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CHAPTER 1

INTRODUCTION

1.1 Need for Probabilistic Design

The structural design, or the design of machine elements,
has been traditionally based on deterministic design
methodology. The deterministic method considers all design
parameters\to be known with certainty. This methodology is,
therefore, inadequate to design complex structures that are
subjected to a variety of complex, severe loading conditions.
A nonlinear behavior that is dependent on stress, stress rate,
temperature, number of load cycles, and time is observed on
all components subjected to complex conditions. These complex
conditions introduce uncertainties; hence, the actual factor
of safety margin remains unknown. In the deterministic
methodology, the contingency of failure is discounted; hence,
there is a use of a high factor of safety. It may be most
useful in situations where the design structures are simple.

The probabilistic method 1is concerned with the
probability of non-failure performance of structures or
machine elements. It is much more useful in situations where

the design is characterized by complex geometry, possibility
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Qf catastrophic failure, or sensitive loads and material

properties.

1.2 Role of Probabilistic Methodology

The probabilistic design methodology (PDM) produces
designs that are robust and allows the quantification of the
level of reliability in the design. Probabilistic methods
enable us to model the uncertainties and random variabilities
and to include them consistently in our computations. Using
probabilistic models, the sensitivity of the failure risk to
different uncertainties (randomness and modelling
uncertainties) in design parameters is rigorously analyzed. It
is becoming substantially evident that the PDM is beginning to
attract more attention. The evidence includes the growing
number of reliability-oriented specialty conferences, short
courses, sponsored research, and technical papers [1-5]. Some
of the reasons for the increasing acceptance of PDM are [6]
1) The deterministic method can provide some basic information
to complex design problems, but it provides no information
with regard to the reliability of the design.
2) Probabilistic computations are becoming simpler and less
expensive because of new software being developed.
3) The PDM and the information it provides are becoming more

widely understood and better appreciated.
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Probabilistic design approach has been successfully
applied to various loading conditions encountered during space
flight. This methodology has successfully been applied to both
large scale and small scale problems such as buckling,
transient dynamics, random vibration and harmonic excitation.
Shaio and Chamois [7] applied this approach to determine
structural reliability and to assess the associated risk due
to various uncertainties in design variables. Using this
approach Shantaram et al [8] studied the effect of combined
mechanical and thermal loads on space strusses. Most of these
works relied on the tool NESSUS, developed under NASA’s
probabilistic structural analysis program.

In this project, the PDM has been applied to the design
of a worm gear, to illustrate its applicability to the design
of machine elements. In the design analysis, four failure
modes are considered: bending stress, thermal capacity,
contact stress, and wear. Several trial runs were made using
NESSUS; each trial was aimed at improving the design. The most
sensitive parameter in the design is identified using

sensitivity analysis.

1.3 Organization of thesis
The basic concepts and the statistical parameters applied

in probabilistic design methodology are discussed in Chapter
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2. In Chapter 3, the application of probabilistic design
methodology in the design of worm gears is given. In Chapter
4, the system reliability using PDM is addressed. The finite
element analysis of the stress distribution and the
displacement of the gear teeth due to the applied load are
examined in chapter 5. The conclusion of the project and
suggestions for future research are presented in chapter 6.
The diagram of the worm gear 1is shown in Appendix-A.
Appendixes B and C contains the step-by-step procedure for
running Nessus, for individual failure mode and system

failure.



CHAPTER 11

PROBABILISTIC DESIGN METHODOLOGY

2.1 Function of Probability in Engineering

In engineering designs, decisions are often required
irrespective of the state of completeness or quality of
information and thus are made under conditions of uncertainty.
In other words, the consequence of a given decision cannot be
determined with complete confidence. Additionally information
must often be inferred from similar circumstances or derived
through modelling. Many problems in engineering involve
natural processes and phenomena that are inherently random;
the states of such phenomena are naturally indeterminate and
thus cannot be described definitely. For these reasons,
décisions required in the process of engineering planning and
design invariably must be made and are made under conditions
of uncertainty.

The effects of such uncertainties in design and planning
are important, to be sure; however, the quantification of such
uncertainty and proper evaluation of its effects on the
performance and design of an engineering system, should
include concepts and methods of probability. Further more,

under conditions of uncertainty, the design and planning of

5
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engineering systems involve risks, and the formulation of
related decisions requires them to be risk free. The problems
of uncertainty in design can be overcome by applying the
methods of probability. Thus, the role of probability is quite
pervasive in engineering. It ranges from the description of
information to the development of bases for design and

decision making.

2.2 Terms involved with Probabilistic Analysis

Many phenomena or processes of concern to engineers
contain randomness; that is, the actual outcomes to some
degree are unpredictable. Such phenomena are characterized by
experimental observations that are different from one
experiment to another, even if performed unaer identical
conditions. 1In otﬁer words, there is usually a range of
measured or observed values, and within this range, certain
values may occur more frequently than others. Clearly, if
recorded data are of a variable exhibit scatter or dispersion,
the value of the variable cannot be predicted with certainty
[9]. Such a variable is known as a random variable, and its
value or range of values can be predicted only with an
associated probability. When two or more random variables are
involved, the characteristics of one variable may depend on

the other.
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Since there is a range of possible values of random
variables, we would be interested in some central value, such
as the average. In particular, because the different values of
the random variable are associated with different
probabilities, the weighted average is taken into
consideration. This weighted average is known as the sample
mean value of the random variable. Therefore, 1if X 1is a
discrete random variable, then the mean value p, is obtained

as follows:

@-1)

* |

where,
B, is the mean
X is the random variable.

n is the number of observations.

Besides the sample mean, the next most important quantity
of a random variable is 1its measure of dispersion or
variability; that is, the quantity that gives a measure of how
widely the values of the variate are spread around its mean
value. This deviation can be above or below its central value.
If the deviations are taken with respect to its mean value,

then a suitable average measure of dispersion is called the



variance and i1s computed using the following relation:

(Y - p)
Vor (X) = _(_._".1_’.‘1. (2-2)

n-1

where,

Var (X) is the variance of the random variable X.

Dimensionally, a more convenient measure of dispersion is

the square root of the variance, or the standard deviation:

o, - YVa(X) (2-3)

x

where,

O, is the standard deviation of the random variable X.

It is difficult to say whether the dispersion 1is
large or small, on the basis of the variance or standard
deviation. For this purpose, the measure of dispersion
relative to the central value is more useful. In other words,
whether the dispersion is large or small is meaningful only in
relation to the central value. For this reason, coefficient of
variation (COV) is often preferred; COV is a convenient non-
dimensional measure of dispersion or variability. The
coefficient of variation is related to the mean and standard

deviation is as fellows:



(]
cov - = @2-49)

b
where,
o,= Standard deviation of the variable X.

u,= Mean value of the variable X.

The application of probability is not limited to the
description of experimental data, or the evaluation of the
statistics, such as the mean and standard deviation. In fact,
the more significant role of probability concepts is in the
utilization of this information in the formulation of proper

bases for the design.

2.3 Uncertainty associated with design

Engineering unéertainty is not limited to the variability
observed in the basic variables. First, the estimated wvalues
of a given variable (such as the mean), based on observational
data, will not be error-free. Second, the mathematical or
simulation models. For example, formulas, equations,
algorithms, and laboratory models, that are often used in
engineering analysis and design are idealized representations
of reality. Consequently, predictions and calculations made on
the basis of these models may be inaccurate (to some unknown

degree) and thus also contain uncertainty. Human error can
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;esult from errors made by engineers and technicians during
the design or operations phases. It can be reduced by
improving the quality- of-control program, but it cannot be
avoided entirely. In general, human error is very difficult to
define. In this study, human error will be treated as
modelling error [10}]. In some cases, the uncertainties
associated with such predictions or model errors may be much
more significant than those associated with the inherent
variabilities.

All uncertainties, whether they are associated with
inherent wvariability or with prediction error, may be
assessed in statistical terms and the evaluation of their
significance on the design can be accomplished by the concepts

and the methods of probability.

2.4 Designing under uncertainty

If there are uncertainties in the design, the next step
is, to ask how should designs be formulated or decisions
affecting a design be resolved? Presumably, we may assume the
worst conditions and develop conservative design on this
basis. From the system performance and safety point of view,
this approach may be suitable. However, the resulting design
would be too costly as a result of over-conservatism. On the

other hand, an inexpensive design may not ensure the desired
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level of performance and safety. Therefore, the decisions
Should be made considering cost and safety of the design. The
most desirable solution is one that is optimal, in the sense
of minimum cost and maximum benefits. If the available
information and the models to be evaluated contain
uncertainties, the analysis should include the effects of such
uncertainties [9].

Let us consider a simple example of design of structures
and machines. In structural or machine components that are
subjected to cyclic loads, the fatigue life of the component
is also random, even at constant amplitude stress cycle, as
shown in Figure 2-1. For this reason, the useful life of the
component 1is to some degree unpredictable. A design will
depend on the life and reliability. For a given design, the
shorter the required service life, the higher the reliability
against possible breakdowns within the specified service life.
Fatigue life is also a function of the applied stress level.
Generally, the higher the stress, the shorter the fatigue

life.

10-7

- / Lognormal : . ¢26.75
N «19.0
0.2 / \Q/F ‘
\'\
0 ‘f F:F_}_

(3 ) 30 as €0 s
2 109 Cycles

Figure 2-1: Fatigue life of 75 S-t Aluminum [6)
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If a desired life is specified, the components could be
designed to be massive so that the maximum stresses will be
low; thus, the design can have a longer life. This approach
will be expensive in terms of material cost. In contrast, if
the parts are under-designed, high stresses may be induced,
resulting in shorter life and frequent replacements.

The optimal life may be determined on the basis of
minimizing the total expected cost, which would include the
initial cost and the expected cost of replacement (a function
of reliability or probability of less failure). The total
expected cost as a function of probability is given as follows

[11]:

C, - C, + PyC, @-5)

where,
C.,= Total expected cost.
C,= Maintenance cost.
C;= Initial cost.

P,= Probability of failure of the design.

Once the desired probability of failure of the design is
decided, the components may then be proportioned accordingly.
Thus, probabilistic design 1is concerned with the
probability of failure or preferably reliability. This

methodology is most useful when uncertainties in material
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properties and loading conditions are considered. To apply
probabilistic methodologies, all uncertainties are modelled as
random variables, with selected distribution types, means, and
standard deviations [12]. The primitive (random) variables

that affect the structural behavior have to be identified.

2.5 Design Stages of PDM

Every design project demands some sequential stages of
reflection before one can arrive at the final design goal.
This is also the case with PDM. The various design stages of
PDM are as follows:

1. Defining the Problem.

2. Generating design parameters.

3. Relating the defined problem to the design parameters.

4. Assembling data and applying probability concepts.

5. Using probabilistic analysis.

6. Interpreting results.

The design stages of PDM are shown in Figure 2-2.

1. Defining the Problem.

The first step which a designer takes in solving a design
problem is to find out the main objective of the design. After
finding out the objective, the next step is to define in a
precise manner the functional requirements of the system or

component to be designed. These functional requirements should
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be able to completely characterize the design objective by
defining it in terms of specific needs. With a clear
understanding of what one is searching for, the designer then

goes to the next stage.

2. Generating design parameters.

In order to solve the defined problem, acceptable design
parameters that will meet the defined functional requirements
must be generated. To generate the design parameters, one
utilizes an appropriate design model. The various parameters,
such as load, material properties, geometry, crack size, etc,
are taken into consideration. The design parameters to be

selected depend on the objective of the design [13].

3. Relating the defined problem to the design parameters.
After defining the design parameters the designer then
relates the functional requirements in the functional domain
to the design parameters in the physical domain, to be sure
that the objective 1is satisfied. If the relation is
satisfactory, the designer proceeds to the next stage; if not,

the relation is redefined so that the objective is satisfied.

4. Assembling data and applying probability concepts.

This stage requires assembling the essential data that
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are available on the problem with regard to the design
parameters. If some of the data are unavailable, then it
becomes necessary to perform a computational simulation
analysis to generate the missing details. Once the data have
been assembled, the next stage is to analyze the assembled
data. NESSUS is the computer tool that is used to perform the
analysis. NESSUS has three modules: NESSUS/PRE, NESSUS/FEM,
and NESSUS/FPI.

NESSUS/PRE is a preprocessor which prepares the
statistical data needed for the probabilistic design analysis.
It allows thé user to describe the uncertainties in the
structural design parameters. The uncertainties in these
parameters are specified by defining the mean value, the
standard deviation, and the distribution type, together with
an appropriate form of correlation. Correlated random
variables are then decomposed into a set of uncorrelated
vectors by a modal analysis.

NESSUS/FEM is a general purpose finite element code,
which is used to perform structural analysis and evaluation
of sensitivity due to variation in different uncorrelated
random variables. The failure surface, defined in terms of
random variables required for probabilistic analysis in
NESSUS/FPI, is obtained from NESSUS/PRE. NESSUS/FEM

incorporates an efficient perturbation algorithm to compute
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the sensitivity of random variables [13].

NESSUS/FPI is an advanced reliability module, which
extracts the database generated by NESSUS/FEM to develop a
response model in terms of random variables. In this module,
the probabilistic structural response 1s calculated from the
performance model [14]. The probability of exceeding a given
response value is estimated by a reliability method. Inside
the NESSUS/FPI module is a sensitivity analysis program, which
determines the most critical design parameters in the design.

The input data for NESSUS/PRE require fundamental
knowledge of statistics or probability theorems. The expected
details will include determining the mean, standard deviation,
median, coefficient of variation, variance, etc., associated
wWith each random variable. The designer also determines the
probability distribution function that best describes each
random variable. The different modules of NESSUS are shown in

Figure 2-3.

5. Using probabilistic analysis

It is at this stage of the design that the designer
defines a limit state function. The 1limit state function
defines the boundary between the safe and failure region. In
the limit state function approach for structural reliability

analysis, a limit state function g(X) is first defined. The g-
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Nessus/Expert Random
l Field data
Finite
Element Random Nessus/PRE
Model vectors
Nessus/FEr ——® Derturbation
‘ data base
User
queries Nessus/F Pl Lt
Analysis
results

Figure 2-3: Modules of NESSUS

function is a function of a vector of basic random variables,
X=(X,, X, X3, - .. .X,) with g(X) = 0 being the limit state surface
that separates the design space into two regions, namely,
the failure g(s0) and the safe g(>0) regions [15].
Geometrically, the 1limit state equation, g¢g(X)=0, is an n-
dimensional surface that may be called the "failure surface".

One side of the failure surface is the safe state, g(X)>0,
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whereas the other side of the failure surface is the failure
state, g(X)<o0.

The probability of failure in the failure domain, Q, is
given by [16]

P = [o.. . JE,(X) dx (2-6)
where f, (X) is the joint probability density function of X,
and 2 is the failure region. The solution of this multiple
integral is, in general, extremely complicated. Alternatively,
a Monte Carlo solution provides a convenient but usually time
consuming approximation.

From the-Figure 2-4, as the limit state surface g(X)=0
moves closer to the origin, the safe region, g(X)>0, decreases
accordingly. Therefore, the position of the failure surface
relative to the origin of the reduced variates, should
determine the safety or reliability of the system. The
position of the failure surface may be represented by the
minimum distance from the surface g(X)=0 to the origin. The
point on the surface with minimum distance to the origin is
the Most Probable Point (MPP). This is usually determined by
fitting a local tangent to g(X) and moving this tangent until
MPP is estimated [17]. The limit state function method uses
the Most Probable Point (MPP) search approach. The Most
Probable Point is the key approximation point for the FPI
analysis; therefore, the identification of MPP is an important

task. In general, the identification of the MPP can be
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formulated as a standard optimization problem and solved by

proper optimization methods [18].

N
N\

initial Sampling

/ region

MPP(U¥)

. N
Final Sampling ———p» N
Surface

Failure
region

0 N\
\ \
AN
safe g(x)=0
region

A Y

Figure 2-4 lllustration of Most probable point

In the NESSUS code, MPP is defined in a transformed space
called u-space, where the u's are independent to facilitate
the probability computations. By transforming g(x) to g(u),
the most probable point, u’, on the limit state, g(X)=0, is
the point which defines the minimum distance from the origin
to the limit state surface. This point is most probable (in

the u-space) because it has maximum joint probability density
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on the limit state surface [19]. The required minimum distance

is determined as follows. The distance from a point
u=(u;,",u,’,...,u,) on the failure surface g(u)=0 to the origin
is

R A . ul Q-7

where D is the minimum distance from the point on the limit
state surface to the origin.

The FPI code assumes only one MPP. In general, however,
the possibility exists that there may exist mﬁltiple local and
global Most Probable Points. A two MPP problem can occur,
for example, if the g-function is quadratic and the search
algorithm results in an oscillating (non-convergent) search.
The required number of iterations for finding MPP is usually
less than ten.

Several approaches are available to search for the MPP.
The search procedure depends on the forms of the g-function.
One efficient method is the Advanced Mean Value method. This
ﬁethod blends the Eonventional mean value method with the
advanced structural reliability analysis method. This method
provides efficient cumulative density function analysis as
well as the reliability analysis. The step wise AMV method can

be summarized as follows [20]

1. Obtain the g(X) function based on perturbations about
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the mean values.
2. Compute the cumulative density function of the
performance function at selected points using the fast
probability integration method.
3. Select a number of cumulative density function values
that cover a sufficiently wide probability range.
4. For each cumulative density function value, identify

the most probable point.

Another approach that is considered efficient as well is

the Adaptive Importance Sampling Method. This method focusses
on minimizing the sampling domain in the search space after
the MPP is identified. The Adaptive Importance Sampling method

is generally used for system reliability analysis.

The analytical process involved in the 1limit state

approach can be illustrated by a basic structural reliability
example, where one load effect S, restricted by one resistance

is considered.

If one considers a case when R and S are independent,

the limit state equation can be expressed as,

g=R-38 (2-8)

and the probability of failure can be expressed as,

P, = P(R-S<0) = [[fa(r)£fs(s)dr ds (2-9)

For any random variable the cumulative density function

F(x), is given by



F,(x) = P(X < x) = [£f (y)dy (2-10)
provided that x 2 vy
Therefore P, is expressed as

P, = P(R-S<0) = [Fy(x)fs(x)dx (2-11)

23

Assuming a special case of normal random variables, for

some distributions of R and S, it is possible to integrate the

equation (2-11) analytically and determine the probability of

failure. If S and R have mean p; and ps; and variances oy and

Os respectively, the g-function has a mean K, and variance o/,

given by
Hy = Br ~ Bs (2-12)

O = O + O¢ (2-13)

Hence, the probability of failure is given as,

‘ o
P, - P(R-Ss0) - P(gs0) - ¢[—E£] (2-14)
[+
4

Which reduces to,

o[- ———1 - ¢ (P (2-15)

where f is defined as the safety index and is given by,

p - (2-16)

%
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Thus the probability of failure is given as
P, - ¢(-B) (2-17)

which can be written as:

Py« 1-4(B) (2-18)

The reliability of the system is given by

r

P, - 1-P, (2-19)

where P, is the reliability of the system.

6. Interpreting results:

This is the last stage in the methodology. When the
designer approaches this stage, he interprets the results
obtained with reference to the initial objective. If the
results do not satisfy the functional requirements in the
stage 1, the designer may make necessary adjustments in order

to achieve the set objective.

2.6 Probability Sensitivity Factors

In engineering performance analysis, many sensitivity
measures can be defined. It is important for the designer to
know the effect of each random variable in the analysis. The

sensitivity information is quantified by sensitivity factors.
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Sensitivity factors indicate which random variables are
crucial and require special attention. In order to perform a
sensitivity analysis of the effect of each of the random
variables, one uses the generic material property degradation
model, known as the Multifactor Integration Equations, given

by Shah et al [21]. A specific form of this model is given as

T, -
M, « M (~Lf—y(—L—y ¥ (2-20)
» ”Tf-T. Sf-o‘ IogN"( - logN,,
where,
M, = Degraded material property

M,. = Reference material property

T = Temperature

T; = Final temperature

T, = Reference Temperature
S = Strength

o = Stress

O. = Reference Stress

N. = Mechanical cycles

N, = Final Mechanical cycles

N,.= Reference mechanical cycles

The exponents n, p, and g are determined from

available experimental data or can be estimated from the
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anticipated material behavior due to the particular primitive
random variables. Each term inside the bracket in the equation
(2-20) is called an effect. Any number of effects can be
included in the equation. In general, the generic form of

equation (2-20) is

M N yv_.va
=2 . gL+ (2-21)
M” ‘_1 Vf'V.l

where V denotes an effect and the subscripts o and f represent
conditions at reference and final stages. The variable in the
above equation can be random and have any probability
distribution.

The commonly used sensitivity in deterministic analysis
is the performance sensitivity, 08Z/dX;, which measures the
change in the performance due to the change in a design
parameter. This concept can be extended to the probabilistic
analysis in which a more direct sensitivity measure is the
reliability sensitivity, which measures the change in the
probability/reliability relative to the distribution
parameters, such as the mean and the standard deviation.
Although not automated in the code, this analysis can be
performed by varying the parameters [227.

