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Abstract

The objective of this study is to develop a new methodology for estimating the reliability
of engineering systems that encompass multiple disciplines. The methodology is
formulated in the context of the NESSUS probabilistic ‘structural analysis code,
developed under the leadership of NASA Lewis Research Center. The NESSUS code
has been successfully applied to the reliability estimation of a variety of structural
engineering systems. This study examines whether the features of NESSUS could be
used to investigate the reliability of systems in other disciplines such as heat transfer,
fluid mechanics, electrical circuits etc., without considerable programming effort specific
to each discipline. In this study, the mechanical equivalence between system behavior
models in different disciplines are investigated to achieve this objective. A new
methodology is presented for the analysis of heat transfer, fluid flow, and electrical
circuit problems using the structural analysis routines within NESSUS, by utilizing the
equivalence between the computational quantities in different disciplines. This technique
is integrated with the fast probability integration and system reliability techniques within
the NESSUS code, to successfully compute the system reliability of multi-disciplinary
systems. Traditional as well as progressive failure analysis methods for system reliability
estimation are demonstrated, through a numerical example of a heat exchanger system
involving failure modes in structural, heat transfer and fluid flow disciplines.
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CHAPTER I

INTRODUCTION

The purpose of this study is to develop a methodology to estimate the reliabil-
ity of engineering systems that encompass several disciplines. The methodology is
implemented using the NESSUS probabilistic analysis code, which has mostly been
applied exclusively in the discipline of structural engineering. In order to apply
the NESSUS probablistic structural analysis code to analyze a multi-disciplinary
engineering system, the equivalences between system behavior models in different
disciplines are investigated, and the effect of physical interaction among the failure
modes is quantified in this study.

System reliability analysis is a method of estimating the effects of uncertainties
in an engineering system on the probability of successful performance. Usually,
an engineering system consists of multiple subsystems and components, which may
require the knowledge of different disciplines of engineering. Such disciplines may
include structural engineering, mechanical engineering, heat transfer theory, fluid
mechanics, electrical engineering, etc. Such a system is called a multi-disciplinary
engineering system. The reliability analysis of any engineering system usually begins
with the identification and reliability computation of individual failure modes within
the system. Then the reliability analysis of the overall system can be carried out.

Traditicnally, relia* dity methocs have primarily concentrated on failures in one
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particular discipline, e.g. structural analysis, not on an overall system which con-
sists of multiple disciplines. Furthermore, conventional methods of system reliability
estimation usually only consider the statistical correlation between individual failure
events, ignoring the fact that more often than not, those individual failure modes also
have a physical correlation. This leads to inaccuracy in system reliability estimation.

The method presented in this report uniquely computes the failure probability
interactions between different modes and overal system failure probability through
the imposition of one failure mode on another field and reanalysis of the latter. This
method is used to compute the probabilities of critical system failure events after
accounting for the contributing non-critical failure modes in all different fields. How-
ever, it is not an easy task to estimate the reliability interactions between different
failure modes. The success of such a method primarily depends on the availability of
effective reliability tools. The software system NESSUS developed under the leader-
ship of NASA Lewis Research Center is uniquely suited for this purpose. Currently,
this code has been applied primarily to the structural engineering problems. In or-
der to perform system reliability analysis including the interactive failure modes, this
study uniquely develops behavior analogies between the structural model and heat
transfer model, and between the structural model and fluid mechanics model. By
doing so, the probability estimation of heat transfer and fluid mechanics faih'lres can
be pursued similarly to structural reliability analysis.

The objective of this research project is to develop a method, using system relia-
bility theory, for the reliability estimation of multi-disciplinary engineering systems.

The method is implemented on the software ystem NESSUS (Numerical Evalu-
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ation of Stochastic Structures under Stress) developed by NASA Lewis Research
Center. An example application to a three-discipline system involving mechanical
stress-strain behavior, heat transfer and fluid mechanics is provided. In order to
compute the individual failure mode probability of non-structural problems such as
heat transfer and fluid mechanics within NESSUS, it is necessary to develop a new
methodology for the analysis of heat transfer problems using the concept of equiva-
lence between the computational quantities in structural analysis, such as stiffness,
displacement vector, load vector, etc. and similar quantities such as conduction,
temperature distribution and heat flux in heat transfer theory, flow velocity, pres-
sure and flow factor in fluid mechanics. This is the first important contribution of
this study.

The second important contribution is the method for the computation of the
physical dependence of critical failure mode probabilities on non-critical failure modes
in various disciplines. This involves the imposition of the non-critical modes and
reanalysis of the system with appropriate discipline equivalences, for various levels of
progressive damage. The combination of these two ideas - inter-disciplinary analogies
and physical failure mode correlation - makes a reliability analysis program such as
NESSUS very powerful for application to a variety of multi-disciplinary systems.

The concepts and methods discussed above are examined in detail in the next
four chapters of this report. In Chapter II, the basic reliability analysis concepts
for individual component-level and system-level events are reviewed, and their im-
plementation in the NESSUS program is described. In Chapter III, the behavior

analogies between the structural analysis model and heat transfer problem, and be-



tween the structural analysis model and fluid mechanics model are developed. The
finite element numerical examples with NESSUS/FEM are demonstrated for this con-
cept. Chapter IV consists of two major parts: in the first part, the failure probability
analyses for individual events including structural, heat transfer and fluid flow failure
modes are performed using NESSUS; in the second part, the system failure proba-
bility is studied. The effect of non-critical failure events of heaf transfer and fluid
mechanics upon a critical structural failure event is investigated, followed by system
reliability analysis with the consideration of physically correlated component-level
events. A numerical example of system reliability analysis of a multi-disciplinary
system consisting of structural, heat transfer and fluid mechanical modes is demon-

strated. The conclusions and recommendations of the study are summarized in

Chapter V.



CHAPTER II

SYSTEM RELIABILITY ANALYSIS
Individual failure modes and effects

An engineering system consists of a cumber of functional components. Before the |
system-level analysis begins, the modes of failure for individual components should
be specified. The analyses of the failure modes and effects can be carried out by
starting at the component level and expanding upwa._rd to the whole system. A
failure mode is the manner by which a failure is observed. All units in a system are
designed to fulfill one or more functions. A failure is thus defined as non-fulfillment of
one of these functions. Analytically, each failure mode has a corresponding limit sate
which separates the design space into “failure” and “safe” regions. The probability

of failure, Py, is denoted as
Py = Plg < (] (1)

where g is the value of the performance function g(X). The limit-state is denoted
by the equation g(X) = 0.
An exact solution of Py can be obtained by the integration of the multiple integral

denoted as

Fr= /.o(X)so Ix(z)dz @

(]



where f(X) is the joint probability density function of the vector of uncertain vari-
ables X.

In general, the solution of this multiple integral is too complicated to obtain.
This is not only because the individual distributions are not always available but
also because the integral is multi-dimensional for a realistic problem and is difﬁ;ult
to evaluate. Therefore, for practical purposes, efficient approximate analysis tools
are needed.

Fig. 1 illustrates the concept of the first-order approximation to the limit state

for an estimate of the failure probability.

The uncertain variables (X) are all transformed to equivalent uncorrelated stan-
dard normal variables (u). The most probable point M PP of the limit state is defined
at the minimum distance 8 from the origin to the limit state surface. Therefore, the

first-order estimate of the failure probability is
P = 9(-p) (3)

where ® is the distribution function of a standard normal variables.
In the NESSUS computer code, this is referred to as the Fast Probability Inte-

gration (F' PI) method. The limit state is constructed as:

9=2(X)-2,=0 : | (4)



Joint pdf

Figure 1: Failure Probability Estimation



where Zj is a real value of the random variable Z (X ),' which is a performance function

or a response function, such as stress, displacement, temperature, etc.
Z(X) =2Z(X1, X2y, X») (5)

where X;(¢ = 1,2,...,n) are the input random variables.

The NESSUS program searches for the M P P by computing the sensitivities of the
limit state to the random variables using iterative perturbation (in NESSUS/PFEM),
and using these sensitivities to obtain a mean value first qrder (MV FO) or second-
order (MV SO) estimate of the failure probability (in NESSUS/FPI).

By using a first or second-order Taylor’s series expansion around the M PP, u*,

the exact g(u)-function is replaced by the first-order polynomial, g (u),

() = a0+ 3 ai(u; — ) (6)

i=1
or a second-order polynomial, gz(u),

n 1-1

ga(u) = a0 + Z(u —u) Y b w4 3T O — )y —wl)  (T)

i=1 i=1j=1
where the coefficients can be obtained by perturbation.

Once these functions are obtained, the M PP is found. The probability of failure
can be computed easily using Equation 3. This is the mean value first order (MVFO)
estimate of the failure probability. This is improved using the Advanced Mean Value
(AMYV) analysis. Point probability estimate is made using specific limits for Zg, and

the cumulative distribution function (CDF) is obtained by varying Z,.



Figure 2: Series System Structure

NESSUS/FEM employs innovative finite element technology and solution strate-
gies. It provides a choice of algorithms for the solution of static and dynamic prob-
lems, both linear and nonlinear, together with an interactive perturbation analysis
algorithm to evaluate the sensitivity of the response to small variations in one or
more user-defined random parameters.

NESSUS/FPI (Fast Probability Integrator) is used to evaluate structural response
cumulative distribution functions (CDF). There are two methods in the code, the
first-order reliability method and the advanced first-order reliability method. In gen-
eral, the structural performance or response functions (e.g., stresses, displacements,
vibration frequencies) are implicitly defined and each function evaluation may require
intensive computation. The AMVFO ( Advanced Mean Value First Order) method
reduces the computational burden and is the main probabilistic tool in NESSUS.
NESSUS/PFEM automates the AMV procedure by integrating the FPI code and

the FEM code.



System and component-level failure modes

After the individual reliability analysis is completed, one then proceeds to the
system or subsystem level analysis. System failure may occur due to a combination
of any of the individual component failure modes. Many physical systems that are
composed of multiple components can be classified as series-connected or parallel-
connected S)'fsterns, or combinations of series and parallel conditions. Description of |

these simple system structures is as follows.
o Series System

A system that is functioning if and only if all of its n components are functioning
is called a series system structure. Fig. 2 illustrates such a system.

If E; denotes the failure mode ¢, then the failure of a series systerh is the event
EI=E1UE2U...UE,, . ' (8)
Then the failure probability of the system is

Py = P(Ey) (9)

If each failure mode E; is represented by a limit state g(X) = 0 in basic variable

space, the failure probability can be obtained by the integration denoted as

Py = /QEX.../fx(x)dz (10)

10



Joint Probability Density f x (x)

Failure region : g(x) <0

Figure 3: Basic reliability problem in two dimensions
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Figure 4: Parallel System Structure

where X represents the vector of all the basic random variable (loads, material
properties, etc.) and {2 is the domain in X defining failure of the system.
This is defined in terms of the various failure modes as g;(X) < 0. In two-

difnensional X space, expression (10) is defined in Fig. 3.

e Parallel System

A system that is functioning if at least one of its n components is functioning is

called a parallel system structure. A parallel structure of order n is illustrated in

Fig. 4.



Figure 5: Combined System Structure

In this case, the system failure event can be written
E;=E10Egﬂ...ﬂEn (11)
o Combined Series-Parallel System Structure

This refers to systems which are a combination of series and parallel structures.
Fig. 5 shows an example of such systems.

The failure event of this system is written, for example, as
Ej = [E1 n (Eg U Ea)] U E; (12)

It should be noted that not all engineering systems can be represented simply as

described above. Practical systems may be more complex and need more effort to

model.

13



System reliability computation

In NESSUS, two methods have been implemented for system reliability compu-
tation [4]: (1) probabilistic fault tree analysis combined with importance sampling
(Torng et al, 1992) and (2) a structural reanalysis procedure to accurately estimate
the failure regions for various critical failure modes affected by progressive damage
(Mahadevan et al, 1992).

Consider an engineering system subject to a sequence of loads (duty cycles) and
which may fail in any one (or more) of a number of possible failure modes under any
one load in the loading sequence. The total probability of the system failure may

then be expressed in terms of the individual mode failure probabilities as
Py =P(E,)UP(E;NS)UP(E;NS;NS))UPE4NS3NS,NS)U... (13)

where E; denotes the “failure of the system due to failure in :th mode and S; denotes
the complementary “survival event of the ith mode.

