NORMAL

Dg (in) 19.1 1.91 NORMAL
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SENSITIVITY ANALYSIS (CONTACT STRESS)
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Flgure 3-20: Contact Stress Analysls Trlal -5
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TABLE 3 - 24 : WEAR FAILURE MODE DATA

Design paramters

Ds(in)

b (in)

Mean

19.1

INPUT TABLE

TRIAL -5

Standard

Deviation

1.91

Distribution type

NORMAL

1.8 0.18 NORMAL

K (lb/in 2) 80 8 NORMAL

Fd (lb) 1731 173.1 NORMAL
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SENSITIVITY ANALYSIS (WEAR)

Probability of failure =
0.8

O. 3030297E+00

0
Dg b K Fd

Variables

Figure 3-21: Wear Analysis Trial -5



CHAPTER IV

FAULT-TREE ANALYSIS

4.1 System Reliability

In calculating system reliability, it is important to

include the probabilistic dependencies between multiple

component failures or between different failure modes. Failure

to do so could result in significant errors. Fault Tree

Analysis is a commonly used tool in risk assessment. A fault

tree is a mathematical construction of assumed component

failure modes (bottom events) linked in series or parallel and

leading to a top event, which denotes the total system

failure. A fault tree diagram essentially decomposes the main

failure event (top event) into unions and intersections of

subevents or combination of subevents. The decomposition

continues until the probabilities of the subevents can be

evaluated as single mode failure probabilities. The

probabilistic fault-tree analysis is based on the limit state

definition of the bottom events. Thus, one requirement for

system risk assessment is to compute failure function of each

bottom event. Each bottom event is defined by a close form

83
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equation.

A fault tree has three major characteristics: bottom

events, combination gates, and the connectivity between the

bottom events and the case. The system risk assessment is

limited to OR and AND gates. The OR gate implies that the

output fault event is the union of subevents [26]. The AND

gate signifies that the output fault event is the intersection

of the subevents. The different steps involved in the

application of the fault-tree analysis method can be

summarized as follows [26]:

I. Development of a fault tree to represent the

structural system.

2. Construction of an approximate performance function

for each bottom event.

3. Determination of a dominant sampling sequence for all

bottom events.

4. Calculation of the system reliability using an

Adaptive Importance Sampling method.

To illustrate the fault tree analysis, consider a

simple example consisting of two failure modes: yielding and

excessive displacement. Two failure functions can be expressed

as

g_ = R (Yield strength) - S (Stress) (4-1)
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g2 = D (Allowable displacement) - d (displacement) (4-2)

Failure occurs if [g_<0] or [g:<0]. Using standard probability

notations, the system probability of failure is [27]:

Pf = P[(gi <0)u(g2 <0)] (4-3)

In general,

Pf = P[gi<0]+P[g2<0]-P[(gi<0)n(g2<0)] = Pi+P2 -Pi2 (4-4)

In general Pi2 ranges from 0 to the smaller value of Pi

and P2. Therefore, Pf ranges from [Pi +P2] to P2(assuming P2

>Pi). Hence, by assuming independent events, the error ranges

from -P_P2 to P_(I-P2) •

In application to the worm gear, one OR gate is

considered with four bottom events. The four bottom events

represent the four failure modes of the worm gear. The

representation of fault tree with four failure modes is shown

in Figure 4-1.

The Fault-tree analysis is carried out by two methods:

I. Adaptive importance sampling method.

2. Standard Monte Carlo sampling method.

4.2 Adaptive Importance sampling method

Adaptive Importance Sampling is different from

traditional importance sampling methods because of its ability

to automatically adjust and thereby minimize the sampling
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FIGURE 4-1: Representation of Fault Tree Analysis

space [28]. Because of this attribute, adaptive importance

sampling method is a highly efficient and accurate alternative

for probabilistic analysis.

Two options are available for selecting the sampling

boundaries. The first-order adaptive sampling method uses

hyperplanes, and the second-order adaptive sampling method

uses parabolic surfaces. Both surfaces are constructed in the

u-space and use the most probable point to define the

beginning sample space. In general, sampling space can be

adjusted by increasing or decreasing the curvatures of the

parabolic surface until there are no more failure points in

the final sampling space [29]. In the first order based
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method, only the distance to the hyperplane is changed. In the

second-order based method, the curvature of the sampling

boundary is updated first; then, the final surface is shifted

toward the origin.

4.3 Monte Carlo Sampling method

Monte Carlo sampling method is a way of generating

information for a simulation when events occur in a random

way. It uses unrestricted random sampling (it selects items

from a population in such a way that each item in the

population has an equal probability of being selected) in a

computer simulation in which the results are run off

repeatedly to develop statistically reliable answers. A sample

from a Monte Carlo simulation is similar to a sample of

experimental observations. Therefore the results of Monte

Carlo simulations may be treated statistically. Monte Carlo

methods are useful because they can handle very complex

models, are guaranteed to work, and are exact in the limit as

the number of samples become large. The disadvantage is that

a very large number of simulations may be necessary [30]. The

probability of failure obtained by the above two methods are

as follows:

I. Probability of failure by Sampling method = 0.6665916E-01

2. Probability of failure by Monte Carlo method = 0.66657E-01
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The weight, W, of the gear can be determined as a

function of the probability of failure. The weight is computed

by the equation

w=yv 4-5)

where,

y = Specific weight of phosphor bronze , lb/in 3

V = Voltuae of the gear, in 3

The volume of the gear is calculated from the equation

V = (n/4)dg2b (4-6)

where,

dg = Diameter of the gear, in.

b = Face width of the gear, in.

As the face width value changes, the weight of the gear

changes; hence, the probability of failure changes. The weight

is plotted versus the probability of failure and is shown in

Figure 4-2.
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Figure 4-3 shows the coefficient of variation plotted

against the probability of failure. The coefficient of

variation is related to the mean and standard deviation by the

equation

O
C.O V . -- (4-7)

where,

o = Standard deviation

= Mean value of the design parameter

The mean value of the face width is kept constant at 2.6

in and the c.o.v is varied from 0.01 to 0.I. It is learned

from the Figure 4-3 that, as the uncertainty increases, the

probability of failure increases. A deviation of 0.182 in is

suggested to the manufacturer from the mean value. The final

value for the face width using probabilistic design

methodology is 2.6 in with a deviation of +0.182 in or -0.182

in.
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CHAPTER V

FINITE ELEMENT METHOD

5.1 Basic concept

The basic idea in the finite element method is to find

the solution of a complicated problem by replacing it with a

simpler one. Since the actual problem is replaced by a simpler

one in finding the solution, we will be able to find only an

approximate solution rather than the exact solution. The

existing mathematical tools will not be sufficient to find the

exact solution of most of the practical problems. Thus, in the

absence of any other convenient method to find even the

solution of a given problem, we have to prefer the finite

element method. Moreover, in the finite element method, it

will often be possible to improve or refine the approximate

solution by spending more computational effort. In the finite

element method, the solution region is considered as built up

of many small, interconnected subregions called finite

elements.

5.2 General description of the Finite Element Method

In the finite element method, the actual continuum or
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body of matter like solid, liquid or gas is represented as an

assemblage of subdivisions called finite elements. These

elements are considered to be interconnected at special joints

which are called nodes or nodal points. The nodes usually lie

on the element boundaries where adjacent elements are

considered to be connected. Since the actual variation of the

field variable (like displacement, stress, temperature,

pressure or velocity) inside the continuum is not known, we

assume that the variation of the field variable inside a

finite element can be approximated by a simple function. These

approximating functions (also called interpolation models) are

defined in terms of the values of the field variables at the

nodes. When field equations (like equilibrium equations) for

the whole continuum are written, the new unknowns will be the

nodal values of the field variable. By solving the field

equations, which are generally in the form of matrix

equations, the nodal values of the field variable will be

known. Once these are known, the approximating functions

define the field variable throughout the assemblage of

elements. The solution of general continuum problem by the

finite element method always follows an orderly step by step

process.

The step-by-step procedure can be stated as follows.
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Step I: Discretization of the structure

The first step in the finite element method is to divide

the structure or solution region into subdivisions or

elements. Hence, the structure that is being analyzed has to

be modelled with suitable finite elements. The number, type,

size and arrangement of the elements have to be decided.

Step 2: Selection of a proper interpolation or displacement

model

Since the displacement solution of a complex structure

under any specified load conditions cannot be predicted

exactly, we assume some suitable solution within an element to

approximate the unknown solution. The assumed solution must be

simple from a computational point of view, but it should

satisfy certain convergence requirements. In general, the

solution or interpolation model is taken in the form of a

polynomial.

Step 3: Derivation of element stiffness matrices and load

vectors

From the assumed displacement model, the stiffness matrix

[K (e)] and the load vector p_e_ of the element "e" are to be

derived by using either equilibrium conditions or a suitable

variational principle
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Step 4: Assemblage of element equations to obtain the overall

equilibrium equations.

Since the structure is composed of several finite

elements, the individual element stiffness matrices and load

vectors are to be assembled in a suitable manner and the

overall equilibrium equations have to be formulated as

[K]'¢' = P' (5-I)

Where [K]' is called the assembled stiffness matrix, ¢' is the

vector of nodal displacements, and P' is the vector of nodal

forces for the complete structure.

Step 5: Solution for the unknown nodal displacements.

The overall equilibrium equations have to be

modified to account for the boundary conditions of the

problem. After the incorporation of the boundary conditions,

the equilibrium equations can be expressed as

[K]¢ = P (5-2)

For linear problems, the vector ¢ can be solved very easily.

But for nonlinear problems, the solution has to be obtained in

a sequence of steps, each step involving the modification of

the stiffness matrix [K] and/or the load vector P.

Step 6: Computation of element strains and stresses.

From the known nodal displacements _, if required, the

element strain and stresses can be computed by using the



96

necessary equations of solid or structural mechanics.

The above mentioned six steps were applied in the finite

element analysis of the tooth of the worm gear to analyze the

stress distribution and displacement. The analysis was done

for both probabilistic and deterministic method. The analysis

was carried out using finite element software, COSMOS/M. The

analysis was first carried out using the deterministic

design. The displacement and the stress distribution due to

the transmitted load for the deterministic design are shown in

Figures 5-1 and 5-2. The maximum stress and the displacement

obtained using the deterministic design values are 1.4E+05 psi

and 0.001170 in.

The finite element analysis was next carried out using

the probabilistic design. The displacement, and the stress

distribution due to the transmitted load for the probabilistic

design are shown in Figures 5-3 and 5-4. The maximum stress,

and the displacement obtained using the probabilistic design

are 8.34E+04 psi and 0.000848 in.

The reason for the reduced stress in the probabilistic

design values is due to the increase in the face width.
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CHAPTER VI

CONCLUSION

In this project an existing worm gear design was taken

and was analyzed for the failure modes using probabilistic

design methodology. The purpose of this project is to identify

the sensitive design parameters and to increase the

reliability of the worm gear design. The initial probability

of failure of the system was found to be around 30 percent. By

using the probabilistic design methodology and the sensitivity

factors, the sensitivity of each design parameter was found

out and correspondingly the probability of failure was reduced

by altering the values of the design parameters. The

sensitivity analysis which is used in the probabilistic design

is more helpful in knowing which design parameter is crucial

and sensitive in the design. The probability of failure of the

design after altering the design values was computed to be 6.6

percent. The critical design parameters of the worm gear

design were found to be the face width, contact length, and

the thermal efficiency.

Probabilistic design procedures promise to improve
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the quality of engineering systems for the following reasons:

I) Probabilistic design incorporates given statistical

data explicitly into the design algorithms. Conventional

design discards such data.

2) It is more meaningful to say, "The system has a

probability of 10E-04 of failing after i000 hours of

operation," than to say, "This system has a factor of safety

of 2.3."

3) Rational comparisons can be made between two or more

competing designs for a proposed system. In the absence of

other considerations, the engineer chooses the design having

the lowest probability of failure, or as a basis for

developing economic strategies.

4) By treating each nonstatistical uncertainty as a

random variable, its effect on the final design can be

quantified. A manager can balance the cost of conducting a

research program to remove this uncertainty with the payoff

associated with removing the uncertainty and improving the

risk.

6.1 Recommendations

I. In order [o achieve effective and reliable results, a

few things should be taken into consideration. The
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distributions for the design parameters should be attained

before using PDM. Distributions can be attained from

manufaturer's handbooks. The actual deviations that occur

should be recorded to get accurate results.

2. The Probabilistic finite element method can be used to

compute the maximum stress intensity of the gear tooth and the

results can be compared with the values obtained from Cosmos

finite element package.



Appendix - A

' l

Terminology

Zt--number of teeth on worm wheel
Zt--uumber of starts on Use worm

m--uial module, mm
Jl--pltch circle diameter of worm, mm
d,s--phch c_e diameter of worm wheel mm_s mm
(----diameter factor mds/m
I--centre distancem jm'q +¢8)
T--helix angle, lead angle

m.--norma/module-,m cos T

L---ieugd_ of the worm. mm

a-.-_ce _hh of the worm wheel, mm

po--a._izl _ of worm.,,circula: picch of worm wbee_
mml¢ In

I_lesd--Zt w m

cosT-- _/Z ,+¢_
|_esr redo.

Worm Gear Sketch [23]
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Appendix- B

Steps for Running Nessus (Individual Failure mode)

o

2.

°

4.

°

,

,

°

9.

10.

11.

Create a data file with an extension .dat

Copy the .dat file to for000.dat. You can do this by typing copy

<filename.dat> space for000.dat

To input the failure functions modify the subroutine respon.for

To edit the file respon.for, type edt <respon.for>. You get an ' * '. Type '

c' at the ' * ' to get into the full screen mode.

Make changes and exit the file by holding cntrl key and pressing ' z '

You get ' *'. Type exit to save and close the file.

Once the subroutine is modified, it has to be compiled and linked to

the library. To compile type fortran <filename.for>

Link the compiled file to the library by typing link filename (omit

extension), nes/lib

Do the Probabilistic Analysis by typing run nessus.

When program asks you to input the data file, give the filename without

the extension.dat.

Once you get the output, change the name of for000.dat to <input

filename.out>, by typing ren for000.dat space input filename.out .

To see the sensitivity analysis type < input file name. mov >.

105



Appendix - C

Steps for Running Nessus (System Reliability)

1,

2.

.

4.

o

.

Create a data file with an extension .dat

Copy the .dat file to forOOO.dat. You can do this by typing copy

<filename.dat> space forOOO.dat

Do the Probabilistic Analysis by typing run nessus.

When program asks you to input the data file, give the filename without

the extension.dat.

Once you get the output, change the name of forOOO.dat to <input

filename.out>, by typing ren forOOO.dat space input filename.out .

To see the sensitivity analysis type < input file name. mov >.
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CHAPTER I

INTRODUCTION

Pliny the Elder in his Historia Naturalis said that "the only thing certain is that

nothing is certain." As engineers with creative design work, we are always faced with

various uncertainties. Designing a product includes modeling the behavior of materials

which we do not know completely. There may also be environmental hazards which we

cannot predict precisely. The idealized computational models which we use, often have

modeling uncertainties and limited accuracy over a certain range of parameters.

To counteract the uncertainties effects we have introduced the safety factors to prove

that our design is safe. However, safety factors do not reflect necessarily the safety of a

design. It is known that two products designed using the same safety factors may have very

different safety levels depending on their sensitivity to the parameter variabilities in a given

lifetime environment. Catastrophic incidents have proved that our engineering judgements

were sometimes incomplete and the safety level we decided were sometimes lower than was

expected in some cases. This has led to the designs being made very conservative, thereby

spending more money without any substantial technical reason. When we use deterministic

approach we do not know how safe is our design. This is true especially for new designs for

which no past experience and data exist. In the same way, deterministic approach cannot

satisfactorily answer questions related to issues on cost and safety. Only partially can we



obtainanswersfor thesequestionswith nopossibilityfor failure risk quantification.