Another, perhaps more important, kind of probability or
reliability sensitivity analysis is the determination of the

relative importance of the random variables. This analysis can
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be done, for example, by repeated probabilistic analysis in
which one random variable at a time is treated as a
deterministic variable. The results of the analyses, for
example, are a number of cumulative density function curves or
reliabilities. Based on the results, the relative importance
of the random variables can be analyzed. The standard FPI
output includes a first order sensitivity factor which
provides approximate relative importance of the random
variables. The probability sensitivity factors are defined as
follows.

At the most probable point, U' = (u,", u,’, ... u.,), the
first order probability estimate is ®(-B) where

B = u,%+u,"+.. u,*? ” (2-22)

The sensitivity factor o is defined as:

o; = u; /B (2-23)
which is the direction cosine of the OP vector (from the
origin to the minimum distance point) as shown in Figure 2-5.
Thus,

O 4065 +..... o =1 (2-24)
which implies each o, is a measure of the contribution to the
probability (since the probability is related to B). Higher
o indicates higher contribution and vice versa.

Based on a geometrical analysis in the u- space, it can

be shown that [10]
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og
mod & «[—-]o 2-25
! [aX‘] d ( )

where O; is the normal standard deviation. It can be concluded
that o depends on both the performance sensitivity and the
uncertainty. In general, the sensitivity factors depend on the

g-function as well as the probability distribution.

uz
— Adjust curvature to
cover failure region

Initial Sampling (MPP)
Surface ——P

us

Figure 2-5: IHustration of Sensitivity Factor.



CHAPTER 111

APPLICATION OF PROBABILISTIC METHODOLOGY IN DESIGN

The probabilistic design methodology described previously
was applied to design worm gears, to illustrate its
application in machine design . The worm gear Figure with the
terminology is shown in Appendix-A. In the analysis of the
design, four different failure modes of the worm gears were
considered: bending stress, thermal capacity, contact stress
and failure due to wear. An overview of these failure modes

is given as follows.

3.1 Failure modes of Worm Gear

3.1.1 Bending stress: When worm gear sets are used
intermittently or at slow gear speeds, the bending strength of
the gear tooth may become a principal design factor [23]. The
teeth of worm gears are thick and short at the two edges of
the face and thin at the central plane, and this makes it
difficult to determine the bending stress. The equation for

the bending stress given by Buckingham is as follows:

(3-1

29
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where,
O, = Bending stress, psi
F, = Dynamic load, 1lb
P = Axial pitch, in
b = Face width of the gear, in
Y = Form factor of the gear.
3.1.2 Thermal capacity of worm gear set: One of the

major problems associated with worm gear sets is the question
of how much heat is developed during operation and whether the
gear case 1is eapable of dissipating this heat. In fact, most
worm gear units have their horsepower capacity limited by the
heat dissipation ability of the casting. The transfer of heat
is accomplished by both radiation and convection [24]. In
arriving at an equation to determine how much heat can be
dissipated, such factors as housing area, temperature change
between lubricant and ambient air, and a combined heat
transfer coefficient must be considered. The wusual heat
transfer equation can be written as
H = C,*A_*At (3-2)

where,

H = The enerqgy dissipated through the housing, ft-lb/min

C, = Combined heat transfer Coefficient, ft-1lb/min in® F

A. = Area of housing exposed to ambient air, in?
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At = Temperature difference between oil and ambient

air, F

The heat energy that must be dissipated from the casing
can be determined by considering the frictional or lost horse-
power. The heat energy which must be dissipated 1is given by

Hy = HP* (1-e) (3-3)

where ,

Hy = The heat energy developed, ft-1b/min.

HP = Horse power input.

e = Efficiency.

The efficiency is computed using the relation

cos$, - fland
cos¢n ~fcotlw

c- (3-4)
where,

¢,= Pressure Angle

A= Lead Angle.

f, coefficient of friction is computed wusing the
following equation

f = 0.32/v.0-3 (3-5)

where,

V. is the Sliding velocity in ft/min.

Clearly the heat energy developed, Hy, must be equal to

or less than the heat energy dissipation capacity H.
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3.1.3 Contact stress: The contact stress is developed due
to the contact between two members. To design for a safe
contact stress, the working contact stress must be less than
the endurance strength of the gear material. The contact
stress for the worm gears is given as follows:

2.F,

0, » —d_ 3.6)
€ #.C,« D (

D is given by

(3-7

where,
o. = Contact stress developed, psi
F, = Dynamic load, 1lb
C, = Contact Length, in
u = Poisson ratio
E = Youngs modulus of the material, 1b/in?
d, = Diameter of the worm, in
d = Diameter of the gear, in

3.1.4 Wear: An approximate equation suggested by
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Buckingham is usually used to determine the allowable wear
load. The limiting wear load is given by
F, = D,*b*K (3-8)
where,

F, Limiting wear load, 1lb

Dg

Pitch diameter of the gear, in

b = Face width, in

K= A constant dependent on the material used, 1lb/in?

The functional requirement in the design is to reduce the
probability of failure or increase the reliability of the
system. 1In ofder to achieve this, each failure mode 1is
considered separately, and the corresponding probability of
failure is computed. After finding the individual probability
of failure, the combined effect of the failure modes 1is
cqmputed. But before going actually into PDM, the problem
solved by the deterministic method is given to show the

contrast between the two methodologies.

3.2 Deterministic method

Problem Statement: Design a worm gear set to deliver 15
hp from a shaft rotating at 1500 rpm to another rotating at 75
rom. Assume that normal pressure angle is to be 20 degrees.
The lead angle should not exceed 25 degrees. Allow 6 degree

per thread of worm. The worm could have 4 or less teeth [25]).
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The design parameters and the deterministic design values

are shown in Table 3-1

Table 3-1: Deterministic Design Values

Design Parmater " Value
S, (pst) 12000
E, (Ib) 1731
P (in) 3.23
b (in) 20
Y 0.392
C, (R-Ib/min in. °F) 0.43
A, (in?) 2766.6
D, (°F) 350
HP (hp) 16.7
e 0.92
S. (pst) 40000
C, (in) 5.004
M, 0.4
E (psi) 0.18E+08
D, (in) 4.0
D, (in) 19.1
K (Ib/in?) 80

* Mean Values taken from [25]



where,
S, = Bending stress, psi
S. = Contact stress, psi
M, = Poisson ratio

Summary of Results [25]:

Bending
Opmax)= 12000 psi (845.4 kg/cm?)
O, = 7131.54 psi (502.41 kg/cm?)
F.S = 1.682

Thermal
H = 119,000 ft-1b/min (30050.505 kg-cm/sec)
Hy = 378521.18 ft-1b/min (13095.95 kg-cm/sec)
F.5 = 2.29

Contact
Ocma)= 40000 psi (2818 kg/cm?)
O. = 37924.3 psi (2671 kg/cm?)
F.s = 1.05

Wear
Fw = 3056 1lb (1389.09 kg)
Fd = 2500 1b (1136.36 kg)

F.5 = 1.344

35
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3.3 Algorithm for Probabilistic Design Methodology.
Step 1. Determine the objective and functional requirement of
the design.
Step 2. Identify the design parameters involved.
Step 3. Obtain the statistical parameters such as mean,
standard deviation and the distribution type of the design
parameters.

Step 4. If (the mean is known) then (Go to step 5)

else
Do a computer simulation to calculate the mean or
get the mean from a deterministic design without
factor of safety.

end if

Step 5. If (the standard deviation is known) then (Go to

step 6).
else
Calculate the standard deviation by probability
method or assume acceptable standard deviation.
end if

Step 6. If (the distribution type is known) then (Go to
step 7)
else
Determiﬁte the distribution from probability paper

or assume the distribution type.
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end if
Step 7. Identify the major failure modes present in the
design.
Step 8. Formulate the limit state functions of the failure
modes.
Step 9. Do probabilistic analysis with available software.
Step 10. Obtain the most critical parameters from the
sensitivity analysis.
Step l]1. Obtain the safety index and probability of failure
calculated from the analysis.
Step 12. If (the safety index is low or if the probability of
failure is high)
then ( the values of the critical parameters are
adjusted). Go to step 9 to repeat the process till acceptable
probability of failuré is obtained
else
Get the probability of failure and design values.
end if
Step 13. If (the number of failure modes is more than one)
then ( Go to step 14)
else
Go to step 17

end if
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§;g§L_1£. System reliability is to be done. Fault -Tree
analysis is performed to compute system reliability.

Step 15. Do the system reliability analysis with the available
software.
Step 16. Get the reliability of the system, probability of
failure.
Step 17. Stop the analysis

The flow chart representation of the algorithm is shown

in figure 3-1.

3.4 Application of the algorithm in the Design of Worm Gear.
Step 1. The objective is to design a worm gear set and the
functional requirement is to increase the reliability of an
existing worm gear design.

Step 2. The design parameters are shown in Table 3-1

Step 3. The mean values of the design parameters are taken
from an existing design [25]

Step 4. The standard deviation of the design parameters were
not known. The standard deviation was assumed.

Step 5. The distribution type was not known, hence the
distribution type was assumed.

Step 6. The major failure modes in worm gear design are
bending stress, thermal capacity, contact stress, and failure

due to wear.
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The limit state functions for the four failure modes

gear design are:

Stress

FpP
b¥

g = S, -

Stress

g, =CeAD - HP (l-e) = 0

Stress

is defined by equation (3-7).

g,-Dsb-K-F,«0

(3-9)

(3-10)

(3-11)

(3-12)

Step 8. The probabilistic analysis was done using Nessus. The

step-by-step procedure for running Nessus is given in

Appendix-B
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gtgg 9. The critical design parameters were found from the
sensitivity analysis. From figures 3-2 through 3-5, it can be
seen that the critical parameters are, b, face width, ¢,
contact length, e,thermal efficiency
Step 10. The probability of failure for the four failure modes
obtained after the first trial are shown in Table 3-2.

Step 11. The probability of failure was high after the first
trial. The design values of the critical parameters were
adjusted and four trial runs were made with each trial aimed
at improving the design.

Step 12. The probability of failure of the failure modes after
the fourth trial are shown in Table 3-2.

Table 3-2: Probability of failure of the failure modes.

FAILURE MODE PROBABILITY OF FAILURE
Initial Final

Bending Stress 0.1311524E-02 0.55279E-05

Thermal Capacity 0.1508843 0.704601E-01

Contact Stress 0.2206627 0.813815E-01

Wear 0.117788 0.111040E-03

Step l13. The final probabilistic design values obtained after

the fourth trial are shown in the Table 3-3.
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Fig 3-4: Sensitivity analysis of variables Fig 3-5: Sensitivity analysis of variables

in thermal failure mode (Pf =

0.704604E-01)

in wear failure mode (Pf = (0.11104E-03)

Table 3-3 : Final Probabilistic Design Values for Worm Gear
Design

Design Probabilistic Design | Standard Distribution

Parameter | Value Deviation Type

S, (psi) 12000 1200 NORMAL

F, (Ib) 1731 173.1 NORMAL

P (in) 3.23 0323 NORMAL

b (in) * 26 0.26 NORMAL

C, (ft-1b/ 0.43 0.043 NORMAL

min in °F)




Table Continued:

Y 0.392 0

A, (in%) 2766.6 276.6 NORMAL
D, (°F) 350 35 NORMAL
HP (fi- 229000 229 NORMAL
1b/min)

e* 0.97 0.097 NORMAL
S, (psi) 40000 400 NORMAL
C, (in) * 5.504 0.5504 NORMAL
M, 0.4 0.04 NORMAL
E (psi) 0.18E+08 0

D,, (in) 4 0.4 NORMAL
D, (in) 19.1 1.91 NORMAL
K (Ib/in?) 80 8 NORMAL

* Critical Design Parameter

Step l4. The number of failure modes is more than one.

system reliability is done.

43

So

Step 15. The design values obtained in step 13 are used to do

system reliability.

Step 16. Fault-Tree analysis is used to compute the system

reliability. The methods used are

1.

Adaptive Importance Sampling Method

2. Monte-Carlo Method.
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Step 17. The analysis is done using Nessus software. The step-
by-step procedure for running Nessus to compute system
reliability is shown in Appendix-C
Step 18. The probability of failure of the system and the

reliability computed are shown in Table 3-4.

Table 3-4: System Probability of failure and Reliability

Method Probability of failure Reliability
Adaptive Importance 0.666591E-01 0.933341
Sampling method
Monte- Carlo Method 0.66657E-01 0.933343

3.5 Explanation of results.

The analysis yields a probability of failure for the
défined limit state function. From the sensitivity analysis of
the bending stress, it can be interpreted that the face width,
b is the most sensitive parameter, shown in Figure 3-6. The
value of the face width is increased from 2.0 to 2.2, and the
analysis is done for the second trial. Four trials were made
during the analysis. The Figures 3-6, 3-10, 3-14, and 3-2 show

the sensitivity analysis and the probability of failure.

The results of the sensitivity analysis of the thermal
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capacity of the gear set are shown in Figures 3-7, 3-11, 3-15,
and 3-4. Figure 3-7 indicates that power efficiency is the
most sensitive parameter. The value of the efficiency is as
shown in equation (3-4) is increased to reduce the probability
of failure. The efficiency can be increased by reducing the
churning loss of o0il in the gear casing. Four trial runs are
made, and the corresponding values are shown in Tables 3-6, 3-

10, 3-14 and 3-18.

In contact stress, the contact length,C, is found to be
the most sensitive parameter. The value of the contact length
is increased and the second trial is made. Four trials are
made in a similar way. The sensitivity analysis and the
probability of failure are shown in Figures 3-8, 3-12, 3-16,
and 3-3. The values of the design parameters are shown in

Tables 3-7, 3-11, 3-15, and 3-109.

In wear failure mode the most sensitive parameter was
found to be K, a constant dependent on the material. Since
this parameter is a constant, which depends on the material,
the next sensitive parameter face width, b, is taken into
consideration. The value of the face width is increased from
2.0 to 2.2. The second trial is made with the new values, and
the corresponding sensitivity analysis and the probability of
failure are noted down. Four trial runs were made, and the

sensitivity analysis is shown in Figures 3-9, 3-13, 3-17, and
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3-5. The values of the variables are shown in Tables 3-8,3-12,

3-16, and 3-20.

The values of the most sensitive design parameter in the
design are reduced slightly to study the effect on the
probability of failure. The reduced values of the four failure
modes are shown in Tables 3-21, 3-22, 3-23, and 3-24. The
sensitivity analysis and the probability of failure for these
values are shown in Figures 3-18, 3-19, 3-20, and 3-21. It is
found from the present analysis that as the value of the most
sensitive design parameter is reduced, the probability of

failure increases, which is undesirable.

The data which was put into the NESSUS for the four
failure modes are shown in Tables 3-5, 3-6, 3-7, and 3-8. The
sensitivity analysis of this trial is shown in Figures 3-6, 3-
7, 3-8, and 3-9. From the results of the present design
analysis, it can be concluded that the system fails mainly by

contact stress.
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3-5. The values of the variables are shown in Tables 3-8,3-12,

3-16, and 3-20.

The values of the most sensitive design parameter in the
design are reduced slightly to study the effect on the
probability of failure. The reduced values of the four failure
modes are shown in Tables 3-21, 3-22, 3-23, and 3-24. The
sensitivity analysis and the probability of failure for these
values are shown in Figures 3-18, 3-19, 3-20, and 3-21. It is
found from the present analysis that as the value of the most
sensitive design parameter is reduced, the probability of

failure increases, which is undesirable.

The data which was put into the NESSUS for the four
failure modes are shown in Tables 3-5, 3-6, 3-7, and 3-8. The
sensitivity analysis of this trial is shown in Figures 3-6, 3-
7, 3-8, and 3-9. From the results of the present design
analysis, it can be concluded that the system fails mainly by

contact stress.



TABLE 3 - 5 : BENDING STRESS FAILURE MODE DATA

INPUT TABLE
TRIAL -1

Design Mean Standard Distribution type
paramters Deviation
S, (psi) 12000 1200 NORMAL
F, (Ib) 1731 173.1 NORMAL
P (in) 3.23 0.323 NORMAL
b (in) 20 0.2 NORMAL
Y 0.392 0

47
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SENSITIVITY ANALYSIS (BENDING STRESS)

Probablllty of failure=0.1311524E-02
0.8 - : —

0.6 - -

0.4 —- -

Sensitivity factors

Variables

Figure 3-6: Bending Stress Analysis Trial -1



49

TABLE 3 - 6 : THERMAL CAPACITY FAILURE MODE DATA
INPUT TABLE
TRIAL -1
Design paramters Mean Standard Distribution type
Deviation

C, (f-Ib/minin°F) | 0.43 0.043 NORMAL
A, (in) 2766.6 276.6 NORMAL
D, (°F) 350 35 NORMAL
HP (ft-1b/min) 0.229E+06 0.229E+03 NORMAL
e 0.92 0.092 NORMAL
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SENSITIVITY ANALYSIS (THERMAL CAPACITY)

Probability of failure = 0.1508843

1 _ e — o .- —
2 0.8 -
8 :
o :
_ 06
o |
ks 0.4+~ . T
4
B0.2 L

Cr Ac Dt HP e

Variables

Figure 3-7: Thermal Capacity Analysis Trial -1



TABLE 3-7 : CONTACT STRESS FAILURE MODE DATA

51

INPUT TABLE
TRIAL -1
Design Parameters | Mean Standard Distribution Type
Deviation

S. (psi) 40000 400 NORMAL
F, (Ib) 1731 173.1 NORMAL
C, (in) 5.004 0.5004 NORMAL
M, 0.4 0.04 NORMAL
E (psi) 18E+06 0

D, (in) 4.0 0.4 NORMAL
D, (in) 19.1 1.91 NORMAL
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SENSITIVITY ANALYSIS (CONTACT STRESS)

Probability of failure = 0.2206621
0.8 e

0.6

0.4~

Sensitivity factors

Sc Fd cL  Mu Dw Dg
Variables

—_

Figure 3-8: Contact Stress Analysis Trial-1



TABLE 3 - 8 : WEAR FAILURE MODE DATA
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INPUT TABLE
TRIAL -1
Design paramters Mean Standard Distribution type
Deviation
D, (in) 19.1 1.91 NORMAL
b (in) 2.0 0.2 NORMAL
K (Ib/in%) 80 8 NORMAL
F,4 (Ib) 1731 173.1 NORMAL




54

SENSITIVITY ANALYSIS (WEAR)

Probability of failure = 0.117788
0 . 8 il el U

0.6 - -

Sensitivity factors
o
o

Variables

Figure 3-9: Wear Analysis Trial -1



TABLE 3 - 9 : BENDING STRESS FAILURE MODE DATA

INPUT TABLE
TRIAL -2
Design paramters Mean Standard Distribution type
Deviation

S, (psi) 12000 1200 NORMAL

Fq4 (Ib) 1731 173.1 NORMAL

P (in) 3.23 0.323 NORMAL

b (in) 22 0.22 NORMAL

Y 0.392 0
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SENSITIVITY ANALYSIS (BENDING STRESS)

Probability of failure=0.2009162E-03
0.8 — -~ S
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Figure 3-10: Bending Stress Analysis Trial -2
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TABLE 3 - 10 : THERMAL CAPACITY FAILURE MODE DATA

INPUT TABLE
TRIAL -2
Design paramters Mean Standard Distribution type
Deviation
C, (fi-lb/minin°F) | 043 0.043 NORMAL
A, (in?) 2766.6 276.6 NORMAL
D, (°F) 350 35 NORMAL
HP (ft-1b/min) 0.229E+06 0.229E+03 NORMAL
e 0.95 0.095 NORMAL
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SENSITIVITY ANALYSIS (THERMAL CAPACITY)

Probability of failure = 0.9734099E-01

1 - - —

0.8

Sensitivity factors

Cr Ac Dt HP e
Variables

Figure 3-11:Thermal Capacity Analysis Trial-2



TABLE 3-11 : CONTACT STRESS FAILURE MODE DATA

INPUT TABLE
TRIAL -2
Design Parameters | Mean Standard Distribution Type
Deviation

S. (psi) 40000 400 NORMAL
F, (Ib) 1731 173.1 NORMAL
C, (in) 5.204 0.5204 NORMAL
M, 04 0.04 NORMAL
E (psi) 18E+06 0

D, (in) 4.0 04 NORMAL
D, (in) 19.1 1.91 NORMAL
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SENSITIVITY ANALYSIS (CONTACT STRESS)

Probability of failure = 0.1523355

0.8 ~ e

0.6 — -

Sensitivity factors
o
H
1

Sc Fd Cl Mu Dw Dg
Variables

Figure 3-12: Contact Stress Analysis Trial-2



TABLE 3 - 12 : WEAR FAILURE MODE DATA
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INPUT TABLE
TRIAL -2
Design paramters Mean Standard Distribution type
Dewiation
D, (in) 19.1 1.91 NORMAL
b (in) 22 0.22 NORMAL
K (Ib/in%) 80 8 NORMAL
F, (Ib) 1731 173.1 NORMAL
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SENSITIVITY ANALYSIS (WEAR)