Since P(E, N S,) = P(E;) — P(E;N Ey), ..., Eq. 13 may be written also as

P; = P(Ey) + P(E;) — P(E\ N E,) + P(Es) — P(Ey N Ey)

—P(E; N E3)+ P(EyNExN E3) + ... (14)

where (Ey N E,) is the event that failure occurs in both modes 1 and 2, etc.
Since it is not always an easy task to determine the joint probabilities of more
than two failure modes, the following approximation methods can be used to predict

the system reliabilities.
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e First-order bounds

The probability of failure for the system can be expressed as P; = 1 — P(S),
where P(S) is the probability of survival. For independent failure modes, P(S) can

be represented by the product of the mode survival probabilities, or, noting that

P(S) = 1 - P(E:), by
P=1- -ﬁl[l _ P(E)] (15)

where, as before, Py is the probability of failure in mode i. This result can be shown
to be identical with Eq. 14. It follows directly from Eq. 14 that, if P(E;) <« 1, then

Eq.15 can be approximated by [Freudenthal et al., 1966]
Py =Y P(E) (16)
=1

In the case where all failure modes are fully dependent, it follows directly that the
weakest failure mode will always govern system failure, irrespective of the random

nature of the strength. Hence
Pf = rflziix[P(E,)] _ (17)

Equations 15 or 16 and 17 can be used to define relatively crude bounds on
the failure probability of any system of the series types when the failure modes are
neither completely independent nor fully dependent. These are Cornell’s first-order

bounds:

max P(E;) < P(UL,E;) <) P(F) (18)



e Second-order bounds

For some practical systems, the above first-order bounds may be too wide to
be meaningful. For more accurate estimation, second-order bounds have been de-
veloped. There are various second-order bounds in the literature [Kounias, 1968;
Vanmarcke, 1973; Hunter, 1976; Ditlevsen, 1979]. Cruse et al (1992) derived second-
order bounds which are independent of any ranking of the failure events[1]. The
upper bound is
PULIE) < (L P(B) ~ max{y max PBE), x5 PEE)) (19

The lower bound is

n max(i,j)
P(UL,E)) 2 max {P(E;) + >  max{(P(E:)— 3 P(EiEy));0]} (20)
2= i=1,i#j k=1k#i

Utilization of the second-order bounds requires evaluation of terms of the form
P(E;E;) where E; denotes the event "failure in limit state :”. The intersection terms
refer to domains such as ©; shown bounded by the non-linear limit state functions
gi{X) = 0(i = 1,2,3) in Fig. 3. The individual failure mode probabilities in the

first-order analysis are determined as
P, = (-B) (21)

In standardized independent normal X space, the linear limit state function is

given by

(S
[{V]

N

G(X) =B+ oyz, (
=1
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where n is the number of random variables.
The angle between the two limit states provides information about the correlation

of the two failure modes. The correlation coefficient is obtained as

n
pij = E Qi Qtjr = COSV;; (23)

r=1

Once §;, B; and p;; are obtained, the computation of joint proba.bility of failure
can be carried out. Eg. 19 and 20 can be used to compute the second-order bounds
for system failure probability estimation.

The above method only provides a tool to approximately estimate the failure
probability correlation of two different failure modes in a multi-discplinary system. A
more accurate approach would be the imposition of one failure mode on anther mode
and reanalysis of the latter. For example, consider two failure modes in a heat transfer
system: structural failure and heat transfer failure. Structural failure happens when
the stress, caused by the fluid pressure and temperature difference between outer and
inner surfaces exceeds limiting value of strength. The heat transfer failure happens
when the temperature of the contained liquid can not be kept at a certain level.
When the thermal fajiure occurs, the increase in the temperature field also causes
changes in stress field. The structural failure probabilty can be re-estimated under
this changed stress field and the result can be considered as the interacéive failure
probability under influence of heat transfer failure. A numerical exa.mples'will be

shown for this approach in a later chapter.

17



Symbol Meaning of symbol

Representation of an event

Q Representation of an event of a failure
Q OR-gate
D AND-gate

Figure 6: Standard symbols used in fault tree analysis

Probabilistic fault tree analysis

NESSUS system risk assessment (SRA) uses probabilistic fault tree analysis
(PFTA). A fault tree is a mathematical construction of assumed component fail-
ure modes (bottom events) linked in series or parallel leading to a top event, which
denotes system failure. Standard graphical symbols are used to construct the fault
tree picture, by describing events and logical connections. These are shown in Fig.

6, and a simple PFTA is shown in Fig. 7.
e Fault Trees with a Single AND-GATE

Consider the fault tree in Fig. 8. Here the top event occurs if and only if all
the bottom events E,, E,, ..., E, occur simultaneously. A system with AND-GATE

is very similar to a series system structure.

18
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Figure 7: Probabilistic Fault Tree for System Reliability Example
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Symbols Description

A The AND-gate indicates that the output
event A occurs only when all the input
:] events E; occur.
1

OR-gate
A The OR-gate indicates that the output
;F event A occurs if any of the input events
[ 1 E; occur.

Figure 8: Fault tree with a single AND-GATE and a single OR-gate
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Figure 9: Schematic of NESSUS

¢ Fault Tree with a Single OR-GATE

Consider the fault tree in Fig. 8. The top event occurs if at least one of the

bottom events F,, Ey, ..., E, occurs. The structure of this fault tree is similar to the

paralell system structure.

A schematic of Version 6.0 of the NESSUS (Numerical Evaluation of Stochas-

tic Structures Under Stress) probabilistic structural analysis computer program is

shown in Fig. 9. As shown in the diagram, the the NESSUS includes other modules,

namely the System Risk Assessment (SRA) and Simulation Finite Element (SIM-

FEM) modules. The random field pre-processor (PRE) provides data manipulation

needed to express the uncertainties in a random field as a set of uncorrelated random

variables. The user-subroutine which defines the response model (UZFUNC) enables

21




users to define required limit state with the computed response. This study will
mainly use FEM, PFEM and FPI for reliability analysis. The NESSUS program is
quite comprehesive with respect to structural reliability estimation. As mentioned in
Chapter I, the purpose of this study is to develop a technique by which the NESSUS
program can be used for the system reliability analysis of multi-discplinary systems.

The following chapters describe this technique in detail.

22



CHAPTER III

ANALOGY BETWEEN ENGINEERING SYSTEMS

Introduction

Since NESSUS/FEM program has been mostly applied only to structural analysis,
a thermal or a fluid mechanical system needs to be converted through an analogous
model to a structural system on which the NESSUS program can be applied for
analysis. Then the probability analysis for a heat transfer system or a fluid mechanics
system can be carried out by NESSUS. By doing so, a system with heat transfer,
fluid flow and mechanical stress problems can be analyzed by NESSUS automatically
with FEM, PFEM, FPI and SRA modules for system reliability analysis.

In this chapter, a new methodology is presented for one-dimensional steady-state
heat transfer analysis and one-dimensional steady-state uniform flow problem using
a structural finite element program. First, the use of the analogous models is intro-
duced for the analysis of systems involving one-dimensional steady-state heat transfer

and simple one-dimensional steady-state uniform flow in closed conduit systems.

Heat transfer analysis through structural analogy

One-dimensional steady-state heat transfer

We begin our analysis of one-dimensional, steady-state conduction by discussing
heat transfer with no internal generation. The objective is to determine the expres-

sions for tem<2rature distribution and heat transfer rate in common geometries.

23



Qy+dy

Adx /qz

dz

dx T Qx+ax

/ dy|
Qz+dz N N
q generated within

T volumn

Figure 10: Differential volume for the derivation of the general equation of heat
conduction

The concept of thermal conductivity (analogous to stiffness in stress analysis) is
introduced as an aid to solving conduction heat transfer problems. Consider a three

dimensional differential volume shown in Fig. 10, The general heat equation is

9, 9T &, 8T &, 8T . T
52 K70) + 3, 0K 50 5, (K5, + 4= per gy - (24)

where K is the thermal conductivity of the material. K %, K %'5, K % are related to
heat flux in a direction perpendicular to the surface. ¢ is the rate at which energy is
generated per unit volume of the medium. The density p and specific heat ¢, are two
thermodynamic properties. The product pc, is the volumetric heat capacity. pcp%—f

is the time rate of change of the internal (thermal) energy of the medium per unit

volume.

24
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Figure 11: Heat transfer through a plane wall

If the heat transfer is one-dimensional and steady state, any differentiation with

respect to time is equal to zero and there is no internal heat generation, so Eq. 24

reduces to

d, dT
—(KAT) =0 (25)

The heat flux is a coﬂsta.nt, independent of x.

As shown in Fig. 11, a plane wall separates two fluids of different temperatures.
Heat transfer occurs by convection from the hot fluid at T, to one surface of the
wall at T} 1, by conduction through the wall, and by convection from the other surface

of the wall at T}, ; to the cold fluid at T 2.

Assuming the thermal conductivity of the material to be constant, Eq. 25 may

(V]
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be integrated twice to obtain the general solution
T(.’L‘) = Cl.’L' + Cg (26)

To obtain the constants of integration, C; and C,, boundary conditions must be

introduced. These are:

T(0)=T,, (27)

T(L)=T,, (28)
Applying the condition at z = 0 to the general solution, it follows that

T,1 = C, (29)
Similarly, at z = L

Tyo=CiL+Cy=C1L+T,, (30)

in which case

T_z# = C, (31)

Substituting into the general solution, the temperature distribution is then

T(z)= [ M Nz]{%}

where N1 =1—%,N2=%

The heat flow can be determined by Fourier’s law, that is

dT
q=-KAZ- (32)
or
=Ty =T KA
q=_m[ ut 2)]= AT -1, (33)
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Figure 12: Bar subject to tensile force F

Stress analysis of a bar element

Now consider a linear-elastic, constant cross-sectional area (prismatic) bar element
shown in Fig. 12. Using Hooke’s law, the differential equation governing the linear-

elastic bar behavior is

d dU
& (ES z) =0 (34)

where U is the axial displacement function in the z direction and S and E are

cross-sectional area and Young’s modulus of elasticity respectively.

U=[M Ng]{g;}

where Ny = 1— §,and N, = 5.

The strain-displacement relationship is

_dU_ U =-U,
“dz D

€z (35)



Table 1: Analogous quantities for structural and thermal systems

Heat transfer

Structure

Heat flux ¢

Nodal force f;

Temperature T'(z)

Displacement U(z)

Inverse of heat transfer resistance

Conduction: convection: hA Structural stiffness %
We obtain
_ U, - Ul)
F=ES ( .

Also, by the nodal force sign convention of Fig. 12,

fi=-F

So Eq. 36 becomes

£S

h=—4 (U =)

Analogous modeling between heat transfer and structure

Comparing Eq. 38 with Eq. 33, the similarities become apparent. These two

equations indicate a direct analogy between heat transfer and structural analysis.

The analogous quantities are listed in the Table 1.

With this analogy, we are able to model a heat transfer problem into a stress

analysis problem.




In the plane wall, we refer heat transfer resistance of conduction R to K—LA, that
is

Ta,l - Ts,2 - L
T KA

Rco'nd = (39)

Considering the structural system, Hooke’s law provides stiffness of the form

fi ES

kUlef

(40)
Comparing Eqns. 39 and 40, and considering 5 KA and Es as analogous qualities,

7— can be traced to be analogous to K.

A heat transfer factor may also be associated with convection at a surface. From

Newton’s law of cooling,
g = hA(T, — Tx) (41)

where h is Planck’s constant of convection heat transfer coeflicient, T, is the surface
temperature and T, is the ambient temperature.

The thermal resistance for convection is then
Rconu = =1 (42)

The equivalent thermal circuit for the plane wall with convection surface condi-
tions is shown in Fig. 11. The heat transfer rate may be determined from seperate

consideration of each element in the network, that is,

KA
q= hlA(Too,l - Ta,l) = T(Ts,l - T,,z) = hZA(Ts.2 - Too,2) (43)
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In terms of the overall temperature difference, Too1 — Too2, and the effective

thermal resistance R.;;, the heat transfer rate may also be expressed as

— Too,l - Too,2

44
Ry (44)

Because the conduction and convection resistance are in series and may be summed
up, it follows that

1 L 1 : '
+ + (45)

R”fziuA KA ' h,A

Consider a bar consisting of three different materials which are denoted as ele- -

ments 1,2 and 3. The effective stiffness for this composite bar is

1

keps = 5 1 1
HtE TR

(46)

Comparing the above equations Eq. 45 and Eq. 46, the analogy is k.;; +— 'R:T’
that is

1 1 1
Reff<—¥E+k—2+k—3 (47)

Substituting with Eq. 45, we obtain

1 L 1 1 1 1
h1A+KA+h2A(——-+k—l+k—2'+k—3 (48)
where

_ES,

E3 S,

ke = 2 (50)

_ E3S, .
’C3 = D3 (DI)
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Substituting the corresponding terms in Eq.48, we obtain the equivalent quanti-

ties

B e (hA) (%) (52)
B (7)(3) (59
Es « (hsA) (g—:) (54)

With these analogous quantities, we use the NESSUS/FEM beam element with
the E values replaced by the values involving heat transfer problem outlined above.
The boundary conditions for the bar are the end displacements corresponding to the
ambient temperature of the wall. After the structural analysis, we get the tempera-

ture distribution from the corresponding displacement distribution in the output.