Tremendousresearchactivitiesaredoneon probabilisticmethodsto enableusto

modeltheuncertaintiesandrandomvariabilities. Usingprobabilisticmethodswecansee

if thedesignisrobustornot. By "robustnessof thedesign",wemeanthesafetyof thedesign

thatwill enablethepartdesignedto performitsintendedfunctionwithoutfailing atadesired

level of reliability. The sensitivityof the failure risk to differentuncertaintiesin design

parameterscanbeanalyzed.In theprobabilisticapproachthe decisionis takenbasedon

estimatedrisksandtheir consequencessothatanoptimizedcost-reliabilitydesignsolution

canbedetermined.Thusprobabilisticdesignturnsout to becost-effective,especiallyfor

newdesignsfor whichthereis limited engineeringexperience.

Thesameconceptof improvingdesignholdstruein thedesignof compactgearsets,

which is thebasisof thisproject.While arrivingat anoptimumdesignof thespurgearset,

theemphasisis on minimumweight,compactdesign,accuracyof thedesignandrunning

timeof thedesignproblem.Willis [ 1] statesthat"Weightreductionusuallymeansvolume

reduction,which in turn lowerscostof materials,handlingandshipping." In thisproject,

geardesignto minimize thesizeof thegearsethasbeenstudiedusingdeterministicand

probabilisticdesignmethods.

Theobjectiveof this projectis to makea comparativestudyof theuseof AGMA

geometryfactorsandprobabilisitcdesignmethodologyin thedesignof acompactspurgear

set. Thegeardesignproblemis first posedasanoptimizationproblem,thensolvedusing

theconventionaldeterministictechniques suggested by AGMA and other researches [2], [3],

[4] and finally solved using the new approach of Probabilistic Design Methodology. The



methodologyemployedin this thesisis givenin theform of aflow chart,seeFigure1-1.

The deterministicformulationfollowed in this thesisis similar to the onein [2].

However,while consideringtheprobabilisticformulation,theuncertaintiesarequantified

byeliminatingthecorrectionfactorsin thedesignequations.A specialpurposeoptimization

algorithm [2] hasbeenusedto solvethe designproblem. Theresultsincludethedesign

parameterslike diametralpitch,numberof pinionteeth,centerdistance,facewidth, stress

values,computertime andthereliability level. A brief overviewof theremainderof the

thesisispresentedbelow.

Thesis Overview

In Chapter II, some of the important aspects of involute gear mesh geometry are

presented. The concept of involute "roll angle" and its application in locating points of

interest on the tooth profile are explained along with some of the other basic gearing terms

such as pressure angle, contact ratio, base pitch, circular pitch, and diametral pitch. The

relationship between roll angle and tooth surface radius of curvature is also given.

The various failure modes and design constraints are given in Chapter III. The

equations developed in Chapter II are incorporated into the constraint equations. Constraint

equations are given for bending fatigue, surface contact fatigue at both the initial point of

contact and the lowest point of single tooth contact, and undercut. Justification for the use

of these constraints is also given in this chapter.

Chapter IV explains the deterministic approach in gear design. The design

parameters are explained in this chapter. Formulation of the optimization model and the

optimization algorithm used to tackle the problem are also included. An example problem
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is taken from [4] and solved deterministically using AGMA J and Approximate equations

for J. The comparison between the two methods is discussed.

Chapter V is the most important chapter in this thesis. This chapter introduces the

concept of Probabilistic design methodology and its applicability in gear design. This

chapter includes the development of the Probabilistic model, Limit state functions,

Calculation of safety indices and the Probabilistic Design Optimization format. An example

problem from [5] is used to arrive at optimum results using Deterministic and Probabilistic

methods. The results are shown as Tables and to aid comparison charts are also included.

Chapter VI includes suggestions for further work in the area of gear design and some

conclusions about this work. Appendix I and Appendix II describe the geometry factors I

and J as given by AGMA. The Approximate equations for calculating J factor is explained

in Appendix III. Appendix IV gives a brief definition of all the correction factors that are

incorporated in the deterministic model of the gear design problem. Finally the computer

program for the problem is listed in Appendix V.



CHAPTER II

INVOLUTE SPUR GEAR MESH GEOMETRY

Involute gears are by far the most widely used gears in the world today. Gears whose

active tooth profiles are portions of an involute curve have the following properties which

make them attractive for use. First, they satisfy the requirement of transmitting rotary motion

from one gear to another at a constant angular velocity ratio (i.e. conjugate action) at any

center distance for which the teeth can be continuously in mesh. Earlier tooth forms (like the

cycloidal tooth) satisfied the conjugate action requirement at only one specific center

distance. Secondly, involute gears can be easily and accurately machined using "generating"

processes such as hobbing and shaping.

There are several basic relationships involving involute geometry which prove useful

in both the kinematic and strength design of gears. Those characteristics of the involute

curve which are used in design model development will be presented in this chapter.

Involute Curve Geometry_

An involute of a circle is defined as the path traced out by a point fixed on a tangent

line of the circle as the line rolls without slipping around the circle. An involute curve may

be generated as shown in Figure 2-1 (a). A partial flange B is attached to the cylinder A,

around which is wrapped a cord def which is held tightly. Point b on the cord represents the

tracing point, and as the cord is wrapped and unwrapped about the cylinder, point b will trace
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Figure 2-1: (a) Generation.Of An Involute (b) Involute Action

(Source: Mechanical Engineering Design,

Shigley and Mischke, Fifth Edition)



out the involute curve ac. The radius of curvature of the involute varies continuously, being

zero at point a and a maximum at point c. At point b the radius is equal to the distance be,

since point b is instantaneously rotating about point e. Thus the generating line de is normal

to the involute at all points of intersection and, at the same time, is always tangent to the

cylinder A. The circle on which the involute is generated is the base circle.

Figure 2-1 (b) explains how the involute profile satisfies the requirement for the

transmission of uniform motion. Two gear blanks with fixed centers at Ot and O_ are

shown having base circles whose respective radii are Ota and 02b. An imaginary cord is

wound clockwise around the base circle of gear 1, pulled tightly between points a and b, and

wound counterclockwise around the base circle of gear 2. If, now, the base circles are rotated

in different directions so as to keep the cord tight, a point g on the cord will trace out the

involutes cd on gear 1 and efon gear 2. The involutes are thus generated simultaneously by

the tracing point. The tracing point, therefore, represents the point of contact, while the

portion of the cord ab is the generating line. The point of contact moves along the generating

line, the generating line does not change position because it is always tangent to the base

circles, and since the generating line is always normal to the involutes at the point of contact,

the requirement for uniform motion is satisfied.

Spur Gear Mesh Geometry_

When two spur gears are brought into mesh they become equivalent to two cylinders

rolling without slipping on one another. The surfaces of these cylinders are called pitch

surfaces and their profiles are called pitch circles. The point of tangency of the pitch circles

is called the pitch point. The smaller of two gears in mesh is called the pinion while the



largerisusuallycalledthegear.Wheelorgearwheelareothertermssometimesencountered

for the largergear. Reference[6] explainsmostof thesetermsandtheir origin.

Foragivengear,thepitchcircleisalwayslargerthanits basecircle. A linethatgoes

betweenandis tangentto thebasecirclesof thepinionandgearintersectstheline of centers

atthepitchpoint asshownin Figure2-2. This line iscalledtheline of action. It is alongthis

linethatcontacttakesplacefor trueinvolutegearing.Theanglethatthelineof actionmakes

with aperpendicularto theline of centersis calledthepressureangle,qb.FromFigure2-2

it isseenthatthebasecircleradiusis relatedto thepitchcircleradiusby relationr cosqb= rb.

Thebasepitch,Pb,isdefinedasthearc lengthbetweensimilar sidesof two adjacent

teethalongthebasecircle. By lettingtheangularspacingbetweenteeth(equalto 2n/Np)be

called6, thenPb= 6 rb . Due to the properties of the involute curve, the distance between

teeth along the line of action is also Pb as shown in Figure 2-2.

The circular pitch, pc, is defined as the arc length between adjacent teeth along the

pitch circle. Therefore, Pc = 6r or pJcos _. Since Pc is a factor of n, it is generally an

irrational number. For convenience, a third pitch called the diametral pitch, P, is in common

use. The diametral pitch is defined as P = n/pc. From relationships presented above, it can

be shown that gear size (diameter) can be given in terms of the number of teeth and the

diametral pitch. The relationship between the pitch diameter, number of teeth and gear

diameter is d = Np/P.

Contact Ratio Development

The total length of action, Z, is the distance along the line of action from the initial

point of contact to the final point of contact for a single tooth. This distance corresponds to
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between adjacent teeth.

noise.

the distance between the intersections of the line of action with the gear and pinion

addendum circles (see Figure 2-2).

The length of action must be greater than the base pitch or there will be times during

which no teeth are in contact. The ratio of the length of action to the base pitch is called the

contact ratio, mp. The value of the contact ratio is an indicator of the amount of load sharing

Higher contact ratios generally mean smoother operation and less

To derive an expression for contact ratio, the length of action must be determined and

then divided by the base pitch. From Figure 2-2 the following equations can be understood:

AG = (r+R) sin do = C sin dO (2.1)

AF = [(r+ap) 2 - rb2 ]1.,2 (2.2)

BG = [(R+%) 2- Rb2] V2 (2.3)

and,

Therefore,

Z = BF = AF - (AG-BG) = AF + BG - AG

Z = [(r+ap) 2- rb2] '/2 + [(R+aJ - Rb2] 'a- C sin do

An equivalent form of the above equation is:

(2.4)

(2.5)

Z = [(Np/(2P) + ap/p)2 (Np/(2P)) 2 cos 2 do]'/2 (2.6)

+ [(maN p / (2P) + aa / p)2 _ (m G Np / (2P)) 2cos 2 do]I/2

(ma +I)N p sin do / (2P)

The terms ap and a_ are constants which when divided by the diametral pitch give the pinion



andgearaddendums.

termNp/2gives:

Dividing theaboveequationby thebasepitch andfactoringout the

mp= Np / (27z) {[(1+2 ap / Np) 2- cos2do] '_2 / cos 4)

+ [(mo + 2 %/Np) 2 - mG 2 cos 2 do],/2/cos 4'

- (rag + l) tan do} (2.7)

The three terms in the braces in the above equation correspond to angles subtended

by arcs on the base circle of the pinion of lengths equal to AF, BG, and AG respectively. By

letting

= [(1+2 ap/_p)'* - cos 2 do] '=2 / cos do (2.8)

13= [(mG+2 aG/Np) 2 -mG 2 cos: do]_-_/ cos do (2.9)

_' = (m o + 1) tan do (2.10)

and, as defined earlier,

6 = 2g/Np (2.11)

the contact ratio can be written compactly as:

mp= (t_ +13 - y) / 6 (2.12)

Using the same steps for the internal mesh of Figure 2-3, it is found that the equations

for the angles _, [3, and y and the contact ratio are similar to those for the external mesh with

the differences being only in changes of sign. A more general set of equations applicable to

external or internal meshes is:

= [(1 + 2 ap/Np) 2- cos 2 do]v2 / cos do

13= [(mG :t: 2 aG/Np) 2 - mG2 cos 2 do]v2 / cos do

Y = (1 + me) tan do

(2.13)

(2.14)

(2.15)
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Figure 2-3: Internal Spur Gear Mesh Geometry.

(Source: Design Data. PSG College of Technology)



m v = (a +[3 - y) / 6 (2.16)

where in the case of dual signs, the top signs is for an external mesh and the bottom sign is

for an internal mesh.

The above set of equations is valid for standard as well as non-standard teeth as long

as the addendum ratios give the correct addenda for the effective diametral pitch. The utility

of the above mentioned equations extends beyond a convenient way to express the contact

ratio equations. In the next section, it will be shown how critical points of contact can be

located by giving the pinion roll angle to that point. The equations for the roll angle to the

critical contact points can all be given in terms of the four angles, a, [3, ¥, and 6, as will be

shown.

Critical Point Roll Angle Equations

A gear mesh cycle begins when the flank of the driving tooth contacts the tip of the

driven tooth. This point is called the initial point of contact (IPC). The preceding tooth is

already in contact and is exactly one base pitch ahead along the line of action. As the gears

continue to rotate, the contact point moves upward along the line of action. At a certain

point, the preceding tooth loses contact and the entire load is carried by only one tooth. The

point is called the lowest point of single tooth contact (LPSTC). From here the contact point

proceeds through the pitch point (PP) to a point one base pitch ahead of the inital point of

contact called the highest point of single tooth contact (HPSTC). When this point is reached,

the succeeding tooth is just making contact and beginning to share the load. The contact

point continues to move along the line of action, sharing the load with the succeeding tooth,

until the tip of the pinion tooth loses contact with the flank of the gear tooth at the final point



of contact(FPC). Thiscompletesonemeshcycle.

It is importantto beableto locatethesecriticalpointsonthetoothsurfaceduringthe

meshcycle. Theinitalpointof contactis importantsincethefactor(1/pp+ 1/9G),which is

usedin calculatingtheHertzcontactstress,is mostcritical for standardequaladdendum

pinion andgear. Also, high sliding velocitieswhich contributeto heatgenerationat the

contactpoint, in turn leadto lubricantbreakdownandscoring,andoccurat theIPC. The

lowest point of single tooth contact is critical sincethe full load is carriedthere, and

consequently,it is usuallythepoint during themeshcyclewith the largestHertz contact

stress.

Thehighestpointof singletoothcontactusuallycorrespondsto themostcriticalload

applicationpointin determiningthebendingstress.In somecaseswhentheaccuracyof the

gearsisnotadequate,it ispossiblefor thefull loadto becarriedalmostup to thefinal point

of contact.The FPCis alsocritical becauseof highsliding velocities.

Usingthe equationspresentedearlierin this chapter,equationsfor the pinion roll

angleto thesecritical points cannow be derived. Figure2-4 showsthelocationsof the

critical contactpointsalong theline of actionalongwith theroll anglesto thosepoints.

Sincethe contactratio andthebasepitch areknown, from Figure2-4 it is seenthat if the

distancefrom eitherpoint A or point G to anyof the critical pointscanbe foundthenthe

locationsof theotherpointscanbefoundrelativeto thatpoint usingthecontactratioand

basepitch.

Theroll angleto thefinal pointof contactis theanglesubtendedby anarcof thebase

circle of lengthAF. Thisanglehasalreadybeengivenastheanglec¢.Therefore,
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O F =5

AF = 0tr b and from Figure 2-4, AB -- AF - mppb, therefore the roll angle to the initial point

of contact is:

0 z= AB/r b = [ar b - (ix + [3 - y) 5rb/ 6] rb (2.17)

which when simplified becomes:

0_ = _'_- 13 (2.18)

AC = AF - Pu which gives the roll angle to the lowest point of single tooth contact as:

0 L = AC/rb = (ccr b - 6rb) / rb (2.19)

or 0 L = c_ - 6

Similarly, AE = AB + Pb, giving the roll angle to the highest point of single tooth contact as:

0_ = AE / rb = [(y _ 13)rb + 6 rb] / r b (2.20)

or 0r_=y _- 13+6

The roll angle to the pitch point as seen from Figure 2-4 is given by:

f_Pv= qb + inv dO= tan _ (2.21 )

The roll angle equations will prove to be convenient and useful in the design model

constraint equations to be presented in Chapter III. By presenting the constraint equations

in forms that allow the point of contact to be located by the roll angle, the equations can be

generalized to any point of contact in the mesh cycle instead of just one point. This provides

a view of the problem which gives the designer insight to help him choose the best design.