Probability of failure = 0.766744E-02
1 . 2 _— e

Sensitivity factors
(@)
(o)}

Variables

Figure 3-13: Wear Analysis Trial -2



TABLE 3 - 13 : BENDING STRESS FAILURE MODE DATA

INPUT TABLE
TRIAL -3
Design paramters Mean Standard Distribution type
Deviation

S, (psi) 12000 1200 NORMAL

F, (Ib) 1731 173.1 NORMAL

P (in) 3.23 0.323 NORMAL

b (in) 24 0.24 NORMAL

Y 0.392 0
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SENSITIVITY ANALYSIS (BENDING STRESS)

Probability of failure = 0.3044897E-04
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Figure 3-14: Bending Stress Analysis Trial-3
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TABLE 3 - 14 : THERMAL CAPACITY FAILURE MODE DATA

INPUT TABLE
TRIAL -3
Design paramters Mean Standard Distribution type
Deviation
C, (f-lb/minin°F) | 0.43 0.043 NORMAL
A, (in%) 2766.6 276.6 NORMAL
D, (°F) 350 35 NORMAL
HP (ft-1b/min) 0.229E+06 0.229E+03 NORMAL
e 0.96 0.096 NORMAL
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SENSITIVITY ANALYSIS (THERMAL CAPACITY)

Probability of failure = 0.8289167E-01
1 e el e ——

|
|
|
|

o
o
REREEE

o
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r [ I i

0.4-

Sensitivity factors

Variables

Figure 3-15: Thermal Capacity Analysis Trial -3



TABLE 3-15 : CONTACT STRESS FAILURE MODE DATA
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INPUT TABLE
TRIAL -3
Design Parameters | Mean Standard Distribution Type
Deviation

S. (psi) 40000 400 NORMAL
F, (Ib) 1731 173.1 NORMAL
C, (in) 5.404 0.5404 NORMAL
M, 0.4 0.04 NORMAL
E (psi) 18E+06 0

D, (in) 4.0 0.4 NORMAL
D, (in) 19.1 1.91 NORMAL
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SENSITIVITY ANALYSIS (CONTACT STRESS)

Probability of failure = 0.1110817

0.8 ———— : » - —

Sensitivity factors

Sc Fd cL  Mu Dw Dg
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Figure 3-16: Contact Stress Analysis Trial -3
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TABLE 3 -16 : WEAR FAILURE MODE DATA

INPUT TABLE
TRIAL -3
Design paramters Mean Standard Distribution type
Deviation
D, (in) 19.1 1.91 NORMAL
b (in) 24 0.24 NORMAL
K (Ib/in?) 80 8 NORMAL
F, (Ib) 1731 173.1 NORMAL
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SENSITIVITY ANALYSIS (WEAR)

Probability of failure = 0.767372E-03

1.2 —— T - -

0.8~
0.6

0.4~

Sensitivity factors

0.2 -

Dg

Variables

Figure 3-17: Wear Analysis Trial -3



TABLE 3 - 17 : BENDING STRESS FAILURE MODE DATA

INPUT TABLE

TRIAL -4

Design paramters Mean Standard Distribution type
Deviation

S, (psi) 12000 1200 NORMAL
F, (Ib) 1731 173.1 NORMAL
P (in) 3.23 0.323 NORMAL
b (in) 2.6 0.26 NORMAL
Y 0.392 0
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TABLE 3 - 18 : THERMAL CAPACITY FAILURE MODE DATA
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INPUT TABLE
TRIAL -4
Design paramters Mean Standard Distribution type
Dewiation
C, (ft-lb/minin°F) | 0.43 0.043 NORMAL
A, (in®) 2766.6 276.6 NORMAL
D, (°F) 350 35 NORMAL
HP (ft-Ib/min) 0.229E+06 0.229E+03 NORMAL
e 0.97 0.097 NORMAL
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TABLE 3-19 : CONTACT STRESS FAILURE MODE DATA

INPUT TABLE
TRIAL -4
Design Parameters { Mean Standard Distribution Type
Deviation

S, (psi) 40000 400 NORMAL
F, (Ib) 1731 173.1 NORMAL
C, (in) 5.504 0.5504 NORMAL
M, 0.4 0.04 NORMAL
E (psi) 18E+06 0

D,, (in) 4.0 0.4 NORMAL
D, (in) 19.1 1.91 NORMAL




TABLE 3 - 20 : WEAR FAILURE MODE DATA
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INPUT TABLE
TRIAL -4
Design paramters Mean Standard Distribution type
Deviation
D, (in) 19.1 1.91 NORMAL
b (in) 26 0.26 NORMAL
K (Ib/in?) 80 8 NORMAL
F, (Ib) 1731 173.1 NORMAL




TABLE 3 - 21 : BENDING STRESS FAILURE MODE DATA

INPUT TABLE
TRIAL -§
Design paramters Mean Standard Distribution type
Deviation

S, (psi) 12000 1200 NORMAL

F, (Ib) 1731 173.1 NORMAL

P (in) 3.23 0.323 NORMAL

b (in) 1.8 0.18 NORMAL

Y 0.392 0
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SENSITIVITY ANALYSIS (BENDING STRESS)

Probablllty of fallure 0.0792031E-02

Sensitivity Factors

0.7 ———— R

O’ .
Sb Fd P

Variables

Figure 3-18: Bending Stress Analysis Trial-5
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TABLE 3 - 22 : THERMAL CAPACITY FAILURE MODE DATA

INPUT TABLE
TRIAL -5
Design paramters Mean Standard Distribution type
Deviation
C, (R-Ib/minin°F) | 043 0.043 NORMAL
A, (in%) 2766.6 276.6 NORMAL
D, (°F) 350 35 NORMAL
HP (ft-1b/min) 0.229E+06 0.229E+03 NORMAL
e 0.90 0.090 NORMAL




78

SENSITIVITY ANALYSIS (THERMAL CAPACITY)

Probablllty of fallure 0.198981E+00

1 _— . _ - .

0.8 o
0.6 -

0.4 R o

Sensitivity factors

0.2 o

Cr Ac Dt HP e
Variables

Figure 3-19: Thermal Capacity Analysis Trial -5



TABLE 3-23 : CONTACT STRESS FAILURE MODE DATA
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INPUT TABLE
TRIAL -5
Design Parameters | Mean Standard Distribution Type
Deviation

S, (psi) 40000 400 NORMAL
F, (Ib) 1731 173.1 NORMAL
C, (in) 4.804 0.4804 NORMAL
M, 0.4 0.04 NORMAL
E (psi) 18E+06 0

D, (in) 4.0 0.4 NORMAL
D, (in) 19.1 1.91 NORMAL
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SENSITIVITY ANALYSIS (CONTACT STRESS)

Probability of failure = 0.311315E+00
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Figure 3-20: Contact Stress Analysis Trial -5



TABLE 3 - 24 : WEAR FAILURE MODE DATA
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INPUT TABLE
TRIAL -5
Design paramters Mean Standard Distribution type
Deviation
D, (in) 19.1 1.91 NORMAL
b (in) 1.8 0.18 NORMAL
K (Ib/in?) 80 8 NORMAL
F, (Ib) 1731 173.1 NORMAL
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SENSITIVITY ANALYSIS (WEAR)

Probability of failure = 0.3030297E+00

0.8 — -

Sensitivity factors
o
BN
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Figure 3-21: Wear Analysis Trial -5
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CHAPTER 1V

FAULT-TREE ANALYSIS

4.1 System Reliability

In calculating system reliability, it is important to
include the probabilistic dependencies between multiple
component failures or between different failure modes. Failure
to do so could result in significant errors. Fault Tree
Analysis is a commonly used tool in risk assessment. A fault
tree is a mathematical construction of assumed component
failure modes (bottom events) linked in series or parallel and
leading to a top event, which denotes the total system
failure. A fault tree diagram essentially decomposes the main
failure event (top event) into unions and intersections of
subevents or combination of subevents. The decomposition
continues until the probabilities of the subevents can be
evaluated as single mode failure ©probabilities. The
probabilistic fault-tree analysis is based on the limit state
definition of the bottom events. Thus, one requirement for
system risk assessment is to compute failure function of each

bottom event. Each bottom eveﬁt is defined by a close form
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equation.

A fault tree has three major characteristics: bottom
events, combination gates, and the connectivity between the
bottom events and the case. The system risk assessment is
limited to OR and AND gates. The OR gate implies that the
output fault event is the union of subevents [26]. The AND
gate signifies that the output fault event is the intersection
of the subevents. The different steps involved in the
application of the fault-tree analysis method can be

summarized as follows [26]:

1. Development of a fault tree to represent the

structural system.

2. Construction of an approximate performance function

for each bottom event.

3. Determination of a dominant sampling sequence for all

bottom events.
4. Calculation of the system reliability using an

Adaptive Importance Sampling method.

To illustrate the fault tree analysis, consider a
simple example consisting of two failure modes: yielding and

excessive displacement. Two failure functions can be expressed

as

g, = R (Yield strength) - S (Stress) (4-1)
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g, = D (Allowable displacement) - d (displacement) (4-2)
Failure occurs if [g;<0] or [g,<0]. Using standard probability
notations, the system probability of failure is [27]:

Pe = P[(g; <0)u(g, <0)] (4-3)
In general,
P, = P[g,<0]+P[g,<0]-P[(g,<0)n(g,<0)] = P,+P. -P,, (4-4)

In general P,, ranges from 0 to the smaller value of P,
and P, Therefore, P; ranges from [P, +P,] to P,(assuming P,

>P,) . Hence, by assuming independent events, the error ranges

from -P,P, to P,(1-P,)

In application to the worm gear, one OR gate is
considered with four bottom events. The four bottom events
represent the four failure modes of the worm gear. The
representation of fault tree with four failure modes is shown

in Figure 4-1.

The Fault-tree analysis is carried out by two methods:
1. Adaptive importance sampling method.
2. Standard Monte Carlo sampling method.

4.2 Adaptive Importance sampling method

Adaptive Importance Sampling is different from
traditional importance sampling methods because of its ability

to automatically adjust and thereby minimize the sampling



86

SYSTEM FAILURE

OR GATE

BENDING STRESS CONTACT STRESS

THERMAL STRESS WEAR

FIGURE 4-1: Representation of Fault Tree Analysis

space [28]. Because of this attribute, adaptive importance
sampling method is a highly efficient and accurate alternative

for probabilistic analysis.

Two options are available for selecting the sampling
boundaries. The first-order adaptive sampling method uses
hyperplanes, and the second~order adaptive sampling method
uses parabolic surfaces. Both surfaces are constructed in the
u-space and use the most probable point to define the
beginning sample space. In general, sampling space can be
adjusted by increasing or decreasing the curvatures of the
parabolic surface until there are no more failure points in

the final sampling space [29]. In the first order based
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method, only the distance to the hyperplane is changed. In the
Second-order based method, the curvature of the sampling
boundary is updated first; then, the final surface is shifted

toward the origin.
4.3 Monte Carlo Sampling method

Monte cCarlo sampling method is a way of generating
information for a simulation when events occur in a random
way. It uses unrestricted random sampling (it selects items
from a population in such a way that each item in the
population has an equal probability of being selected) in a
computer simulation in which the results are run off
repeatedly to develop Statistically reliable answers. A sample
from a Monte Carlo simulation is similar to a sample of
experimental Observations. Therefore the results of Monte
Carlo simulations may be treated statistically. Monte Carlo
methods are useful because they can handle very complex
models, are guaranteed to work, and are exact in the limit as
the number of Samples become large. The disadvantage is that
a very large number of simulations may be necessary [30]. The
probability of failure obtained by the above two methods are

as follows:

1. Probability of failure by Sampling method = 0.6665916E-01

2. Probability of failure by Monte Carlo method = 0.66657E-01
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The weight, W, of the gear can be determined as a
function of the probability of failure. The weight is computed

by the equation

where,

Specific weight of phosphor bronze , 1lb/in?

<
]

V = Volume of the gear, in?®

The volume of the gear is calculated from the equation

V = (n/4)db (4-6)

where,

d, = Diameter of the gear, in.

b = Face width of the gear, in.

As the face width value changes, the weight of the gear
changes; hence, the probability of failure changes. The weight
is plotted versus the probability of failure and is shown in

Figure 4-2.
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Figure 4-3 shows the coefficient of variation plotted
against the probability of failure. The coefficient of

variation is related to the mean and standard deviation by the

equation
cov . £ (4-7)
i
where,
C = Standard deviation
b = Mean value of the design parameter

The mean value of the face width is kept constant at 2.6
in and the c.o.v is varied from 0.0l to 0.1. It is learned
from the Figure 4-3 that, as the uncertainty increases, the
probability of failure increases. A deviation of 0.182 in is
suggested to the manufacturer from the mean value. The final
value for the face width using probabilistic design
methodology is 2.6 in with a deviation of +0.182 in or -0.182

in.



Probability of Failure [1 E-4]

WEIGHT Vs. PROBABILITY OF FAILURE

Weight (Ib)

Figure 4-2: Relationship Between Weight and Probability of Failure
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183.36 201.696 220.032 238.36
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PLOT OF C.0.V Vs. PROBABILITY OF FAILURE

Face width, b=2.6 (in)
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Figure 4-3: Relationship Coefficient of Variation and Probability of Failure



CHAPTER V

FINITE ELEMENT METHOD

5.1 Basic concept

The basic idea in the finite element method is to find
the solution of a complicated problem by replacing it with a
simpler one. Since the actual problem is replaced by a simpler
one in finding the solution, we will be able to find only an
approximate solution rather than the exact solution. The
existing mathematical tools will not be sufficient to find the
exact solution of most of the practical problems. Thus, in the
absence of any other convenient method to find even the
solution of a given problem, we have to prefer the finite
element method. Moreover, in the finite element method, it
will often be possible to improve or refine the approximafe
solution by spending more computational effort. In the finite
element method, the solution region is considered as built up
of many small, interconnected subregions called finite

elements.

5.2 General description of the Finite Element Method

In the finite element method, the actual continuum or
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body of matter like solid, liquid or gas is represented as an
éssemblage of subdivisions called finite elements. These
elements are considered to be interconnected at special joints
which are called nodes or nodal points. The nodes usually lie
on the element boundaries where adjacent elements are
considered to be connected. Since the actual variation of the
field variable (like displacement, stress, temperature,
pressure or velocity) inside the continuum is not known, we
assume that the variation of the field variable inside a
finite element can be approximated by a simple function. These
approximating functions (also called interpolation models) are
defined in terms of the values of the field variables at the
nodes. When field equations (like equilibrium equations) for
the whole continuum are written, the new unknowﬁs will be the
nodal values of the field variable. By solving the field
equations, which are generally in the form of matrix
equations, the nodal values of the field variable will be
known. Once these are known, the approximating functions
define the field variable throughout the assemblage of
elements. The solution of general continuum problem by the
finite element method always follows an orderly step by step

process.

The step-by-step procedure can be stated as follows.
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Step 1: Discretization of the structure

The first step in the finite element method is to divide
the structure or solution region into subdivisions or
elements. Hence, the structure that is being analyzed has to
be modelled with suitable finite elements. The number, type,

size and arrangement of the elements have to be decided.

Step 2: Selection of a proper interpolation or displacement

model

Since the displacement solution of a complex structure
under any specified 1load conditions cannét be predicted
exactly, we assume some suitable solution within an element to
approximate the unknown solution. The assumed solution must be
simple from a computational point of view, but it should
satisfy certain convergence requirements. In general, the
solution or interpolation model is taken in the form of a

polynomial.

Step 3: Derivation of element stiffness matrices and load

vectors

From the assumed displacement model, the stiffness matrix
[K'®] and the load vector P of the element "e" are to be
derived by using either equilibrium conditions or a suitable

variational principle
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Step 4: Assemblage of element equations to obtain the overall

equilibrium equations.

Since the structure is composed of several finite
elements, the individual element stiffness matrices and load
vectors are to be assembled in a suitable manner and the

overall equilibrium equations have to be formulated as
[K]'®' = p (5-1)

Where [K]' is called the assembled stiffness matrix, &' is the
vector of nodal displacements, and P' is the vector of nodal

forces for the complete structure.
Step 5: Solution for the unknown nodal displacements.

The overall equilibrium equations have to be
modified to account for the boundary conditions of the
problem. After the incorporation of the boundary conditions,

the equilibrium equations can be expressed as

[K]1® = P {5-2)
For linear problems, the vector & can be solved very easily.
But for nonlinear problems, the solution has to be obtained in

a sequence of steps, each step involving the modification of

the stiffness matrix [K] and/or the load vector P.
Step 6: Computation of element strains and stresses.

From the known nodal displacements &, if required, the

element strain and stresses can be computed by using the
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necessary equations of solid or structural mechanics.

The above mentioned six steps were applied in the finite
element analysis of the tooth of the worm gear to analyze the
stress distribution and displacement. The analysis was done
for both probabilistic and deterministic method. The analysis
was carried out using finite element software, COSMOS/M. The
analysis was first carried out using the deterministic
design. The displacement and the stress distribution due to
the transmitted load for the deterministic design are shown in
Figures 5-1 and 5-2. The maximum stress and the displacement
obtained using the deterministic design values are 1.4E+05 psi

and 0.001170 in.

The finite element analysis was next carried out using
the probabilistic design. The displacement, and the stress
distribution due to the transmitted load for the probabilistic
design are shown in Figures 5-3 and 5-4. The maximum stress,
and the displacement obtained using the probabilistic design

are 8.34E+04 psi and 0.000848 in.

The reason for the reduced stress in the probabilistic

design values is due to the increase in the face width.
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CHAPTER VI

CONCLUSION

In this project an existing worm gear design was taken
and was analyzed for the failure modes using probabilistic
design methodology. The purpose of this project is to identify
the sensitive design parameters and to increase the
reliability of the worm gear design. The initial probability
of failure of the system was found to be around 30 percent. By
using the probabilistic design methodology and the sensitivity
factors, the sensitivity of each design parameter was found
out and correspondingly the probability of failure was reduced
by altering the wvalues of the design parameters. The
sensitivity analysis which is used in the probabilistic design
is more helpful in knowing which design parameter is crucial
and sensitive in the design. The probability of failure of the
design after altering the design values was computed to be 6.6
percent. The critical design parameters of the worm gear
design were found to be the face width, contact length, and

the thermal efficiency.

Probabilistic design procedures promise to improve
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the quality of engineering systems for the following reasons:

1) Probabilistic design incorporates given statistical
data explicitly into the design algorithms. Conventional

design discards such data.

2) It is more meaningful to say, "The system has a
probability of 10E-04 of failing after 1000 hours of
operation," than to say, "This system has a factor of safety

of 2.3."

3) Rational comparisons can be made between two or more
competing designs for a proposed system. In the absence of
other considerations, the engineer chooses the design having
the lowest probability of failure, or as a basis for

developing economic strategies.

4) By treating each nonstatistical uncertainty as a
random variable, its effect on the final design can be
quantified. A manager can balance the cost of conducting a
research program to remove this uncertainty with the payoff
associated with removing the uncertainty and improving the

risk.

6.1 Recommendations

l. In order to achieve effective and reliable results, a

few things should be taken into consideration. The
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distributions for the design parameters should be attained
before using PDM. Distributions can be attained from
manufaturer's handbooks. The actual deviations that occur

should be recorded to get accurate results.

2. The Probabilistic finite element method can be used to
compute the maximum stress intensity of the gear tooth and the
results can be compared with the values obtained from Cosmos

finite element package.
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Appendix - B

Steps for Running Nessus (Individual Failure mode)

Create a data file with an extension .dat

Copy the .dat file to for000.dat. You can do this by typing copy
<filename.dat> space for000.dat

To input the failure functions modify the subroutine respon.for

To edit the file respon.for, type edt <respon.fors. Yougetan ‘*"'. Type "
c‘'at the ‘'*'to getinto the full screen mode.

Make changes and exit the file by holding cntrl key and pressing ' z *.
Youget ‘* ‘. Type exit to save and close the file.

Once the subroutine is modified, it has to be compiled and linked to
the library. To compile type fortran <filename.for>

Link the compiled file to the library by typing link filename (omit
extension), nes/lib

Do the Probabilistic Analysis by typing run nessus.

When program asks you to input the data file, give the filename without
the extension.dat.

Once you get the output, change the name of for000.dat to <input
filename.out>, by typing ren for000.dat space input filename.out .

To see the sensitivity analysis type < input file name. mov >.

105



Appendix - C

Steps for Running Nessus (System Reliability)

Create a data file with an extension .dat

Copy the .dat file to for000.dat. You can do this by typing copy
<filename.dat> space for000.dat

Do the Probabilistic Analysis by typing run nessus.

When program asks you to input the data file, give the filename without
the extension.dat.

Once you get the output, change the name of for000.dat to <input
filename.out>, by typing ren for000.dat Space input filename.out .