Heat transfer in composite walls

Equivalence concepts for thermal-structural analysis may also be used for more
complex systems, such as composite walls and radial heat transfer systems. Fig. 13
shows a series composite wall. The one-dimensional heat transfer rate for this system

can be expressed as

_ Too,l - Too,4

" (55)

where T, 1 — Teo 4 is the overall temperature difference and the summation includes

all thermal resistances. Hehce,
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Figure 13: Equivalent thermal circuit of a series composite wall
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Figure 14: Structural analog for the series composite wall heat transfer

Too,l_'Too,4
Ri+R;+R3+ Ry+ Rs

(56)

Too,l - TOO,4
(1/h1A) + (La/KaA) + (Ls/KpA) + (Lp/ KpA) + (1/hsA)

(57)

Alternatively, the heat transfer rate can be related to the temperature difference

and resistance associated with each element. For example,

Teon=Tey  Ton=Tp, = T-T3 _ (58)
(1/mA) ~ (La/KaA)  (Ls/Ksd)

The analogous structural model for this series composite wall heat transfer prob-
lem is shown in Fig. 14. The bar consists of five elements with stiffnesses of
ki1, k2, k3, k4, ks. Using the mechanical structure equivalence for convection and con-

duction, we obtain

(h1A) (%) for convection
E =
(%) (%’) for conduction
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Engine oil
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(a) Heat exchanger

AN

D 1 @z+3@ 4+5@ 16

(b) Structural model

Figure 15: A heat exchanger for engine oil and refrigerant fluid
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Heat transfer in radial systems

Cylindrical and spherical systems often experience temperature gradients in the
radial direction only and may therefore be treated as one dimensional.

Fig. 15 shows an example of a heat exchanger, whose inner cylinder is used to
store engine oil and the outer cylinder is used to transfer the refrigerant fluid to
" cool down the oil temperature. The outer insulated covering is assumed to isolate
the system from the ambient environment. For steady state conditions with no heat

generation, the appropriate form of the heat equation is

l1d dT
;; (KT‘E,;') =0 (59)

The rate at which energy is conducted across any cylindrical surface in the solid

may be expressed as

q= —KA% = —K(Qer)% ' (60)

where A = 2nrL is the area normal to the direction of heat transfer.

The thermal resistance is

]. 11'1(7‘2 /7‘1) 1
eff = 1
Rett = pizamL T TonKL T hpznril (61)
which includes both conduction and convection.
The heat transfer rate for a unit length of the cylinder therefore is
Too,l - Too,2
7= In(rz/r1) (62)

1 1
hi2rry L + 2rKL + hy2nra L
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Table 2: Analogous quantities for heat transfer in a radial system.

Structure Heat transfer
El (21‘[’7‘[’11) (%)
B, (25) (3)
E3 (27‘I’T‘2h2) (%:')

The structural analog for the cylinder is shown in Fig. 15(b). In this case, the
mechanical structure equivalence is k.sy «— Elﬁ' The corresponding equivalent

quantities are listed in Table 2. The E values are input to NESSUS structural anal-

ysis, and the output displacements from NESSUS give the temperature distribution.

Numerical example for heat transfer solved with NESSUS/FEM

Fig. 17 shows the sectional view of the cylindrical copper heat exchanger which
the engine oil flows through. The copper wall thickness is 0.281 in. The radius
to the surface of the insulation pipe covering (k; = 0.428Btu/(h — ft? —° F)) is
1.33 in. The fluid in the outer container is controlled at a constant temperature
of 70°F. The forced convection heat transfer occurs between the oﬁter surface of
the insulation covering and the flowing fluid with A = 10Btu/(h — ft? —° F). The
surface temperature at the insulation covering is 35.298°F. The structural analogy
model is used to determine the inside temperature of the tube, assuming steady
state, one dimensional, uniform properties in eéch material, forced convection cooling

arnd negligible thermal . .ation. The conductivity coefficient of copper at room
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Tp=70F Ry, T R, T, R D=5

(a) Thermal circuit

k3=ES;/D; k1=K S,;/D,

F
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——=  k2=ES,/D

NONONNN

(b) Structural analogous model

Figure 16: Analogous model for the heat exchange
temperature is K, = 223Btu/(h — ft? —° F).

The thermal circuit is shown in Fig. 16(a). Fig. 16(b) shows the structural
analog model for this heat transfer problem. Beam element type 98 in NESSUS/FEM
element type library is adopted. Three elements represent three heat transfer forms
involved in this probiem, which are the forced convection between the surface of
the insulation covering and the ambient air, conduction through the copper layer,
and conduction through insulation covering, respectively. Therefore, in te:r'ms of the
structural model, we must assign three different material elastic constants‘for this
beam structure. Since the NESSUS/FEM utilizes the Nodal-based data input, two
duplicate nodes are used at each boundary between elements 1 and 2, and between

elements 2 and 3. The room temperature 70° F bacomes the boundary displacement
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7 =1330in

r; = 0.669 in
r,= 0.950 in
Tuc = 700F

h=10Btu/(h- ft °F)
k = 0.428 Btu /(h - ft >-°F)

Insulation Copper
covering duct

Figure 17: Section of a radial heat exchanger

70.0 at node 1. A concentrated load F at point 3 is -241.66 1b. The length of the
structural element is 10.0 units, the sectional area is 1.0. It should be noted that the
units used in the structural model here do not have any real meaning in terms of a
real structure. They are simply used to facilitate the structural analysis.

The equivalent values are calculated as follows.

_ [ _2rK. Dl) . 2mx223 B

b= (13(7'2/"1)) (Sl = Tn(0.95/0.669) ~ 10 = 39995.476 -6
27 K; Dz) 2 x 0.428

“\n(re/r) ) \ S5/ = = 79.92 64
B (ln(ro/rz)) (52 In(1.33/0.95) x 10 79923 | (64)
E3 = (2mroh) (%) = 2r x 11.33/12 x 10.0 x 10 = 69.63867 (65)

3

F = 21roh(To — T3) = 21 x 1.33/12 x 10(35.298 — 70) = —241.66 (66)
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NESSUS/FEM uses this data, and gives the output of the displacement distribu-

tion in the structure as follows:

U, = 70.000
U, = 35298
Us = 35.298
Uy, = 5.0614
Us = 5.0614
Us = 5.0009

Converting the above displacement information to the equivalent temperature

distribution, we obtain:

To = T70.000°F

Ty = 35.208°F
T; = 5.0614°F
T3 = 5.0009°F

The data and the output files are shown in Appendix A.

Fluid flow analysis through structural analogy.

Equation of motion for fluid flow

The Bernoulli equation gives a relationship between pressure, velocity, and posi-
tion or elevation in a flow field. Normally, these properties vary considerably in the
flow, and the relationship between them if written in differential form is quite com-
plex. The equation can be solved exactly only under very sp-2cial conditions. There-
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Figure 18: Fluid in a constant diameter duct

fore, in most practical problems, it is often more convenient to make assumptions to
simplify the descriptive equations. The Bernoulli equation for steady, incompressible

flow along a streamline with no friction (no viscous effects) is written as [10]

p _ A
p+2+gz—C (67)

p is fluid pressure
p is the desity of the fluid
V is the flow velocity

g =32.174 ft/s? and z is height.

For a horizontal pipe shown in Fig. 18, z; = z,. From continuity, AV, = AV,
Because D, = D,, then A; = A,, and therefore, V| = V,. The Bernoulli’s equation

reduces to

P1

1l

s
—~
(=]
0
~——
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Figure 19: Control volume of a system: flow in a duct.

This result is not a proper description of the situation, however. For flow to be
maintained in the direction indicated in Fig. 18, p; must be greater than p; in an
amount sufficient to overcome friction between the fluid and the pipe wall. In order
to apply Bernoulli’s equation and obtain an accurate description, we must modify
the equation with a friction term.

Consider flow in a pipe as shown in Fig. 19. A control volume that extends to
the wall (wheré the friction force acts) is selected for analysis.

Note that a circular cross section is illustrated, but the results are general until
we substitute specific equations for the geometry of the cross section. The forces
acting on the control volume are pressure normal to the surface and shear stress

acting at the wall. The momentum equation is [10]

S = [ [Viovada | (69)
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where
V; is the fluid velocity along the longitudinl direction

V. is the norminal fluid velocity

Since the flow out of the control volume equals the flow in, the right-hand side

of this equation is zero. The sum of the forces is

pA—T1,Pdz—(p+dp)A=0 (70)
where

A = cross-sectional area

Pdz = the surface area (perimeter times length) over which the

wall shear 7, acts

The equation reduces to
TwPdz + Adp =0 (71)

~ Rearranging and solving for pressure drop, we get

dp 41, :
%= "D 72)

We have thus expressed the pressure drop per unit length of the conduit in terms
of the wall shear and the hydraulic diameter. Eq. 72 is a general expression for any
cross section. It is convenient to introduce a friction factor f, which is customarily

defined as the ratio of friction forces to inertia forces:

4T,

f = %pvz
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Figure 20: Laminar flow in an annulus

where V is the average flow velocity.

By subsitution into Eq. 72, we obtain
dp= L 1% (74)

Integrating this expression from point 1 to point 2 a distance L apart in the

conduit yields

_ 2D,

V2 = Ef—ZAP (75)

Eq. 75 gives the relationship between the velocity and the pressure drop in the
duct due to friction. This equation can be applied to two flow regimes - lé;;ﬁinar and
turbulent flow. However, caution must be excercised when determining the friction
factor f.

This equation can also be applied to flow through noncircular cross section such

as rectangular duct and annulus. Fig. 20 shows the laminar flow in an annulus.
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Table 3: Analogous quantities between structural and flow systems

Fluid mechanics Structure

Square of velocity V2 Nodal force f; = —F
Pressure distribution p(z) Displacement U(z)
Flow factor %5—’2 Structural stiffness -EI")—S

The annulus flow area is bounded by the inside surfa.ce-bf the outer duct (radius
R,) and the outside surface of the inner duct (R;). We define the ratio of these

diameters as

R,
k=2 76
"R (76)

in which0 < &k < 1.

The friction factor used in Eq. 75 is defined as [10]

2
1 R, [1+k 1+k] (17)

764 |T—% T (R
where R, = LV(j—R)-(l — k).
Compare Eq. 75 with Eq. 38 concerning the beam structure subjected to the

end nodal force, as discussed in previous section:
ES :
h= 7(U1 - Us) (78)

We are now able to set up the analogous quatities listed in Table 3.
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Numerical‘example of flow in a tube solved with NESSUS/FEM

Consider the refrigerant flow in a copper tube as an example to demonstrate how
NESSUS/FEM can be applied to problems in fluid mechanics.

A horizontal copper duct as shown in Fig. 18 with inside radius of 0.669 in, and
1,200 in in length. If the inflow pressure p, is 1838.7 psi, assuming the refrigerant
is Freon F-12 under a temperature of 5°F, p is 0.0499 [b/in®. The friction factor f
is assumed to be 0.03, and V is 15.5 in/sec. The objective is to obtain the outflow
pressure p; using NESSUS/FEM.

First of all, we need to identify all the equivalent quantities for structural analysis.
We assume a single element beam structure subjected to a concentrated force equal
to -240.25 units. The beam element has a section of 0.1 inx 0.1, and a length of 1.0.
The boundary condition is an initial displacement of 1838.3 units at node 1. Again,
it should be mentioned that the units used here do not have real rnea.ning\ in terms

of a real structure. According to Table 3, the analogous quantities can be obtained

as follows
2D, (D) 2 x 2 x 0.669
=l—]l=)= 10 = 14.
E (pr) S) = 00299 x 0.03 x 1300 < 10 = 1489

fi = V2 =15.5% = 240.25
F = —240.25

This data is input to NESSUS/FEM, and the displacement at point 2 is ob-
tained as 1677.4. Converting this displacement to the fluid model, we get the output
pressure p, = 1677.4 psi.