CHAPTER III

FAILURE MODES AND DESIGN CONSTRAINTS

In designing spur gears for minimum size, there are several types of failure modes

and undesirable characteristics that must be prevented in order to insure satisfactory life and

performance of the gears. In this chapter, the most common failure modes are presented.

The equations used as constraints on the design to prevent these types of failures are also

given, along with some justification for their use.

Tooth Breakage

The most critical type of gear failure is tooth breakage. This type of failure generally

leaves the gear unit inoperative. It also happens suddenly without warning. Tooth breakage

usually occurs as a fatigue failure resulting from repeated bending. The cyclic bending

causes cracks to appear and grow in the root area of the tooth. The cracks eventually weaken

the tooth to the point that breakage occurs. A tooth or teeth can also be broken off or

"stripped" by a sudden impact or application of a very heavy load.

The gear tooth bending stress equation is based on the mechanics of materials with

the stress concentration accounted for empirically. The gear tooth is modeled as a cantilever

beam subjected to a bending load and an axial compressive load. The critical stress is

evaluated at the tensile side of the tooth because tensile stresses contribute more to fatigue

than compressive stresses. The critical point for calculation of the stress is taken as the point



of tangencyof aninscribedparabolawith thetoothroot fillet [7] asshownin Figure3-1.

Thevertexof theparabolais locatedon thetoothcenterlinewheretheline of actioncrosses

it. Notice thatthetooth centerlinerotates with thegearwhile the line of actionis fixed.

This meansthatthe locationof thecritical point varieswith thepoint of loadapplication.

Thehighestbendingstressatoothexperienceduringasinglemeshcycleusuallyoccursat

thehighestpoint of singletoothcontact(HPSTC).This is thehighestpointat whichthefull

loadis carried.A moreconservativeevaluationof thecritical bendingstressis oftenmade

by assumingfull loadingall thewayto thefinal point of contact(FPC). Thebendingstress

equationasgivenby AGMA in [7] is equivalentto:

w_ P Ko / (FJ) _ S, (3.1)

where K D = KaKm/K _

The K-factors are intended to account for effective increase in load due to momentary

overload (K_), uneven load distribution across the tooth face (Kin), and dynamic load effects

(K,.). K D is called the bending stress derating factor. In general, it is a function of the type

of application of the gear set, the accuracy of manufacture and alignment, the speed of

rotation, and the size of the gears.

The other factors in the bending stress equation are transmitted tangential load, W_,

the effective face width, F, the diametral pitch, P, the bending stress geometry factor, J, and

the modified bending endurance strength, S t, given by:

S, = Sa, K L / (KTKR) (3.2)

Here, Sat is the bending endurance strength for a gear rated at 107 cycles of operation

with a reliability of 99% under normal operating temperatures. The K-factors are included
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to account for lives, reliabilities, and temperatures different from the values that S m is based

on. Reference [7] gives values for S,, as a function of hardness and values for the life (KL),

reliability (KR), and temperature (KJ factors.

As the name implies, the bending stress geometry factor, J, takes into account the

tooth geometrical parameters: pressure angle, addendum, dedendum, hop tip radius, and

location on the tooth of the load application. The J-factor used to be determined graphically

from an accurate layout of the tooth. Two iterative numerical techniques for calculation of

the J-factor on a computer or programmable calculator have been made available, see [8],

[9]. Appendix II explains the J factor as described by AGMA. The Approximate equations

for calculation of J as derived by [10] is explained in Appendix III.

The AGMA bending stress equation is based on work done by Wilfred H. Lewis a

century ago. The accuracy of the equation has been questioned in recent years, especially

since finite element methods have begun to be widely used. Finite element analysis is

generally considered to be very accurate ifa suitable grid is used. However, it is not suited

for design as much as it is for detailed, time-consuming analysis. The bending stress

equation, on the other hand, is convenient for design use, especially now that empirical

equations can be used for the J-factors. The derating factors, which are based on years of

experience, also tend to offset some of the inaccuracies in the basic equation. Until very

extensive finite element studies (which over a broad range of tooth forms) are done and the

results are made available in empirical form, the basic bending stress equation will continue

to be the most convenient available method for obtaining designs quickly.

Pitting



While tooth breakage due to bending fatigue is the most critical type of gear failure,

by far the most common type of failure is pitting. Pitting is a surface fatigue failure due to

many cycles of contact. As the name implies, pitting is characterized by deterioration of the

surface in the form of rough shallow holes or pits [11]. Pitting usually starts slightly below

the pitch point on the tooth surface. This is in the region of the lowest point of single tooth

contact (LPSTC).

Once pitting begins, the gear unit can continue to operate. However, the noise and

vibration level of the unit increases as the pitting progresses. Also, a crack can initiate in the

pitted area of the surface, leading to tooth breakage.

Pitting is thought by many to begin as a small crack below the .surface. The crack

then propagates and eventually makes its way to the surface causing a small amount of

material to break away, leaving a pit. This sub-surface crack assumption is based on

Hertzian contact stress theory which predicts a maximum shearing stress at a point below the

surface of contact.

There is evidence [12], [13] that pitting most often begins as a small surface crack,

probably initiated at a machining mark, which is propagated by the hydraulic wedge action

of the lubricant being forced into the crack by the contact pressure. In [ 12], Bowen estimates

that more than 80% of pitting failures shows good correlation with the maximum Hertz

contact stress. Therefore, Hertzian theory can be used to accurately predict pitting failure

even if the maximum sub-surface shear stress is not the major cause.

The AGMA gives a recommended equation for determining the contact stress which

leads to pitting. This equation is presented later. A generalized contact stress equation that



canbeusedasaconstraintequationfor bothof thesetypesof surfacefailuresis presented.

Scoring

The third mode of failure most often encountered is scoring, a type of surface failure

resulting from metal to metal contact of the gear teeth due to lubricant breakdown [ 1 l ]. The

breakdown of the lubricant is caused by excessive heat generation at the point of contact.

Once metal to metal contact occurs, the two surfaces are instantaneously welded together

then torn apart by the rolling and sliding action at the contact point. This type of failure is

characterized by radial scratch and tear marks in the direction of sliding, hence the name

scoring. Scoring is a major problem for gears used in the aerospace industry. This is

because aerospace gears must be as light weight as possible, yet they are subjected to heavy

loads and very high speeds.

There are several factors which are known to influence scoring. These include

contact pressure, relative sliding, lubricant properties, surface finish, and bulk operating

temperature. In this thesis only those factors related to the gear tooth geometry, namely the

contact pressure and the relative sliding between surfaces, are considered. It can be shown

that reducing the contact pressure through a change in tooth geometry also has the effect of

reducing the relative sliding. Therefore, both of these factors which contribute to scoring can

be limited by controlling the contact pressure at the initial point of contact (IPC). The most

critical combination of contact pressure and relative sliding occurs at this point. However,

since scoring is affected to a large degree by other factors, (lubricant, surface finish, etc.), the

IPC contact stress equation cannot be considered as an accurate predictor for scoring.

Instead, it simply allows the designer to keep those factors which are related to the gear mesh



geometrywithin somespecifiedlimits. Nevertheless,the IPC contact stress equation

provides a simple strategy for limiting scoring in the gear design process. For this reason,

throughout the remainder of this thesis, the pitting and scoring constraints will be called the

LPSTC contact stress constraint and the IPC contact stress constraint, respectively, with the

understanding that both are individually important constraints for achieving a good design.

Now, a general stress equation will be developed that can be used to calculate the

contact stress for any point of contact through the mesh cycle.

Contact Stress Equation

The contact stress equation is based on Hertzian theory for two cylinders with

line contact. For the gear teeth, the maximum contact stress as defined by Hertz equation is

given by:

O H = +

xFcos¢ (l_l.t 2) (1-M_) 9e lag
-I- --

E e Ea

(3-3)

where, o H is the value of the surface compressive stress (Hertzian stress). The factor, 13, is

called the load sharing coefficient and is equal to the fraction of the total load being carried

at the particular point of contact. The variation of rl depends on the tooth deflection, profile

modifications and tooth accuracy. A simple and conservative way to specify rl is to assume

one-half of the load is carried by one tooth during the period of single tooth contact. This

is equivalent to assuming rigid teeth which, of course, do not exist in practice.

From relationships given in Chapter II, it is easy to show th_it the pinion tooth radius



of curvatureis:

pp= rb0 = (d/2) (cosqb)0 (3-4)

and the gear tooth radius of curvature is:

Pc = rb (Y " 0) = (d/2) (cos qb) (y - 0) (3-5)

Using the above relationships for the radii of curvature, the last term in the contact stress

equation can be written as:

1/pp + 1/pc = 2 / [dO (cos qb) (1 - 0/y)] (3-6)

The AGMA [7] defines the elastic coefficient, Cp, as:

I 1 1

Cp rc (l-f) (l-p. 2)
-- +

Ee E G

Using these relationships, the Hertz contact stress equation becomes:

(3-7)

I 2nw,oH= cp o) (3-8)F d 0 cos2_ (1
Y

This equation is a general form of the Hertz contact stress equation for any point of contact

on the tooth surface with the contact point located by the pinion roll angle to that point.

Actually, the Hertz equation is derived for the case of pure rolling which exists at the pitch

point only. However, it will be assumed that the Hertz contact stress contributes much more

to the total surface stress than the frictional shear effects due to sliding. Therefore, the



equationwill beusedto predictseveresurfacestressconditionsfor bothcasesof purerolling

andcombinationrolling andsliding.

TheAGMA pittingresistanceratingformulaisbasedontheHertzstressatthelowest

point of singletoothcontact[7]. TheAGMA equationis equivalentto:

(3-9)

Herethecontactstressderatingfactor,CD,is equivalentto thebendingstressderatingfactor.

Thefactor,I, isafunctionthegearmeshgeometryandis thereforecalledthecontactstress

geometryfactor.

ThevalueScis theupperlimit of contactstress.It is determinedfrom theequation:

St= S_cCLCH/ (CvC_) (3-10)

In this equation, S_¢ is the surface endurance strength of the material based on a life of 10v

cycles, a reliability of 99% and normal operating temperatures, analogous to Sat for the

bending endurance limit. Similarly, C L, C T, and CR account for variations from the base

values of life, temperature, and reliability. The hardness ratio factor, C_, is used as a

multiplier on Sac for the softer of two gears in mesh to account for the desirable work

hardening effect on the softer gear.

Equating the general Hertz contact stress equation to the AGMA pitting equation, we

see that for equivalence, I must be given by:

I = 0 cos 2 dp(1 - 0/y) / (2rl) (3-11)

This formula for the I-factor is different from the one given in [7], but it is shown below that



thetwo equationsareequivalent.

TheAGMA equationfor I for spurgearsis:

cos4_sinqb mG 91 92
I--

2 m G ± 1 pp PG
(3-12)

Here, p_ is the radius of curvature of the pinion at the point of contact and P2 is the radius

of curvature of the gear at that point. PP and PG are the radii of curvature of the pinion and

gear respectively at the pitch point. Using relationships given in Chapter II, these radii of

curvature are given as:

9_ =rb 0

02 = rb (',' - O)

9 P = rb tan dO

lOG= -I- r b m G tan gO

Therefore,

Pl P2 0 (y-0)

Pp Pa + mctan2_ (3-13)

Substitution of the equation (3-13) into equation (3-12), simplifying, and including the load

sharing coefficient, results in equation (3-1 I) for I.

Undercut / Involute Interference

Another possible undesirable characteristic of a gear mesh is the presence of

undercut or involute interference. Undercut occurs during machining of gear teeth when the

cutter removes a portion of the involute profile. This in itself is not a type of failure but it



createsproblemswhich could lead to failure. An undercuttooth can be considerably

weakenedin bendingif thedegreeof undercutis pronounced.Also, the lengthof actionis

reduced. This causesa reductionin contactratio which generallyleadsto lesssmooth

operation. Both of theseeffectsareundesirable;consequently,undercuttingshouldbe

avoidedif possible.

Involuteinterferenceis similar to undercut.In fact,undercutis aresultof involute

interferencebetweenthecuttingtoolandthegear. Involuteinterferenceoccurswhenthetip

of onegearmakescontactwith thenoninvoluteportionof thematinggear.Thiscausesnon-

conjugateactionbetweenteethwhich leadsto vibrationandnoise. ConsiderFigure3-2.

Two gearsareshownwith centers02 and 03

driven gear. Driving gear turns clockwise.

Gear 2 is the driving gear and Gear 3 is the

The initial and final points of contact are

designated A and B, respectively, and located on the pressure line. It can be noted that the

points of tangency of the pressure line with the base circles C and D are located inside the

points A and B. This tells that interference is present.

Interference is explained as follows. Contact begins when the tip of the driven tooth

contacts the flank of the driving tooth. In this case the flank of the driving tooth first makes

contact with the driven tooth at point A, and this occurs before the involute portion of the

driving tooth comes within range. In other words, contact is occurring below the base circle

of gear 2 on the noninvolute portion of the flank. The actual effect is that the involute tip or

face of the driven gear tends to dig out the noninvolute flank of the driver. The same effect

occurs again as the teeth leaves contact. Contact should end at point D or before. Since it

does not end until point B, the effect is for the tip of the driving tooth to dig out, or interfere
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Figure 3-2: Interference In The Action of Gear Teeth

(Source: Mechanical Engineering Design

Shigley and Mischke, Fifth Edition)



with, the flank of the driven tooth. Involute interference and undercut can be avoided if the

number of teeth is greater than a certain minimum. In general, if the number of teeth is large

enough so that undercut does not occur during machining, then involute interference will not

occur during operation either. This is because the involute interference limit increases with

gear ratio and becomes maximum for mesh with a rack.

The equations for determining the undercut and involute interference limits are given

below. The involute interference equation is solved in [2] and is given as:

+ 2a6.P
(Np)mi_ = (3-14)

[me2. (1 +2raG) sinZq_]v< m O

In the above equation as m G approaches infinity (mesh with a rack), the equation becomes:

(Np)mi n 2a6"P (3-15)
sin2 

The equation for determining the undercut limit for hobbed gears is derived in [ 14]

and is given as:

2 [b,,P- rr(1- sindp)]
=

sin2dp (3-16)

Interference can be eliminated by using more teeth on the gears. However, if the gears are

to transmit a given amount of power, more teeth can be used only by increasing the pitch

diameter. This makes the gears larger, which is seldom desirable, and it also increases the



pitch-linevelocity. This increasedpitch-linevelocity'makesthe gears noisier and reduces

the power transmission to some extent. Another way of reducing interference is by using a

larger pressure angle. This results in a smaller base circle, so that more of the tooth profile

becomes involute.

In general, the involute interference or undercut limits will not be active constraints

at the optimum. I-Iowever, it is important to have these equations formulated in the design

model from a computational perspective.

In summary, equations which define a feasible design space have been presented in

this chapter. Constraints were given for bending fatigue, Hertz contact stress at both LPSTC

and IPC, and undercut/involute interference. In Chapter IV and V, these constraint equations

and their interactions will be studied in order to determine optimal gear designs using the

AGMA method and Probabilistic Design Methodology respectively.



CHAPTER IV

DETERMINATION OF OPTIMUM GEAR DESIGN USING

AGMA J FACTOR AND APPROXIMATE J FACTOR

In this chapter, the focus is on determining the optimal design for a compact spur gear

set in mesh, using the geometry factors I and J as given by AGMA in [15] and using the J as

given by [10]. A comparative study would be made on these two, based on the design values

and running time of the computer program written on the above mentioned methods.

Design Parameters

It is important to define a criterion by which we can compare different designs. One

that comes to mind is cost. Tucker [16] says that maximizing load capacity for a given

material and size generally results in lowest cost per horsepower transmitted.