To see the sensitivity analysis type <input file name. mov >.
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CHAPTER 1

INTRODUCTION

Pliny the Elder in his Historia Naturalis said that “the only thing certain is that
nothing is certain." As engineers with creative design work, we are always faced with
various uncertainties. Designing a product includes modeling the behavior of materials
which we do not know completely. There may also be environmental hazards which we
cannot predict precisely. The idealized computational models which we use, often have
modeling uncertainties and limited accuracy over a certain range of parameters.

To counteract the uncertainties effects we have introduced the safety factors to prove
that our design is safe. However, safety factors do not reflect necessarily the safety of a
design. It is known that two products designed using the same safety factors may have very
different safety levels depending on their sensitivity to the parameter variabilities in a given
lifetime environment. Catastrophic incidents have proved that our engineering judgements
were sometimes incomplete and the safety level we decided were sometimes lower than was
expected in some cases. This has led to the designs being made very conservative, thereby
spending more money without any substantial technical reason. When we use deterministic
approach we do not know how safe is our design. This is true especially for new designs for
which no past experience and data exist. In the same way, deterministic approach cannot

satisfactorily answer questions related to issues on cost and safety. Only partially can we



obtain answers for these questions with no possibility for failure risk quantification.

Tremendous research activities are done on probabilistic methods to enable us to
model the uncertainties and random variabilities. Using probabilistic methods we can see
if the design is robust or not. By "robustness of the design", we mean the safety of the design
that will enable the part designed to perform its intended function without failing at a desired
level of reliability. The sensitivity of the failure risk to different uncertainties in design
parameters can be analyzed. In the probabilistic approach the decision is taken based on
estimated risks and their consequences so that an optimized cost-reliability design solution
can be determined. Thus probabilistic design turns out to be cost-effective, especially for
new designs for which there is limited engineering experience.

The same concept of improving design holds true in the design of compact gear sets,
which is the basis of this project. While arriving at an optimum design of the spur gear set,
the emphasis is on minimum weight, compact design, accuracy of the design and running
time of the design problem. Willis [1] states that "Weight reduction usually means volume
reduction, which in turn lowers cost of materials, handling and shipping.” In this project,
gear design to minimize the size of the gear set has been studied using deterministic and
probabilistic design methods.

The objective of this project is to make a comparative study of the use of AGMA
geometry factors and probabilisitc design methodology in the design of a compact spur gear
set. The gear design problem is first posed as an optimization problem, then solved using
the conventional deterministic techniques suggested by AGMA and other researches (21, [3],

[4] and finally solved using the new approach of Probabilistic Design Methodology. The



methodology employed in this thesis is given in the form of a flow chart. see F igure 1-1.

The deterministic formulation followed in this thesis is similar to the one in [2].
However, while considering the probabilistic formulation, the uncertainties are quantified
by eliminating the correction factors in the design equations. A special purpose optimization
algorithm [2] has been used to solve the design problem. The results include the design
parameters like diametral pitch, number of pinion teeth, center distance, face width, stress
values, computer time and the reliability level. A brief overview of the remainder of the
thesis is presented below.

Thesis Overview

In Chapter II, some of the important aspects of involute gear mesh geometry are
presented. The concept of involute "rol] angle" and its application in locating points of
interest on the tooth protile are explained along with some of the other basic gearing terms
such as pressure angle, contact ratio, base pitch, circular pitch, and diametral pitch. The
relationship between roll angle and tooth surface radius of curvature 1s also given.

The various failure modes and design constraints are given in Chapter III. The
equations developed in Chapter II are incorporated into the constraint equations. Constraint
equations are given for bending fatigue, surface contact fatigue at both the initial point of
contact and the lowest point of single tooth contact, and undercut. Justification for the use
of these constraints is also given in this chapter.

Chapter IV explains the deterministic approach in gear design. The design
parameters are explained in this chapter. Formulation of the optimization model and the

optimization algorithm used to tackle the problem are also included. An example problem
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is taken from [4] and solved deterministically using AGMA J and Approximate equations
for J. The comparison between the two methods is discussed.

Chapter V is the most important chapter in this thesis. This chapter introduces the
concept of Probabilistic design methodology and its applicability in gear design. This
chapter includes the development of the Probabilistic model, Limit state functions,
Calculation of safety indices and the Probabilistic Design Optimization format. An example
problem from [5] is used to arrive at optimum results using Deterministic and Probabilistic
methods. The results are shown as Tables and to aid comparison charts are also included.

Chapter VI includes suggestions for further work in the area of gear design and some
conclusions about this work. Appendix I and Appendix II describe the geometry factors 1
and J as given by AGMA. The Approximate equations for calculating J factor is explained
in Appendix IIl. Appendix IV gives a brief definition of all the correction factors that are
incorporated in the deterministic model of the gear design problem. Finally the computer

program for the problem is listed in Appendix V.



CHAPTER 11

INVOLUTE SPUR GEAR MESH GEOMETRY

Involute gears are by far the most widely used gears in the world today. Gears whose
active tooth profiles are portions of an involute curve have the following properties which
make them attractive for use. First, they satisfy the requirement of transmitting rotary motion
from one gear to another at a constant angular velocity ratio (i.e. conjugate action) at any
center distance for which the teeth can be continuously in mesh. Earlier tooth forms (like the
cycloidal tooth) satisfied the conjugate action requirement at only one specific center
distance. Secondly, involute gears can be easily and accurately machined using "generating"
processes such as hobbing and shaping.

There are several basic relationships involving involute geometry which prove useful
in both the kinematic and strength design of gears. Those characteristics of the involute
curve which are used in design model development will be presented in this chapter.

Involute Curve Geometry

An involute of a circle is defined as the path traced out by a point fixed on a tangent
line of the circle as the line rolls without slipping around the circle. An involute curve may
be generated as shown in Figure 2-1 (a). A partial flange B is attached to the cylinder A,
around which is wrapped a cord def which is held tightly. Point b on the cord represents the

tracing point, and as the cord is wrapped and unwrapped about the cylinder, point b will trace
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out the involute curve ac. The radius of curvature of the involute varies continuously, being
zero at point @ and a maximum at point c¢. At point b the radius is equal to the distance be.
since point b is instantaneously rotating about point e. Thus the generating line de is normal
to the involute at all points of intersection and, at the same time, is always tangent to the
cylinder A. The circle on which the involute is generated is the base circle.

Figure 2-1 (b) explains how the involute profile satisfies the requirement for the
transmission of uniform motion. Two gear blanks with fixed centers at O, and O, are
shown having base circles whose respective radii are O,a and O,b. An imaginary cord is
wound clockwise around the base circle of gear 1, pulled tightly between points a and b, and
wound counterclockwise around the base circle of gear 2. If, now, the base circles are rotated
in different directions so as to keep the cord tight, a point g on the cord will trace out the
involutes cd on gear 1 and efon gear 2. The involutes are thus generated simultaneously by
the tracing point. The tracing point, therefore, represents the point of contact, while the
portion of the cord ab is the generating line. The point of contact moves along the generating
line, the generating line does not change position because it is always tangent to the base
circles, and since the generating line is always normal to the involutes at the point of contact,

the requirement for uniform motion is satisfied.

v

Spur Gear Mesh Geometry

When two spur gears are brought into mesh they become equivalent to two cylinders
rolling without slipping on one another. The surfaces of these cylinders are called pitch
surfaces and their profiles are called pitch circles. The point of tangency of the pitch circles

is called the pitch point. The smaller of two gears in mesh is called the pinion while the



larger is usually called the gear. Wheel or gear wheel are other terms sometimes encountered
for the larger gear. Reference [6] explains most of these terms and their origin.

For a given gear, the pitch circle is always larger than its base circle. A line that goes
between and is tangent to the base circles of the pinion and gear intersects the line of centers
at the pitch point as shown in F igure 2-2. This line is called the line of action. It is along this
line that contact takes place for true involute gearing. The angle that the line of action makes
with a perpendicular to the line of centers is called the pressure angle, ¢. From F igure 2-2
it is seen that the base circle radius is related to the pitch circle radius by relation r cosp=r,.

The base pitch, p,, is defined as the arc length between similar sides of two adjacent
teeth along the base circle. By letting the angular spacing between teeth (equal to 21t/N,) be
called 6, then p, = 6 r, . Due to the properties of the involute curve, the distance between
teeth along the line of action is also Py @s shown in Figure 2-2.

The circular pitch, p_, is defined as the arc length between adjacent teeth along the
pitch circle. Therefore, p, = &t or pP/cos &. Since p, is a factor of , it is generally an
irrational number. For convenience, a third pitch called the diametral pitch, P, is in common
use. The diametral pitch is defined as P = n/p.. From relationships presented above, it can
be shown that gear size (diameter) can be given in terms of the number of teeth and the
diametral pitch. The relationship between the pitch diameter, number of teeth and gear
diameter is d = Np/P.

Contact Ratio Development
The total length of action, Z, is the distance along the line of action from the initial

point of contact to the final point of contact for a single tooth. This distance corresponds to
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the distance between the intersections of the line of action with the gear and pinion
addendum circles (see Figure 2-2).

The length of action must be greater than the base pitch or there will be times during
which no teeth are in contact. The ratio of the length of action to the base pitch is called the
contact ratio, m,. The value of the contact ratio is an indicator of the amount of load sharing
between adjacent teeth. Higher contact ratios generally mean smoother operation and less
noise.

To derive an expression for contact ratio, the length of action must be determined and

then divided by the base pitch. From F igure 2-2 the following equations can be understood:

AG=(r+R)sin¢ =Csin ¢ (2.1)

AF = [(r+a,)’ - 1,2 ]'? (2.2)

BG = [(R+a,)’ - R,2]"? (2.3)
and,

Z=BF = AF - (AG-BG) = AF + BG - AG (2.4)
Therefore,

Z = [(r+2p)’ - 1,7]'? + [(R+2ag)* - R,2]"™ - C sin ¢ (2.5)

An equivalent form of the above equation is:

Z = [(Np/ (2P) + a,/ P)* - (N;/ (2P))’ cos® ¢]'"* (2.6)
+ [(mgNg / (2P) + a5/ P)*- (m Np / (2P)) cos® $]'
- (mg+1)N, sin ¢ / (2P)

The terms a, and ag are constants which when divided by the diametral pitch give the pinion



and gear addendums. Dividing the above equation by the base pitch and factoring out the
term N,/2 gives:
mp = Np/(27) {{(1+2 2, / N,)? - cos’$p]"2 / cos ¢
+[(mg +2 a5 /N,) - mg? cos? $]'/ cos ¢
-(mg + 1) tan ¢} (2.7)
The three terms in the braces in the above equation correspond to angles subtended

by arcs on the base circle of the pinion of lengths equal to AF, BG, and AG respectively. By

letting
o = [(1+2 ap/N,)* - cos? $1'? / cos ¢ (2.8)
B =1[(mg+2 as/ N,y - mg? cos® ¢]' 2/ cos ¢ (2.9)
Y =(mg+1)tan ¢ (2.10)

and, as defined earlier,

& =2n/N, (2.11)
the contact ratio can be written compactly as:

my = (o +f-y)/d (2.12)

Using the same steps for the internal mesh of Figure 2-3, it is found that the equations

for the angles «, B, and y and the contact ratio are similar to those for the external mesh with
the differences being only in changes of sign. A more general set of equations applicable to
external or internal meshes is:

a =[(1+2a,/Np)*- cos’ $]'? / cos ¢ (2.13)

B=[mG+2a5/N,) - mg? cos’ $]'?/ cos ¢ (2.14)

y=(1+mg)tand (2.15)
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mp=(axB-vy)/8 (2.16)
where in the case of dual signs, the top signs is for an external mesh and the bottom sign is
for an internal mesh.

The above set of equations is valid for standard as well as non-standard teeth as long
as the addendum ratios give the correct addenda for the effective diametral pitch. The utility
of the above mentioned equations extends beyond a convenient way to express the contact
ratio equations. In the next section, it will be shown how critical points of contact can be
located by giving the pinion roll angle to that point. The equations for the roll angle to the
critical contact points can all be given in terms of the four angles, «, B3, v, and 8, as will be
shown.

Critical Point Roll Angle Equations

A gear mesh cycle begins when the flank of the driving tooth contacts the tip of the
driven tooth. This point is called the initial point of contact (IPC). The preceding tooth is
already in contact and is exactly one base pitch ahead along the line of action. As the gears
continue to rotate, the contact point moves upward along the line of action. At a certain
point, the preceding tooth loses contact and the entire load is carried by only one tooth. The
point is called the lowest point of single tooth contact (LPSTC). From here the contact point
proceeds through the pitch point (PP) to a point one base pitch ahead of the inital point of
contact called the highest point of single tooth contact (HPSTC). When this point is reached,
the succeeding tooth is just making contact and beginning to share the load. The contact
point continues to move along the line of action, sharing the load with the succeeding tooth,

until the tip of the pinion tooth loses contact with the flank of the gear tooth at the final point



of contact (FPC). This completes one mesh cycle.

It is important to be able to locate these critical points on the tooth surface during the
mesh cycle. The inital point of contact is important since the factor (1/pp + 1/pg), which is
used in calculating the Hertz contact stress, is most critical for standard equal addendum
pinion and gear. Also, high sliding velocities which contribute to heat generation at the
contact point, in turn lead to lubricant breakdown and scoring, and occur at the IPC. The
lowest point of single tooth contact is critical since the full load is carried there, and
consequently, it is usually the point during the mesh cycle with the largest Hertz contact
stress.

The highest point of single tooth contact usually corresponds to the most critical load
application point in determining the bending stress. In some cases when the accuracy of the
gears is not adequate, it is possible for the full load to be carried almost up to the final point
of contact. The FPC is also critical because of high sliding velocities.

Using the equations presented earlier in this chapter, equations for the pinion roll
angle to these critical points can now be derived. Figure 2-4 shows the locations of the
critical contact points along the line of action along with the roll angles to those points.
Since the contact ratio and the base pitch are known, from F igure 2-4 it is seen that if the
distance from either point A or point G to any of the critical points can be found then the
locations of the other points can be found relative to that point using the contact ratio and
base pitch.

The roll angle to the final point of contact is the angle subtended by an arc of the base

circle of length AF. This angle has already been given as the angle «. Therefore,



Figure 2-4: Critical Points of Contact During a Mesh Cycle

(Source: Design Data, PSG College of Technology)



0 =«
AF = ar, and from Figure 2-4, AB = AF - m, p,,, therefore the roll angle to the initial point
of contact is:
0, =AB/r,=[ar,- (¢ £ B -y) or,/ 8] r, (2.17)
which when simplified becomes:
B, =v+ P (2.18)
AC = AF - P, which gives the roll angle to the lowest point of single tooth contact as:
8, = AC/tb = (ar, - 81b) /1, (2.19)
or O,=a-06
Similarly, AE = AB + p,, giving the roll angle to the highest point of single tooth contact as:
8u=AE/rn,=[(y # B)r,+ 6 ]/, (2.20)
or Oy=y+Pp+d
The roll angle to the pitch point as seen from Figure 2-4 is given by:
€= +invd =tan ¢ (2.21)
The roll angle equations will prove to be convenient and useful in the design model
constraint equations to be presented in Chapter II1. By presenting the constraint equations
in forms that allow the point of contact to be located by the roll angle, the equations can be
generalized to any point of contact in the mesh cycle instead of just one point. This provides

a view of the problem which gives the designer insight to help him choose the best design.



CHAPTER III

FAILURE MODES AND DESIGN CONSTRAINTS

In designing spur gears for minimum size, there are several types of failure modes
and undesirable characteristics that must be prevented in order to insure satisfactory life and
performance of the gears. In this chapter, the most common failure modes are presented.
The equations used as constraints on the design to prevent these types of failures are also
given, along with some Justification for their use.

Tooth Breakage

The most critical type of gear failure is tooth breakage. This type of failure generally
leaves the gear unit inoperative. It also happens suddenly without warning. Tooth breakage
usually occurs as a fatigue failure resulting from repeated bending. The cyclic bending
causes cracks to appear and grow in the root area of the tooth. The cracks eventually weaken
the tooth to the point that breakage occurs. A tooth or teeth can also be broken off or
"stripped" by a sudden impact or application of a very heavy load.

The gear tooth bending stress equation is based on the mechanics of materials with
the stress concentration accounted for empirically. The gear tooth is modeled as a cantilever
beam subjected to a bending load and an axial compressive load. The critical stress is
evaluated at the tensile side of the tooth because tensile stresses contribute more to fatigue

than compressive stresses. The critical point for calculation of the stress is taken as the point



of tangency of an inscribed parabola with the tooth root fillet [7] as shown in Figure 3-1.
The vertex of the parabola is located on the tooth centerline where the line of action crosses
it. Notice that the tooth centerline rotates with the gear while the line of action is fixed.
This means that the location of the critical point varies with the point of load application.
The highest bending stress a tooth experience during a single mesh cycle usually occurs at
the highest point of single tooth contact (HPSTC). This is the highest point at which the full
load is carried. A more conservative evaluation of the critical bending stress is often made
by assuming full loading all the way to the final point of contact (FPC). The bending stress
equation as given by AGMA in [7] is equivalent to:

W PK,/(FJ)<S, (3.1)
where K, =KK, /K,

The K-factors are intended to account for effective increase in load due to momentary
overload (K,), uneven load distribution across the tooth face (K_), and dynamic load effects
(K,). Ky is called the bending stress derating factor. In general, it is a function of the type
of application of the gear set, the accuracy of manufacture and alignment, the speed of
rotation, and the size of the gears.

The other factors in the bending stress equation are transmitted tangential load, W,
the effective face width, F, the diametral pitch, P, the bending stress geometry factor, J, and
the modified bending endurance strength, S,, given by:

S, =8, K,/ (K;Ky) (3.2)

Here, S, s the bending endurance strength for a gear rated at 107 cycles of operation

with a reliability of 99% under normal operating temperatures. The K-factors are included
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to account for lives, reliabilities, and temperatures different from the values that S_ is based
on. Reference [7] gives values for S as a function of hardness and values for the life (K.
reliability (Ky), and temperature (K;) factors.

As the name implies, the bending stress geometry factor, J, takes into account the
tooth geometrical parameters: pressure angle, addendum, dedendum, hop tip radius, and
location on the tooth of the load application. The J-factor used to be determined graphically
from an accurate layout of the tooth. Two iterative numerical techniques for calculation of
the J-factor on a computer or programmable calculator have been made available, see [8],
[9]. Appendix II explains the J factor as described by AGMA. The Approximate equations
for calculation of J as derived by [1 0] is explained in Appendix III.

The AGMA bending stress equation is based on work done by Wilfred H. Lewis a
century ago. The accuracy of the equation has been questioned in recent years, especially
since finite element methods have begun to be widely used. Finite element analysis is
generally considered to be very accurate if a suitable grid is used. However, it is not suited
for design as much as it is for detailed, time-consuming analysis. The bending stress
equation, on the other hand, is convenient for design use, especially now that empirical
equations can be used for the J-factors. The derating factors, which are based on years of
experience, also tend to offset some of the inaccuracies in the basic equation. Until very
extensive finite element studies (which over a broad range of tooth forms) are done and the
results are made available in empirical form, the basic bending stress equation will continue

to be the most convenient available method for obtaining designs quickly.

Pitting



While tooth breakage due to bending fatigue is the most critical type of gear failure,
by far the most common type of failure is pitting. Pitting is a surface fatigue failure due to
many cycles of contact. As the name implies, pitting is characterized by deterioration of the
surface in the form of rough shallow holes or pits [11]. Pitting usually starts slightly below
the pitch point on the tooth surface. This is in the region of the lowest point of single tooth
contact (LPSTC).

Once pitting begins, the gear unit can continue to operate. However, the noise and
vibration level of the unit increases as the pitting progresses. Also, a crack can initiate in the
pitted area of the surface, leading to tooth breakage.

Pitting is thought by many to begin as a small crack below the surface. The crack
then propagates and eventually makes its way to the surface causing a small amount of
material to break away, leaving a pit. This sub-surface crack assumption is based on
Hertzian contact stress theory which predicts a maximum shearing stress at a point below the
surface of contact.

There is evidence [12], [13] that pitting most often begins as a small surface crack,
probably initiated at a machining mark, which is propagated by the hydraulic wedge action
of the lubricant being forced into the crack by the contact pressure. In [12], Bowen estimates
that more than 80% of pitting failures shows good correlation with the maximum Hertz
contact stress. Therefore, Hertzian theory can be used to accurately predict pitting failure
even if the maximum sub-surface shear stress is not the major cause.

The AGMA gives a recommended equation for determining the contact stress which

leads to pitting. This equation is presented later. A generalized contact stress equation that



can be used as a constraint equation for both of these types of surface failures is presented.
Scoring

The third mode of failure most often encountered is scoring, a type of surface failure
resulting from metal to metal contact of the gear teeth due to lubricant breakdown [11]. The
breakdown of the lubricant is caused by excessive heat generation at the point of contact.
Once metal to metal contact occurs, the two surfaces are instantaneously welded together
then torn apart by the rolling and sliding action at the contact point. This type of failure is
characterized by radial scratch and tear marks in the direction of sliding, hence the name
scoring. Scoring is a major problem for gears used in the aerospace industry. This is
because aerospace gears must be as light weight as possible, yet they are subjected to heavy
loads and very high speeds.