The data and the output files are shown in Appendix B.
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CHAPTER IV

MULTI-DISCIPLINARY SYSTEM RELIABILITY ANALYSIS

Introduction

After transforming the heat transfer and fluid mechanics problems into corre-
sponding structural analog models and using NESSUS/FEM to perform the finite
element analysis, we can define the individual failure modes in NESSUS/FPI. Then
NESSUS/PFEM can be employed to integrate FEM and FPI programs to obtain
the failure probability and CDF for each failure mode. The failure mode for heat
transfer problem would be defined as, for example, the event that the temperature
at a certain location is lower or higher than the required temperature. The failure
mode for fluid flow would be defined as the flow pressure exceeding a certain pressure
level, and the structural failure is defined as the stress exceeding either the ultimate
strength or the yield strength of the material.

Upon the completion of failure probability analyses of individual failure modes,
the system failure analysis ca;n be pursued. The different failure modes involved in
a system have different impacts on the overall performance of a system. Some types
of failure such as structural failure are critical to the system. If the material used to
construct the main parts of the system fails, the whole system can no longer function.
Such failure is called critical failure. Other failures modes such as thermal failure of a

heet exchager do not destroy the system but degrade the performance of the system.
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Such failure is referred as to functional failure. The function of fluid flow will fail
when the outflow pressure rises higher than the designed value, but the system can
still be working until the pressure increases to the level which will cause the system
to shut down. The individual failure modes can also be correlated to each other. For
example, the temperature field in the thermal failure mode affects the stress field in
the structural mode. The flow pressure definitely has impact on the stress. However,
in some cases, the component-level events in a system is considered as indepencient
events. In the example which will be discussed later in this chapter, the thermal
failure and fluid flow failure modes do not share correlated input parameters, so they
are considered as independent of each other.

Using the analogy method, the thermal and fluid low problems are analyzed sim-
ilar to the structural model by means of NESSUS. For physically correlated events,
the failure mode of one event is imposed on the other. In a system consisting of
structural, thermal and fluid flow modes, the thermal and flow failures are imposed
into the structural failure analysis to study the impact of correlated events. The
failure probability of the whole system is then estimated based on the output from

the above analyses.

Individual failure analysis

Structural failure mode

For a copper duct of a heat exchanger shown in Fig.17 in Chapter III, the
structural failure mode is defined as that when the tensile stress exceeds the yield
strength fyicia = 8.0 ksi. In finite element modeling, we use Element type 153 in the
NESSUS/FEM file. This element is a four-noded quadrilateral lying in the global
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zr—plane which is defined by cylindrical coordinates.

This structure is subjected to two types of load - fluid pressure from the inside
flow and the stress caused by temperature difference between the outer surface and
the inner surface.

One convenient feature of the NESSUS/PFEM is that we can impose different
temperatures at the inner surface of the pipe and obtain the different probability
results under different temperature conditions. This enables us to investigate the
effect of different temperature levels on the structural failure probability. By doing
so, the relationship between the failure modes in two dicsiplines - heat transfer and
structural mechanics - is established. This is a significant step toward the system re-
liability analysis with physically correlated failure modes. This will be demonstrated
in a later section.

For this structural failure model, we first suppose that the temperature failure
(which will be descibed in the following section) did not occur, that is, the tempera-
ture at the inner surface of the duct is below 5.0009°F. Given that the inner surface
temperature is 4.0000°F, using the FEM we obtain the outer surface temperature as
4.0605°F.

Also, we assume that the outlet flow pressure is under 1677.4 psi which enables
the system to work properly. We assume that the outlet flow pressure is 1577.4 psi.

We input this temperature and flow pressure profile in the structure FEM data

file, with the random variables defined in Table 4.
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Table 4: Random variables for structural model

Variable Mean value | Distribution | C.0.V.
Pressure

P 1577.4 psi Normal 0.2
Modulus of elasticity

E 1.7x107 psi | Normal 0.1
Coeflicient of thermal

expansion a 9.5x10-¢ Normal 0.1

Table 5: CDF corresponding to different tensile strength levels

Z-level CDF Z-level CDF
(strength) (strength)

-206.89941 psi 0.00000017 4385.4964 psi 0.81593991
558.49989 psi 0.00002067 5150.8957 psi 0.97128351
1323.8992 psi 0.00096767 5916.2950 psi 0.99813412
2089.2985 psi 0.01786435 6681.6943 psi 0.99995188
2854.6978 psi 0.13566610 7447.0935 psi 0.99999952
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The result attached in Appendix C indicates that the structural reliability when
the heat exchanger is working properly in thermal and fluid aspects is 0.99999999.
The failure probability is expressed as 1 — Prejiasitity. Therefore, the structural failure
probability is 1.0 x 10~°.

The key word response type in the NESSUS input data file, FPI section, is set

equal to 3 which means that the response quantity used in limit state function is
stress. The corresponding keyword analysis type in FPI section is first set equal to
1 which means that the probability analysis is for a single Z-level. The Z-level in this |
case is 8,000 psi. The probability result will be under the condition of & < 8,000
psi, i.e., the structural reliability of the system under certain thermal and fluid flow
working conditions.

The CDF is obtained by using PFEM by setting analysis type in FPI section
equal to 0 which automatically generates a set of different values of Z, (i.e., Z levels
for a series of stress valus) for probability analysis. The CDF values corresponding
to different strength Z-levels are shown in Table 5.

The CDF chart is shown in Fig. 21. It should be noted that the first line of
the data which contains negative Z-level is eliminated because negative stress is
considered impractical in this model. The input and output files are attached in

Appendix C as well.
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Figure 21: CDF of structural reliability of refrigerant duct
Table 6: Ra.ndom variables for thermal model
Mean value | Distribution | Coefficient of variation
K. 223.0 Normal 0.1
K; 0.428 Normal 0.1
h 11.3 Normal 0.1
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Failure mode in heat transfer

Using the same example of a heat exchanger as in Fig. 17, we define a failure
event when the inside temperature is higher than 5°F, because the refrigerant will
not function broperly beyond 5°F which is considered as a failure in the device we
studied. First the input data for NESSUS/PFEM is set up to obtain the reliability
under this failure mode, then the data file is set up with different Z - levels to obtain
the CDF, which provides reliability estimatecorresponding to different temperature
levels. The random variables K, and K; and h for heat transfer are defined in Table
6.

In order to use NESSUS/PFEM, the analogous quantities E;, E;, E3 and F
are calculated from Eqs. 63, 64, 65, 66. Because the distribution of the random
variables K. and K; and h is normal and E,, E,, E3 are linear to K, and K; and
h, the distribution of random variables E;, F, E3 is also normal. The mean values
and standard deviations of of E;, E, and E; are input to NESSUS/PFEM.

The Z-level is 5.0°F, so P(Z < Zo) is the probability the device can keep the
inside fluid temperature under 5.0°F, which is the thermal reliability of the system.
We set up the keyword in FPI section analysis type equal to 1 which means the
probability analysis is performed for a single Z-level. The result is attached in Ap-
pendix D. The thermal reliability of this device is 0.9099214. Therefore, the thermal
failure probability is 9.00786 x 1072,

The CDF is obtained by setting up the FPI keyword analysis type equal to 0

which automatically generates a set of different values for Z, (i.e., Z-levels). The



Table 7: Random variables for flow model

Mean value Distribution Coeflicient of variation
Dy 0.669 Normal 0.1
| %4 18.71 Normal 0.1

CDF output is shown in Appendix D and the CDF curve is shown in Fig. 22.

Failure mode in fluid flow

Next we consider the one-dimensional fluid flow in a duct of a heat exchanger.
The failure mode is defined as the pressure at a certain point along the duct rising
above the value at which the system cannot function properly.

The example of a duct in a heat exchanger shown in Fig. 16 is used. The only
difference is that V is assumed to be 18.7 in/sec. We define the failure mode when
pressure rises above 1677.4 psi. The Z-level is therefore 1677.4 psi. The keyword
response type is set as 1 for the displacement output which is the analogy of the
pressure. The random variables related to fluid flow are defined in Table 7. The
analogous quantities for use in NESSUS/PFEM are calculated accc'ering to Table 3

as follows:

_ (2D ¢D 2 x2x0.669

B <;f—f) (E) = 00499 x 0.03 x 1200 < [0 = 148%

fi=V?*=18.7 =350.0

F=-f =-350.0
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Since E is a linear fuction of Dy, its distribution is also normal. But since f; = V2,
the distribution of f; is actually chi-square (x?). However, we have used the normal
distribution for f; in this study as an approximation. The friction fator f is assume
to be a constant.

A NESSUS/PFEM input data file is compiled. The reliability is obtained by
setting the keyword analysis type equal to 1, and the CDF is obtained by setting it
to a value of 0 which automatically generates a set of different values for Z;. The
PFEM input and output files are shown in Appendix E and the CDF curve is shown
in Fig. 23.

The reliability is 0.98670241 and therefore the failure probability of the output

flow pressure being higher than 1677.4 psi is 1.329759 x 1072,
Maulti-disciplinary system reliability

After the individual failure modes are identified and analyzed, the system reli-
ability analysis can be pursued. Fig. 24 shows a device which is used to transfer
refrigerant fluid through a copper duct. The duct is installed in an enclosed cham-
ber which is maintained at a constant temperature of 70°F. The thickness of the
copper wall is 0.281 in. The radius to the surface of the insulation pipe covering (
mean value of K; equals to 0.428 Btu/(h — ft? —=° F'), c.o.v. equals to 0.1 ) is 1.33
in. Forced convection heat transfer occurs with h = 10Btu/(h — ft* =® F') ( mean
value with c.o.v. equals to 0.1). The thermal conductivity of copper K, has a mean
value of 233.0 Btu/(h — ft* —° F) with a c.o.v. 0.1. The surface temperature at

the insulation covering is 35.298° F. The inflow pressure p, is designed to be 1838.7



psi. The refrigerant is Dichlorodifluoromethane ( Freon F-12 ) under a temperature
of 4°F. p is 0.0499 Ib/in3. The friction factor f is assumed to be 0.03, and V is
18.71 in/sec ( assuming V'? is normal distribution and has a c.0.v. of 0.1). The inner
radius of the duct has a mean value of 0.669 :n and a c.o.v. of 0.1.

The above data are the same as the model shown in Fig. 17 of Chapter III, which
are used in FEM analysis and reliability estimation of individual failure modes. The
system shown in Fig. 24 is simply the combination of the previous individual models
which have been analyzed in different disciplines. The following is to demonstrate
how the analysis results of the individual failure modes can be integrated into the
analysis of a whole system.

The failure of the system consists of the individual failure modes in three disci-

plines: structural failure, thermal failure and fluid mechanics failure.

o First of all, the duct should work without any damage to the structure, i.e. the
duct should be structurally sound without yied or crack. If yield occurs, then
structural failure is assumed to occur. We denote the structural failure as F.

The structural failure is a critical failure in this system.

o The refrigerant liquid this device transports is sensitive to temperature changes.
The requirement is that the temperature cannot bc_s higher than 5°F for the
next process to proceed. If the temperature of the liquid rises higher than 5°F,
then thermal failure occurs, which we refer to as E;. The thermal failure is a

non-critical functional failure in this system.

o It is required that the fluid flow be maintained at a certain presure at the
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ends which enables the refrigerant fluid to maintain a steady speed to provide
constan volume in the device. If the flow pressure rises higher than 1677.4
psi, the flow failure occurs, which is referred to as F53. The flow failure is a

non-critical functional failure in this system.

From the previous section, the probability of the individual failure modes of the

system shown in Fig. 24 have been obtained, wich are:

P(E;) = 1.0000000 x 10~°
P(E;) = 9.0078600 x 10™2

P(Es) = 1.3297590 x 1072

As was indicated in the previous section, we can also impose one failure mode
upon the other. In this case we can impose the thermal failure ( which happens
when the fluid temperature rises above 5°F ) and the fluid pressure failure ( which
happens when the outlet fluid pressure rises above 1677.4 psi) upon the structure
respectively. In the FEM file for the structure model, the corresponding data are
modified to impose those failures.

First, we assume that the temperature failure occurs while the fluid pressure is
still lower than 1677.4 psi, say 1577.4 pst, i.e., the fluid flow is operation in safe mode.
By redefining the temperature profile in the FEM data deck as 6.06° F' (for example)
in the inner layer of the wall and 6.12° F' in the outer layer of the wall, which mean the
thermal failure occurs, we inpose the thermal failure to the structural model. The
PFEM result gives us the structural failure probability under the condition that the
thermal failure nccurs. In this case, the structural reliability is 0.99999996, therefore,
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the failure probability P(E,/E,;) = 4.0 x 1078,

Now we impose the fluid pressure failure upon the structural model. The fluid
mechanical failure occurs when the pressure at the outlet rises above 1677.4 psi, say
1777.4 psi. The structural FEM file is modified by redefining the pressure profile
according to this failure pressure. It should be noted that the temperature profile
should remain under the normal working condition, which is that the temperature
in the inner layer of the wall of duct is under 5°F, say 4°F, i.e., the thermal as-
pect of the system is operating in the safe zone. The result indicates that in this
case, the structural reliability is 0.99999633, therefore, the conditional probability,
P(E,/E3) =3.67 x 1078.