In specifying the material and its properties, the designer should realize that the

strongest (hardest) material will yield the smallest design. Gears of very hard materials are

expensive to produce because they require special heat treating processes and almost always

require grinding to eliminate distortion caused by heat treating. However, the size reduction

obtainable by using very hard materials usually offsets the increased production cost because

the other components in the gear box (bearings, shafts, seals, housings) are also reduced in

size. An added bonus is that smaller gears run more smoothly than larger gears and,

therefore, have lower derating factors. Dudley [17] points out that a ten to one reduction in



weightcanbeobtainedby usingfully hardenedgearsasopposedto low hardnessgears.

In designingaminimumsizespurgearset,therearemanyparametersto consider.

Theseincludethoserelatedto theapplicationof thegearset(powertransmitted,input and

output speeds,deratingfactors)andthoserelatedto themeshgeometry(numberof teeth,

diametralpitch,pressureangle,addendaanddedenda,facewidth). In thisprojectit will be

assumedthattheparametersrelatedto theapplicationof thegearsetwill beknownor will

beavailablethroughafunctionalrelationshipandthegeometricalparameters(dO,a, b, r_r,_,)

will bechosenby thedesigner.

The designmodel is solvedby assigningvaluesto thegeometricalparametersand

thentreatingtheremainingtwo parameters(Np,P) asdesignvariables.Also, thematerials

to beusedis assumedto beknown. This is theapproachusedin reference[4], [18]. This

approachis well foundedfor thefollowing reasons.First,reducingthenumberof design

variablesto two enablesthisproblemto betackledasanoptimizationproblem.Second,the

pressureangle, addenda,dedenda,and hob tip radius are all standardizedvariables;

therefore,the designercan choosevaluesfor thesevariablesfrom a small numberof

commonlyusedstandarddata.

Basedon information in references[4], [7], [16], [17], [18], it seemsthat, it is a

commonpracticeamongdesignersto specifythefacewidth asa proportionof thepinion

diameter. It is knownthata wider facewidth cancarrya greaterload,however,it isalso

moresensitiveto alignmenterrorswhichcancauseunevenloadbearinginstances.

Tucker [16] recommendsthe formula, _,= mG/ (m G + 1), for obtaining an initial

estimate for _.. Dudley [19] recommends a value of 0.25 for _. when alignment between



gearsis a seriousproblem,0.5for goodalignmentand1.0for extremely good alignment.

In Reference [20], Juvinall suggests lower limit on face width as 9/P and upper limit as 14/P,

or in terms of module as 9m < F < 14m.

In some sources, as in [21 ], it is recommended that the face width be between three

and five times the circular pitch. This was an adequate rule of thumb earlier when low

hardness gears were being used more often. This rule for determining the face width

penalizes the finer pitch gears, which are more common in use today, to an excessive degree.

Therefore for gears with finer pitch (P>_20), the face width to diameter approach is a more

logical approach to use in specifying the face width.

The problem, therefore, has been reduced to one of only two variables, the number

of pinion teeth, Np, and the diametral pitch, P. Designing a compact spur gear set involves

minimizing the center to center distance, C, as in [4], [18], which is given as; C = Np (1 +

m_) / 2P. It is shown in [2] that the optimum is clearly constraint bound since d is

monotonically increasing in Np and decreasing in P. It is shown that the optimum occurs at

an intersection of two constraints, usually the LPSTC contact stress constraint and the

bending stress constraint. Furthermore, the constraint intersection depends only on Np, so

even though the design space is two-dimensional, the optimum is obtained by solving a one-

dimensional problem.

Formulation of Design model

Our design objective is to minimize the size of the gear. This can be interpreted in

many ways: reduction in the volume of the pinion, reduction in the center distance between



pinion andgear,or reductionin the pinion pitch diameter. As will be seen,all theseare

equivalent.Thevolumeof apinioncanbeexpressedas;

Volume= F0zdp2)/ 4 (4.1)

This is not exact, as the tooth addendum region will not exactly fill the root space between

teeth, but is close enough to be relevant. The problem is then to minimize volume. As

discussed earlier, face width can be expressed as a fraction of pinion diameter, i.e.,

_, = F/dp.

If we now combine equations (4.1) and (4.2) we have;

Volume = (n/4) _, dp3

(4.2)

(4.3)

In a general design problem, the facewidth to diameter ratio _. is specified by the

designer and hence can be treated as a constant in equation (4.3). It can now be seen that

minimizing the volume and minimizing the pinion pitch diameter are equivalent. The

equation for the distance between pinion and gear centers (center distance) can be expressed

as_

C -- ½ (dp + d_) (4.4)

The pitch diameter of the gear, do, is related to that of the pinion by the gear ratio n_:

da = m c *dp (4.5)

The gear ratio is always given in a gear design problem, with a certain maximum margin for

error. Then, the center distance can be expressed as:

C =dp (mo + 1)/2 (4.6)

Expressing dp in terms of the design variables Np and P, we have:

C = (Np/P) (m c + 1)/2 ' (4.7)



Fromequation(4-6),weseethatminimizingthecenterdistanceis equivalentto minimizing

thepinion pitchdiameterdp. In this project, however, the objective function is taken as

minimizing the center distance, as the center distance is expressed in terms of the gear ratio

and the design variables Np and P. This is the method followed in [4] and [18].

The optimization problem can thus be summarized as:

MINIMIZE C = Np (1 + me) / (2P) (4.8a)

such that

Np >_2 [bP- rT (1 - sin do )] / sin" do (4.8b)

s c >_Cp [W, CD / (dFI)] v2 (4.8c)

St -> Wt P KD / (FJ) (4.8d)

with known parameters:

H, np, mG, dO, a, b, r-r, _,, so, st.

In most practical application, the undercut constraint (equation (4.8b)) will not be

active at the solution. Equation (4.8c) safeguards against pitting and scoring failures of the

teeth. In chapter II it was stated that, the LPSTC contact stress constraint can be taken as the

Pitting constraint and that the IPC contact stress constraint can be taken as the Scoring

constraint. Equation (4.8c) is a general form of contact stress equation that can be used to

calculate the contact stress for any point of contact through the mesh cycle. Equation (4.8d)

is the bending fatigue constraint which accounts for the failure due to bending fatigue. Both

the constraints (4.8c) and (4.8d) include AGMA geometry factors I and J, that are discussed

further in Appendix I and II.



In [10],a simple,analyticalmethodto accuratelyestimatetheAGMA bendingstress

geometryfactorJhasbeenpresented.This is anon-iterativemethodandyieldsresultswith

goodaccuracy.TheoptimizationmodelhasbeensolvedusingtheApproximateequation

for J factoranda comparisonwasmadewith the useof AGMA J factor. Theresultsare

discussedlaterin this chapter.

Theformulationof theconstraintsfor theoptimizationproblemhasbeendiscussed

in [2]. Equation(4.8b)givesthelowerboundon Np. Although limiting the contact stress

at the initial point of contact will eliminate the possibility of involute interference, from a

computational peispective it is prudent to include equation (4.8b) in the formulation. It can

be noted that the terms on the right side of equation (4.8b) are all constants in a given design

context and so this lower bound on Np is determined only once in the design algorithm.

In [ 17], the Hertzian contact stress is evaluated at the initial point of contact and at

the lowest point of single tooth contact. The classical Hertz contact stress equation as

applied to spur gearing is given as:

oH= Cp [(W,/Fcos dO)(1/9, + 1/92)] v2 (4.9)

The pinion radius of curvature as given in [2] is simply: p_= eR_cos dO (4.10)

It is shown that the sum of the gear and pinion radii of curvature is always a constant and

given by: 9_ + P_,= +C sin dO (4.11)

This requires the radius of curvature of an internal tooth to be negative. Realizing that

C = R_(mG + 1) and solving equation (4.11) for 9z, we get:

P2 = R_ [(1 + me) sin do - 0 cos do] (4.12)

Therefore the term (1/9t+ 1/92) from equation (4.9) can be written as:



(lips+ 1/p2) = [I/(R_0 cosdo)][(1 ± raG)sindO

/ [(1 + mG) sin do- 0 cos qb]] (4.13)

If the expression for the roll angle to the pitch point is substituted into equation (4.13) it

becomes:

(1/p_+ 1/p?),,p = [l/(R, sin do)] [m G ± 1)/raG]

= [2/(d,sin dO)] [m_ + 1)/ma] (4.14)

Substitution of this expression into equation (4.9)

durability equation; oHeP= Cp[W,/(FdeI)]_a

where I is the AGMA durability geometry factor.

gives the standard AGMA surface

(4.15)

I : [sindo cosqb / 2][(m_ + 1)/me] (4.16)

The actual AGMA equation contains a dynamic factor, Cv, to account for dynamic load

effects. The generalized form of equation (45c) which would compute the Hertz contact

stress at any point of contact through the mesh cycle is given as;

o H = Cp {[6C_C,,,W_CfCs/(CvdpF)] [1/[0cos2do (1-0 cosdo)/(sindo (1+ m_))]]} '/2 (4.17)

where, C_ = 1/[1 + (I/A) (vt) v2 ]8

A and B are constants given by AGMA 218.01 ref [7]. A and B are calculated as:

B = (1/4) (12- Q)2/a and A = 50 + 56(1-B)

where Q being the AGMA Quality Number.

Equation (4.17) is valid at any point during the contact cycle and o u can be computed for

values of 6 and 0. At the initial point of contact, 6 = 1 and 0 = 0wc. At the lowest point of

single tooth contact, 6 = 2 and 0 = 0LPST C.

As the expression for o Hat the initial point of contact and at the lowest point of single



tooth contactare readily available, the surfacestressconstraintsare simply statedas

inequalitiesthatrequirethesetwocriticalvaluesof oHto belessthanthesurfacestrengthof

thesoftermaterial.Thesurfacestrengthin the inequalitiesmustbeappropriatelymodified

for overload,facemisalignment,life, temperature,reliability, size,andsurfacefinish.

Similarly,theAGMA bendingstressequationisdevelopedfromtheLewisEquation,

whichconsidersthegeartoothasacantileverbeam.This is furtherdiscussedin the next

chapter.TheAGMA bendingstressequationis givenas[7]:

K_K_K_ Wt P
°B = (4-I 8)

K FJ
v

Deterministic Optimization

The optimization problem on hand is summarized as:

MINIMIZE C = Np (I + raG) / (2P)

such that

Np >_2 [bP - rT (1 - sin qb)] / sin 2 d_

S c -> Cp [W, C D / (dFI)] 1/2

s t_> W_PK D/(FJ)

The formulation mentioned above can be called as Deterministic formulation, as all

the design variables are deterministic in nature. The correction factors and geometry factors

introduced by AGMA makes the problem more deterministic. The next chapter focusses on

formulating the optimization model without any AGMA correction factors, thereby including



randomnessin theproblem.

Severalattemptshavebeenmadeto solvetheoptimizationproblemstatedabove[4].

CarrollandJohnson,see[2], cameupwith themostefficientoptimizationalgorithmwhich

could solve for the designvalues. This algorithm is a specialpurposealgorithm that is

applicableonly to this geardesignproblem,rather than to the broad classof general

nonlinearprograms.Theoperationof thealgorithmis describedbelow.

First, a feasiblestartingvalue for Np is chosen. Oncethis is established,the

bracketingphaseof thealgorithmbegins.An initial stepof magnitudeANp -- 2 ql, where q l

is a specified non-negative integer, and is taken in the direction of decreasing Np. The pinion

diameter and constraints are evaluated at the new point. If the new point is infeasible (i.e.,

violates any of the constraints), then dp for that point is artificially set to a large value (10 6

in the current work). If the new dp is less than the previous one, the step size exponent, q l,

is increased by one and another step is taken. The process is repeated until the new dp is

greater than the previous one. An upper bound on the step size is set at ANm_, ---2 qmaxwhere

q_ is a specified non-negative integer greater than or equal to ql. In general the step size

of the ith step is given by (ANp), = 2 qi where q, = min {(ql + i - I), qma_}"

NOW a bracket on the minimum having a width of ANp = 2 ql (the last step size of the

bracketing phase) has been established. Since the bracket width is a power of two, the

minimum is found in exactly q, additional function evaluations by halving the bracket q,

times and discarding the half not containing the minimum each time until A Np is the

minimum while the other is infeasible.

Satisfaction of Gear Ratio Requirement



An additional problem that must be considered involves the integer tooth number

requirement for the gear, [2]. So far, only the pinion has been considered in the design

process. However, even if the number of pinion teeth is an integer, it may be impossible to

have an integer number of gear teeth for some values of the gear ratio, like the one cosidered

in this thesis, where m G = 3.78. The only sensible solution to this problem is to allow the

gear ratio to vary to some acceptable amount about the desired value. In most gear

applications where load must be transmitted, the actual gear ratio can vary a limited amount

from the specified value without adversely affecting the desired performance.

To determine an acceptable value for N o the following steps could be taken. First,

find the minimum feasible integer value of Np. Next, calculate the product of m G and Np.

If the fractional part of this product exists (nonzero) then N G should be set equal to the

integer portion of the product plus one. The actual gear ratio should then be calculated and

compared to the desired gear ratio. If the absolute difference is less than the acceptable

deviation, then those values of Np and N G are taken as the design values pending their

satisfaction of other constraints (feasibility). If the gear ratio tolerance is exceeded, the only

alternative is to increase Np until a suitable combination of Np and N G can be found.

The minimum value of Np using the desired value of m_ is obtained so that none of

the design constraints are violated; however, if the gear ratio has to be varied to satisfy the

integer tooth number requirement on N_, the locations of the constraints in the design space

will change. It is then possible that an infeasible design could result due to the gear ratio

variation. Therefore, the final design must be checked for feasibility when the actual gear

ratio is different from the value used to obtain the minimum Np.



To illustrate the design technique, an example cited in [4] is considered below:

Example Problem :

A gear set is to be designed to transmit 20 hp at a speed of 1260.5 rpm. The gear

ratio is 5, pressure angle is 20 degrees, face width to diameter ratio is 0.25, surface strength

is 200 ksi, bending strength is 60 ksi, elastic modulus is 3E7 psi, poisson's ratio is 0.25,

external mesh and standard teeth. The dynamic factor is considered as unity.

This problem was solved in two ways using the model defined in [2]: One using the

AGMA geometry factor, J, and the other using the J calculated using Approximate equations,

see [10]. The results are shown in Table 4-1 and Table 4-2.

Discussion :

Referring to Table 4-1, note that using the J given by AGMA, for a diametral pitch

of 16, the minimum feasible number of pinion teeth was found to be 33, and the minimum

center distance of 6.188 in. For the same diametral pitch of 16, using the Approximate

equations for J value, see Table 4-2, the feasible number of pinion teeth was found to be 36

(rather than 33), and the value of center distance is 6.75 inches. However, the minimum

value of center distance obtained using the J from Approximate equations is 6.50 inches for

a diametral pitch of 12. Also note the computer time taken for both the methods. As

explained in Appendix III, determination of J using the approximate equations is much faster.

The computer time taken by the AGMA method is considerably higher than the time taken

by J using approximate equations.



Table 4-1

DESIGN OF SPURGEAR SETUSING DETERMINISTIC METHODS

Data Input :-

Gear ratio = 5

Pr. angle = 20 deg.

ql=l qmax=3

rpm = 1260.5

add. a = 1.000/p ded. d = 1.250/p

velocity factor kv = 1

Horse power = 20 hp

Allowable bending stress : 60 ksi
Allowable contact stress : 200 ksi

Face width f = 0.25 * de

Mod. of elasticity = 3E+7 psi

Poisson's ratio = 0.25

hobtip radius = .300/p

DETERMINISTIC SOLUTION USING J OBTAINED BY AGMA METHOD

P NP NG C F SB SLPSTC SIPC

(in) (in) (in) (KSI) (KSI) (KSI)

TIME

(secs.)