There are several factors which are known to influence scoring. These include
contact pressure, relative sliding, lubricant properties, surface finish, and bulk operating
temperature. In this thesis only those factors related to the gear tooth geometry, namely the
contact pressure and the relative sliding between surfaces. are considered. It can be shown
that reducing the contact pressure through a change in tooth geometry also has the effect of
reducing the relative sliding. Therefore, both of these factors which contribute to scoring can
be limited by controlling the contact pressure at the initial point of contact (IPC). The most
critical combination of contact pressure and relative sliding occurs at this point. However,
since scoring is affected to a large degree by other factors, (lubricant, surface finish, etc.), the
IPC contact stress equation cannot be considered as an accurate predictor for scoring .

Instead, it simply allows the designer to keep those factors which are related to the gear mesh



geometry within some specified limits. Nevertheless, the IPC contact stress equation
provides a simple strategy for limiting scoring in the gear design process. For this reason,
throughout the remainder of this thesis, the pitting and scoring constraints will be called the
LPSTC contact stress constraint and the IPC contact stress constraint, respectively, with the
understanding that both are individually important constraints for achieving a good design.
Now, a general stress equation will be developed that can be used to calculate the
contact stress for any point of contact through the mesh cycle.
Contact Stress Equation
The contact stress equation is based on Hertzian theory for two cylinders with

line contact. For the gear teeth, the maximum contact stress as defined by Hertz equation is

given by:
ol "7 1 L. )
H = +
mECOSd (1) (1-p) P g (3-3)
EP EG

where, 0}, is the value of the surface compressive stress (Hertzian stress). The factor, 7, is
called the load sharing coefficient and is equal to the fraction of the total load being carried
at the particular point of contact. The variation of n depends on the tooth deflection, profile
modifications and tooth accuracy. A simple and conservative way to specify 1 is to assume
one-half of the load is carried by one tooth during the period of single tooth contact. This
1s equivalent to assuming rigid teeth which, of course, do not exist in practice.

From relationships given in Chapter 11, it is easy to show that the pinion tooth radius



of curvature is:

Pp=1,6=(d/2) (cos $) O (3-4)
and the gear tooth radius of curvature is:

P6 =Ty (Y - 0) =(d/2) (cos d) (v - 0) (3-5)
Using the above relationships for the radii of curvature, the last term in the contact stress
equation can be written as:

1/pp+ 1/pg=2/[dB (cos ¢) (1 - 8/y)] (3-6)

The AGMA [7] defines the elastic coefficient, C,, as:

1 1

m (l—ui)+ (1-pf) (3-7)
E, E,

Using these relationships, the Hertz contact stress equation becomes:

20w,

o, - C, (3-8)

Fd 8 cos’ (1 -g)

This equation is a general form of the Hertz contact stress equation for any point of contact
on the tooth surface with the contact point located by the pinion roll angle to that point.
Actually, the Hertz equation is derived for the case of pure rolling which exists at the pitch
point only. However, it will be assumed that the Hertz contact stress contributes much more

to the total surface stress than the frictional shear effects due to sliding. Therefore, the



equation will be used to predict severe surface stress conditions for both cases of pure rolling
and combination rolling and sliding.
The AGMA pitting resistance rating formula is based on the Hertz stress at the lowest

point of single tooth contact [7]. The AGMA equation is equivalent to:

C IJ/ICjD < S
P dFI - c (3‘9)

Here the contact stress derating factor, Cy, is equivalent to the bending stress derating factor.
The factor, I, is a function the gear mesh geometry and is therefore called the contact stress
geometry factor.
The value S, is the upper limit of contact stress. It is determined from the equation:
S.=8S,.C.Cy /(C,Cy) (3-10)
In this equation, S,_ is the surface endurance strength of the material based on a life of 107
cycles, a reliability of 99% and normal operating temperatures, analogous to S, for the
bending endurance limit. Similarly, C|, C,, and C, account for variations from the base
values of life, temperature, and reliability. The hardness ratio factor, C,, is used as a
multiplier on S, for the softer of two gears in mesh to account for the desirable work
hardening effect on the softer gear.
Equating the general Hertz contact stress equation to the AGMA pitting equation, we
see that for equivalence, I must be given by:
[=0cos’ ¢ (1-8/v)/(2n) G-11)

This formula for the I-factor is different from the one given in [7], but it is shown below that



the two equations are equivalent,

The AGMA equation for I for spur gears is:

cosdpsing Mg PP,

2 mGilpPpG

I -

(3-12)

Here, p, is the radius of curvature of the pinion at the point of contact and P, 1s the radius
of curvature of the gear at that point. p, and pg are the radii of curvature of the pinion and
gear respectively at the pitch point. Using relationships given in Chapter II, these radii of

curvature are given as:

P =1,0
Py =1, (v -9)
Pp=rytan ¢

Ppg =1, mg tan ¢
Therefore,
PP,  B(y-6)
PrPs + mtan’d (3-13)
Substitution of the equation (3-13) into equation (3-12), simplifying, and including the load
sharing coefficient, results in equation (3-11) for I.

Undercut / Involute Interference

Another possible undesirable characteristic of a gear mesh is the presence of
undercut or involute interference. Undercut occurs during machining of gear teeth when the

cutter removes a portion of the involute profile. This in itself is not a type of failure but it



creates problems which could lead to failure. An undercut tooth can be considerably
weakened in bending if the degree of undercut is pronounced. Also, the length of action is
reduced. This causes a reduction in contact ratio which generally leads to less smooth
operation. Both of these effects are undesirable; consequently, undercutting should be
avoided if possible.

Involute interference is similar to undercut. In fact, undercut is a result of involute
interference between the cutting tool and the gear. Involute interference occurs when the tip
of one gear makes contact with the noninvolute portion of the mating gear. This causes non-
conjugate action between teeth which leads to vibration and noise. Consider Figure 3-2.
Two gears are shown with centers O, and O; Gear 2 is the driving gear and Gear 3 is the
driven gear. Driving gear turns clockwise. The initial and final points of contact are
designated A and B, respectively, and located on the pressure line. It can be noted that the
points of tangency of the pressure line with the base circles C and D are located inside the
points A and B. This tells that interference is present.

Interference is explained as follows. Contact begins when the tip of the driven tooth
contacts the flank of the driving tooth. In this case the flank of the driving tooth first makes
contact with the driven tooth at point A, and this occurs before the involute portion of the
driving tooth comes within range. In other words, contact is occurring below the base circle
of gear 2 on the noninvolute portion of the flank. The actual effect is that the involute tip or
face of the driven gear tends to dig out the noninvolute flank of the driver. The same effect
occurs again as the teeth leaves contact. Contact should end at point D or before. Since it

does not end until point B, the effect is for the tip of the driving tooth to dig out, or interfere
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with, the flank of the driven tooth. Involute interference and undercut can be avoided if the
number of teeth is greater than a certain minimum. In general, if the number of teeth is large
enough so that undercut does not occur during machining, then involute interference will not
occur during operation either. This is because the involute interference limit increases with
gear ratio and becomes maximum for mesh with a rack.

The equations for determining the undercut and involute interference limits are given

below. The involute interference equation is solved in [2] and is given as:

iZaGP

[mg* (142my) sin®$]">- m,,

Vp)in (3-14)

In the above equation as m; approaches infinity (mesh with a rack), the equation becomes:

2agP (3-15)

sin’¢

(NP) min

The equation for determining the undercut limit for hobbed gears is derived in [14]

and is given as:

2[b,P- r,(1-sind)]
sin2¢ (3-16)

V) -

Interference can be eliminated by using more teeth on the gears. However, if the gears are
to transmit a given amount of power, more teeth can be used only by increasing the pitch

diameter. This makes the gears larger, which is seldom desirable, and it also increases the



pitch-line velocity. This increased pitch-line velocity makes the gears noisier and reduces
the power transmission to some extent. Another way of reducing interference is by using a
larger pressure angle. This results in a smaller base circle, so that more of the tooth profile
becomes involute.

In general, the involute interference or undercut limits will not be active constraints
at the optimum. However, it is important to have these equations formulated in the design
model from a computational perspective.

In summary, equations which define a feasible design space have been presented in
this chapter. Constraints were given for bending fatigue, Hertz contact stress at both LPSTC
and IPC, and undercut/involute interference. In Chapter IV and V, these constraint equations
and their interactions will be studied in order to determine optimal gear designs using the

AGMA method and Probabilistic Design Methodology respectively.



CHAPTER 1V

DETERMINATION OF OPTIMUM GEAR DESIGN USING

AGMA J FACTOR AND APPROXIMATE J FACTOR

In this chapter, the focus is on determining the optimal design for a compact spur gear
set in mesh, using the geometry factors I and J as given by AGMA in [15] and using the J as
given by [10]. A comparative study would be made on these two, based on the design values
and running time of the computer program written on the above mentioned methods.

Design Parameters

It is important to define a criterion by which we can compare different designs. One
that comes to mind is cost. Tucker [16] says that maximizing load capacity for a given
material and size generally results in lowest cost per horsepower transmitted.

In specifying the material and its properties, the designer should realize that the
strongest (hardest) material will yield the smallest design. Gears of very hard materials are
expensive to produce because they require special heat treating processes and almost always
require grinding to eliminate distortion caused by heat treating. However, the size reduction
obtainable by using very hard materials usually offsets the increased production cost because
the other components in the gear box (bearings, shafts, seals, housings) are also reduced in
size. An added bonus is that smaller gears run more smoothly than larger gears and,

therefore, have lower derating factors. Dudley [17] points out that a ten to one reduction in



weight can be obtained by using fully hardened gears as opposed to low hardness gears.

In designing a minimum size Spur gear set, there are many parameters to consider.
These include those related to the application of the gear set (power transmitted, input and
output speeds, derating factors) and those related to the mesh geometry (number of teeth,
diametral pitch, pressure angle, addenda and dedenda, face width). In this project it will be
assumed that the parameters related to the application of the gear set will be known or will
be available through a functional relationship and the geometrical parameters (¢, a, b, ry, 1)
will be chosen by the designer.

The design model is solved by assigning values to the geometrical parameters and
then treating the remaining two parameters (N5, P) as design variables. Also, the materials
to be used is assuined to be known. This is the approach used in reference [4], [18]. This
approach is well founded for the following reasons. First, reducing the number of design
variables to two enables this problem to be tackled as an optimization problem. Second, the
pressure angle, addenda, dedenda, and hob tip radius are all standardized variables;
therefore, the designer can choose values for these variables from a small number of
commonly used standard data.

Based on information in references [4], [7], [16], [17], [18], it seems that, it is a
common practice among designers to specify the face width as a proportion of the pinion
diameter. It is known that a wider face width can carry a greater load, however, it is also
more sensitive to alignment errors which can cause uneven load bearing instances.

Tucker [16] recommends the formula, A =m,/ (mg + 1), for obtaining an initial

estimate for A. Dudley [19] recommends a value of 0.25 for A when alignment between



gears is a serious problem, 0.5 for good alignment and 1.0 for extremely good alignment.
In Reference [20]. Juvinall suggests lower limit on face width as 9/P and upper limit as 14/P,
or in terms of module as 9m < F < 14m.

In some sources, as in [21], it is recommended that the face width be between three
and five times the circular pitch. This was an adequate rule of thumb earlier when low
hardness gears were being used more often. This rule for determining the face width
penalizes the finer pitch gears, which are more common in use today, to an excessive degree.
Therefore for gears with finer pitch (P>20), the face width to diameter approach is a more
logical approach to use in specifying the face width.

The problem, therefore, has been reduced to one of only two variables, the number
of pinion teeth, N,, and the diametral pitch, P. Designing a compact spur gear set involves
minimizing the center to center distance, C, as in [4], [18], which is givenas; C=N, (1 +
mg) / 2P. It is shown in [2] that the optimum is clearly constraint bound since d is
monotonically increasing in N, and decreasing in P. It is shown that the optimum occurs at
an intersection of two constraints, usually the LPSTC contact stress constraint and the
bending stress constraint. Furthermore, the constraint intersection depends only on N;, so
even though the design space is two-dimensional, the optimum is obtained by solving a one-

dimensional problem.

Formulation of Design model

Our design objective is to minimize the size of the gear. This can be interpreted in

many ways: reduction in the volume of the pinion, reduction in the center distance between



pinion and gear, or reduction in the pinion pitch diameter. As will be seen, all these are
equivalent. The volume of a pinion can be expressed as;

Volume = F(nd,?) / 4 4.1)
This is not exact, as the tooth addendum region will not exactly fill the root space between
teeth, but is close enough to be relevant. The problem is then to minimize volume. As
discussed earlier, face width can be expressed as a fraction of pinion diameter, i.e.,

A =F/d,. 4.2)
If we now combine equations (4.1) and (4.2) we have;

Volume = (n/4) A d,’ (4.3)

In a general design problem, the facewidth to diameter ratio A is specified by the

designer and hence can be treated as a constant in equation (4.3). It can now be seen that
minimizing the volume and minimizing the pinion pitch diameter are equivalent. The
equation for the distance between pinion and gear centers (center distance) can be expressed
as:

C="%(d,+dy) (4.4)
The pitch diameter of the gear, d, is related to that of the pinion by the gear ratio m;:

d;=mg *d, (4.5)
The gear ratio is always given in a gear design problem, with a certain maximum margin for
error. Then, the center distance can be expressed as:

C=d, (mg+ 12 (4.6)
Expressing d, in terms of the design variables N; and P, we have:

C = (Ny/P) (mg + 1)/2 ' (4.7)



From equation (4-6), we see that minimizing the center distance is equivalent to minimizing
the pinion pitch diameter dp. In this project, however, the objective function is taken as
minimizing the center distance, as the center distance is expressed in terms of the gear ratio
and the design variables Np and P. This is the method followed in [4] and [18].

The optimization problem can thus be summarized as:

MINIMIZE C =N, (1 + m) / (2P) (4.8a)
such that
Np 2 2 [bP - r; (1 - sin ¢ )] / sin® ¢ (4.8b)
S. > C, [W, Cy, / (dFD)] 2 (4.8¢)
s,> W,PK,/ (FJ) (4.8d)

with known parameters:

H, n, mg, ¢, a,b,r, A, S Sy

In most practical application, the undercut constraint (equation (4.8b)) will not be
active at the solution. Equation (4.8¢) safeguards against pitting and scoring failures of the
teeth. In chapter II it was stated that, the LPSTC contact stress constraint can be taken as the
Pitting constraint and that the IPC contact stress constraint can be taken as the Scoring
constraint. Equation (4.8c) is a general form of contact stress equation that can be used to
calculate the contact stress for any point of contact through the mesh cycle. Equation (4.8d)
is the bending fatigue constraint which accounts for the failure due to bending fatigue. Both
the constraints (4.8c) and (4.8d) include AGMA geometry factors I and J, that are discussed

further in Appendix I and II.



In [10], a simple, analytical method to accurately estimate the AGMA bending stress
geometry factor J has been presented. This is a non-iterative method and yields results with
good accuracy. The optimization mode] has been solved using the Approximate equation
for J factor and a comparison was made with the use of AGMA J factor. The results are
discussed later in this chapter.

The formulation of the constraints for the optimization problem has been discussed
in [2]. Equation (4.8b) gives the lower bound on N;. Although limiting the contact stress
at the initial point of contact will eliminate the possibility of involute interference, from a
computational peispective it is prudent to include equation (4.8b) in the formulation. It can
be noted that the terms on the right side of equation (4.8b) are all constants in a given design
context and so this lower bound on N, is determined only once in the design algorithm.

In [17], the Hertzian contact stress is evaluated at the initial point of contact and at
the lowest point of single tooth contact. The classical Hertz contact stress equation as
applied to spur gearing is given as:

0y =C, [(W,/Fcos ¢) (1/p, + 1/p,)]" (4.9)
The pinion radius of curvature as given in [2] is simply: p,=6R,cos ¢ (4.10)
It is shown that the sum of the gear and pinion radii of curvature is always a constant and
given by: p,+ p,==Csin ¢ 4.11)
This requires the radius of curvature of an internal tooth to be negative. Realizing that
C=R,(mg % 1) and solving equation (4.11) for p,, we get:

P, =R, [(1 £ mg)sin ¢ - 6 cos ¢] (4.12)

Therefore the term (1/p i+ 1/p,) from equation (4.9) can be written as:



(I/p+ 1/py) =[1/(R,0 cosd)] [(1 £ m) sin ¢
/(1 £ my) sin ¢ - 0 cos ¢]] (4.13)
If the expression for the roll angle to the pitch point is substituted into equation (4.13) it
becomes:
(1py+ 1/p,), = [1/(R sin ¢)] [mg % 1)/my]
= [2/(d,sin ¢)] [mg £ 1)/m,] (4.14)
Substitution of this expression into equation (4.9) gives the standard AGMA surface
durability equation;  6,,,,= C,[W,/ (Fd,I)]'? (4.15)
where I is the AGMA durability geometry factor.
I = [sind cos¢ / 2][(mg + 1)/m,] (4.16)
The actual AGMA equation contains a dynamic factor, C,, to account for dynamic load
effects. The generalized form of equation (45¢) which would compute the Hertz contact
stress at any point of contact through the mesh cycle is given as;
0,=C, {[6CaCmW[C,CS/(CVdpF)] [1/[Bcos’d (1-6 cosd)/(sind (1+ mg))]]1} 2 (4.17)
where, C,=V[1+(l/A) (v)"?]?
A and B are constants given by AGMA 218.01 ref [7]. A and B are calculated as:
B=(1/4)(12-Q)%s and A=50+ 56(1-B)
where Q being the AGMA Quality Number.
Equation (4.17) is valid at any point during the contact cycle and oy can be computed for
values of 6 and 8. At the initial point of contact, 6 = I and © = 6,,.. At the lowest point of
single tooth contact, 8 =2 and 0 = O pstc-

As the expression for o, at the initial point of contact and at the lowest point of single



tooth contact are readily available, the surface stress constraints are simply stated as
inequalities that require these two critical values of a,, to be less than the surface strength of
the softer material. The surface strength in the inequalities must be appropriately modified
for overload, face misalignment, life, temperature, reliability, size, and surface finish.

Similarly, the AGMA bending stress equation is developed from the Lewis Equation,
which considers the gear tooth as a cantilever beam. This is further discussed in the next
chapter. The AGMA bending stress equation is given as [7]:

KGKSKM WI P

Ly (4-18)

Deterministic Optimization

The optimization problem on hand is summarized as:
MINIMIZE C =N, (1 + mg) / (2P)
such that

Np 2 2 [bP -1, (1 -sin ¢ )] /sin’ ¢

S > Cp [W, Cp / (dFI)]'?

S 2 W PK,/(FJ)

The formulation mentioned above can be called as Deterministic formulation, as all
the design variables are deterministic in nature. The correction factors and geometry factors
introduced by AGMA makes the problem more deterministic. The next chapter focusses on

formulating the optimization model without any AGMA correction factors, thereby including



randomness in the problem.

Several attempts have been made to solve the optimization problem stated above [4].
Carroll and Johnson, see [2], came up with the most efficient optimization algorithm which
could solve for the design values. This algorithm is a special purpose algorithm that is
applicable only to this gear design problem, rather than to the broad class of general
nonlinear programs. The operation of the algorithm is described below.

First, a feasible starting value for N; is chosen. Once this is established, the
bracketing phase of the algorithm begins. An initial step of magnitude AN, = 2% where ql
is a specified non-negative integer, and is taken in the direction of decreasing N,. The pinion
diameter and constraints are evaluated at the new point. If the new point is infeasible (i.e.,
violates any of the constraints), then d, for that point is artificially set to a large value (10°
in the current work). If the new d; is less than the previous one, the step size exponent, ql,
is increased by one and another step is taken. The process is repeated until the new d, is
greater than the previous one. An upper bound on the step size is set at AN, .. =29 where
Omax 18 @ specified non-negative integer greater than or equal to q1. In general the step size
of the ith step is given by (AN;). = 2% where q, =min {(ql +i-1), Qrmax ) -

Now a bracket on the minimum having a width of AN, = 24 (the last step size of the
bracketing phase) has been established. Since the bracket width is a power of two, the
minimum is found in exactly q;, additional function evaluations by halving the bracket q,
times and discarding the half not containing the minimum each time untij AN, is the

minimum while the other is infeasible.

Satisfaction of Gear Ratio Requirement



An additional problem that must be considered involves the integer tooth number
requirement for the gear, [2]. So far, only the pinion has been considered in the design
process. However, even if the number of pinion teeth is an integer, it may be impossible to
have an integer number of gear teeth for some values of the gear ratio, like the one cosidered
in this thesis, where mg = 3.78. The only sensible solution to this problem is to allow the
gear ratio to vary to some acceptable amount about the desired value. In most gear
applications where load must be transmitted, the actual gear ratio can vary a limited amount
from the specified value without adversely affecting the desired performance.