Next, both thermal and fluid mechanical failures are imposed that is, the fluid
temperature rises above 5°F , and the outlet flow pressure rises above 1677.4 psi.
Modifying the input FEM data deck in structural PFEM file with inner surface
temperature of 6.06° F', and the fluid pressure of 1777.4 psi, we can get the result of
the structural reliability of 0.99999227, which means, P(E,/E;E;3) = 7.73 x 1075,

The conditional probabilities of structural failure have been obtained as

P(E:/E;) = 4.00 x 107
P(E,/E3) = 3.67 x 107®
P(E\[/E;E;3) =7.73 x 107°
System reliability computation
System reliability analysis can be performed in two different ways, depending on

the definition of the systen: failure. In the first (traditional) method, we define that
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Figure 25: Fault tree for the system with three critical failures

the system failure occurs when any component-level failure cccurs. In the system
invoving structural, thermal, fluid mechanical failure modes, i.e., E;, E; and Ej3, the
system failure can be illistrated in a fault tree shown ianig. 25.

As discussed in Chapter II, the probability of system failure P(E) can be obtained

using the following equations:

The above expression can be expaned as:

P(E) = P(E\) + P(E;) — P(E\ N E2) + P(Es) — P(Ey, N E3)

—P(E; N E3) + P(Ey N E; N Ey) (80)

Since the joint probability is not always available, an approximate method is to
consider the individual failure modes as independent and ignore the correlations. In
our case however, the conditional prok:bilities have been calculated. Therefore, the
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system failure probability can be computed as

P(E) = P(E:) + P(Ez) + P(Es) — P(E1/ E2) P(E2) — P(E\/E3)P(Es)

— P(E,/E3)P(E3) + P(Ey/E2Es) P(Ey Es) (81)

For systems involving many failure modes, approximation methods are used to
predict the system failure probability (or reliability), such as first-order bounds or
second-order bounds [1].

Since no correlation is assumed between the failures of flow pressu're and fluid
temperature, we assume P(E; N E3) is equal to P(E;)P(Es) in our analysis.

Substituting the numerical results from the previous discussion into Eq. 81,
we obtain the probability of the system failure of the heat exchanger, P(E) =
0.10217832.

As mentioned before, the above failure probability is an estimation of system
failure in case any failure occures which includes both critical and non-critical func-
tional failures. Now we will pursue the probability estimation for the system critical
failure which, in our case, is structural failure. During the service cycles, the thermal
and fluid mechanical f'a.ilures may be non-critical, i.e., their occurence does not cause
total system failure. They will cause the system to fail in some functions as designed,
such as keeping the fluid under certain temperature or keeping the outlet fluid pres-
sure under certain value. However, if the the system keeps operating, the ch-anges in
temperature and fluid pressure will cause progressive damagé to the structure due
to load redistribution. The estimation of critical structural failure of the system has

to consider the progressiv: damage caused by all ~omponents. Structural reanaiysis
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Table 8: Structural failure probability under various temperatures

T() 0.0 5.0 10.0 15.0

P(E)) |0.0 0.0 0.0 0.0

is used to account for the effect of non-critical damage on critical failure mode. In
the refrigerant model, a reanalysis procedure is performed to accurately estimate the
failure region segments for structural failure mode affected by progressive damage
caused by thermal and fluid pressure changes within the system. The overall struc-
tural failure probability is obtained through the union of the failure region segments
defined by each limit-state function.

We can also impose a series of temperatures under which the system may be
operating upon the structural model to examine the temperature impact on the
structural failure probability. Just as we did befére, the failure probability is obtained
as (1 - Reliability). In this case, we still assume inner fluid pressure is 1577.4 psi,
which means that the fluid flow mode of the system is operating in the safe zone.
The results are shown in Table 8.

Table 8 shows that when the fluid pressure is not considered as a random variable
in perturbation for probability analysis, the temperature changes do not have a
significant impact on structural reliability of the system.

We can also get the structural failure probability under different pressure condi-

tions by defining a series of the pressure profiles in the FEM data deck for strucutural
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Table 9: Structural failure probability under various pressures

Pressure| 2700.0 2900.0 3000.0 3200.0 3300.0 3400.0 3420.0

(psi)

P(E,) 0.000 1.000 1.920 7.687 9.1956841 4.06468 | 4.92622
x107° | x10°% | x10~3® | x10~? | x107! x 10!

model. The results are listed on Table 9. In this case, we assume that the inner tem-
perature is 4°F.

It should be noted that the NESSUS/PFEM input file gfun.dat is different from
the previous structural PFEM file in which the pressure is defined as a random
variable. In the program [Ang and Tang, 1984] to calculate the union of the re-
gion segments, the random variables once defined can not be changed for different
limit states. Since in the pressure profile the different pressure levels are presented,
pressure should not be defined as a random variable. Therefore only two random
variables are involved in gfun.dat - modulus of elastisity E and coefficient of thermal
expansion a. The gfun.dat and various gfun.mov files are shown in Appendix F.

There are two ways of quantifying the effect of progressive dé.m'age on critical
failure. The first is simply to compute the variation of critical failure probability
with respect to progressive damage. This is shown in Fig. 26 for various pressure
levels.

An alternate way is to compute the progressive damage on overall critical failure
probability. If each critical failure limit sate segment for each progressive damage

gives the event E;, then the overall critical failure probability is P(U"_, £, where n
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is the number of limit states ( n = 7 in this case ).

The output files gfun.mov provide g-functions defining different limit-states for

each level of damage as

gi=08+ i a;u; (82)

=1
From Table 8, it is clear that temperature variations do not have any significient
effect on the structural failure probability. Therefore, only pressure variations are

considered as follows:

The parameters provided by gfun.mov for the structural limit states correspond-

ing to fluid pressure profile are as follows:

Pressure B oy as

2700.0 psi 6.825696 0.999887 -0.015057
2900.0 psi 5.721588 0.999886 -0.015088
3000.0 psi 4.619647 0.999886 -0.015071
3200.0 psi 2.423429 0.999887 -0.015038
3300.0 psi 1.328801 0.999887 -0.015021
3400.0 psi 0.236641 0.999888 -0.014959
3420.0 psi 0.018494 0.999887 -0.015003

The above data provides parameters for 7 g-functions. Using the above data
to calculate the union of the region defined by a group of g-functions [Ang and
Tang, 1984], we obtain the probability of structural failure involving the progressive
damage caused by fluid pressure. The probability is defined by a lower and upper
bounds, which in this case are both 0.4926211. The data and output files are shown in
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Appendix G. Those bounds provide the overall structural failure estimation when the
system experiences various levels of progressive damage. The fluid pressure changes
in a range from 2700.0 psi to 3420.0 ps:.

The above two methods provide practical tools for multi-disciplinary system re-
liability estimation using NESSUS. With multiple impositions of one mode on the
other mode, a close approximation to the failuré domain can be constructed, and the
critical failure probability can be obtained through the union of the fjajlure region

defined by the various limit-states.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

Conclusion

This report has demonstrated the application of equivalence concepts to the re-
liability analysis of multi-disciplinary systems using NESSUS. A thermal-structural-
fluid system is used to illustrate the proposed methodology. The analogous model
is a very powerful tool to analyze the one-dimensional steady state problem in heat
transfer and fluid mechanics by converting those models into a structural model.
Then the NESSUS probability analysis program can be implemented and the precise
system reliability can be evaluated. Both traditional and progressive system fail-
ure probability methods using NESSUS provide practical tools for multi-disciplinary

system reliability analysis.
Recommendations for future research

This research project demonstrated how the NESSUS program could be applied
for reliability analysis of engineering systems involving different disciplines, such as
structure, heat transfer and fluid mechanics. The current models are based on the
condition of one-dimensional, steady-state for both heat transfer and fluid mechanics.
More complex systems could be treated in the similar way. However, the scope of
application of this methodology is largely dependent on the ability of NESSUS/FEM
to deal with problems in different disciplines under more complicated situations, for
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instance, a thermal or a flow model in two or three dimensions and non-steady state
conditions. For more sophisticated systems, the need for separate FEM program
may be inevitable. Either a new source code should be developed or the existing
commercial softwares could be integrated into the program. Several users of NESSUS
have already integrated its FPI module to other FEM analysis program such as
ANSYS and NASTRAN. Nevertheless, the use of equivalent concepts helps to obtain
a quick estimate of multi-disciplinary system reliability through the use of NESSUS.

The idea of progressive damage imposition to quantify nonlinear system reliability
effects has previously been applied to structural mechanics problems [1]. This study
extends this concep§ to multi-disciplinary systems. This appears to be a practical
methodology for system reliability analysis when failure modes (even in different
disciplines) have physical relationship with each other. The methodology should be

pursued further for application to other, more complicated engineering systems.
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Appendix A

FEM FILES FOR HEAT TRANSFER OF A HEAT EXCHANGER

(Refer to Chapter III, Fig.16)

NESSUS/FEM input file

expifem.dat Wed May 14 20:37:04 1997 1
rEN
€ ... HEAT TRANSFER FOR A REGRIGERANT PIPR
c
c
¢
C ... PARAMETER DATA
c
BOUN 20
scoNs 0
*pISP
NooE 6
ooPL 4
‘mxt 3
1}
syorRC 1
sy 44
*PRIN
*BEAM
D
Coe** MODEL DATA
*cooR
1 0.0000  0.0000  ©0.0000 0.0000  0.0000  1.0000
2 0.0000 10.0000  0.0000 0.0000  0.0000  1.0000
3 0.0000 10,0000  0.0000 0.0000  0.0000  1.0000
It 0.0000 20,0000  0.0000 0.0000  0.0000  1.0000
s 0.0000 20.0000  9.0000 0.0000  0.0000  1.0000
§ 0.0000 30.0000  0.0000 0.0000  0.0000  1.0000
Lt 98
1 1 2
2 3 4
3 H 1
*DUPL
12
s 4
*BOUN
§ 1 0.0000
§ 3 0.0000
1 1 0.0000
1 2 70.0000
1 3 0.0000
1 4 0.0000
1 5 0.0000
1 6  0.0000
BEAN 1
1 6 1.0000 1.0000
sITERA 0 4
40 0.0500
prOP 8
1 2 1.0000 €9.63867 0.3000  0.0000 7.58-4
3 41,0000 79.9230 0.3000  0.0000 1.58-4
s &  1.0000 399553476  0.3000  0.0000 2.58-4
*FORC
6§ 3 -141.66
*PRIN
TOTA  NODE
*END
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NESSUS/FEM output file

exp2fem.cut Wed May 14 20:50:14 1957 1
1
N NN EBEEEPEE 8SSSSSS  §S8SSSS UU  UU 5556858
NNN NN KR 58 w W S
NNN NN K s 58 w  w ss
NN N NN EEREIR 888898  S8SSS§ LU WU §s8sss
NN NNN ER ss ss W w ss
W RNN EE s8 sS W w ss
NN NN EENEEEEY $55§S5§  S5§5S5§  UUUUUU  SSSSSSS
NENNN NN FFFFPFFF EEEEEEER MM "o
N N b B W 00t
NN NNN N e e MH NN M
0OI0N FPYPPF  RITEEE MM N MM
NN NN NN L4 = W o
N N N 4 ) " w
N N ” EEBEEEER MM MY
X ]

DATE: 14- 5-19%7 20:30 - LEVEL §.0 (109} - DATED June, 30 , 1992

€ ... HEAT TRANSPETR FOR A REORIGERANT PIPE

SsresvssRaNIRIstIORNASRbORY

® PERTURBATION NO. {4 **
ssevennes sresnernsace

SUMHARY OF PERTURBATION DATA
.