2.000 16.000 80.000 24.000 2.000 0.548 27.798 128.336

2.250 16.000 80.000 21.333 1.778 0.780 33.169 153.136

2.500 16.000 80.000 19.200 1.600 1.070 38.848 179.354

3.000 17.000 85.000 17.000 1.417 1.606 45.983 100.992

4.000 17.000 85.000 12.750 1.063 3.807 70.796 155.488

6.000 19.000 95.000 9.500 0.792 9.958 107.729 159.599

8.000 21.000 105.000 7.875 0.656 18.827 140.505 175.681

10.000 23.000 115.000 6.900 0.575 30.011 169.276 191.423

12.000 26.000 130.000 6.500 0.542 39.577 182.701 187.994

16.000 33.000 165.000 6.188 0.516 56.038 193.062 177.005

20.000 44.000 220.000 6.600 0.550 59.725 172.763 145.945

= 0

0.049

0.049

0.049

0.109

0.109

0.160

0.160

0.160

0.221

0.221

Note: = 0 indicates value too close to zero.



Table 4-2

DESIGN OF SPURGEAR SETUSING DETERMINISTICMETHODS

DataInput :-

Gearratio = 5
Pr.angle = 20deg.
ql=l qmax=3
rpm = 1260.5
add.a = 1.000/p ded.d = 1.250/p
velocity factor kv = 1
Horsepower= 20 hp
Allowable bendingstress: 60 ksi
Allowable contactstress:200ksi
Facewidth f = 0.25 * de
Mod. of elasticity= 3E+7psi
Poisson'sratio= 0.25

hobtip radius= .300/p

DETERMINISTIC SOLUTIONUSING J OBTAINED BY APPROXIMATE
EQUATIONS

P NP NG C F SB SLPSTC SIPC TIME

(in) (in) (in) (KSI) (KSI) (KSI) (secs.)

2.000 16.000 80.000 24.000 2.000 0.733 27.798 128.336 = 0

2.250 16.000 80.000 21.333 1.778 1.044 33.169 153.136 = 0

2.500 16.000 80.000 19.200 1.600 1.432 38.848 179.354 = 0

3.000 17.000 85.000 17.000 1.417 2.140 45.983 100.992 = 0

4.000 17.000 85.000 12.750 1.063 5.073 70.796 155.488 = 0

6.000 19.000 95.000 9.500 0.792 13.152 107.729 159.599 0.059

8.000 21.000 105.000 7.875 0.656 24.649 140.505 175.681 0.059

10.000 23.000 115.000 6.900 0.575 38.964 169.276 191.423 0.059

12.000 26.000 130.000 6.500 0.542 50.770 182.701 187.994 0.059

16.000 36.000 180.000 6.750 0.563 57.721 168.577 150.083 0.059

20.000 48.000 240.000 7.200 0.600 59.807 151.157 125.426 0.059

Note: = 0 indicates value too close to zero.



It isconcludedthat asmallerfeasibledesignis obtainedusingtheAGMA method.

Thesmallestvalueof centerdistanceusingAGMA methodis 6.188inchesfor apitch of 16

and a pinion teethnumberof 33. The smallestvalueof centerdistanceusing 3 from

Approximmeequationsis obtainedas6.5 inches for a diametralpitchof 12andapinion

teethnumberof 26. The solutions shown in Table 4-1 and Table 4-2 are both

deterministic.Thefeaturesof themethodandcodeare,(i) Determinationof thebestdesign

for eachcandidatediametralpitch, (ii) Designswhich providea tight satisfactionof the

specifiedgearratio areobtained,(iii) A completeanalysisof eachdesignis obtainedwith

output including contact stresses,bendingstress,face width, centerdistanceand the

computertime for each design. Since the smallest feasible gear set is obtained for each

candidate diarnetral pitch, the designer can survey the results and choose the final design

based on practical trade-offs between size and other design aspects.

However, the design suffers a serious set back in not being able to define the safety

of the design in terms of reliability. There is no safety level associated with the design. In

the next chapter, it is shown how Probabilsitic Design methodology, when incorporated in

gear design can define the safety level of the design, apart from the above mentioned features

of the deterministic method. Probabilistic design methodology thereby gives added

flexibility to the designer to consider the aspect of safety in the design. This is discussed in

the next chapter.



CHAPTER V

DETERMINATION OF OPTIMUM GEAR DESIGN USING

PROBABILISTIC DESIGN METHODOLOGY

Several methods have been proposed in the past for optimum design of spur gears.

These methods have utilized deterministic design optimization techniques to obtain what

could be considered satisfactory design parameters. There are at least two problems that

arise with the results of deterministic approach; the inability to deal with uncertainties in

material properties and over conservative design. Moreover, in an optimally designed

structure based on deterministic considerations, this drawback can be more troublesome,

because optimized structures tend to be more sensitive to fabrication defects and improper

definition of the loading environment, see [22], [23], [24]. This has given rise to research

in the areas of Probabilistic Design Methodologies applicable to structural and machine

component design. This method seeks to account for the uncertainties in material properties,

loading conditions and disparate failure models. In this chapter, the applicability of

probabilistic design methodology in compact spur gear design is discussed.

Uncertainty_ associated with design

Engineering uncertainty is not limited to the variability observed in the basic

variables. First, the estimated values of a given variable (such as the mean), based on

observational data, will not be error-free. Second, mathematical or simulation models often



havemodelinguncertaintiesandlimited accuracyat leastovercertainrangeof parameters.

Forexample,formulae,equations,algorithms,andlaboratorymodels,thatareoftenusedin

engineeringanalvsisand designare idealizedrepresentationsof reality. Consequently,

predictionsandcalculationsmadeon thebasisof thesemodelsmaybe inaccurateandthus

also contain uncertainty. Humanerror can result from errors madeby engineersand

techniciansduringthedesignor operationphases.It canbereducedbyimprovingthequality

of control program,but it cannotbe avoidedentirely. In general,humanerror is very

difficult to define. It is commonpracticeto treathumanerrorasmodelingerror,see[25].

In somecases,the uncertaintiesassociatedwith suchpredictionsor modelerrorsmaybe

muchmoresignificantthanthoseassociatedwith theinherentvariabilities.All uncertainties,

whether they areassociatedwith inherent variability or with prediction error, may be

preciselyassessedin statisticaltermsandtheevaluationof their significanceon thedesign

canbeaccomplishedbytheconceptsandthemethodsof probability.

If thereareuncertaintiesin thedesign,thenextstepis, to askhow shoulddesignsbe

formulatedor decisionsaffectinga designbe resolved?Presumably,wemayassumethe

worst conditions and develop conservativedesign on this basis. From the system

performanceandsafetypointof view,thisapproachmaybesuitable.However,theresulting

designwould be too costly as a result of over-conservatism.On the other hand,an

inexpensivedesignmaynotensurethedesiredlevelof performanceandsafety. Therefore,

the decisions should be made considering cost and safety of the design. The most desirable

solution is one that is optimal, in the sense of minimum cost and maximum benefits. If the

available information and the models to be evaluated contain uncertainties, the analysis



shouldincludetheeffectsof suchuncertainties.

Thus,probabilisticdesignis concernedwith theprobabilityof failure or preferably

reliability. This methodologyis mostusefulwhenuncertaintiesin materialpropertiesand

loading conditionsareconsidered.To applyprobabilisticmethodologiesin design,the

designparametersaremodeledasrandomvariables,withselecteddistributiontypes,means,

andstandarddeviations,see[26]. Theprimitive (random)variablesthataffectthestructural

behaviorhaveto beidentified.

Development of PDO Model

The probabilistic model of the same design problem cited in the previous chapters

would be different from the deterministic model that has been described in chapter IV. The

difference is that the AGMA correction factors and geometry factors that have been

incorporated in the design model are neglected. This enables the problem to be treated as

completely non-deterministic, or in other words, probabilistic. The design variables are

treated as random variables with some known distribution. The uncertainties in the design

equations are thereby quantified.

Accordingly, our next step is to restate the design constraints defined in Chapter III,

to be modeled using the probabilistic methodologies. This is done by eliminating the

correction factors and defining the possible uncertainties in the design variables.

Wilfred Lewis [27] was the first to present a formula for computing the bending

stress in gear teeth in which the tooth form entered into the equation. The formula was

announced in 1892, and it still remains the basis for most gear design today. This formula

is used to define the failure surface due to bending fatigue, in this project.



A geartooth isessentiallyastubbycantileverbeam.At thebaseof thebeam,there

is tensilestresson thek,adedsideandcompressivestresson theoppositeside. Whengear

teethbreak,theyusuallyfail byacrackatthebaseof thetoothonthetensile-stressside.The

ability of gear teethto resist tooth breakageis referredto asbeam strength orflexural

strength in [ 19].

The flexural strength of gear teeth was first calculated to a close degree of accuracy

by Wilfred Lewis. This was achieved by inscribing a parabola of uniform strength inside a

gear tooth, see Figure 5-1. When this parabola is made into a cantilever beam, the stress is

constant along the surface of the parabola. By inscribing the largest parabola that will fit into

a gear tooth shape, one can locate the most critically stressed position on the gear tooth. This

position is at the point at which the parabola of uniform strength becomes tangent to the

surface of the gear tooth. The gear tooth is modeled as a cantilever beam of cross-sectional

dimensions F and t, having a length l and a load W_ uniformly distributed across the distance

F. The length l is same as the sum of the addendum and dedendum. The thickness of the

tooth is half the circular pitch, since circular pitch is equal to the sum of the tooth thickness

The section modulus is I/c = Ft2/6, and therefore the

M 6Wtl
o 8 -- _ = (5.1)

I/c F t 2

and width of space between teeth.

bending stress is:

Equation (5.1) has further been developed to define more accurately the bending

strength in a gear tooth under load. This was achieved by incorporating the correction factors
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Figure 5-1: Assumption of Gear Tooth in Determination of Lewis Factor

(Source: Mechanical Engineering Design

Shigley and Mischke, Fifth Edition)



and geometry factors J. The corrected equation for bending strength was stated in Chapter

IV to define the bending failure in deterministic method. As the idea of this work is to arrive

at the optimum design of a gear set without involving any correction factors, equation (5.1)

would be used to define the bending strength failure equation in this chapter. By modeling

the gear tooth as a beam all the uncertainties in the design variables can be treated.

The contact stresses on the gear tooth can be determined by the formulas derived

from the work of Hertz. It is easy to visualize that any contact point on a set of spur gears

can be simulated by a pair of cylinders of the appropriate radii. The applied load P is the

normal tooth load W Nper inch of face width F; thus,

P -- W N/ F (5.2)

The normal tooth load on a set of spur gears is given as:

W N ---Wt/cos (qb) (5.3)

where W T is the tangential tooth load and _b is the pressure angle; thus,

P = W,/(F cosqb) (5.4)

In the late nineteenth century, H. Hertz developed a mathematical theory for the surface

stresses and deformations produced when two curved bodies are pressed together. For

cylinders with parallel axes, Hertz's equations become:

I p[(oe+po)/(pppo) ]
S : 0.564 (5.5)

c 2
[(1-_e/Ep]+ [(1-l.tza)/Eo]

Substituting equation (5.4) into equation (5.5):



i IVT Pp+PG)S = Cp Fcos_(-- (5.6_
P,, Pc

The AGMA geometry factor I is defined as:

I =

coscb OR9G

_ ( )PP*PG
(5.7)

Equation (5.6) may simply be written as:

(5.8)

Equations (5.1) and (5.8) represent the bending and contact stress equations. These

were the expressions that were used to define the limit state functions in probabilistic

analysis, as can be seen in the following sections. These equations are in their primitive form

without any correction factors. This enables the problem to be treated as a probabilistic

model.

Limit State Function

Probabilistic analysis is mainly concerned with the probability of failure of a

designed part or rather the reliability of the machine part or structure. By reliability it is

meant the probability that designed part will perform its intended function without failing.

This assumes that the part is used within the condition for which it is designed. Two factors

are considered in this methodology. The first is the limit strength of a material and the other



is anacceptablelevel of safety. Becauseof this we definewhat is known aslimit state

functionor equationandsafetyindex. Theconceptof limit statefunctioncanbeexpressed

as:

(-i(x) = g(x) - S_ (5.9)

where

x = a vector of random design variables

S_ = a strength limit

The function G(x) is called a limit state function. It divides the design space into safe and

unsafe regions, see Figure 5-2a.

The major concern in probabilistic analysis is the computation of the probability of

failure of a structure or machine element. Therefore, the question arises as to how to define

a measure of the reliability of a designed structural member or machine element. In general

we are concerned that the applied stress, S, should not exceed the resistance, R, offered by

the designed structure. Hence, the failure surface is given by:

G(R, S) = 0 (5.10)

The minimum distance from the origin to a point on the failure surface is defined as the

safety index, [3, see Figure 5-2b. In [28], Hasofer and Lind (1974) calls this value the

"Reliability Coefficient". The failure surface or "limit state" is defined by the equation (5.10)

which can also be written as g = 0, as in [29]. The feasible or safe region is defined by the

inequality g > 0 while the infeasible (unsafe) region is defined by g < 0.

In dealing with failure of a structure or machine component, it is desirable to

determine the probability of R being less than or equal to S. Hence the probability of failure,
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pf, is:

or in general

pf = P (R_< S)

pf = PIG(R, S) _ 0]

where G( ) is the limit state function and P[.] denotes the probability of event [.].

statistics

p.= p (R- s __o)= f_ff_ (r, s) dr ds

where

(5.11)

(5.12)

From basic

(5.a3)

f_ = failure domain

fRs = joint density function.

If R and S are independent, equation (5.13) becomes:

pf - P(R-S<__o)=f__f__'rfR(r)f_s) drd, (5.14)

where

fR = density function for R

fs = density function for S.

It is known that the cumulative distribution function, F z (z), of any random variable Z is

given by:

Fz(z) = P(Z <_z) = f_f fz(X)a_c (5.15)

provided z _ x. Consequently equation (5.14) may be written as:



pf = P(Rs <-O) = f_FR(z)fs(z ) dz (5.16)

The design constraints defined in chapter III, have to restated as limit state functions,

in order to be treated as probabilistic. Consider the bending stress equation defined by

equation (5.1). As mentioned earlier in this chapter, the gear tooth is considered as a

cantilever beam and the bending strength on the gear tooth is considered as same as the

bending strength equation of a beam. To prevent failure in bending, the calculated bending

stress can be compared to the adjusted bending strength of the material:

6Wtl

Ft 2
-< S t (5.17)

Expressing as a limit state function, equation (5.17) can be written as:

(5.18)

Similarly, expressing equation (5.8) which is the Hertz contact stress equation as a limit

state function, we get:

i rv,Cp Fdpi-Sc
_< 0 (5.19)

Equations (5.18) and (5.19) define the corresponding failure surface when the design

variables are transformed in a two dimensional space. Next topic deals with determining the



minimumdistanceof thesefailuresurfacesfrom theorigin, 13.