To determine an acceptable value for N the following steps could be taken. First,
find the minimum feasible integer value of N;. Next, calculate the product of m; and Np.
If the fractional part of this product exists (nonzero) then N; should be set equal to the
integer portion of the product plus one. The actual gear ratio should then be calculated and
compared to the desired gear ratio. If the absolute difference is less than the acceptable
deviation, then those values of N, and N; are taken as the design values pending their
satisfaction of other constraints (feasibility). If the gear ratio tolerance is exceeded, the only
alternative is to increase N; until a suitable combination of N; and N can be found.

The minimum value of N; using the desired value of my; is obtained so that none of
the design constraints are violated; however, if the gear ratio has to be varied to satisfy the
integer tooth number requirement on Ny, the locations of the constraints in the design space
will change. It is then possible that an infeasible design could result due to the gear ratio
variation. Therefore, the final design must be checked for feasibility when the actual gear

ratio is different from the value used to obtain the minimum N,.



To illustrate the design technique, an example cited in [4] is considered below:
Example Problem :

A gear set is to be designed to transmit 20 hp at a speed of 1260.5 rpm. The gear
ratio is 5, pressure angle is 20 degrees, face width to diameter ratio is 0.25, surface strength
is 200 ksi, bending strength is 60 ksi, elastic modulus is 3E7 psi, poisson's ratio is .25,
external mesh and standard teeth. The dynamic factor is considered as unity.

This problem was solved in two ways using the model defined in [2]: One using the
AGMA geometry factor, J, and the other using the J calculated using Approximate equations,

see [10]. The results are shown in Table 4-1 and Table 4-2.

Discussion :

Referring to Table 4-1, note that using the J given by AGMA, for a diametral pitch
of 16, the minimum feasible number of pinion teeth was found to be 33, and the minimum
center distance of 6.188 in. For the same diametral pitch of 16, using the Approximate
equations for J value, see Table 4-2, the feasible number of pinion teeth was found to be 36
(rather than 33), and the value of center distance is 6.75 inches. However, the minimum
value of center distance obtained using the J from Approximate equations is 6.50 inches for
a diametral pitch of 12. Also note the computer time taken for both the methods. As
explained in Appendix III, determination of J using the approximate equations is much faster.
The computer time taken by the AGMA method is considerably higher than the time taken

by J using approximate equations.



Table 4-1

DESIGN OF SPUR GEAR SET USING DETERMINISTIC METHODS

Data Input :-

Gear ratio = 5
Pr. angle =20 deg.

ql=1 gmax=3

rpm = 1260.5

add. a=1.000/p ded.d= 1.250/p  hobtip radius = .300/p
velocity factor kv =1

Horse power = 20 hp

Allowable bending stress : 60 ksi
Allowable contact stress : 200 ksi
Face width f=0.25 * d,

Mod. of elasticity = 3E+7 psi
Poisson's ratio = 0.25

DETERMINISTIC SOLUTION USING J OBTAINED BY AGMA METHOD

P NP NG C F SB  SLPSTC SIPC TIME
(in) (in) (in) (KSI) (KSI) (KSI)  (secs.)

2.000 16.000 80.000 24.000 2.000 0.548  27.798 128336 =0
2250 16.000 80.000 21.333 1.778 0.780  33.169 153.136  0.049
2.500 16.000 80.000 19.200 1.600 1.070  38.848 179.354  0.049
3.000 17.000 85.000 17.000 1417 1.606  45.983 100.992  0.049
4.000 17.000 85.000 12.750 1.063 3.807  70.796 155.488 0.109
6.000 19.000 95000 9.500 0.792 9.958 107.729 159.599  0.109
8.000 21.000 105.000 7.875  0.656 18.827  140.505 175.681 0.160
10.000 23.000 115.000 6.900 0.575 30.011  169.276 191.423  0.160
12.000 26.000 130.000 6.500 0.542 39.577 182.701 187.994  0.160
16.000 33.000 165.000 6.188 0516 56.038  193.062 177.005 0.221
20.000 44.000 220.000 6.600  0.550 59.725 172.763 145945 0.221

Note: =0 indicates value too close to zero.



Table 4-2

DESIGN OF SPUR GEAR SET USING DETERMINISTIC METHODS

Data Input :-

Gear ratio =5

Pr. angle =20 deg.

ql=1 gmax=3

rpm = 1260.5

add. a=1.000/p ded.d=1250/p hobtip radius = .300/p
velocity factor kv =1

Horse power = 20 hp

Allowable bending stress : 60 ksi
Allowable contact stress : 200 ksi
Face width f=0.25 * d,

Mod. of elasticity = 3E+7 psi
Poisson's ratio = 0.25

DETERMINISTIC SOLUTION USING J OBTAINED BY APPROXIMATE

EQUATIONS
P NP NG C F SB  SLPSTC SIPC TIME

(in) (in) (in) (KSI) (KSI) (KSI)  (secs.)
2.000 16.000  80.000 24.000 2.000 0.733 27.798 128.336 =
2250 16.000  80.000 21.333 1.778 1.044 33.169 153.136 =
2.500 16.000  80.000 19.200 1.600 1.432 38.848 179.354 =
3.000 17.000 85.000 17.000 1.417 2.140 45983 100.992 =
4.000 17.000 85.000 12.750 1.063 5.073 70.796 155.488 =
6.000 19.000 95.000 9.500 0.792 13.152  107.729 159.599  0.059
8.000 21.000 105.000 7.875 0.656 24.649 140.505 175.681 0.059
10.000 23.000 115.000 6.900 0.575 38.964 169.276 191.423  0.059
12.000 26.000 130.000 6.500 0.542  50.770 182.701 187.994  0.059
16.000 36.000 180.000 6.750  0.563 57.721 168.577 150.083  0.059
20.000 48.000 240.000 7200 0.600 59.807 151.157 125.426  0.059

Note:

= 0 indicates value too close to zero.



Itis concluded that a smaller feasible design is obtained using the AGMA method.
The smallest value of center distance using AGMA method is 6.188 inches for a pitch of 16
and a pinion teeth number of 33. The smallest value of center distance using J from
Approximate equations is obtained as 6.5 inches for a diametral pitch of 12 and a pinion
teeth number of 26.  The solutions shown in Table 4-1 and Table 4-2 are both
deterministic. The features of the method and code are; (1) Determination of the best design
for each candidate diametral pitch, (ii) Designs which provide a tight satisfaction of the
specified gear ratio are obtained, (iii) A complete analysis of each design is obtained with
output including contact stresses, bending stress, face width, center distance and the
computer time for each design. Since the smallest feasible gear set is obtained for each
candidate diametral pitch, the designer can survey the results and choose the final design
based on practical trade-offs between size and other design aspects.

However, the design suffers a serious set back in not being able to define the safety
of the design in terms of reliability. There is no safety level associated with the design. In
the next chapter, it is shown how Probabilsitic Design methodology, when incorporated in
gear design can define the safety level of the design, apart from the above mentioned features
of the deterministic method. Probabilistic design methodology thereby gives added
flexibility to the designer to consider the aspect of safety in the design. This is discussed in

the next chapter.



CHAPTER V

DETERMINATION OF OPTIMUM GEAR DESIGN USING

PROBABILISTIC DESIGN METHODOLOGY

Several methods have been proposed in the past for optimum design of spur gears.
These methods have utilized deterministic design optimization techniques to obtain what
could be considered satisfactory design parameters. There are at least two problems that
arise with the results of deterministic approach; the inability to deal with uncertainties in
material properties and over conservative design. Moreover, in an optimally designed
structure based on deterministic considerations, this drawback can be more troublesome,
because optimized structures tend to be more sensitive to fabrication defects and improper
definition of the loading environment, see [22], [23], [24]. This has given rise to research
in the areas of Probabiiistic Design Methodologies applicable to structural and machine
component design. This method seeks to account for the uncertainties in material properties,
loading conditions and disparate failure models. In this chapter, the applicability of
probabilistic design methodology in compact spur gear design is discussed.

Uncertainty associated with design

Engineering uncertainty is not- limited to the variability observed in the basic

variables. First, the estimated values of a given variable (such as the mean), based on

observational data, will not be error-free. Second, mathematical or simulation models often



have modeling uncertainties and limited accuracy at least over certain range of parameters.
For example, formulae, equations, algorithms, and laboratory models, that are often used in
engineering analysis and design are idealized representations of reality. Consequently,
predictions and calculations made on the basis of these models may be inaccurate and thus
also contain uncertainty. Human error can result from errors made by engineers and
technicians during the design or operation phases. It can be reduced by improving the quality
of control program, but it cannot be avoided entirely. In general, human error is very
difficult to define. It is common practice to treat human error as modeling error, see [25].
In some cases, the uncertainties associated with such predictions or model errors may be
much more significant than those associated with the inherent variabilities. All uncertainties,
whether they are associated with inherent variability or with prediction error, may be
precisely assessed in statistical terms and the evaluation of their significance on the design
can be accomplished by the concepts and the methods of probability.

If there are uncertainties in the design, the next step is, to ask how should designs be
formulated or decisions affecting a design be resolved? Presumably, we may assume the
worst conditions and develop conservative design on this basis. From the system
performance and safety point of view, this approach may be suitable. However, the resulting
design would be too costly as a result of over-conservatism. On the other hand, an
inexpensive design may not ensure the desired level of performance and safety. Therefore,
the decisions should be made considering cost and safety of the design. The most desirable
solution is one that is optimal, in the sense of minimum cost and maximum benefits. If the

available information and the models to be evaluated contain uncertainties, the analysis



should include the effects of such uncertainties.

Thus, probabilistic design is concerned with the probability of failure or preferably
reliability. This methodology is most useful when uncertainties in material properties and
loading conditions are considered. To apply probabilistic methodologies in design, the
design parameters are modeled as random variables, with selected distribution types, means,
and standard deviations, see [26]. The primitive (random) variables that affect the structural
behavior have to be identified.

Development of PDO Model

The probabilistic model of the same design problem cited in the previous chapters
would be different from the deterministic model that has been described in chapter IV. The
difference is that the AGMA correction factors and geometry factors that have been
incorporated in the design model are neglected. This enables the problem to be treated as
completely non-deterministic, or in other words, probabilistic. The design variables are
treated as random variables with some known distribution. The uncertainties in the design
equations are thereby quantified.

Accordingly, our next step is to restate the design constraints defined in Chapter III,
to be modeled using the probabilistic methodologies. This is done by eliminating the
correction factors and defining the possible uncertainties in the design variables.

Wilfred Lewis [27] was the first to present a formula for computing the bending
stress in gear teeth in which the tooth form entered into the equation. The formula was
announced in 1892, and it still remains the basis for most gear design today. This formula

is used to define the failure surface due to bending fatigue, in this project.



A gear tooth is essentially a stubby cantilever beam. At the base of the beam, there
is tensile stress on the loaded side and compressive stress on the opposite side. When gear
teeth break, they usually fail by a crack at the base of the tooth on the tensile-stress side. The
ability of gear teeth to resist tooth breakage is referred to as beam strength or flexural
strength in [19].

The flexural strength of gear teeth was first calculated to a close degree of accuracy
by Wilfred Lewis. This was achieved by inscribing a parabola of uniform strength inside a
gear tooth, see Figure 5-1. When this parabola is made into a cantilever beam, the stress is
constant along the surface of the parabola. By inscribing the largest parabola that will fit into
a gear tooth shape, one can locate the most critically stressed position on the gear tooth. This
position is at the point at which the parabola of uniform strength becomes tangent to the
surface of the gear tooth. The gear tooth is modeled as a cantilever beam of cross-sectional
dimensions F and 4, having a length / and a load W, uniformly distributed across the distance
F. The length / is same as the sum of the addendum and dedendum. The thickness of the
tooth is half the circular pitch, since circular pitch is equal to the sum of the tooth thickness
and width of space between teeth. The section modulus is I/c = Ft¥/6, and therefore the

bending stress is:

(5.1)

Equation (5.1) has further been developed to define more accurately the bending

strength in a gear tooth under load. This was achieved by incorporating the correction factors



W,

Figure 5-1: Assumptien of Gear Tooth in Determination of Lewis Factor

(Source: Mechanical Engineering Design
Shigley and Mischke, Fifth Edition)



and geometry factors J. The corrected equation for bending strength was stated in Chapter
IV to define the bending failure in deterministic method. As the idea of this work is to arrive
at the optimum design of a gear set without involving any correction factors, equation (5. 1)
would be used to define the bending strength failure equation in this chapter. By modeling
the gear tooth as a beam: ali the uncertainties in the design variables can be treated.

The contact stresses on the gear tooth can be determined by the formulas derived
from the work of Hertz. It is easy to visualize that any contact point on a set of spur gears
can be simulated by a pair of cylinders of the appropriate radii. The applied load P is the
normal tooth load Wy, per inch of face width F; thus,

P=W,/F (5.2)
The normal tooth load on a set of spur gears is given as:

Wy =W,/ cos (¢) (5.3)
where W is the tangential tooth load and ¢ is the pressure angle; thus,

P =W,/ (F cosd) (5.4)
In the late nineteenth century, H. Hertz developed a mathematical theory for the surface
stresses and deformations produced when two curved bodies are pressed together. For

cylinders with parallel axes, Hertz's equations become:

Pl(p,+p.)/
S - 0564 [(PrepP)/ (Pppy)] 55

) [(1-p3/Ep] « [(1- 13)/ Eg)

Substituting equation (5.4) into equation (5.5):



Wr (pP+pG

) (5.6)
Fcos¢p p,p,

The AGMA geometry factor I is defined as:

7. cosd)( PpPG)

(5.7)
dp  PpPg
Equation (5.6) may simnly be written as:
S -C i (5.8)
© P\ Fd,I '

Equations (5.1) and (5.8) represent the bending and contact stress equations. These
were the expressions that were used to define the limit state functions in probabilistic
analysis, as can be seen in the following sections. These equations are in their primitive form
without any correction factors. This enables the problem to be treated as a probabilistic
model.

Limit State Function

Probabilistic analysis is mainly concerned with the probability of failure of a
designed part or rather the reliability of the machine part or structure. By reliability it is
meant the probability that designed part will perform its intended function without failing.
This assumes that the part is used within the condition for which it is designed. Two factors

are considered in this methodology. The first is the limit strength of a material and the other



Is an acceptable level of safety. Because of this we define what is known as limit state
function or equation and safety index. The concept of limit state function can be expressed
as:

G(x) = g(x) - S, (5.9)
where

X = a vector of random design variables

S, = a strength limit
The function G(x) is called a limit state function. It divides the design space into safe and
unsafe regions, see Figure 5-2a.

The major concern in probabilistic analysis is the computation of the probability of
failure of a structure or machine element. Therefore, the question arises as to how to define
a measure of the reliability of a designed structural member or machine element. In general
we are concerned that the applied stress, S. should not exceed the resistance, R, offered by
the designed structure. Hence, the failure surface is given by:

G(R,S)=0 (5.10)
The minimum distance from the origin to a point on the failure surface is defined as the
safety index, B, see Figure 5-2b. In [28], Hasofer and Lind (1974) calls this value the
"Reliability Coefficient". The failure surface or "limit state" is defined by the equation (5.10)
which can also be written as g = 0, as in [29]. The feasible or safe region is defined by the
inequality g > 0 while the infeasible (unsafe) region is defined by g <0.

In dealing with failure of a structure or machine component, it is desirable to

determine the probability of R being less than or equal to S. Hence the probability of failure,
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Figure 5-2 (a): Safe and Unsafe regions
of a design space

Figure 5-2(b): Definition of Safety Index



Dy 1S:

p;=PR<S) (5.11)
or in general

pr= P[G(R, S) < 0] (5.12)
where G( ) is the limit state function and P[.] denotes the probability of event [.]. From basic
statistics

pf=P(R-SsO)=fofRS (r,s)drds (543)
where

Q = failure domain

fzs = joint density function.

IfR and S are independent, equation (5.13) becomes:
P - P(R-S<0)- f - f = flr) f(s) drds (5.14)

where
f; = density function for R
fs = density function for S.
It is known that the cumulative distribution function, F, (z), of any random variable Z is

given by:
F/2) - P(Z<2) - f:fz(x)dx (5.15)

provided z > x. Consequently equation (5.14) may be written as:



P, - P(Ry<0) - f F2)f(2) dz (5.16)

The desigii constraints defined in chapter III, have to restated as limit state functions.
in order to be treated as probabilistic. Consider the bending stress equation defined by
equation (5.1). As mentioned earlier in this chapter, the gear tooth is considered as a
cantilever beam and the bending strength on the gear tooth is considered as same as the
bending strength equation of a beam. To prevent failure in bending, the calculated bending
stress can be compared to the adjusted bending strength of the material:

6W,1
Ft?

< § (5.17)

Expressing as a limit state function, equation (5.17) can be written as:

6W,1
Fi?

-5, <0 (5.18)

Similarly, expressing equation (5.8) which is the Hertz contact stress equation as a limit

state function, we get:

W,
Cp — -85 <0 (5.19)
Fd,I

Equations (5.18) and (5.19) define the corresponding failure surface when the design

variables are transformed in a two dimensional space. Next topic deals with determining the



minimum distance of these failure surfaces from the origin, B.

Safety Index Determination

The evaluation of equation (5.16) is not always easy especially since the distribution
of R and S are not always known. However, for the case when it is known that R and S are
random normal variables the probability of failure is determined very rapidly. If the safety

margin is defined by;

Z=R-S (5.20)
then
0-u
Pr= PR-§<0) - P(Z<0) - &(—) (5.21)
where
®( ) = the standard normal distribution function
Hz = Hr - s
0, = (02 + 0g)"?
Hence,
pe= @(-B) (5.22)
where
P=u,/o0, (5.23)

The safety index, B, defined by equation (5.23) is due to Cornell, see [30], and it is

said to be based on the first two moments, that is mean and standard deviation. It is possible



that various values of safety index may be obtained for the same limit state condition,
depending on how the safety index is defined. see [31]. When this is the case we say that
safety index lacks invariance, [32]. To insure that B is invariant Hasofer and Lind in [28]
suggested the transformation of the variables into their standard form where the mean is zero
and the variance has a value of unity, using the expression

z2=(X-p) /o, (5.24)
Similarly the limit state function is also transformed to give

G(z)=0 (5.25)
In probabilistic analysis, the failure surfaces have to be defined as limit state functions in the
form mentioned in equation (5.25). This will define the surface that divides the safe and
unsafe regions in the transformed design space.
The safety index, being the minimum distance to the surface, as in [33], is determined as

B = min (z'z)" (5.26)
subject to (5.25).

To determine the safety index, P, for the failure modes defined earlier, certain
assumptions were made. The material properties were assumed to be at their mean value.
The coefficient of variation y was assumed to be 0.05. An example problem taken from
Motts (1992) [5] was considered. The values of safety indices were determined using a
program, that is based on General Reduced Gradient algorithm. The results will be shown
later in this chapter, along with the problem statement.

Probabilistic Design Optimization Format

The format of the probabilistic design optimization is very similar to that of the



deterministic. Generally, the problem should be modeled first deterministically as:

Minimize F(x) (5.27a)
Subject to G, (x) <0, 1=1,...m (5.27b)
X, <X <X, (5.27¢)

where X is a column vector with n rows and the subscripts / and u represent the lower and
upper bounds on x respectively. In the design of either a machine element or structure. the
constraint is generally related to the limit imposed by either stress or deformation or any
other criteria that must be satisfied for a safe design.
Because probabilistic design is concerned with probability of failure or the reliability
of a system the probabilistic equivalent formulation of (5.27) is:
Minimize F(x) (5.28a)
Subject to P[G(x)<0]=>¢,, i=1,...m (5.28b)
where x is a vector of n random variables and (, is the specified reliability level of the
system. However, after the determination of safety index as demonstrated above, the
constraint (5.28b) is expressed as:
Gx)=p,-0"' () i=1,...,m (5.28¢)
where @7'(.) is the inverse of the standard normal distribution function.
The probabilistic formulation of (5.28) can be restated in terms of design variables as:
Minimize C =N, (1 + mg) / (2P) (5.29a)
subject to

2[bP-r (1-sind)]/sin?$p-N, < 0 (5.29b)



Cp [W,/(dp FD]'* - S_< By, - @' () (5.29¢)

6 W, I/ (Ft)-S, < By -d' () (5.29d)
where P, is the safety index determined for the pitting failure surface and Bgis the safety
index determined for the bending failure surface. As mentioned earlier, equation (5.29b) is
to check on the lower limit on the number of teeth on pinion, in order to avoid involute
interference. Limiting the contact stress at the initial point of contact will eliminate the
possibility of involute interference. Note that in equation (5.29b), all the terms except N,
which is a design variable, are constants in a given design context and so the lower bound
on N is determined only once in the design algorithm. Yet, Equation (5.29b) was
incorporated in the design algorithm only from a computational perspective.