VARIABLE NO. 1 MEAN VALUT 0.00000D+00  STANDARD DEVIATION 0.00000D+00
PERTURBED VALUE 0.00000D+00

VARIABLR NO. 2 MEAN VALUER 0.00000D+00  STANDARD DEVIATION 9.00000D+00
PERTURBED VALUR 0.00000D+00

VARIABLE NO. 3 HEAN VALUE 0.00000D+00  STANDARD DEVIATION 0.00000D+00
PERTURBED VALUR 0.00000D+00

VARIABLE NO. 4  MEAN VALUR 0.00000D+00  STANDARD DEVIATION 0.00000D+00

FERTURBED VALUR 0.00000D+00
PERTURBATION ASSEMBLY, INCR, O PERT. 4 ITER. O CPTIME= 0.31 s&C

¢** PERTURBATION 4 HAS NO EFFECT ON THIS ANALYSIS

A
DATABASE UPDATE, INCA. O PERT. {4 ITER. O CPTIMEa 0.32 sx¢
IC ... HEAT TRANSPER FOR A REGRIGERANT PIPE DATE

3 14~ 5-1997 20:50 RESULTS PAGE: 1

TOTAL DISPLACEMENTS INCRENENT 0 TOTAL TRANSIENT TIME 0.000000+0
o
NODE COMP. 1 CoMP. 2 CoMp. 3 CONP. 4 comp. §
COMP. §
1 0.00000D+00 0.70000D+02 0.00000D+00 0.000000+00 0.00000D+00 0
.00000D+Q0
2 0.00000D+00 0.35238D+02 0.00000D+00 0.00000D+00 0.00000D+00 0
.00000D+00
3 0.00000D+00 0.35298D+02 0.00000D+00 0.00000D+00 0.00000D+00 LJ
.00G00D+00
4 0.00000D+00 0.50614D+01 0.00000D00 0.00000D+00 0.00000D+00 d
-000000+00
5 0.00000D+00 0.50614D+01 0.00000D+00 0.00000D+00 0.00000D+00 0
.00000D+00
[ 0.000000+00 0.500090+01 0.00000D+00 0.00000D+00 0.00000D+00 L]
.00000D«00
1€ ... HEAT TRANSFER FOR A REGRIGERANT PIPE VERSION €.0(10%

) DATE: 14- 5-1337 20:30 PAGE: 11

END OF INCREMENT, INCR. O PERT. O ITER. 0 CPTIME= 0.34 sec
1C ... HEAT TRANSFER FOR A REGRIGERANT PIPE VERSION £.0({10%
} DATE: 14- 5-1597 20:30  PAGE: 12

55
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Appendix B
FEM FILES FOR FLUID FLOW IN A DUCT

(Refer to Chapter III, Fig.18)

NESSUS/FEM input file

flowfeml.dat Sat Jun 28 22:26:43 1957 1
e
C ... FLOW IN A CONSTANT DIAMETER PIPE (with A/L=0.1)
c
<
c
C ... PARAMETER DATA
c
“BOUN 20
*CONS 0
*DISP
*NGDE 2
*ELEM
98
*FORC |
PERT 4 4
“PRIN
BEAM
“END
C**** MODEL DATA
COCR
1 0.0000  ©0.0000  0.0000 0.0000  0.0000 1.0000
2 0.0000  10.006  0.0000 0.0000  0.0000 1.0000
YELEN 98
i 1 2
BOUN

1 0.0000
2 3 0.0000
1 1 0.0000
1 1 1838.7
1 k) 0.0000
1 4 0.9000
1 3 0.0000
1 [ 0.4000

YBEAM 1

2

[

(]

9

2

1.0000 1.0000
4

*ITERA
40 . 0500
PROP ]
1 1.0000 14.8960 0.3000 0.0000 2.58-4
FORC v
2 H -140.1%
PRIN
TOTA  NODE
TEND




NESSUS/FEM output file

flowfeml.out Sat Jun 28 22:27:00 19597 4

) DATE: 28- 6-13%7 22:26 PAGE: 14

severvencrvesvsrevsavenvIvy

¢ PERTURBATICN NO. & °**

sevsvvrrrsurvrsvserernvosTy

SUMMARY OF PERTURBATION DATA

wnevevwresrerITaTRTATIITOIYY

VARIABLE NO. 1 XEAN VALUX 0.00006D+00 STANDARD DEVIATION 0.00000D+00
PERTURBED VALUR 0.00000D+00

VARIABLE NO. 3 MEAN VALUE 0.00000D0+00 STANDARD DEVIATION 0.00000D+00
PERTURBID VALUE 0.00000D+00

VARTIABLE NO. 3 MEAN VALUE 0.000000+80 STANDARD DEVIATION 0.00000D+00
PERTURBED VALUE 0.000000+00

VARIABLE NO. 4 NEAN VALUT .000000+00 STANDARD DEVIATION 0.00000D+00

PERTURBED VALUE 0.000000-00 .

PERTURBATION ASSEMBLY, INCR. O PERT. 4§ ITER. O CPTIME= 0.27 SEC

*** PERTURBATION 4 HAS NO EFFECT ON THIS ANALYSIS

DATABASE UPDATE, INCR. O PERT. 4 ITER. O CPTIME= 0.27 SEC
1C ... FLOW IN A CONSTANT DIAMETER PIPE (with A/Le0.1) DAT
B: 18- §-1997 22:26 RESULTS PAGE: 1
TOTAL DISPLACEMENTS INCREMENT 0 TOTAL TRANSIENT TIHEK 0.00000D~
1]
NCDE COMP. 1 CONP. 2 come. 3 COHP. 4 coup. 3
conp. §

1 0.00000D+00 0.18387D+04 0.00000D+00 0.00000D«00 0.0000CD-+00
4.000000+00

2 0.00000D+00 0.16774D-04 0.00G00D-00 0.000000+00 ¥ 0.00000D+00
0.000000-00
1C ... FLOW IN A CONSTANT DIAMETER PIPE (with A/L=0.1} VERSION 6.0(10
¥} DATE: 18- 6-1%97 22:2§ PAGE: 10

IND QF INCREMENT, INCR. O PERT. O ITER. O CPTIMEs 0.2% SEC
1€ ... PLOW IN A CONSTANT DIAMETER PIPE (with A/La0.1) VERSTON 6.0(10
9) DATE: 28- §-1937 22:26 PACE: 11

45

STOP DUT TU END OF INPUT FILE
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Appendix C

PFEM FILES FOR STRUCTURAL RELIABILITY

(Chapter IV, Data is shown in Fig.16 of Chapter III)

NESSUS/PFEM input and output files for single Z-level

axpispfem.dat

“rra
C ..
*HVDEYINR
*COND L]
*DATATYPR 0
*RESPTYPR )
*COH? 3
*NODE 4“4
*PERT 3
1,3,3
*RANVAR b ]
1,2.3
*END
*IFDRFINE
*COMPUTATIONAL 1 3
1,1,3
*END
*RVDEFINE
*DEFINE 1
24
1577.4 315.48
PRESSURE
30 S8 1.0
*DEFINE 2
EMOD
0.17 08 0.1 £+07
PROP 153

NORMAL

1 58 0.0 1.0 0.0 0.0 0.0

L T R R Y e IR R L I L]

»« REFRIGERANT PIPE UNDER INSIDE PRESURE

*BOUN 20
*PRESSURR
*TEMPERATURE
*LoUR 2 b S | 1
*PERT 10 10
PRESSURR
PROFERTIY
PROPERTY
*PRIN
*END
Cent* MODEL DATA
*COOR
1 ~5.000 0.35

T T e T

Tue Jun 24 18:13:00 19397

PROBABILISTIC ANALYSIS FOR STRUCTURAL RELIABILITY OF EXP1
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expisplfen.dat Tue Jun 24 18:13:00 1997 2

10 10 3% 40 11
11 11 4 4a 12
12 u a4 4a 13
11 13 42 O by )
i RY U * B [ ] 15
15 15 &4 43 16
14 16 43 s 1
17 17 46 47 18
13 M 47 19
13 13 4 4 2
0 0 O 50 121
n 11 S0 51 22
2 2 s1 s1 23
3 3 53 8 k1
kL % N 54 23
23 25 %4 35 26
8 26 33 %6 37
7 7 3 57 U
1 s 357 38 2

*PRESSURR
30 58 1877.4

*TENPERATURE
1 1% 4.08
I 2N 4.00

*IOUN
15 1 0.0
“ 1 0.0

*ITEA 1 3
40 0.0%00

*PROP 153

1 k1] 0.10008+01 0.17008+08 0.340  0.95008-03 0.3168 §.0Re06

STRR  NODE

] [ T T L T T R T T Y R P A T XY R RS AR AL AR A A

e

HEAT EXCHAGER OF EXP2 WITH DATASETS
SRVNUM 3 .

*GFUNCTION 1

*DATASETS

0.800000%+04
*IND

DESIGN SENSITIVITIES

TAYLOR SERIES EXPANSION OF THE FORM
G w AD ¢ AL*X1 ¢ A2°X2 + ... ¢ AN'XN

exp2spfem,out Tue Jun 24 18:13:42 1997 3

AD IS THR CONSTANT TERN
Al, Ad, ... , AN ARR THE DESIGN SENSITIVITIES
X1, X3, ... , XN ARE THR RANDON VARIABLES

TAYLOR SERIES CORFFICIENTS RANDOM EXPANSION NORM. DESIGN
A CORFFS. VALUE VARIABLE  POINT (KPP) SENSITIVITY
] Q.2098462+04
1 0.1)33342+01 1 0.157740E+00 0.633143K+00
2 -0.1211218-0] 2 §.170000E+08 -0.351883E+00
3 0.168750K+07 3 0.350000%-03 0.2767302-02

PEAFORNING PROBABILISTIC AMALYSIS WITH FPI

CDF RESULTS
z v PROBARILITY ITER. NO.
0.800000002+04 0.38§22317632+01 0.999933932+00 [
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NESSUS/PFEM input and output file for CDF

explscdf.dat Tue Jun 24 19:19:57 1997

*PFEIM
€ ... PROBABILISTIC ANALYSIS FOR STRUCTURAL RELIABILITY OF RXP2
*MVDEFINE
*COND L]
“DATATYPR 0O
“RESPTYPE )
*COMP 3
*NODE H®
*PERT b ]
1,2,3
SRANVAR 3
1,32,3
*END
*ZFDEFINR
*CONPUTATIONAL 1 b ]
1,2,3
*END
*KVDEPINK
*DEFINE I
[ 24
0.137740008+04 0.11543002+03  NORMAL
PRESSURE
30 58 1.0
*DEFINE 2
EMCD
0.17 a8 0.17 37  NORMAL
FROP 133
1 58 9.0 1.8 0.0 0.0 0.0
*DEFINE 3
ALFA
0.95000002-05 0.19000002-05 NORMAL
PROP 153
1 58 0.0 9.0 0.0 1.0 0.0

[ Ly T Yy R R R R Y]
‘TEN

C ...REFRIGERANT PIPE UNDER INSIDE PRESURE

c

[
[
C ... PARAMETER DATA
[+

*CONS [}
*DISP
*NODE 8
*ELIM 8
153
*BOUN 20
*PRESSURR
*TENPERATURE

*LOUs 2 1 -3 1
*PERT 10 10

C®®*® MODEL DATA
"COOR ... -
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explscdf.dat Tue Jun 24 19:19:57 1987 2

10 10 3% 40 1
11 1T 40 a 12
13 12 41 2 13
11 13 42 a3
u u 4] a4 15
13 15 44 43 16
146 1§ 43 & 17
17 17 6 47 1
12 13 &7 4 1
1 19 &8 & 20
a0 20 49 50
i1 i1 %0 51 N
2 2 51 52 23
3 23 52 11 U
u ¢ 33 S¢S
25 s 54 55 2
24 6 33 %S¢ 17
7 7 % 37 28
kL m 57 N B

*PRESSURE
3o 50 0.1577400R+04

*TEMPIRATURE
1 19 4.06
30 53 4.00

*BOUN

13 1 9.0
44 1 0.0
‘ITEA 1 3

40 0.0300
*PROP 133

1 50 0.10008+01 0.17008+08 0.340 0.9500K-08 3.1188 €.0B+08
*PRIN

STRE NODR

*EXD
PR T ey Y Y R TR YR LY
PRI

KEAT EXCHAGER OF EXP1 WITR DATASETS
*RVNUM )
*GFUNCTION 1
T"DATASETS ¢

DESIGN SENSITIVITIRS

TAYLOR SERIRS EXPANSION OF THE FORN
G = AD » AL*X1 + A2°X2 + .,. + AN*XN

WHERE:

expiscdf.cut Tue Jun 24 18:28:49 1997

A0 IS THE CONSTANT TERN
Al, A2, ... , AN ARX THE DESIGN SENSITIVITIES
X1, X2, ... , XN AAX THE RANDON VARTABLES

TAYLOR SERIES COEFFICIINTS RANTOM EXPANSION
A Coxrrs. VALUE VARIABLE POINT (MPP)