Safety_ Index Determination

The evaluation of equation (5.16) is not always easy especially since the distribution

of R and S are not always known. However, for the case when it is known that R and S are

random normal variables the probability of failure is determined very rapidly. If the safety

margin is defined by;

z = R- S (5.20)

then

pf = P(R-S <_O) = P(Z __O) =
0

z

(5.21)

where

Hence,

where

q_( ) = the standard normal distribution function

]-lz = gR - gS

O"Z = (O'R2 q- US2)1/2

pf= (I) (- _) (5.22)

13= P-z / °z (5.23)

The safety index, 13, defined by equation (5.23) is due to Cornell, see [30], and it is

said to be based on the first two moments, that is mean and standard deviation. It is possible



that variousvaluesof safetyindex may beobtainedfor the samelimit statecondition,

dependingon how thesafetyindexis defined,see[31]. Whenthis is thecasewesaythat

safetyindexlacksinvariance,[32]. To insurethat 13is invariantHasoferandLind in [28]

suggestedthetransformationof thevariablesinto theirstandardform wherethemeanis zero

andthevariancehasavalueof unity, usingtheexpression

z = (X - P-x) / ox (5.24)

Similarly the limit state function is also transformed to give

G(z) = 0 (5.25)

In probabilistic analysis,, the failure surfaces have to be defined as limit state functions in the

form mentioned in equation (5.25). This will define the surface that divides the safe and

unsafe regions in the transformed design space.

The safety index, being the minimum distance to the surface, as in [33], is determined as

13= min (zVz) 1/2 (5.26)

subject to (5.25).

To determine the safety index, 13, for the failure modes defined earlier, certain

assumptions were made. The material properties were assumed to be at their mean value.

The coefficient of variation -_ was assumed to be 0.05. An example problem taken from

Motts (1992) [5] was considered. The values of safety indices were determined using a

program, that is based on General Reduced Gradient algorithm. The results will be shown

later in this chapter, along with the problem statement.

Probabilistic Design Optimization Format

The format of the probabilistic design optimization is very similar to that of the



deterministic.

Minimize F(x)

Subject to G i (x) _<0,

X I _< X _< X u

Generally, the problem should be modeled first deterministically as:

(5.27a)

i = 1,. ...... m (5.27b)

(5.27c)

where x is a column vector with n rows and the subscripts l and u represent the lower and

upper bounds on x respectively. In the design of either a machine element or structure, the

constraint is generally related to the limit imposed by either stress or deformation or any

other criteria that must be satisfied for a safe design.

Because probabilistic design is concerned with probability of failure or the reliability

of a system the probabilistic equivalent formulation of (5.27) is:

Minimize F(x) (5.28a)

Subject to P[Oi (x) __<0] >_¢i, i = 1....... ,m (5.28b)

where x is a vector of n random variables and (, is the specified reliability level of the

system. However, after the determination of safety index as demonstrated above, the

constraint (5.28b) is expressed as:

G, (x) = 13,- __ (_',) i = 1,. ..... ,m (5.28c)

where __(.) is the inverse of the standard normal distribution function.

The probabilistic formulation of (5.28) can be restated in terms of design variables as:

Minimize C = Np (1 + mo) / (2P)

subject to

2 [bP - rT (1 - sin d_ )] / sin 2 _b - Np _< 0

(5.29a)

(5.29b)



Cp[W,/(dp FI)]1/2- S___13H- @"(¢)

6Wtl/(Ft2) -S t __13B-@'(()

(5.29c)

(5.29d)

where [3His thesafetyindexdeterminedfor thepitting failuresurfaceand [3Bis thesafety

indexdeterminedfor thebendingfailuresurface.As mentionedearlier,equation(5.29b)is

to checkon the lower limit on thenumberof teethon pinion, in orderto avoid involute

interference.Limiting the contactstressat the initial point of contactwill eliminatethe

possibilityof involute interference.Note that in equation(5.29b),all thetermsexceptNp,

which is adesignvariable,areconstantsin agivendesigncontextandsothelower bound

on Np is determinedonly once in the designalgorithm. Yet, Equation (5.29b) was

incorporatedin thedesignalgorithmonly from acomputationalperspective.

Fromthe formulationdefinedby (5.29), it canbeseenthattwo differentvaluesof

safetyindex areusedfor the bendingandpitting constraints.This is to accountfor the

correlationbetweenthefailuremodes.However,HasoferandLind [28] havesuggestedthat,

for multiple failure modes,the leastof all the [3valuesneedto be usedto define the

constraintsin theformulation.

In this thesis,boththewaysof incorporatingsafetyindiceswereconsideredandthe

results areshownfor anexampleproblemtakenfrom Motts, [5].

Example Problem : Design a pair of spur gears with 20 degrees full-depth teeth. The

pinion operates at 1750 rpm. The gear ratio is 3.78. The set must transmit 3 hp. The

material to be used is AISI OQT 1300. The yield stress is 61 ksi, tensile stress is 88 ksi.

Poisson's ratio of 0.25, modulus of elasticity 30x 106 psi, facewidth to diameter ratio is 0.25.



The AGMA allowable stresses are calculated as; contact = 85.841 ksi, bending = 25.197 ksi.

In executing the same problem using probabilistic techniques, the data given are

assumed to be at their respective mean values. The coefficient of variation (COV) for the

distribution is taken as 0.05. The distribution type is taken as normal distribution.

Discussion :

Since the objective of this project is to make a comparative study of the use of

AGMA geometry factors and Probabilistic design methodology in gear design, the problem

is first solved deterministically. Solutions are presented in Table 5-1 and Table 5-2. As

mentioned in Chapter IV, deterministic approach in gear design can be achieved in two ways:

One utilizing geometry factor J defined by AGMA and other using J from Approximate

Equations. The optimum design achieved using these two methods are shown in Table 5-1

and Table 5-2. To aid easy comparison of these methods with probabilistic method the

results obtained using probabilistic methods are also shown in the same table. This is further

explained below.

The first step in solving the problem using probabilistic methods is to identify the

design variables. In this case, the design variables are diametral pitch P and number of

pinion teeth Np. The next step is to calculate the values of safety indices for the pitting

failure and bending failure limit functions. While doing this, all the variables are treated as

stochastic. The material properties are assumed to be at their mean value. All the variables

are transformed into a reduced space. On transformation, the variables P and Np, will have

a mean value zero and standard deviation one. The mean value of all other variables are

given as input or treated as standard data which are readily available. The coefficient of



Table 5-1

OPTIMAL DESIGN OF SPUR GEAR SETS USING DETERMINISTIC

AND PROBABILISTIC METHODS

Data Input :-

Gear ratio = 3.78

ql=l qmax=3

add. a = 1.000/p

hobtip radius = .300/p

Allowable bending stress : 25.841 ksi

Face width f= 0.25 * dp

Poisson's ratio = 0.25

Pr. angle = 20 deg.

rpm = 1750

ded. d = 1.25/p

Horse power = 3 hp
Allowable contact stress: 85.841 ksi

Mod. of elasticity = 3E+7 psi

Distribution type: Normal COV = 0.05

RESULTS FOR EXAMPLE PROBLEM:

Formulation incorporates different values of safety indices for their corresponding

Pitting and Bending constraints.

Safety Index for Pitting stress constraint = 2.432314

Safety Index for Bending stress constraint = 2.196645

REL. P (in) NP C (in) F (in) S t (ksi) Sc (ksi) TIME(sec)

@ 8.0000 20.0000 6.0000 1.2500 4.5326 80.1924 0.0625
* 8.0000 20.0000 6.0000 1.2500 3.4531 80.1924 0.1094

50.0000 9.0000 21.0000 5.5556 1.1667 5.7057 92.3944 0.0586

70.5000 9.0000 21.0000 5.5556 1.1667 5.7057 92.3944 0.0508

81.3270 8.0000 20.0000 6.0000 1.2500 4.5345 80.0757 0.0586

85.3140 8.0000 20.0000 6.0000 1.2500 4.5345 80.0757 0.0508

90.3200 8.0000 20.0000 6.0000 1.2500 4.5345 80.0757 0.0625

95.0530 8.0000 20.0000. 6.0000 1.2500 4.5345 80.0757 = 0

98.0300 8.0000 20.0000 6.0000 1.2500 4.5345 80.0757 0.0469

99.0610 7.0000 19.0000 6.4286 1.3571 3.4672 78.0643 0.0625

99.8650 5.0000 21.0000 9.9000 2.1000 1.0683 35.6087 0.0469

99.9720 ......

Note: @ indicates deterministic solution obtained using Approximate J value

* indicates deterministic solution obtained using AGMA method for J factor

- indicates no feasible solution

= 0 indicates value too close to zero.



Table 5-2

OPTIMAL DESIGN OF SPUR GEAR SETS USING DETERMINISTIC

AND PROBABILISTIC METHODS

Data Input :-

Gear ratio = 3.78

ql=l qmax=3

add. a = 1.000/p

hobtip radius -- .300/p

Allowable bending stress : 25.841 ksi

Face width f = 0.25 * dp

Poisson's ratio = 0.25

Pr. angle = 20 deg.

rpm = 1750

ded. d = 1.25/p

Horse power = 3 hp

Allowable contact stress : 85.841 ksi

Mod. of elasticity = 3E+7 psi

Distribution type: Normal COV = 0.05

RESULTS FOR THE EXAMPLE PROBLEM:

Formulation incorporates the same lowest value of the two safety indices

for both the Pitting and Bending constraints.

Safety Index = 2.196645

REL. P (in) NP C (in) F (in) S, (ksi) Sc (ksi) TIME(sec)

@ 8.0000 20.0000 6.0000 1.2500 4.5326 80.1924 0.0625
* 8.0000 20.0000 6.0000 1.2500 3.4531 80.1924 0.1094

50.0000 9.0000 21.0000 5.5556 1.1667 5.7057 92.3944 0.0508

70.5000 9.0000 21.0000 5.5556 1.1667 5.7057 92.3944 0.0586

81.3270 8.0000 20.0000 6.0000 1.2500 4.5345 80.0757 0.0508

85.3140 8.0000 20.0000 6.0000 1.2500 4.5345 80.0757 =0

90.3200 8.0000 20.0000 6.0000 1.2500 4.5345 80.0757 0.0586

95.0530 8.0000 20.0000 6.0000 1.2500 4.5345 80.0757 0.0508

98.0300 8.0000 20.0000 6.0000 1.2500 4.5345 80.0757 0.0625

99.0610 7.0000 20.0000 6.7857 1.4286 3.0940 66.1451 0.0469

99.8650 5.0000 30.0000 14.2000 3.0000 0.5023 17.4085 0.0508

99.9720 ....

Note: @ indicates deterministic solution obtained using Approximate J value

* indicates deterministic solution obtained using AGMA method for J factor
- indicates no feasible solution

= 0 indicates value too close to zero.



variationof thesevaluesaregivenin theproblemstatement.

The valuesof safetyindicesfoundare; for bendingfailure 13---2.196645andfor

pittingfailure [3= 2.432314.Thesevaluesarealsoshownin Table5-1. Thenextstepwas

to usetheprobabilisticformulationgivenin (5.29)andruntheoptimizationroutineto arrive

at the optimal design. Since the constraintsare the samein both deterministicand

probabilisticmethods,thesameoptimizationroutine[2], is usedfor probabilisticanalysis,

with somemodification.At thispoint,it mustberealizedthatin obtainingtheresultsusing

probabilisticmethods,all thecorrectionfactorsincludingthegeometryfactorJ have been

ignored. The results are presented in Table 5.1 and Table 5.2.

From the results shown, it can be seen that, the values of center distance obtained

using the AGMA J and J using Approximate equations, are the same for this problem. The

bending stress value obtained using the AGMA J is noticeably lower than the one using the

Approximate equations for J. Of course, the computer time taken by the optimization

problem running on AGMA J is higher than the one running on Approximate equations for

J. This is shown later in this discussion.

In running the probabilistic analysis, two different situations were considered. It is

to be remembered that both these situations are devoid of the Correction factor for Bending

Strength, J, and all other AGMA correction factors utilized in Chapter IV. Table 5.1 shows

the results obtained by incorporating the corresponding values of safety indices in the

bending and pitting constraints. Table 5-2 shows the results obtained by incorporating the

lowest value of both the safety indices, in the bending and pitting constraints, as suggested

in [28]. The values of center distance obtained using deterministic and probabilistic methods



areplottedin Figure5.3. In Table5.1,a designpointof (Np= 19,P= 7)maybeselectedfor

areliabilityof 99.061%.Thecorrespondingvalueof centerdistanceis 6.4286inches. For

the samereliability levelof 99.061%in Table5.2,the valueof centerdistanceis 6.7857

inchesand designpoint is (Np= 20, P = 7). For highervaluesof diametralpitch the

differencein valuesof centerdistanceis moresignificant. This indicatesthatbyusingthe

correspondingvaluesof safetyindicesin thefailureconstraintequation,asmallervalueof

centerdistanceisattainedthanusingthelowestsafetyindexvalue. To aid comparisonof

the results, actual contact and bending stresses on the pinion tooth are shown in Figures 5.4

and Figure 5.5.

It can also be noted that, using deterministic methods in design, there is only one

design attainable for one value of diametral pitch, without any mention about safety level.

In probabilistic design methodology, however, the designer can select a design with a

particular safety level in mind. Deterministic method gives a center distance of 6.0 inches,

for a design point of Np -- 20, P = 8. The result reveals that deterministic approach provides

a reliability of 81.327% to 98.03%. However, probabilistic design method allows the

designer to select a different design point that gives a higher reliability than the deterministic

result. For example, from Table 5.1, a design point (Np = 19, Pd = 7) may be selected for a

higher reliability of 99.061%.

One other basis of comparison between the deterministic and probabilistic

methodologies is in the computer time taken. In Table 5.1 and Table 5.2, the time taken for

each run is shown. It can be seen that among the deterministic methods, the one employing

J given by AGMA takes a higher CPU time of 0.1094 secs. to arrfve at the optimum. The
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deterministic run utilizing J from Approximate equations takes a lower CPU time of 0.0625

secs. However, the probabilistic run takes a much lower time than both the deterministic

methods. This is because in probabilistic method there is no need to compute the value of

Geometry factor d. Calculation of J value is an optimization problem by itself, which is

necessary to be calculated only in the deterministic techniques.

For varioos design points in the probabilistic run the time taken is different but they

are all either equal to or lower than the time taken by deterministic run using Approximate

value for J, which by itself is lower than the deterministic run using AGMA J factor. It can

be noted that some instances in probabilistic run take very low computer time that has almost

zero value. This is because, it happens that the design point is close to the optimum and

hence the optimization routine requires only fewer evaluations to reach the optimum point.

The programs were written in Quick Basic Version 4.50 and the computer time shown is the

time taken for the run in a 100 MHz Pentium Processor.

Another factor that may be considered during this design may be the acceptable risk

level. It may be that a higher level of reliability is required and in that case one may opt for

a slightly heavier gear set. If one can suffice with a lower reliability level, a much smaller

design is obtained which could be sometimes smaller than the one obtained using

deterministic methods. In addition, the probabilistic method indicates that for the given

design condition, the most achievable level of reliability is 99.865%. Perhaps, the most

useful and important advantage is that since the results obtained are based on the

uncertainties in the materials, if any manufacturing inaccuracies are introduced we have the

confidence that the reliability obtained is still applicable.



CHAPTER VI

SUGGESTIONS FOR FUTURE WORK AND SUMMARY

Suggestions for Future Work

A direct extension of the work presented in this thesis should be its application to

gear types other than spur gears. Helical, bevel, and spiral bevel gears are widely used and

design of these types of gears is dictated by the same failure modes that apply to spur gears

with difference in the mathematical formulations of the resulting design constraints. The

analysis considered in this project can be applied directly to helical gears with known helix

angles. However, if the helix angle is treated as a design variable, the problem may become

more complex.

A second important additional area of study in gear design optimization should be

in the area of tooth proportion modifications. Deviation from standard proportions can

increase the bending strength of the pinion tooth and also reduce the tendency for scoring.

The overall size of the gear set cannot be improved a great deal by deviating from standard

proportions because the constraint which usually limits the design, the LPSTC contact stress

constraint, is less sensitive to tooth proportion modifications than the IPC contact stress and

bending stress constraints, see [2].