From the formulation defined by (5.29), it can be seen that two different values of
safety index are used for the bending and pitting constraints. This is to account for the
correlation between the failure modes. However, Hasofer and Lind [28] have suggested that,
for multiple failure modes, the least of all the B values need to be used to define the
constraints in the formulation.

In this thesis, both the ways of incorporating safety indices were considered and the
results are shown for an example problem taken from Motts, [5].

Example Problem : Design a pair of spur gears with 20 degrees full-depth teeth. The
pinion operates at 1750 rpm. The gear ratio is 3.78. The set must transmit 3 hp. The
material to be used is AISI OQT 1300. The yield stress is 61 ksi, tensile stress is 88 ksi.

Poisson's ratio of 0.25, modulus of elasticity 30x10° psi, facewidth to diameter ratio is 0.25.



The AGMA allowable stresses are calculated as; contact = 85.841 ksi, bending = 25.197 ksi.

In executing the same problem using probabilistic techniques, the data given are
assumed to be at their respective mean values. The coefficient of variation (COV) for the
distribution is taken as 0.05. The distribution type is taken as normal distribution.
Discussion :

Since the objective of this project is to make a comparative study of the use of
AGMA geometry factors and Probabilistic design methodology in gear design, the problem
is first solved deterministically. Solutions are presented in Table 5-1 and Table 5-2. As
mentioned in Chapter IV, deterministic approach in gear design can be achieved in two ways:
One utilizing geometry factor J defined by AGMA and other using J from Approximate
Equations. The optimum design achieved using these two methods are shown in Table 5-1
and Table 5-2. To aid easy comparison of these methods with probabilistic method the
results obtained using probabilistic methods are also shown in the same table. This is further
explained below.

The first step in solving the problem using probabilistic methods is to identify the
design variables. In this case, the design variables are diametral pitch P and number of
pinion teeth N,. The next step is to calculate the values of safety indices for the pitting
failure and bending failure limit functions. While doing this, all the variables are treated as
stochastic. The material properties are assumed to be at their mean value. All the variables
are transformed into a reduced space. On transformation, the variables P and N;, will have
a mean value zero and standard deviation one. The mean value of all other variables are

given as input or treated as standard data which are readily available. The coefficient of



Data Input

Table 5-1

OPTIMAL DESIGN OF SPUR GEAR SETS USING DETERMINISTIC
AND PROBABILISTIC METHODS

Gear ratio = 3.78
gmax =3
add. a=1.000/p
hobtip radius = .300/p

ql =1

Allowable bending stress : 25.841 ksi

Face width f=0.25 * d,
Poisson's ratio = 0.25

Pr. angle =20 deg.

rpm = 1750
ded. d=1.25/p

Horse power =3 hp
Allowable contact stress : 85.841 ksi

Mod. of elasticity = 3E+7 psi

Distribution type: Normal

RESULTS FOR EXAMPLE PROBLEM:
Formulation incorporates different values of safety indices for their corresponding
Pitting and Bending constraints.
Safety Index for Pitting stress constraint = 2.432314
Safety Index for Bending stress constraint = 2.196645

COV =0.05

REL. P(n) NP C (in) F(in) S, (ksi) S, (ksi) TIME(sec)
@  8.0000 20.0000 6.0000  1.2500  4.5326  80.1924  0.0625
*  8.0000 20.0000 6.0000  1.2500  3.4531  80.1924  0.1094
50.0000 9.0000 21.0000 55556  1.1667  5.7057  92.3944  0.0586
70.5000 9.0000 21.0000 5.5556  1.1667  5.7057  92.3944  0.0508
81.3270 8.0000 20.0000 6.0000 12500 4.5345  80.0757 00586
853140 8.0000 20.0000 6.0000 12500 4.5345  80.0757  0.0508
90.3200 8.0000 20.0000 6.0000 12500  4.5345  80.0757  0.0625
95.0530 8.0000 20.0000 . 6.0000  1.2500 4.5345  80.0757 = 0
98.0300 8.0000 20.0000 6.0000 12500  4.5345  80.0757  0.0469
99.0610 7.0000 19.0000 6.4286 13571 34672  78.0643  0.0625
99.8650 5.0000 21.0000 9.9000  2.1000  1.0683  35.6087  0.0469
99.9720 - . - - - - -

Note: @ indicates deterministic solution obtained using Approximate J value
* indicates deterministic solution obtained using AGMA method for J factor
- indicates no feasible solution
~ 0 indicates value too close to zero.



Data Input

Table 5-2

OPTIMAL DESIGN OF SPUR GEAR SETS USING DETERMINISTIC
AND PROBABILISTIC METHODS

Gear ratio = 3.78
qmax =3

ql =1

add. a=1.000/p

hobtip radius = .300/p

Allowable bending stress : 25.841 ksi

Face width f=0.25 * dp
Poisson's ratio = 0.25

Pr. angle =20 deg.

rpm = 1750
ded. d=1.25/p

Horse power = 3 hp

Allowable contact stress : 85.841 ksi
Mod. of elasticity = 3E+7 psi

Distribution type: Normal

RESULTS FOR THE EXAMPLE PROBLEM:

Formulation incorporates the same lowest value of the two safety indices

for both the Pitting and Bending constraints.
Safety Index = 2.196645

COV =0.05

REL. P(in) NP C(@im)  F(n) S (ksi) S, (ksi) TIME(sec)
@ 80000 20.0000  6.0000 1.2500 4.5326 801924 0.0625
* 80000 200000  6.0000 12500 34531 801924 0.1094

50.0000 9.0000 21.0000 55556  1.1667 5.7057 923944 0.0508

70.5000 9.0000 21.0000  5.5556  1.1667 S5.7057  92.3944 0.0586

813270 8.0000 20.0000  6.0000 12500 4.5345  80.0757 0.0508

85.3140 8.0000 20.0000  6.0000 12500 4.5345  80.0757 =0

90.3200 8.0000 20.0000  6.0000 12500 4.5345  80.0757 0.0586

95.0530 8.0000 20.0000  6.0000 1.2500 4.5345 800757 0.0508

98.0300 8.0000 20.0000  6.0000 1.2500 4.5345 800757 0.0625

99.0610 7.0000 20.0000  6.7857 14286 3.0940  66.145] 0.0469

99.8650 5.0000 30.0000 142000  3.0000 05023  17.4085 0.0508

99.9720 - - - - . - -

Note: @ indicates deterministic solution obtained using Approximate J value

* indicates deterministic solution obtained using AGMA method for J factor
- indicates no feasible solution

= 0 indicates value too close to zero.



variation of these values are given in the problem statement.

The values of safety indices found are; for bending failure B = 2.196645 and for
pitting failure B = 2.432314. These values are also shown in Table 5-1. The next step was
to use the probabilistic formulation given in (5.29) and run the optimization routine to arrive
at the optimal design. Since the constraints are the same in both deterministic and
probabilistic methods, the same optimization routine [2], is used for probabilistic analysis,
with some modification. At this point, it must be realized that in obtaining the results using
probabilistic methods, all the correction factors including the geometry factor J have been
ignored. The results are presented in Table 5.1 and Table 5.2.

From the results shown, it can be seen that, the values of center distance obtained
using the AGMA J and J using Approximate equations, are the same for this problem. The
bending stress value obtained using the AGMA J is noticeably lower than the one using the
Approximate equations for J. Of course, the computer time taken by the optimization
problem running on AGMA J is higher than the one running on Approximate equations for
J. This is shown later in this discussion.

In running the probabilistic analysis. two different situations were considered. It is
to be remembered that both these situations are devoid of the Correction factor for Bending
Strength, J, and all other AGMA correction factors utilized in Chapter IV. Table 5.1 shows
the results obtained by incorporating the corresponding values of safety indices in the
bending and pitting constraints. Table 5-2 shows the results obtained by incorporating the
lowest value of both the safety indices, in the bending and pitting constraints, as suggested

in [28]. The values of center distance obtained using deterministic and probabilistic methods



are plotted in Figure 5.3. In Table 5.1, a design point of (N, = 19, P = 7) may be selected for
a reliability of 99.061%. The corresponding value of center distance is 6.4286 inches. For
the same reliability level of 99.061% in Table 5.2, the value of center distance is 6.7857
inches and design point is (N, = 20, P = 7). For higher values of diametral pitch the
difference in values of center distance is more significant. This indicates that by using the
corresponding values of safety indices in the failure constraint equation, a smaller value of
center distance is attained than using the lowest safety index value. To aid comparison of
the results, actual contact and bending stresses on the pinion tooth are shown in Figures 5.4
and Figure 5.5.

It can also be noted that, using deterministic methods in design, there is only one
design attainable for one value of diametral pitch, without any mention about safety level.
In probabilistic design methodology, however, the designer can select a design with a
particular safety level in mind. Deterministic method gives a center distance of 6.0 inches,
for a design point of N, = 20, P = 8. The result reveals that deterministic approach provides
a reliability of 81.327% to 98.03%. However, probabilistic design method allows the
designer to select a different design point that gives a higher reliability than the deterministic
result. For example, from Table 5.1, a design point (N, = 19, P, = 7) may be selected for a
higher reliability of 99.061%.

One other basis of comparison between the deterministic and probabilistic
methodologies is in the computer time taken. In Table 5.1 and Table 5.2, the time taken for
each run is shown. It can be seen that among the deterministic methods, the one employing

J given by AGMA takes a higher CPU time of 0.1094 secs. to arrive at the optimum. The
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deterministic run utilizing J from Approximate equations takes a lower CPU time of 0.0625
secs. However, the probabilistic run takes a much lower time than both the deterministic
methods. This is because in probabilistic method there is no need to compute the value of
Geometry factor J. Calculation of J value is an optimization problem by itself, which is
necessary to be calculated only in the deterministic techniques.

For various design points in the probabilistic run the time taken is different but they
are all either equal to or lower than the time taken by deterministic run using Approximate
value for J, which by itself is lower than the deterministic run using AGMA J factor. It can
be noted that some instances in probabilistic run take very low computer time that has almost
zero value. This is because, it happens that the design point is close to the optimum and
hence the optimization routine requires only fewer evaluations to reach the optimum point.
The programs were written in Quick Basic Version 4.50 and the computer time shown is the
time taken for the run in a 100 MHz Pentium Processor.

Another factor that may be considered during this design may be the acceptable risk
level. It may be that a higher level of reliability is required and in that case one may opt for
a slightly heavier gear set. If one can suffice with a lower reliability level, a much smaller
design is obtained which could be sometimes smaller than the one obtained using
deterministic methods. In addition, the probabilistic method indicates that for the given
design condition, the most achievable level of reliability is 99.865%. Perhaps, the most
useful and important advantage is that since the results obtained are based on the
uncertainties in the materials, if any manufacturing inaccuracies are introduced we have the

confidence that the reliability obtained is still applicable.



CHAPTER V1

SUGGESTIONS FOR FUTURE WORK AND SUMMARY

Suggestions for Future Work

A direct extension of the work presented in this thesis should be its application to
gear types other than spur gears. Helical, bevel, and spiral bevel gears are widely used and
design of these types of gears is dictated by the same failure modes that apply to spur gears
with difference in the mathematical formulations of the resulting design constraints. The
analysis considered in this project can be applied directly to helical gears with known helix
angles. However, if the helix angle is treated as a design variable, the problem may become
more complex.

A second important additional area of study in gear design optimization should be
in the area of tooth proportion modifications. Deviation from standard proportions can
increase the bending strength of the pinion tooth and also reduce the tendency for scoring.
The overall size of the gear set cannot be improved a great deal by deviating from standard
proportions because the constraint which usually limits the design, the LPSTC contact stress
constraint, is less sensitive to tooth proportion modifications than the IPC contact stress and
bending stress constraints, see [2].

In reference [34] Estrin used a nonlinear programming algorithm to optimize the gear

tooth proportions for a given pinion diameter and number of teeth. He also introduced some



additional design constraints that are necessary when standard propbrtions are not used. His
work provides a good starting point for a more detailed analysis of the problem with
deviations in tooth proportions.

Even though the probabilistic analysis attempts to quantify the many uncertainties
that may be encountered during gear design, efforts should be directed in trying to minimize
uncertainties in computer and simulation models. This step calls for more improved
computer and simulation models.

Some specific areas that attracts research are development of an accurate scoring
predictor, development of a more accurate stress concentration factor for the bending stress
equation, and development of a more accurate velocity (dynamic effects) factor which
considers more factors than Just the accuracy of manufacture and pitch line velocity.

As the supremacy of probabilistic design methodology in gear design, has been
clearly established through this work, this new area must be further research and ventured
in the design of other machine elements, Spur gear was chosen in this study because of the
fact that it is one of simplest, oldest machine part that humans knew and has lot of
significance in terms of cost of manufacture, stresses induced, failure modes etc.

Summary

In this thesis, the objective has been to clearly substantiate the supremacy of
Probabilistic design methodology in design of compact spur gear sets over the conventional
deterministic methods. The idea was also to establish Probabilistic Design Methodology
as the new way to design. This has been achieved by way of a comparative study between

the two design methodologies.



The idea of minimizing the size of the gear set was suggested in [4]. In [7] a more
logical treatment to the problem which is relatively easier to apply has been presented. This
incorporates the AGMA geometry factor J in computing the bending stress equation. In spite
of several other improvements, the approach to gear design has remained rather
deterministic. This ignored the uncertainties that could arise in gear design process. In this
project, the model development included all the uncertainties by omitting the correction
factors.

This project is the first attempt to explicitly compare the probabilistic and
deterministic methods applicable in spur gear design, in terms of design parameters,
computer time and reliability of design. Gear design process has been fully analyzed using
both methods. In Deterministic Optimization a comparison is made in the use of AGMA J
factor and J from Approximate equations. Both these techniques have their own advantages.
While the deterministic model incorporating J from AGMA method is more accurate in
defining the bending strength, the one using Approximate equations for J is much faster in
terms of running time. If the criterion is running time then the use of Approximate equations
for J would be a better choice and if the emphasis is on higher accuracy then the AGMA
equation for J would be ideal. However, it should be noted that in either of these two
methods there is no mention about safety or reliability of the design. Probabilistic design

methodology has proven to fill this void.

This work comprises a detailed analysis of the gear design problem using

Probabilistic design methodology. All the uncertainties in the system were quantified by



ignoring the correction factors suggested by AGMA and others. The design variables were
treated as stochastic with some distribution. Limit functions for pitting and bending failure
surfaces were defined and their corresponding values for safety indices were determined.
The probabilistic analysis was then conducted in two ways: One using the corresponding
safety indices for both the pitting and bending failures and other using the lowest of the two
safety indices for both the failure surfaces, as suggested by Hasofer and Lind, [28]. It has
been observed that a smaller value for center distance can be achieved by applying
corresponding values of safety indices for the failure constraints, at higher values for
diametral pitch. There is no significant difference in the running time among these methods.

When compared with the deterministic results the probabilistic methods seem to be
a more favorable design tool for the designer. The probabilistic method of designing is faster
than the deterministic method using Approximate value for J, which by itself is faster than
the one using AGMA J. Probabilistic design technique offers the designer more flexibility
in selecting a design. While the deterministic method gives one design for a particular factor
of safety, the probabilistic design offers several design points for different levels of
reliability. If the application calls for a higher reliability, then the designer can go for a
slightly heavier set. If one can suffice with a lower reliability level, a smaller design can be
achieved, which sometimes can be smaller than the one achieved by deterministic methods.

Another useful advantage of the approach used in this thesis is that, since the results
obtained using probabilistic methods are based on the uncertainties in the materials, if any
manufacturing inaccuracies are introduced the designer can have the confidence that the

reliability obtained is still applicable.  Hence it is concluded that probabilistic design



methodology is a more comprehensive tool for a designer than the deterministic
methodology.

Probabilistic design methodology is becoming an important design method in
industries. It is a method that can be applied in every field of engineering where
uncertainties in design parameters exist. It is used only in limited areas at present due to the
fact that many are unaware of this powerful design tool. The growing interest in this design
method can be attributed to the fact that it takes into consideration reliability, dependability,
optimization, and cost parameters which are the factors that influence the rating of the

design.



APPENDIX I
AGMA Geometry Factor for Pitting Resistance (I)

The pitting resistance geometry factor, /, is a dimensionless number. It takes into
account the effects of}
1. radii of curvature
1i. load sharing
iil. normal component of the transmitted load
The AGMA pitting resistance formula is based on the Hertz contact stress equation
for cylinders with parallel axes. The original formula for the calculation of Pitting

Resistance Geometry Factor, /, is given in [35]. The final formula is given as:

I cosd, C;'

L yam, &

Py Py

For spur gears, the helical overlap factor is given as Cy = 1.0 and the pinion operating pitch
diameter is given as; d = (2 C,)/(m; +1). Another simpler way of calculating the pitting
resistance factor has been given in [2], which involves the determination of the pinion roll
angles. This method is particularly useful when the value of I factor is to be determined at

the Initial Point of Contact (IPC) and at the Lowest Point of Single Tooth Contact



(LPSTC). The method is outlined below:

2
;. B cos’d [1- Q] (12)
2n Y

In equation (1.2), when 1 = 0.5 and 6 = Opc. then the value of I is at the IPC of the teeth.
Similarly, when 1 = 1 and 8 = 8¢, then the value of I is at LPSTC. The values of 6, and

B, can be determined as follows:

V(1 +aJR)% cos’d
o =

5 (1.3)
cos

. \/mG + (aG/Rl);- mé cosig 14)
COS

Y = (1+m;)tand (15)

A -27n/N, (L6)

Using these relationships (1.3) through (1.6), the values of Bipc and 6, ;¢ can be found using

Opc = v+ B (1.7)



O.psrc = @- (2 T/Np) (1.8)

The Hertz Contact stress as applied to spur gear design is given as:

Ca Cm VV{CSCF
oy = Cp N (1.9)
P

In order to maintain feasibility of the design,

g <8, (1.10)

AGMA has defined a term, adjusted contact stress S., which is given by the relation;

S -85 L4 (L11)

It can be seen that, the geometry factor I, is very significant in determining the contact stress
equations at any point in the mesh cycle. Equation (I.11) defines the contact stress constraint

in the AGMA approach of the gear design problem.



APPENDIX 11

AGMA Geometry Factor for Bending Strength (J)

The bending strength geometry factor, J, is a dimensionless number like the / factor.
It takes into account the effects of:
1. shape of the tooth
il. worst load position, i.e., the combined effects of radial and tangential
load components.
1ii. stress concentration at tooth root fillet
1v. load sharing between oblique lines of contact
While the / factor is applicable for both internal and external spur gears, the J factor
analysis applies only to external gears. In [35] the original derivation for the Bending

Strength factor is given. The formula given by AGMA in [35] is;

YcC v
J - % (L1)
7
The helical overlap factor in (II.1), Cy = 1 for spur gears. The factor K; is the stress

correction factor introduced by AGMA (see Appendix IV for more on these AGMA
correction factors). my is the load sharing ratio which has a value of one for spur gears. Y

is the tooth form factor. The complex formula for the calculation of Y can be seen in [35].



The value of Y can be obtained from a generated layout of the tooth profile in the normal
plane and is based on the highest point of single tooth contact.

Failure due to bending has been considered as critical, due to catastrophic
consequences preventing further operation of the gear set. The bending stress was

traditionally calculated using the Lewis bending equation:

W P
0, = ——
B ry

(I1.2)

The Y factor or Lewis form factor was derived from an approximation of the gear tooth to
a cantilever beam. This equation is not used directly now-a-days except for crude or low
precision, low speed gears. The Lewis bending equation has been refined through the years,
improving its accuracy. The result is the AGMA geometry factor J which is given in
equation (II.1). With the inclusion of J given in (I1.1), the improved bending stress equation

is given as;

KKK WP
0p -~ (IL3)

K., K, K., K, are the correction factors introduced by AGMA, which would be explained
in Appendix [V. To prevent failure in bending, the calculated stress can be compared to the

adjusted bending strength of the material, which is introduced by AGMA in [7]:

Ggp 2 S, (I1.4)



The adjusted bending strength is calculated as in AGMA 218:01 (ref [7]):

S - Sat KL
t KR KT

(I1.5)

Here, S, is the allowable bending stress value for the material chosen, for a life of 10 cycles.

This can be found in Table 6 in reference [7] or calculated from the endurance limit for the

material. K, Kg, K; are AGMA correction factors.



APPENDIX III

APPROXIMATE EQUATIONS FOR THE AGMA J-FACTOR

The J factor is a fundamental quantity in calculating the design parameters when
gears are designed to meet the American Gear Manufacturers Association (AGMA)
requirements against bending failure. However, the J factor defined in [7] is not easy to
determine exactly. It used to be obtained by making an accurate graphical layout of the gear
tooth, see [36). The next improvement is the development of iterative techniques for
calculating the J factor numerically [8], [9].

The methods in [8] and [9] provided excellent results. However, it is difficult to use
these iterative techniques. The calculations are often lengthy, cumbersome and time
consuming. A very simple, accurate, approximate equation for the J factor was introduced
in 1988, [10]. Using this approximate equation it has become very easy to calculate the J

factor.