NORM. DESIGN
SENSITIVITY

o 0.209646R404
1 0.12333342+01
] -0.123321x-03
b ] 0.1687508+07

0.1577402+04
0.1700002+08
0.9300008-05

-

PERFORMING PROBABILISTIC ANALYSIS WITH FPI

CDF RESULTS
3 v PROBABILITY
-0.20689941R+03 -0.510000008+01 0.17012231E-0§
0.558499398+03 -0.410000008+01  0.206868716E-04
09.132389928+04 -0.31000000B+01 0.%6757122%-0)
0.20892985R+04 <-0.21000000B+01 0.17464357E-01
0.285469788+04 ~0.110000002+01  0.135666108.00
0.43854364%+04  0,.300000008+00  0.81533991E+00
0.51308937E+04  0.13000000%+01  0.97128351E+00
0.59162950E+04  0.29000000E+01  0.39813412E+00
0.668169432+04  0.1%0000002+01  ©.939351842+00
0.74470915E+04  0.43000000E+01  0.99399952E+00

77

0.6353430400
-0.31618898+00
0.2767302-02

ITER. NO.
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Appendix D
PFEM FILES FOR THE HEAT TRANSFER RELIABILITY

(Chapter IV, data is shown in Fig.16 in Chapter III)

NESSUS/PFEM input and output files for single Z-level

axpltempfems.dat S8un Jun 22 01:05:39 1997 1

FrEM

C ... PROBABILISTIC ANALYSIS POR TEMPERATURE PATILURE OF EXP2 Z-LEVEL

*MVDEFINX
*COND
*DATATY?E
*RESPTYFE
*ConpP
*NODR
*PERT
1.2,}
*RANVAR
1,2,

*END

"ZFDEPINE
*COHPUTATIONAL 1 3

wanw~woo

-

1,2,3

bt -]

*RVDEFINE
‘DEFINE 1

ZMoD3

0.399554760008+05 0,39955{760008+04 NORMAL

PROP s

5 [ 1 0.0 1.0 0.0 0.0 0.0
*DRFINE 2

EMOD2

0.5887380008+01 0,5087580008¢01  NORMAL

Mmop ”"

3 3 0.0 1.0 0.0 0.0 0.0
*DEPINE 3

1 i 0.0 1.0 0.9 9.0 0.0

P T Yy Yy Yy Y Y Py Yy Y Y P YT IYY
*FEX i
€ ... FEAT TRANSFER FOR A REGRIGERANT PIPE EXP2

c
c
c
c. PARAHETER DATA
c
“BOUN 20
*CONS ]
*DISP
*NODR §
*DUPL 4
*ELEN
"
*PORC 1
*PERT 10 10
PROPERTIES .
PROPERTIES
PROPERTIRES
*¥RIN
*BEAM
*END
Ce%** HODEL DATA " .
*COOR

1 0.0000 0.0000 0.0000 0.0000 0.0000 "1.0000
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0.0000  18.0000 9.0000 0.0000 0.0000 1.0000
0.0000 10.0000 9.0000 0.0000 0.0000 1.0000
0.0000 20.0000 4.0000 0.0000 0.0000 1.0000

0.0000  20.0000 0.0000 0.0000 0.0000 1.0000
0.0000 10.0000 0.0000 0.0000 9.0000 1.0000

Eau-uu

. "
1 1 2
1 3 4
3 3 [
*DUPL
b ] 2
5 L}
*BOUN
6 1 0.0000
s 3 0.0000
1 1 0.0000
1 2 70.0000
1 3 0.0000
1 4 0.0000
3 5 9.0000
1 [3 0.0000
*BEAM 1
1 ] 1.0000 1.0000
SITERA 1 3
40  0.0300
*PROP L1 3
H 1.0000 78,3338 0.3000 0.0000 2.58-4
3 4 1.0000 53.3758 0.3000 0.0000 2.58-4
5 § 1.0000 38955.476 0.3000 0.0000 2.58-4
*FORC
¢ 2 -241.66
*PRAIN
TOTA  NODE
*END

C VEePeecavesInentIResEINEIOIReREOIITORT RS RIRRS SRRSO

b 224

REFRIGERANT PIPE RAELIABILITY WITH Z-LEVEL(T < 5°F)
*RVNUM 1
*GFUNCTION 1
*DATASETS 4
*HETHOD 1
*PRINTOPT O
SANALTYPE 1
*END
SILEVILS 1
3.00000
*END

exp2tempfemz.out Sun Jun 22 01:06:16 1957

AQ IS THE CONSTANT TERM
Al, A2, ... , AN ARE THE DESIGN SENSITIVITIES
X1, X2, ... , XN ARE THE RANDON VARIABLES

TAYLOR SERIES COKFFICIENTS RANDOM EXPANSION NORM. DESIGN
A CORrFYS. VALUR VARIABLE  POINT (MPP} SENSITIVITY
[} =0.7373068+01
1 0.1513742-03% 1 0.3995558+05 0.08414898-0)
] 0.6571582+00 2 0.5887538+02 0.5710642+00
3 0.3917632+00 3 0,785398E+02 0.4200%0R+00

PERFORMING PROBABILISTIC ANALYSIS WITH PP

CDF RESULTS

T v PROBABILITY ITER. RO.
0.30000000R+01 0.134027138+01 0.%0992140B+00 o
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NESSUS/PFEM input and output files for CDF

expitempfenm.dat Thu Apr 6 17:14:48 1935 1

*PFEN
C ... PROBABILISTIC (CDP) ANALYSIS FOR TENPERATURE FAILURE OF EXP2

E.
L]
“aumoo

1,2.3
*END
*ZroErne
*COMPUTATIONAL 1 ]
1.2,
SEND
*RKVDEYINZ
*DEFINE 1
D)
0.399554760008+05 0.393554750008+05  HORMAL
PROP
s ¢ 0.0 1.0 Q.0 0.0 0.0
*DEFINE 2

THODZ

0.580758000R+02 0.3087580002+01  NORMAL

mor ”

3 4 0.0 1.0 Q.0 4.0 0.0
*DEPINE 3

THODL

0.795338R+02 0.785393R+01 NORMAL

PROP L1

1 2 0.0 1.0 0.0 0.0 0.0

*PERT 1

*END

*mND

© e ee et 00 eaENeIIIINcINtININIIEIRIOLRPRsITIIITIERVIIISET SRRSO
*FEM

€ ... REAT TRANSPER FOR A REGRIGERANT PIPK EXP2

c

c
[
C ... PARAMETER DATA
=
*BOUN 20
*CoNS [}
*DISP
*NODE [
*DUPL [
*ELEM 3
"
*FORC 1
*PERT 10 10 -
PROPERTIES
PROPERTIES
PROPERTIES
*PRIN
*BEAN
*END
Ce*"** WODEL DATA
*COOR
1 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
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2 0.0000 10.0000 ¢.0000 0.0000
3 0.0000 10.0000 0.0000 0.0000
4 3.0000 20.0000 0.0000 6.0000
5 0.0000 10.0000 0.0600 0.0000
[ 0.0000 30.0000 0.0000 0.0000
*ELEM 98
1 1 2
2 b} 4
3 3 [
*DUPL
b ] 2
H 4
*BOUN
[ 1 0.0000
§ 3 0.0000
1 1 0.0000
1 2 70,0000
1 3 0.0000
1 4 0.0000
1 - 0.0000
1 [ 4 0.0000
*BEAM 1
1 6 1.0000 1.0000
*ITERA 1 3
40 0.0%00
*PROP 98 )
1 2 1.0000 78.51%8 0.3000 0.0000
1 4 1.0000 58.3758 0.1000 0.0000
5 € 1.0000 33555.476 0.3000 0.0000
*FORC
2 -241.66
*PRIN
TOTA  NODE
.
C # e me e aes et tettttrttrrtetttisernotetrecnacriecsietiatestns
*FPI
HEAT EXCHAGER OF EXP2 WITH DATASETS
*RVNUM 3

*GFUNCTION 1
*DATASETS 4

*METHOD 1
*PRINTOPT 0
*ANALTYPE 0
*END

*END

exp2tempfam.ocut

AD IS THE CONSTANT TERM
Al, A2,

Xi, X2, ... , XN ARE THE

0.0000 1.0000
0.0000 1.0000
0.0000 1.0000
0.0008 1.0000
0.0000 1.0000

Mon May 19 22:40:36 1597

.++ o+ AN ARE THE DESIGN SENSITIVITIES

RANDOM VARIABLES

TAYLOR SERIES COEFFICIENTS

A COEFFS. VALUE
0 -0.737506E+02
1 0.151374E-05
2 0.697158E+00
3 0.3917652+00

RANDOM EXPANSION NORM, DESIGN
VARIABLE POINT (MPP) SENSITIVITY
1 0.399555E+0S 0.8414B9E-03
2 0.588758E+02 0.5710688+00
3 0Q.785398E+32 ©0.423030E+00

PERFORMING PROBABILISTIC ANALYSIS WITH FPI

CDF RESULTS
z u PROBABILITY ITER. NO.
=0.280190927E+02 -0.310000008+01 0.170122311E-06 0
~0.22908941B+02 -0.41000000E+01 0.20668716B-04 L
<0.17778790E+02 =-0.31000000E+01 0.96767122E-03 -]
-0.12648619E+02 -0.21000000B+01 0.17864357B-01 [
=Q.75184480E+01 -0.11000000E+Q1 0.13566610E+00 0
0.2741813BE+01 0.30000000E+00  0.81533931E+00 4
0.7871964BE+01 0.190000008+01 0.97128351E+00 [
0.13002116E+02 0.29000000£+01 0.9398134128+00 [
0.181322678+02 0.330000002+01  0.999951B8E.00 o
0.23262418B+02 0.43000000£+01 0.999399528+00 [
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Appendix E

PFEM FILES FOR RELIABILITY OF FLUID FLOW

(Chapter IV, data is show in Fig.18 of Chapter III)

NESSUS/PFEM input and output files for a single Z-level

flowpfemz.dat Sat Jun 28 22:36:52 1957 1
prEM
€ .... PROBABILISTIC ANALYSIS FOR FLOW FAILURE
*NVDEFINE
*COND °
*DATATY?PE ©
*RESPTYPE 1
*CoMP 2
*NODE 2 ‘
*PERT 2
1.1
*RANVAR 2
1.2
3]
*ZFDEFINE
CCOMPUTATIONAL 1 2
1.2
*END
*RVDEFINE
*DEFINE 1
EMOD
14.896 1.4896 NORMAL
PROP 98
1 2 9.0 1.0 0.0 c.¢ 0.9
*DEFINE 3
VELO
-350.0  35.0 NORMAL
FORC
2 2 1.00
*PRERT 1
1 9.1
"PERT 1
1 6.1
-]
-]
C etvesnesnevies vevsneonvar vevesuver erevnessesesaErecrrey
e
C ... FLOM IN A CONSTANT DIAMETER PIPE {with A/L=0.1}
4
<
¢ v
€ ... PARAMETER DATA
<
*BOUN 0
*CONS [
*pISP
*NODE 2
TLEM 1
1]
*FORC 1
*PERT 10 10
VELOCITY
FORCT
*PRIN
“BEAM
*END
C**** MODEL DATA
*COOR
1 0.0000 0.0000 2.0000 0.0000 0.0000 1.0000
2 9.0000 10.000 0.0000 0.0000 0.0000 1.0000
"ELEM 98
1 1 2
00N
2 1 0.0000
2 b 0.0000
1 1 0.0000
1 2 1833.7
1 b 0.0000



1 4 0.0000

1 5 0.0000

1 6 0.0000
*BEAM 1

1 2 1.0000 1.0000
"ITERA 1 2

40 0.0300
"PROP 98

1 2 1.0000 14.8960 0.3000 0.0000 1.58-¢
*FORC

2 2 -350.0
*PRIN

TOTA  NODE

*END
LR L)
*FPI

FLOW FAILURE PROBABILITY WITH Z-LEVEL {P<15§77.4psi)
*RVNUM 2
*GFUNCTION 1
*DATASETS 3
*METHOD 1
*PRINTOPT 0O
*ANALYTYPE 1
*END
*ZLEVILS 1
1677.4
*END

TAYLOR SERIES EXPANSION OF THE FORM

G = AD ¢ AL*X1 « AZ°XZ « ... » AN*XN
WHERE :
AQ IS THE CONSTANT TERM

Al, A2, ... . AN ARE THE DESIGN SENSITIVITIES
X1, X2, ... . XN ARE THE RANDOM VARIABLES

TAYLOR SERIES COEFFICIENTS RANDOM EXPANSION NORM. DESIGN
A COEFFS. VALUE VARIABLE  POINT (NPPY SENSITIVITY
[ 0.1603748+04
flowpfemx.out Sat Jun 28 22137:13 1997
1 0.1377358+02 1 0.148960E+02 0.5000008+00
2 0.6713212+00 2 -0.3% 03 -0. a0