In reference [34] Estrin used a nonlinear programming algorithm to optimize the gear

tooth proportions for a given pinion diameter and number of teeth. He also introduced some



additionaldesignconstraintsthatarenecessarywhenstandardproportionsarenotused.His

work provides a good startingpoint for a more detailedanalysisof the problem with

deviationsin toothproportions.

Even thoughtheprobabilisticanalysisattemptsto quantifythemanyuncertainties

thatmaybeencounteredduringgeardesign,effortsshouldbedirectedin trying to minimize

uncertaintiesin computerand simulationmodels. This step calls for more improved

computerandsimulationmodels.

Somespecificareasthat attractsresearcharedevelopmentof an accuratescoring

predictor,developmentof amoreaccuratestressconcentrationfactorfor thebendingstress

equation,and developmentof a more accuratevelocity (dynamiceffects) factor which

considersmorefactorsthanjust theaccuracyof manufactureandpitch line velocity.

As the supremacyof probabilisticdesignmethodologyin geardesign,hasbeen

clearlyestablishedthroughthiswork, this newareamustbefurtherresearchandventured

in thedesignof othermachineelements.Spurgearwaschosenin this studybecauseof the

fact that it is one of simplest,oldest machinepart that humansknew and has lot of

significancein termsof costof manufacture,stressesinduced,failuremodesetc.

Summary

In this thesis, the objective has been to clearly substantiate the supremacy of

Probabilistic design methodology in design of compact spur gear sets over the conventional

deterministic methods. The idea was also to establish Probabilistic Design Methodology

as the new way to design. This has been achieved by way of a comparative study between

the two design methodologies.



The idea of minimizing the size of the gear set was suggested in [4]. In [7] a more

logical treatment to the problem which is relatively easier to apply has been presented. This

incorporates the AGMA geometry factor J in computing the bending stress equation. In spite

of several other improvements, the approach to gear design has remained rather

deterministic. This ignored the uncertainties that could arise in gear design process. In this

project, the model development included all the uncertainties by omitting the correction

factors.

This

deterministic

project is the first attempt to explicitly compare the probabilistic and

methods applicable in spur gear design, in terms of design parameters,

computer time and reliability of design. Gear design process has been fully analyzed using

both methods. In Deterministic Optimization a comparison is made in the use ofAGMA J

factor and Jfrom Approximate equations. Both these techniques have their own advantages.

While the deterministic model incorporating J from AGMA method is more accurate in

defining the bending strength, the one using Approximate equations for J is much faster in

terms of running time. If the criterion is running time then the use of Approximate equations

for J would be a better choice and if the emphasis is on higher accuracy then the AGMA

equation for J would be ideal. However, it should be noted that in either of these two

methods there is no mention about safety or reliability of the design. Probabilistic design

methodology has proven to fill this void.

This work comprises a detailed analysis of the gear design problem using

Probabilistic design methodology. All the uncertainties in the system were quantified by



ignoringthecorrectionfactorssuggestedbyAGMA andothers. Thedesignvariableswere

treatedasstochasticwith somedistribution.Limit functionsfor pitting andbendingfailure

surfacesweredefinedandtheir correspondingvaluesfor safetyindicesweredetermined.

The probabilisticanalysiswasthenconductedin two ways:Oneusingthe corresponding

safetyindicesfor boththepittingandbendingfailuresandotherusingthelowestof thetwo

safetyindicesfor boththefailure surfaces,assuggestedby HasoferandLind, [28]. It has

been observedthat a smaller value for centerdistancecan be achievedby applying

correspondingvaluesof safetyindices for the failure constraints,at higher valuesfor

diametralpitch. Thereisnosignificantdifferencein therunningtimeamongthesemethods.

Whencomparedwith thedeterministicresultstheprobabilisticmethodsseemto be

amorefavorabledesigntool for thedesigner.Theprobabilisticmethodof designingis faster

thanthedeterministicmethodusingApproximatevaluefor J, which by itself is faster than

the one using AGMA J. Probabilistic design technique offers the designer more flexibility

in selecting a design. While the deterministic method gives one design for a particular factor

of safety, the probabilistic design offers several design points for different levels of

reliability. If the application calls for a higher reliability, then the designer can go for a

slightly heavier set. If one can suffice with a lower reliability level, a smaller design can be

achieved, which sometimes can be smaller than the one achieved by deterministic methods.

Another useful advantage of the approach used in this thesis is that, since the results

obtained using probabilistic methods are based on the uncertainties in the materials, if any

manufacturing inaccuracies are introduced the designer can have the confidence that the

reliability obtained is still applicable. Hence it is concluded that probabilistic design



methodology is a more comprehensivetool for a designer than the deterministic

methodology.

Probabilistic designmethodologyis becomingan important designmethod in

industries. It is a methodthat can be applied in every field of engineeringwhere

uncertaintiesin designparametersexist. It is usedonly in limitedareasatpresentdueto the

factthatmanyareunawareof thispowerfuldesigntool. Thegrowinginterestin this design

methodcanbeattributedto thefactthatit takesintoconsiderationreliability, dependability,

optimization, andcost parameterswhich arethe factorsthat influencethe rating of the

design.



APPENDIX I

AGMA Geometry Factor for Pitting Resistance (I)

The pitting resistance geometry factor, L is a dimensionless number.

account the effects of;

i. radii of curvature

It takes into

ii. load sharing

iii. normal component of the transmitted load

The AGMA pitting resistance formula is based on the Hertz contact stress equation

for cylinders with parallel axes. The original formula for the calculation of Pitting

Resistance Geometry Factor,/, is given in [35]. The final formula is given as:

COS _r 2
If C,

(I.1)
[l+lldmu

Pl 02

For spur gears, the helical overlap factor is given as C, = 1.0 and the pinion operating pitch

diameter is given as; d = (2 Cr)/(m G+1). Another simpler way of calculating the pitting

resistance factor has been given in [2], which involves the determination of the pinion roll

angles. This method is particularly useful when the value of I factor is to be determined at

the Initial Point of Contact (IPC) and at the Lowest Point of Single Tooth Contact



(LPSTC). Themethodis outlinedbelow:

0 COS2_ A
I [1- _] (I.2)

2rl y

In equation (I.2), when q = 0.5 and 0 = 0rpc, then the value of I is at the IPC of the teeth.

Similarly, when r I = 1 and 0 = 0Lpsvc, then the value of I is at LPSTC. The values of 0_ and

0L can be determined as follows:

V/(I+adRl) 2- cos%
= (I.3)

cosqb

P = dvmc± (adR,) 2- m_ cos2(D 0.4)

COS_)

y = (1 + mo) tanO (I.5)

A (I,6)

Using these relationships (I.3) through (I.6), the values of 0tpc and OLPST C can be found using

01ec = Y ; I3 (I.7)



Ozpsrc -- o_- (2 r_/Np) (I.8)

The Hertz Contact stress as applied to spur gear design is given as:

o,_ c_I c c _c_c_FdpI (I.9)

In order to maintain feasibility of the design,

OH-<S c 0.1o)

AGMA has defined a term, adjusted contact stress Sc, which is given by the relation;

c_c_
s = s_ 0.11)

c CrCR

It can be seen that, the geometry factor I, is very significant in determining the contact stress

equations at any point in the mesh cycle. Equation (I. 11) defines the contact stress constraint

in the AGMA approach of the gear design problem.



APPENDIX II

AGMA Geometry Factor for Bending Strength (J)

The bending strength geometry factor, J, is a dimensionless number like the I factor.

It takes into account the effects of:

i. shape of the tooth

ii. worst load position, i.e., the combined effects of radial and tangential

load components.

iii. stress concentration at tooth root fillet

iv. load sharing between oblique lines of contact

While the I factor is applicable for both internal and external spur gears, the J factor

analysis applies only to external gears. In [35] the original derivation for the Bending

Strength factor is given. The formula given by AGMA in [35] is;

YC
j._

Kf rnN (II. 1)

The helical overlap factor in (II.1), C, = 1 for spur gears. The factor Kf is the stress

correction factor introduced by AGMA (see Appendix IV for more on these AGMA

correction factors), mr_ is the load sharing ratio which has a value of one for spur gears. Y

is the tooth form factor. The complex formula for the calculation of Y can be seen in [35].



The valueof Y canbeobtainedfrom a generatedlayoutof thetoothprofile in thenormal

planeandis basedon the highest point of single tooth contact.

Failure due to bending has been considered as critical, due to catastrophic

consequences preventing further operation of the gear set. The bending stress was

traditionally calculated using the Lewis bending equation:

w,e
o_ (II.2)

FY

The Y factor or Lewis form factor was derived from an approximation of the gear tooth to

a cantilever beam. This equation is not used directly now-a-days except for crude or low

precision, low speed gears. The Lewis bending equation has been refined through the years,

improving its accuracy. The result is the AGMA geometry factor J which is given in

With the inclusion of J given in (II. 1), the improved bending stress equationequation (II.l).

is given as;

o s = (II.3)
K FJ

Ka, Ks, K m, K_ are the correction factors introduced by AGMA, which would be explained

in Appendix IV. To prevent failure in bending, the calculated stress can be compared to the

adjusted bending strength of the material, which is introduced by AGMA in [7]:

o B > S t (II.4)



Theadjustedbendingstrengthis calculatedasin AGMA 218:01(ref [7]):

St = KR KT (II.5)

Here, Sat is the allowable bending stress value for the material chosen, for a life of 107 cycles.

This can be found in Table 6 in reference [7] or calculated from the endurance limit for the

material. KL, KR, K T are AGMA correction factors.



APPENDIX III

APPROXIMATE EQUATIONS FOR THE AGMA J-FACTOR

The J factor is a fundamental quantity in calculating the design parameters when

gears are designed to meet the American Gear Manufacturers Association (AGMA)

requirements against bending failure. However, the J factor defined in [7] is not easy to

determine exactly. It used to be obtained by making an accurate graphical layout of the gear

tooth, see [36]. The next improvement is the development of iterative techniques for

calculating the J factor numerically [8], [9].

The methods in [8] and [9] provided excellent results. However, it is difficult to use

these iterative techniques. The calculations are often lengthy, cumbersome and time

consuming. A very simple, accurate, approximate equation for the J factor was introduced

in 1988, [10]. Using this approximate equation it has become very easy to calculate the J

factor.

1/J = A+ (B+ C/mc)/N p (Ill.I)

A, B, C are constants which depend on the standard tooth proportions. The

coefficients A, B, and C were determined by two variable linear regression on the inverses

of J factors calculated for every combination of the standard tooth numbers, for a total of 324

J factors. The correlation coefficient, for each of the sets, is greater than 0.99 and the



maximum percentageerror at any point is slightly greaterthan 2%. The valuesof

coefficientsA, B, andC areshownin Table 1of reference[10], alongwith thecorrelation

coefficientvalues.



APPENDIX IV

CORRECTION FACTORS IN GEAR DESIGN

AGMA has introduced many correction factors in the pitting resistance and bending

stength equations, see reference [35]. These correction factors account for many different

cases that a designer may encounter while trying to arrive at a optimal design for spur gear

sets. In [7], AGMA has defined expressions for adjusted contact and adjusted bending

stresses which incorporates some more correction factors in them.

In this Appendix, the various correction factors are explained briefly. The

expressions for the stresses with correction factors embedded in them are given below (from

[37] and [38]). The actual Hertz contact stress given by AGMA is;

_ q q c cj
O H G (IV.I)

c d_F 1

For feasibility;

o H -- S c (IV.2)

where Sc the adjusted contact stress is given;



s :s qc,,
(IV.3)

c _ CrCR

Similarly in deriving the Bending stress equations, it has been shown that the actual bending

stress is;

K_K_Km Wt P
o s = (IV.4)

K FJ

Again for feasibility of the design;

oB<S t (IV.5)

where, the St is the adjusted Bending Strength and given by;

s,x 
s,

KRK T
(IV.6)

On reviewing equations (IV. 1) through (IV.6) one can understand how vital it is to

consider the correction factors in the design equations, if the gear has to be designed to

satisfy the AGMA requirements. However, use of these correction factors preserves the

deterministic nature of the problem. By ignoring these correction factors in the design

equations, the problem can be treated in a probabilistic perspective.



1. DYNAMIC FACTORS Cv AND Kv :

Dynamic factors are used to account for inaccuracies in the manufacture and meshing

of gear teeth in action. In other words, they account for "Transmission error". This can be

defined as the departure from uniform angular velocity of the gear pair. Some of the effects

which produce transmission error are; 1) Inaccuracies produced in the generation of the tooth

profile like errors in tooth spacing, profile lead, and runout 2) vibration of the tooth during

meshing due to tooth stiffness 3) magnitude of the pitch-line velocity 4) dynamic unbalance

of the rotating members 5) wear and permanent deformation of contacting portion of the

teeth 6) gearshaft misalignment and deflections of shaft 7) tooth friction. In an attempt to

control these effects, AGMA has defined a set of quality-control numbers Q,,, which can be

taken as 8 (as in this work) for precision quality.

2. APPLICATION FACTORS C a AND K_ :

The purpose of the application factor is to compensate for the fact that situations arise

where the actual load exceeds the nominal tangential load W t.

3. SURFACE CONDITION FACTOR C_ :

AGMA suggests values greater than unity to be used for Cf, when obvious surface

defects are present.

4. SIZE FACTORS C s AND K s :

The AGMA recommendation is to use a size factor of unity for most gears provided

a proper choice of steel is made for the size of the part and the heat treatment and hardening

process. The original intent of the size factor is to account for any nonuniformity of the

material properties. When there are any effects due to the nonuniformity then a size factor



valuegreaterthanunity shouldbeused.

5. LOAD DISTRIBUTION FACTORS C m AND K m :

The load-distribution factor is used to account for; 1) misalignment of rotational axes

for any reason 2) deviation of lead 3) load-caused elastic deflections of shafts, bearings

and/or housings. In [8], AGMA presents two methods, one empirical and other analytical

of obtaining values for the load-distribution factor. These values are available in the table

in the above mentioned reference.

6. HARDNESS RATIO FACTOR C, :

The pinion generally has a smaller number of teeth than the gear and consequently

is subjected to more cycles of contact stress. If both the pinion and gear are through

hardened, then a uniform surface strength can be obtained by making the pinion harder than

the gear. A similar effect can be obtained when a surface-hardened pinion is mated with a

through-hardened gear. The hardness-ratio factor C H is used for only the gear. Its purpose

is to adjust the surface strength for this effect. The values of CH can be determined using the

method as given in [21].

7. LIFE FACTORS CL AND K L :

In [7], AGMA defines the adjusted bending stength value for a life of 107 cycles. The

purpose of the tooth life factors is to modify the AGMA strengths for lives other than 107.

8. RELIABILITY FACTORS CR AND K R :

The AGMA standards strengths are based on reliability of R = 0.99 corresponding

to 10 7 cycles of life. For other reliabilities, AGMA suggests the use of other values that can

be supported by statistical data.



APPENDIX V

PROGRAM LISTING

'PROGRAM NAME: DESIGN.BAS

'A program for determining the optimum value of the center

'distance for a spur gear set. Results include stress values,

'Values of face width, center distance, contact ratio, J

'factor,pinion number of teeth, diametrai pitch and relia-

'bility in case of probabiiistic analysis. This program with

'slight modification can be used for both deterministic

'analysis and probabilistic analysis.