1] < 4+ (B Cimy)/N, (IIL.1

A, B, C are constants which depend on the standard tooth proportions. The
coefficients A, B, and C were determined by two variable linear regression on the inverses
of J factors calculated for every combination of the standard tooth numbers, for a total of 324

J factors. The correlation coefficient, for each of the sets, is greater than 0.99 and the



maximum percentage error at any point is slightly greater than 2%. The values of
coefficients A, B, and C are shown in Table 1 of reference [10], along with the correlation

coefficient values.



APPENDIX IV

CORRECTION FACTORS IN GEAR DESIGN

AGMA has intrcduced many correction factors in the pitting resistance and bending
stength equations, see reference [35]. These correction factors account for many different
cases that a designer may encounter while trying to arrive at a optimal design for spur gear
sets. In [7], AGMA has defined expressions for adjusted contact and adjusted bending
stresses which incorporates some more correction factors in them.

In this Appendix, the various correction factors are explained briefly. The
expressions for the stresses with correction factors embedded in them are given below (from

[37] and [38]). The actual Hertz contact stress given by AGMA is;

w,.c, C, C,C,

(Iv.n
N ¢ 4 F 1

For feasibility;

Oy < S, (IV.2)

where S_the adjusted contact stress is given,



IV 3)

Similarly in deriving the Bending stress equations, it has been shown that the actual bending

stress is;

KKK w,.P
Op = IV.4
Again for feasibility of the design;
Op < S, (IV.5)
where, the S, is the adjusted Bending Strength and given by;
S K
s, - 2t V.6

On reviewing equations (IV.1) through (IV.6) one can understand how vital it is to
consider the correction factors in the design equations, if the gear has to be designed to
satisfy the AGMA requirements. However, use of these correction factors preserves the
deterministic nature of the problem. By ignoring these correction factors in the design

equations, the problem can be treated in a probabilistic perspective.



1. DYNAMIC FACTORS C, ANDK, :

Dynamic factors are used to account for inaccuracies in the manufacture and meshing
of gear teeth in action. In other words, they account for "Transmission error”. This can be
defined as the departure from uniform angular velocity of the gear pair. Some of the effects
which produce transmission error are: 1) Inaccuracies produced in the generation of the tooth
profile like errors in tooth spacing, profile lead, and runout 2) vibration of the tooth during
meshing due to tooth stiffness 3) magnitude of the pitch-line velocity 4) dynamic unbalance
of the rotating members 5) wear and permanent deformation of contacting portion of the
teeth 6) gearshaft misalignment and deflections of shaft 7) tooth friction. In an attempt to
control these effects, AGMA has defined a set of quality-control numbers Q,, which can be
taken as 8 (as in this work) for precision quality.

2. APPLICATION FACTORS C,ANDK, :

The purpose of the application factor is to compensate for the fact that situations arise
where the actual load exceeds the nominal tangential load W,.

3. SURFACE CONDITION FACTOR C:

AGMA suggests values greater than unity to be used for C, when obvious surface

defects are present.

4. SIZE FACTORS C, AND K, :

The AGMA recommendation is to use a size factor of unity for most gears provided

a proper choice of steel is made for the size of the part and the heat treatment and hardening
process. The original intent of the size factor is to account for any nonuniformity of the

material properties. When there are any effects due to the nonuniformity then a size factor



value greater than unity should be used.

5. LOAD DISTRIBUTION FACTORS C.,.ANDK_  :

The load-distribution factor is used to account for; 1) misalignment of rotational axes
for any reason 2) deviation of lead 3) load-caused elastic deflections of shafts, bearings
and/or housings. In [8], AGMA presents two methods, one empirical and other analytical
of obtaining values for the load-distribution factor. These values are available in the table
in the above mentioned reference.

6. HARDNESS RATIO FACTOR C,; :

The pinion generally has a smaller number of teeth than the gear and consequently
is subjected to more cycles of contact stress. If both the pinion and gear are through
hardened, then a uniform surface strength can be obtained by making the pinion harder than
the gear. A similar effect can be obtained when a surface-hardened pinion is mated with a
through-hardened gear. The hardness-ratio factor Cy 1s used for only the gear. Its purpose
is to adjust the surface strength for this effect. The values of C, can be determined using the
method as given in [21].

7. LIFE FACTORS C, ANDK, :

In [7], AGMA defines the adjusted bending stength value for a life of 10’ cycles. The
purpose of the tooth life factors is to modify the AGMA strengths for lives other than 107,
8. RELIABILITY FACTORS C, AND K, :

The AGMA standards strengths are based on reliability of R = 0.99 corresponding
to 107 cycles of life. For other reliabilities, AGMA suggests the use of other values that can

be supported by statistical data.



APPENDIX V

PROGRAM LISTING

'PROGRAM NAME: DESIGN.BAS

'"A program for determining the optimum value of the center
‘distance for a spur gear set. Results include stress values,
'Values of face width, center distance, contact ratio, J
'factor,pinion number of teeth, diametral pitch and relia-
'bility in case of probabilistic analysis. This program with
'slight modification can be used for both deterministic
'analysis and probabilistic analysis.

COMMCN SHARED n, pi, aal, tf, th, tphi, hr, 3

CCMMON SHARED ys, alfa, rt, xs, noz, theta, beta
COMMON SHARED rc, fa, fap, xe, ye

CCMMON SHARED ratio, poi, emod, d, nmin, a$, itor, rpm
COMMON SHARED ap, p, mg, Ss, bs, dp

COMMON SHARED cphi2, cphi, tphi, sphi

COMMON SHARED a1, pbl, a2, b2, ¢2

COMMON SHARED ka, k1, km, kv, kr

COMMON SHARED aal, alpha, beta, gamma, delta

COMMON SHARED inum, ti, tl, 1

"DECLARATION OF SUB-ROUTINES IN THE PROGRAM

DECLARE SUB agmaj (3j!)

DECLARE SUB calcfa (fa!, fap!, alfat, n!)
DECLARE SUB feasibie (n!, d!, mg! )
DECLARE SUB approx: (j!)

DECLARE SUB angles (n!, mg!)

DECLARE SUB ifact {inum!, i!)

"DEFINING THE QUTPUT FILE TO WRITE THE RESULTS

OPEN "result.dat" FOR OUTPUT AS #1

"SETTING INITIAL TIME, IN ORDER TO COMPUTE THE CPU TIME
'"TAKEN FOR THE OPT_MIZATION RUN. THIS TIME GIVEN BY 'TIMER'

"FUNCTION IS THE NUMBER OF SECONDS ELAPSED SINCE MIDNIGHT.
start = TIMER



CLSs

"ENTER DATA FOR THE PROBLEM

INPUT "ENTER VALUE FOR GEAR RATIO ;" mg

INPUT "ENTER VALUE FOR PRESSURE ANGLE IN DEG. :"; phi

INPUT "ENTER THE SPEED IN RPM :": rpm

INPUT "ENTER THE INPUT TORQUE TO PINION : "; itor

INPUT "ENTER THE FACEWIDTH TO DIAMETER RATIO : "; ratio
INPUT "ENTER THE VALUE OF VELOCITY FACTOR : "; kv

INPUT "ENTER ADDENDUM, DEDENDUM, HOBTIP RADIUS : "; ap, dp., hr
INPUT "ENTER SURFACE AND BENDING STRENGTH : ", ss, bs

INPUT "ENTER AGMA QUALITY NUMBER : "oav

INPUT "ENTER YOUNG'S MODULUS, POISSON'S RATIO : "; emod, poi
INPUT "ENTER VALUE FOR FACTORS (Ka,Kr,K1) : "; ka, kr, k1

ca =

ka: cr = kr: ¢l = k1
ql = 1: gmax = 3
READ p

'"CALCULATE CONSTANT VALUES
'"PRESSURE ANGLE AND TRIG FUNCTIONS OF PRESSURE ANGLES

Pl = 3.1415926539#
phi = phi * pi / 180

cphi = COS(phi)
sphi = SIN(phi)
tphi = sphi / cphi

cphi2 = cphi : 2
sphi2 sphi 2

"ELASTIC COEFFICIENT

Cpze = 1/ (2 * pi * ((1 - poi "~ 2) / emod))
Cp = Ccp2 .5

'FACTOR BASED ON LOAD REQUIREMENTS USED FOR
"INITIAL GUESS OF Np

wtfact = 396000 * itor / (pi * rpm)
"PITCH POINT I- FACTOR (USED IN INITIAL GUESS FOR Np)
ipp = sphi * cphi * mg / (2 * (mg + 1))

'CALCULATE MINIMUM NUMBER OF TEETH TO PREVENT UNDERCUTTING



nmin = ABS((2 * ap / mg) / (1 - (cphi2 + ((1 / mg) + 1)
B )

2 * gphi2) ~ .5))
nnmin = INT (nmin)
ninc = 1
IF (nmin - nnmin) = Q0 THEN ninc = 0

nmin = nnmin + ninc
'"FACTORS USED IN J-FACTOR CALCULATION

aal = dp - hr
delmax = 2 ~ gmax

al = 1.763476
bj = 17.3632
C; = 6.676833

3 =1/ (aj + (bj + cj / mg) / nmin)
VL = pi * nmin * rpm / (12 * p)

'OUTPUT HEADER

PRINT #l , " p " : "NP 1" : nNG " : uc " ;
"F n ; HSB (1 ', HSLPSTC " ,. ”SIPC " ,, IITIMEM

1}
(@]

1

"GENERATE AN INITIAL GUESS FOR Np

na = (cp2 * wtfact * p ~ 3 / (kv * ratio * ss 2 * ipp))
T (1 /3 :
nb = (wtfact * p " 3 / (j * kv * ratio * bs)) .5

IF na > nb THEN
IF na > nmin THEN

n = na
ELSE
n = nmin
END IF
ELSEIF nb > nmin THEN
n = nb

ELSE
n = nmin



END IF

nn = INT(n)
ninc = 1
IF (n - nn) = 0 THEN ninc = 0

n = nn + ninc
"INSUKE STARTING VALUE IS FEASIBLE

DO UNTIL as$ <> "no"

CALL feasible(n, 4, mg)

IF a$ = "no” THEN n = n + delmax
LOOP

'"ESTABLISH A BRACKET ON THE MINIMUM

DO UNTIL 4 »>= lastd
qa=4gl + 1
i=1+1

deln = 2 7 g

deln = deln

IF deln < delmax THEN

deln = deln

ELSE
deln = delmax
END IF
lastn = n
lastd = g

n =n - deln
CALL feasible(n, 4, mng)
LOOP

'"NOW THAT THE MINIMUM HAS BEEN BRACKETED, REDUCE THE
"BRACKET TO A LENGTH OF ONE.

nr = lastn

dr = lastd
nl = n
dl = 4

IF (nr - nl) <> 1 THEN
IF g < gmax THEN
jmax = g
ELSE
jmax = gmax
END IF
FOR jj = 1 TO jmax
deln = nr - nl
nm = nl + deln / 2



NEXT
ELSE
END IF

n = nm

d = dm
CALL feasible(n, 4, mg)
nm = n
dm = d
n = nl
d = d1
IF dm < dr THEN
nr = nm
dr = dm
ELSE
nl = nm
dl = dm
END IF

'"DETERMINE THE MINIMUM OF THE FINAL TWO DESIGN POINTS

IF 41 < dr THEN

d = d1
ELSE

d = dr
END IF
IF d = d1 THEN

np = nl
ELSE

np = nr
END IF

"CALCULATION OF GEAR RATIO AT THE NEW DESIGN POINT

ng = np * mg
nng = INT(ng)
IF (ng - nng) <=
ng = nng
ELSE
ng = nng
END IF
mgg = ng / np

'"RECALCULATE ALL
n = ap

d = dp

mg = mgg

.5 THEN

DESIGN VALUES USING THE FINAL PARAMETERS



CALL feasible(n, d, mg)

np = n
dp = 4

mgg = mg

npint = INT(np)
ngint = INT (ng)

cr = (np + ng) / (2 * p)
finish = TIMFER
Cputime = finish - start

"PRINT OUT THE FINAL VALUES

PRINT USING "###.##8 . b; npint; ngint; cr: f;
sigmab / 1000; slpstc / 1000; sipc / 1000; cputime
PRINT #1, USING "###.4## ", p: npint; ngint; cr; f;

sigmab / 1000; slpstc / 1000; sipc / 1000; cputime
LOOP

"END OF MAIN PROGRAM

END



SUB agmaj (j)

'THIS SUB-ROUTINE CALCULATES THE VALUE OF AGMA GEOMETRY
"FACTOR J USED IN BENDING STRESS CALCULATIONS. THE
'"METHOD USED HERE IS FROM AGMA STANDARD 218.01

'CONSTANT VALUE CALCULATIONS BASED ON Np AND TBEND

noz2 = n / 2

XS =pl / 4 + agl ~ tohi + hr / cphi
¥Ys = -aal

phil = tbend - tphi + phi - delts / 4
cphil = COS{(phil)

Sphil = SIN(phil)

tphil = sphil / crhil

I'c = no2 * cphi / cphil
"ITERATIVE SOLUTION FOR ALFA
alfa = pi / 4 "initial value for alfa

DO UNTIL ABS (da) <= .000001
CALL calcfa(fa, fap, alfa, n)

da = -fa / fap
alfa = alfa + da
LOOP

"ONCE ALFA HAS BEEN DETERMINED, CALCULATE J

CALL calcfa(fa, fap, alfa, n)
XX = xe " 2 / (rc - ve)
Yy =1 / (cphil / cphi *~ (1.5 / xx - tphil / (2 = xXe)))

rr = rt + aal = 2 / (no2 + aal)
ee = 4583662 = prhi '"CONSTANT VALUES SUGGESTED BY AGMA
Kf = .34 - ee + ((2 * xe / rr)y T (.316 - ee)) =
((2 * xe / (rc - ye)) ~ (.29 + ee))
J =y / kf

"END OF AGMAJ SUB-ROUTINE

ZND SUB



SUB angles (n, mg)

'SUB-ROUTINE TO CALCULATE ROLL ANGLES

alpha = ((1 + 2 * ap / n) ~ 2 - cphi2) ° .5 cphi
beta = ((mg + 2 =« ap / n) 2 - mg 2 * cphi2) .5 / cphi
gamma = (1 + mg) = tphi

delta = 2 = pi / n

ti = gamma - beta
tl = alpha - delta
th = ti + delta

tf = alpha

"END OF ROLL ANGLE CALCULATION

END SUB



SUB approxj

'"SUB-ROUTINE TO CALCULATE J VALUE FROM APPROXIMATE EQUATIONS

zS =

IF phi

(3)

"Tooth proportions are not AGMA standards "

= 20 THEN
IF ap = 1 THEN
IF dp = 1.25 THEN
IF hr = .3 THEN
aa = 1.763476
bb = 17.3632
CC = 6.676833
J =1/ (aa + bb / n + cc / mg / 1)
ELSE
PRINT zS$: STOP
END TIF
ELSEIF dp = 1.4 THEN
IF hr = .35 THEN
aa = 1.791756
bb = 20.13339
cc = 6.039893
J =1/ {aa +bb / n+ cc/ mg / 1)
ELSE
PRINT z$: STOP
END IF
ELSEIF dp = 1.157 THEN
IF hr = .239 THEN
aa = 1.779485
bb = 16.06663
cc = 7.208083
J] =1/ (aa +bb/ n+ cc/ mg / 1)
ELSE
PRINT zS$: STOP
END IF
ELSE
PRINT z$: STOP
END IF
ELSEIF ap = .8 THEN
IF dp = 1 THEN
IF hr = .304 THEN
aa = 1.94547
bb = 11.57097
cc = 5.661053
J =1/ (aa + bb / n + cc / mg / n)

ELSE



PRINT z$: sTop
END TF
ELSE
PRINT z$: sSTOP
END IF
ELSE
PRINT z$: sTOP
END IF
ELSEIF phi = 25 THEN
IF ap = 1 THEN
IF dp = 1.25 THEN
IF hr = .3 THEN
aa = 1.534702
bb = 13.44529
CCc = 4.121288
i =1/ (aa + bb / n+ cc / mg / n)
ELSE
PRINT zS$: STOPp
END IF
ELSEIF dp = 1.35 THEN
IF hr = .2447 THEN
aa = 1.595463
bb = 15.35728
CCc = 3.807733
J =1/ (aa+bb/ n + co / mg / n)
ELSE
PRINT zS: sTOP
END IF
ELSEIF dp = 1.3154 THEN
IF hr = .27 THEN
aa = 1.570434
bb = 14.64792
CC = 3.909965
j =1/ (aa + bb / n+ cc / mg / n)
ELSE

PR

INT z$: sTOP



ELSE

END IF

END IF

ELSE
PRINT z$§:
END IF
ELSE
PRINT zS$: STCP
END IF

PRINT z$: STOP

"END OF APPROXJ SUB-RCUTINE

END SUB

STOP



'
Ll
1
]
'
'
L}
Al

SUB calcfa (fa, fap, alfa, n)

"SUB-ROUTINE USED IN CALCULATION OF J-FACTOR. THE
' PARAMETERS CALCULATED IN THIS ROUTINE ARE DEPENDENT

ks = ys / SIN(alfa)

ke = ks - rt

theta = (x5 - ks ~ COSs(alfa)) / no2
beta = alfag - theta

Xe = n = SIN(theta) / 2 + ke = COS (beta)
ye = n ~» COS(theta) / 2 + ke = SIN(beta)
h = rc - ve
fa = 2 » p = TAN (beta) - xe
fap = ((2 * n / (COS (beta)) - 2) - ke = SIN(beta)) =
(1 - 2 = ks / (n * SIN(alfa))) + kg = SIN(beta)

' END OF CALCFA SUB-ROUTINE

END sSuB



SUB feasible (n, d, mg)

"THIS SUB-ROUTINE ANALYSES A GIVEN SPUR GEAR DESIGN
'"USING EQUATIONS GIVEN IN AGMA STANDARD

'"WRITE OUT THE VALUE OF Np TO SCREEN EACH TIME THE
'"ROUTINE IS ENTERED

PRINT "Number of teeth: ", n

"SAVE THE PREVIOQOUS SET OF DESIGN VALUES IN CASE THIS
'"DESIGN TURNS OUT TO BE INFEASIBLE

£f1 = ¢

jl =3

mpl = mp

sigmabl = sigmab
sil = sipc

sll = slpstc

as = "yes"

"ABORT THE ANALYSIS IF Np IS LESS THAN Nmin

IF n < nmin THEN
'"NEW DESIGN WAS INFEASIBLE.
"RETURN OLD DESIGN VALUES

as = "no"

d = 1000000
£t = f1

j =31
mp = mpl

sigmab = sigmabl
sipc = sil
slpstc = sl1
RETURN

ELSE

END IF

'LOAD, SPEED, AND DERATING FACTOR CALCULATIONS
" (CD=Ca*Cm/Cv)

vt PL *n * rpm / (12 * p)
Wt 33000 * itor / vt
f = ratio * n / p

'"FACTORS USED IN STRESS EQUATIONS



fact:
fact2

wt *p / £ / kv
factl * cp2 / n

nu

"ROLL-ANGLE, CONTACT RATIO, AND I-FACTOR CALCULATION

CALL angles(n, mg)

mp = (alpha + beta - gamma) / delta

inum = 1

CALL ifact(inum, i)

i1 = 1

inum = 2

CALL ifact (inum, i)

ii = 1

"CONTACT STRESS CALCULATIONS AT IPC AND LPSTC

slpstc = (fact2 / ilz .5
Ssipc = (fact2 / 1ii) .5

"ABORT THE ANALYSIS IF EITHER OF CONTACT STRESS CONSTRAINTS
"ARE VIOLATED

IF slpstc > sipc THEN
IF slpstc > ss THEN
'"NEW DESIGN WAS INFEASIBLE.
'"RETURN OLD DESIGN VALUES

as = "no"

d = 1000000
£t = f1

j =31
mp = mpl

sigmab = sigmabl
sipc = si1
Slpstc = sl1
RETURN

ELSE

END IF



ELSEIF sipc > ss THEN
'"NEW DESIGN WAS INFEASIBLE.
"RETURN OLD DESIGN VALUES

as = "no"

d = 1000000
£ = f1

j =31
mp = mpl

sigmab = sigmabl
Sipc = gi1
Slpstc = s11
RETURN

ELSE

END IF

"J- FACTOR AND BENDING STRESS CALCULATIONS

CALL approxj (3j)

"CALL agmaj (j)

sigmab = fact] /3

'ABORT ANALYSIS IF BENDING STRESS CONSTRAINT IS VICLATED
IF sigmab > bg THEN

'"NEW DESIGN WAS INFEASIBLE.
"RETURN OLD DESIGN VALUES

as = "no"

d = 1000000
£ =f1

J =31
mp = mpl

sigmab = sigmab1

Sipc = si}

slpstc = sl1

RETURN
"RETURN WITH NEW DESIGN VALUES
d=n/p
"END OF ANALYSIS ROUTINE

END SUB
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