COMMON SHARED n, pi, aal, tf, th, tphi, hr, j

COMMON SHARED ys, alfa, rt, xs, no2, theta, beta

COMMON SHARED rc, fa, lap, xe, ye

COMMON SHARED ratio, poi, emod, d, nmin, aS, itor, rpm

COMMON SHARED ap, p, mg, ss, bs, dp

COMMON SHARED cphi2, cphi, tphi, sphi

COMMON SHARED a!, bl, a2, b2, c2

COMMON SHARED ka, kl, km, kv, kr

COMMON SHARED aal, alpha, beta, gamma, delta

COMMON SHARED inum, ti, tl, i

'DECLARATION OF SUB-ROUTINES IN THE PROGRAM

DECLARE SUB agmaj (j!)

DECLARE SUB calcfa (fa!, lap!, alfa!, n!)

DECLARE SUB feasible (n!, d!, mg!)

DECLARE SUB approxj (j!)

DECLARE SUB angles (n!, mg!)

DECLARE SUB ifact (inum!, i!)

'DEFINING THE OUTPUT FILE TO WRITE THE RESULTS

OPEN "result.dat" FOR OUTPUT AS #i

'SETTING INITIAL TIME, IN ORDER TO COMPUTE THE CPU TIME

'TAKEN FOR THE OPTIMIZATION RUN. THIS TIME GIVEN BY 'TIMER'

'FUNCTION IS THE NUMBER OF SECONDS ELAPSED SINCE MIDNIGHT.

start : TIMER



CLS

'ENTER DATA FOR THE PROBLEM

INPUT "ENTER VALUE FOR GEAR RATIO -"; mg
INPUT "ENTER VALUE FOR PRESSUREANGLE IN DEG. -"; phi
INPUT "ENTER THE SPEED IN RPM :"; rpm
INPUT "ENTER THE INPUT TORQUETO PINION : "; itor
INPUT "ENTER THE FACEWIDTH TO DIAMETER RATIO • "; ratio
INPUT "ENTER THE VALUE OF VELOCITY FACTOR • "; kv
INPUT "ENTER ADDENDUM,DEDENDUM,HOBTIP RADIUS : "; ap, dp, hr
INPUT "ENTER SURFACEAND BENDING STRENGTH : "; ss, bs
INPUT "ENTER AGMA QUALITY NUMBER: "; qv
INPUT "ENTER YOUNG'S MODULUS, POISSON'S RATIO : "; emod, poi
INPUT "ENTER VALUE FOR FACTORS (Ka,Kr,K1) : "; ka, kr, kl

ca = ka: cr = kr: cl = kl
ql = I: qmax = 3
READ p

'CALCULATE CONSTANTVALUES
'PRESSURE ANGLE AND TRIG FUNCTIONS OF PRESSUREANGLES

pi = 3.1415926539#
phi = phi * pi / 180

cphi = COS(phi)

sphi = SIN(phi)

tphi = sphi / cphi

cphi2 = cphi 2

sphi2 = sphi 2

'ELASTIC COEFFICIENT

cp2 : 1 / (2 * pi * ((I - poi
^

cp = Cp2 .5

2) / emod) )

'FACTOR BASED ON LOAD REQUIREMENTS USED FOR

'INITIAL GUESS OF Np

wtfacE = 396000 * itor / (pi * rpm)

'PITCH POINT I- FACTOR (USED IN INITIAL GUESS FOR Np)

ipp : sphi _ cphi _ mg / (2 _ (mg + i))

'CALCULATE MINIMUM NUMBER OF TEETH TO PREVENT UNDERCUTTING



nmin = ABS((2 * ap / mg) / (i - (cphi2 + ((I / mg) + i)
^ ^

2 * sphi2) .5))

nnmin = INT(nmin)

ninc = 1

IF (nmin - nnmin) = 0 THEN ninc = @

nmin = nnmin +ninc

'FACTORS USED IN J-FACTOR CALCULATION

aal = dp hr

delmax = 2 qmax

aj = 1.763476

bj = 17.3632

cj = 6.676833

j = 1 / (aj + (bj + cj / mg) / nmin)

vt = pi " nmin * rpm / (12 * p)

'OUTPUT HEADER

PRINT #i, " P .....,NP

"F "; "SB "; "SLPSTC

PRINT #i, '.....

..... NG
s

..... SIPC
t

t _ t

..... _ME"
if

DO UNTIL p > 30
i = O

ap = 1

dp = 1.25

hr = .3

PRINT

READ p

'GENERATE AN INITIAL GUESS FOR Np

na = (cp2 * wtfact * p 3 / (kv " ratio * ss

(i / 3)

nb = (wtfac= * p ^ 3 / (j * kv * ratio * bs))

IF na > nb THEN

IF na > nmin THEN

n = na

ELSE

n = nmin

END IF

ELSEIF nb > nmin THEN

n = nb

ELSE

n = n_in

^

2 * ipp))

A

.5



END IF
nn : INT(n)
ninc = 1
IF (n - nn) = 0 THEN ninc= 0

= _ + _inc

'INSURE STARTING VALUE IS FEASIBLE

DO UNTIL aS <> "no"
CALL feasible(n, d, mg)
IF aS = "no" THEN n = n + delmax

LOOP

'ESTABLISH A BRACKET ON THE MINIMUM

DO UNTIL d >= lastd
q = ql + i
i = i + 1

^

de!n = 2 q

de!n = deln

IF deln < delmax THEN

deln = deln

ELSE

dein = delmax

END IF

las_n = n

lastd = d

n = n - deln

CALL feasible(n, d, mg)

LOOP

'NOW THAT THE MINIMUM HAS BEEN BRACKETED, REDUCE THE

'BRACKET TO A LENGTH OF ONE.

nr = lastn

dr = lastd

nl = n

dl = d

IF (nr - nl) <> 1 THEN

IF q < qmax THEN

jmax = q

ELSE

jmax = qmax

END IF

FOR jj = 1 TO jmax

de!n = nr - nl

nm = nl + dein / 2



NEXT
ELSE
END IF

n = nm
d :dm
CALL feasible(n, d, mg)
nm = n
dm = d

n = ni

d = dl

IF dm < dr THEN

nr : nm

dr : dm

ELSE

END IF

nl : nm

dl = dm

'DETERMINE THE MINIMUM OF THE FINAL TWO DESIGN POINTS

IF dl < dr THEN

d = dl
ELSE

d = dr

END iF

IF d = dl THEN

np = nl
ELSE

np = nr
END IF

'CALCULATION OF GEAR RATIO AT THE NEW DESIGN POINT

ng= np* mg

nng = INT(ng)

IF (ng - nng) <= .5 THEN

ng : nng
ELSE

ng = nng + 1
END IF

mgg =ng /np

'RECALCULATE ALL DESIGN VALUES USING THE FINAL PAR]hMETERS

n : np

d = dp

mg = mgg



CALL feasible(n, d, mg)
np = n

dp = d

mgg = mg

npint = INT(np)

ngint = INT(ng)

cr = (np + ng) / (2 * p)

finish = TIMER

cputime = finish start

'PRINT OUT THE FINAL VALUES

PRINT USING "###.### "; p; npint; ngint; cr; f;

sigmab / i000; slpstc / I000: sipc / I000; cputime

PRINT #i, USING "###.### "; p; npint; ngint; cr; f;

sigmab / I000; slpstc / I000; sipc / I000; cputime

LOOP

'END OF MAIN PROGRAM

END



SUB agmaj (j)

'THIS SUB-ROUTINE CALCULATESTHE VALUE OF AGMA GEOMETRY
'FACTOR J USED IN BENDING STRESS CALCULATIONS. THE
'METHOD USED HERE IS FROMAGMASTANDARD218o01

zbend : th

'CONSTANT VALUE CALCULATIONS BASED ON Np AND TBEND

no2 = n / 2

xs = pi / 4 + aal _ Zphi + hr / cphi

ys = -aal

phil = tbend - tphi + phi - delta / 4

cphil = COS(phil)

sphil = SIN(phil)

tphii = sphil / cphii

rc = no2 _ cphi / cphi!

'ITERAT!VE SOLUTION FOR ALFA

alfa = pi / 4 'initial value for alfa

DO UNTIL ABS(da) <= .000001

CALL calcfa(fa, fap, alfa, n)

da = -fa / lap

alfa = alfa + da

LOOP

'ONCE ALFA HAS BEEN DETERMINED CALCULATE J

CALL calcfa(fa, faD, alfa, n)

xx = xe 2 / (rc - ye)

y = 1 / (cphil / cphi _ (1.5 / xx - tphil / (2 " xe)))
^

rr = rt + aal 2 / (no2 + aal

ee = .4583662 * phi 'CONSTANT VALUES SUGGESTED BY AGMA

kf = .34 ee + ((2 * xe / rr) (.316 - ee))

((2 * xe / (rc - ye)) (.29 + ee))

j = y / kf

'END OF AGM_J SUB-ROUTINE

END SUB



SUB angles (n, mg)

'SUB-ROUTINE TO CALCULATE ROLL ANGLES

alpha = ((I + 2 * ap / n)

beta = ((mg + 2 * ap / n)

gamma = (I + mg) * tphi
delta = 2 * pi / n

ti = gamma - beta

tl = alpha - delta

th = ti + delta

_f = alpha

^ 2 - cphi2) ^ .5 / cph±
2 mg 2 " cphi2)

'END OF ROLL ANGLE CALCULATION

END SUB

.5 / cphi



SUB approxj (j)

'SUB-ROUTINE TO CALCULATE J VALUE FROMAPPROXIMATE EQUATIONS

zS = "Tooth proportions are not AGMA standards _"

IF phi = 20 THEN
IF ap = 1 THEN

IF dp = 1.25 THEN
IF hr = .3 THEN

aa = 1.763476
bb = 17.3632
cc = 6.676833

j = i / (aa + bb / n + cc / mg / n)

ELSE

PRINT zS: STOP

END IF

ELSEIF dp = 1.4 THEN
IF hr = .35 THEN

aa = 1.791756

bb = 20.13339

cc = 6.039893

j = 1 / (aa + bb / n + cc / mg / n)

ELSE

PRINT z$: STOP

END IF

ELSEIF dp = 1.157 THEN

IF hr = .239 THEN

aa = 1.779485

bb = 16.06663

cc = 7.208083

j = 1 / (aa ÷ bb, / n + cc / mg / n)

ELSE

PRINT zS: STOP

END IF

ELSE

PRINT zS: STOP

END IF

ELSEIF ap = .8 THEN

IF dp = 1 THEN

IF hr = .304 THEN

aa = 1.94547

bb = 11.57097

cc = 5.661053

j = 1 / (aa + bb / n + cc / mg / n)

ELSE



ELSE

ELSE

END IF

END IF
PRINT zS: STOP

PRINT zS: STOP

PRINT z$: STOP
END IF

ELSEIF phi = 25 THEN
IF ap = 1 THEN

IF dp = 1.25 THEN
IF hr = .3 THEN

aa = 1.534702
bb = 13.44529
cc = 4.121288

j = 1 / (aa + bb / n + cc / mg / n)

ELSE

PRINT zS: STOP

END iF

ELSEIF dp = 1.35 THEN

IF hr = .2447 THEN

aa = 1.595463

bb = 15.35728

cc : 3.807733

j = 1 / (aa + bb / n + cc / mg / n)

ELSE

PRINT z$: STOP

END IF

ELSEIF dp = 1.3154 THEN

IF hr = .27 THEN

aa = 1.570434

bb = 14.64792

cc = 3.909965

j = 1 / (aa + bb / n + cc / mg / n)

ELSE

PRINT z$: STOP



ELSE

END IF

ELSE

END IF

END IF

END IF
ELSE
PRINT z$: STOP

PRINT z$: STOP

PRINT z$: STOP

'END OF APPROXJ SUB-ROUTINE

END SUB



SUB calcfa (fa, lap, alfa, n)

'SUB-ROUTINE USED IN CALCULATION OF J-FACTOR. THE

'PARAMETERS CALCULATED IN THIS ROUTINE ARE DEPENDENT

'ON VALUE OF ALFA FROM THE AGMAJ SUBROUTINE (CALCUL-

'ATION OF AGMA J FACTOR)

ks = ys / SIN(alfa)

ke : ks - rt

theta = (xs - ks * COS(alfa)) / no2

beta : alfa - theta

xe = n * SIN(theta) / 2 + ke * COS(beta)

ye = n * COS(the_a) / 2 + ke * SIN(beta)

h = rc - ye

fa = 2 * h * TAN(beta) xe

lap = ((2 * h / (COS(beta)) ^ 2) - ke * SIN(beta)) *

(I - 2 _ ks / (n * SIN(alfa))) + ks * SIN(beta)

' END OF CALCFA SUB-ROUTINE

END SUB



SUB feasible (n, d, mg)

'THIS SUB-ROUTINE ANALYSES A GIVEN SPUR GEAR DESIGN
'USING EQUATIONS GIVEN IN AGMASTANDARD

'WRITE OUT THE VALUE OF ND TO SCREENEACH TIME THE
'ROUTINE IS ENTERED

PRINT "Number of teeth: ", n

'SAVE THE PREVIOUS SET OF DESIGN VALUES IN CASE THIS
'DESIGN TURNS OUT TO BE INFEASIBLE

fl = f
jl = j
mpl = mp
sigmabl = sigmab
sil = sipc
sil = slpstc
aS = "yes"

'ABORT THE ANALYSIS IF Np IS LESS THAN Nmin

IF n < nmin THEN
'NEW DESIGN WAS INFEASIBLE.
'RETURN OLD DESIGN VALUES
aS = "no"

d = I000000

f = fl

j =jl
mp = mpl

sigmab = sigmabl

sipc = sil

slpstc = sll

RETURN

ELSE

END IF

'LOAD, SPEED, AND DERATING FACTOR CALCULATIONS

' (CD=Ca*Cm/Cv)

vt = pi * n * rpm / (12 * p)

wt = 33000 * itor / vt

f = ratio * n / p

'FACTORS USED IN STRESS EQUATIONS



factl = wt * p / f / kv

fact2 = factl _ cp2 / n

'ROLL-ANGLE, CONTACT RATIO, AND I-FACTOR CALCULATION

CALL angles(n, mg)

mp = (alpha + beta

inum = 1

CALL ifact(inum, i)

il = i

inum = 2

CALL ifact(inum, i)

ii = i

gamma) / delta

'CONTACT STRESS CALCULATIONS AT IPC AND LPSTC

slpstc = (fact2 / il) .5
^

sipc = (fact2 / ii) .5

'ABORT THE ANALYSIS IF EITHER OF CONTACT STRESS CONSTRAINTS

'ARE VIOLATED

IF slpsEc > sipc THEN

IF slpstc > ss THEN

'NEW DESIGN WAS INFEASIBLE.

'RETURN OLD DESIGN VALUES

aS = "no"

d = i000000

f = fl

j =jl
mp = mp 1

sigmab = sigmabl

sipc = si!

slpstc = sll

RETURN

ELSE

END IF



ELSEIF sipc > ss THEN
'NEW DESIGN WAS INFEASIBLE.
'RETURN OLD DESIGN VALUES
aS = "no"
d = I000000
f = fl
j = jl
mp = mpl

sigmab = sigmabl

sipc = sil

slpstc = sll

RETURN

ELSE

END IF

'J- FACTOR AND BENDING STRESS CALCULATIONS

CALL approxj(j)

'CALL agmaj(j)

sigmab = factl / j

'ABORT ANALYSIS IF BENDING STRESS CONSTRAINT IS VIOLATED

IF sigmab > bs THEN

'NEW DESIGN WAS INFEASIBLE.

'RETURN OLD DESIGN VALUES

aS = "no"

d = i000000

f = fl

j =jl
mp = mpl

sigmab = sigmabl

sipc = sil

slpstc = sll

RETURN

'RETURN WITH NEW DESIGN VALUES

d = n / p

'END OF ANALYSIS ROUTINE

END SUB
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