PERFORMING PROBABILISTIC ANALYSIS WITH FPIU

CDF RESULTS N
z u PROBABILITY ITER. NG,
Q9.16774000F+04 Q0.22174074E+01 0.98670241E+00 ]
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NESSUS/PFEM input and outpout files for CDF

flowcdf.dat Sat Jun 28 22:45:21 1957 1
*PFEM
€ .... PROBABILISTIC ANALYSIS POR FLOW FAILURE
*NVDEFINT
*COND ]
*DATATYPE O
*RESPTYPE 1
*COMP 2
*NCDE 1
*PERT 2
1,2
*RANVAR 2
1.2
*END
*ZFDEFINE
*COMPUTATIONAL 1 2
1.2
“END
*RVDEFINT
*DEFINE 1
I0D
14.89¢6 1.4838 NORMAL
PROP 32
1 3 0.0 1.0 0.0 0.0 %.0
*DEFINE 2
VELD
-350.0 35.0 NORMAL
FORC
2 2 1.00
*PERT 1
1 0.1
*PERT 2
1 0.1
*END
"END
*FEM
C ... FLOW IN A CONSTANT DIAMETER PIPE (with A/Ls0.1)
[
c
c !
C ... PARAMETER DATA
[
*BOUN 20
*CONS ]
“DISP
‘NCDE 2
*ELEM 1
38
*FORC 1
*PERT 10 10
VELOCITY
FORCE
*PRIN
*BEAM
*END
C*®** MODEL DATA
*COQR
1 0.0000 4.0000 0.0000 @.0000 3.0000 1.0000
2 ¢.0000 10,000 0.0000 0.0000 ¢.0300 1.0000
*ELEM 3
3 B 1 2
*BOUN
2 1 9.0000
2 3 0.0000
1 1 0.0000
1 2 1833.7
1 3 0.0000
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1 4 0.000¢

1 L) 0.0000

1 L1 09.0000
*BEAM 1

1 1 1.0000 1.,0000
SITERA 1 1

0 0.0500
*PROP 98

2 1.0000 14.39%6 9.3000 0.0000 3.58-4

* FORC

2 1 -350.0
*PRIN

TOTA  NODE

*END

Creevserses ertsrssssnvReNTPISIICITRIYIOISITRTIYIIYR

*FPI

FLOW FATLURE PROBABILITY WITH A SERIES Z-LEVELS
*RVNUN 2
SGFUNCTION 1
*DATASETS ]
*HETHOD 1
*PRINTOPT O
*ANALYTYPE O
*END
*END

DEBESIGHN SENSITIVITIES

TAYLOR SERIES EXPANSION OF THE FORM

G = AD ¢ AL*KI + A2°X2 + ... + AN'XN
WHERE :
AD IS5 THE CONSTANT TERH
Al, A2, ... , AN ARE THE DESIGN SENSITIVITIES
X1, X2, ... , XN ARE THE RANDOK VARIABLES
.............................. eecememeccesmmeemammam—n oo
TAYLOR SERIES COEFFICIENTS RANDOW EXPANSTON NORM. DES
A COKFFS. VALUE VARIABLE POINT (MPP) SENSTTIVITY
0 0.1603T4E+04&
flowcdf.out Sat Jun 28 22:46:36 1597
1 0.1577352402 1 0.148960E+02 0.500000E+00
2 0.6713212+00 2 -0.1S0000E+03  -0.S00000R+30

PERFORMING PROBABILISTIC ANALYSIS WITH FPI

CDP RESULTS
z Q PROBABILITY ITER. NO.
0.143431668+04 -0.510000008+01 0.170122118-06 0
0.146753652+04  -0.41000000R.01 0.206687168-04 0
0.150075642+04 -0.110000008+01 0.967671228-03 0
0.153397638+04 -0.21000000B+01  0.178643578-01 L)
0.156719618+04 -0.11000000R+01 0.13566610E+00 0
0.163361592+04  0.300000002-00 0.81533991E+00 ¢
0.166685532+04 0.1%000000E+01 0.37128351E+20 °
0.17000756R+04  0.29000000E+01 0.99813412B+00 ]
0.173323552+04  0.19000000E.0} 0.9393951848E+00 0
G.176651548+04  0.43000000E+01 0.99999952E+00 0
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Appendix F

GFUN.DAT AND GFUN.MOYV FILES OF IMPOSITIONS

(Chapter IV, data is show in Fig.16 of Chapter III)

NESSUS/PFEM input gfun.dat and output gfun.mov files

Tue Jul 1 15:35:34 1997

gfun.dat
*PFEM
C ... PROBABILISTIC ANALYSIS FOR STRUCTURAL RELIABILITY
*MVDEFINE
*COND [

*DATATYPE O

*RESPTYPR ]

*COMP 3

*NCDE 4

*FERT 2

1,2 .

*RANVAR 2

1,2
*END
*ZFDEFINE

*COMPUTATIOHAL 1 2
1,2
*END
*RVDEFINE

*DEFINE 1

EMOD
0.17 08 0.17 o7
PROP 153

03 NORMAL

1 58 0.0 0.0 0.0 1.0

*END
*END

C 9o T e s sesereeseestt e s It tRetEooItITIRRRIEPIOIEOIROIRIERIRIRIISISTY

*FEX
C ...REFRIGERANT PIPR UNDER INSIDE PRESURE
[
<
<
€ ... PARAMETER DATA
[
*CONS [}
*DISP
*NODE b1.]
*ELEM 28
151
*BOUN 0
* PRESSURE
* TEMPERATURE

*LouB 3 1 3 1
*PERT 10 10

PROPERTY
PROPERTY
*PRIN
*END
C**** MODEL DATA
*COOR
1 -5.000 0.95
2 -4.500 0.35
3 -4.000 0.95
4 -31.500 0.95
5 -3.000 0.9%
§ =-1.700 0.3%
7 -2.400 0.95
8 -2.100 0.95
3 -1.800 0.35

86

153

T O
X X-Nah

I RO A
O QO r A A

ANeaUUNNNE OO 00

A r e L L NN ~OOO00

.500
.200
.%00
.600
.300

000
300
600
800
200
500
800
100
400

.700

000

.500

go0
3500
000

.000
-4.
.000
.500
.000
.700
.400
-100
.800
.500
.300
.500
-§00
.300
. 000

500

300
6§00
300
100

.500
.800
-100

400
700
Qo0
500
@00
500
o000

0.95

0.95%



gfun.dat Tue Jul 1 15:39:34 1997

18 18 47 4 1Y
13 19 48 1% 20
20 20 4% 30
21 a1 %0 51
22 22 %t s2
2) 23 52 S8 u
n 24 53 S4 25
5 25 54 35 26
26 26 3% 56 27
27 a7 3¢ 57 28
28 8 37 %8 29
*PRESSURE
30 58 3300.0
*TIHPERATURE
1 23 4.06
e s 4.0
*BOUN
15 1 0.0
" 8 0.0
*ITERA 1 2
40 0.0300
*FROP 153

1 98 0.1000R+01 0.17008+08 0.340 0.9300x-0%
STRE  NODE

REAT EXCHAGER OF EXP2 WITH DATASETS
*RVNUM 2
*GFUNCTION 1
“DATASETS ]

0.300000R+04
*END

gfun.mov Tue Jul 1 15:28:37 1937

CONDITION NODE COMPONENT LAYER

INCR 0 44 3 1

Z MEDIAN, MEAN, STD. DEV.
0.654917R+D4 0.6549372+04 0.213524E+0)
NUMBER CF PROBABILITY LEVELS 1

0.3148

L Y R P P T T Y Y Yy

LVL, Z0, u, PROB. = 1 0.800000E+04 6.82570 1.000000000
DESIGN POINT COORD., SENSITIVITY PACTORS, STD. DEV. PROM MNEAN VALUXS

0, PROB. o 0. -] 1.
oD 0.33976318+07 0.999887  -§.334%1)
ALFA 0.96852732-08  -0.013057 0.10177%

vessesnssecorecnsssnane

CEYYY)
COF RESULTS

z v PROBABILITY
0.80000000R+04  0.682369562+01  0.10000000R+01
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gfun.mov Sun Jun 29 03:16:45 1997 . 1

CONDITION ] NCDE COMPONENT LAYER

INCR o “ 3 1

Z HEDIAN, MEAN, STD. DEV.

0.673271K+04 0.678271E+04 0.2127548+03
NUMBER OF PRDBABILITY LEVELS 1
LVL, 20, u, PROB. = 1 0.300000E«04 5.73159 0.99995993%
DESIGH POINT COORD., SENSITIVITY FACTORS, STD. DEV. FRON MEAN VALUERS
I0, PROB. = G.8000008+04 0.99999933%

oD 0.7274407B+07  0.999886  -3.720337
ALFA 0.96640208-05  -0.015088 0.086326
aresvesetrararestestssrsnroaneNes
CDF RESULTS
3 I} PROBABILITY ITER. ¥O.
0.400000008+04  0.572158B1K+01  D.J9993399R+00 °

gfun.mov Bun Jun 29 03:11:36 1997 1

CONDITION § NODE COMPONENT LAYER

INCR a L¢3 3 1

Z MEDIAN, MEAN, STD. DEV.
0.701604K+04 0.701504R+04 0.212994E+03
NUMBER OF PROBABILITY LEVELS 1
LVL, Z0, u, PRCB. = 1 0.300000R+04 4.61965 0.939998076
DESTGN POINT COORD., SENSITIVITY FACTORS, STD. DEV. FROM NEAN VALUES
Z0, PROB. = 0.800000E+04 0.9999%8076
EMOD 0.9147433E+07 0.999886 -4.619121
ALFA 0.96322828-05  -0.015071 0.069622

ereesresrssnsrnoreresn

CDF RESULTS
z v PROBABILITY ITER., NO.
0.30000000R+04 0.46136471R+01 0.959993088+00 0

gfun.mov Bun Jun 2% 03:13:50 1997 1
CONDITION # xove COMPONENT LAYER
INCR 0 1] . ; - -“;.

T MEDIAN, MEAN, STD. DEV.
0.7482712+04  0.748271R+04  0.213454B+0)
WUMBER OF PROBABILITY LEVELS
LVL, Z0, u, PROB, = 1 0.800000E+04 2.4048) 0.99231262¢
DESIGN POINT COORD., SENSITIVITY PACTORS, STD. DEV. FROM NEAN VALUES
Z0, PROB. = 0.800000804 0.952312638
EHOD 0.12880645+08 0.999887 -2.423135
ALFA 0.95692442-0%  -D.013038 0.036448

®esssensererseassstsssssitsrsRttae)
CDF RESULTS

3 ) PROBABILITY ITER. NO.
0.80000000R+04  0.243342%2B+01 0.992312638+00 0
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Tue Jul 1 15:39:56 1597 1

T MEDIAM, MEAN, STD. DEV.
0.7716048+04  0.771804B+04  0.213694R+03
NUMBER QOF PROBABILITY LEVELS 1
LVL, 20, u, PROB. = 1 0.8300000E+04 1.32800 0.908043163
DESIGN POINT COORD., SENSITIVITY FACTORS, STD. DEV. FROM MEAN VALURS
Z0, PROS. = 0.8000008+04 0.908043163
INCD 0.1474129%+00 0.995887 ~1.3204651
ALFA 0.95379258-03  -0.015021 0.0199¢61

sessecasesscssssnesisees

COF RESULTS
z u PROBABILITY ITER. MO.
0.80000000K«04  0.13288012E+01  0.90804316%+00 0
gfun.mov Tue Jul 1 15:36:47 19987 1
CONDITION F NODR COMPONENT  LAYER
INCR ° a b] 1

7 MEDIAN, MEAN, STD. DEV.
0.7949388+04  0.794938E«04  0.213924R+03
NUWBER OF PROBABILITY LERVELS 1
LVL, 20, u, PROD. = 1 0.300000B«04 0.2386¢2 0.593531950
DESIGN POINT COORD., SENSITIVITY FACTORS, STD. DEV. FRON MEAN VALURS
20, PROB. = 0.8000008+04 0.59351199%0
oD 0.1659776R+08 0.999888  -0.236614
ALFA 0.9306724%-05 -0.0149%9 08.003540

L T Y TR Y Y T AT T

CDF RESULTS
z v PROBABILITY ITER. NO.
0.800000008+04  0.236640152+00  0.5335311992«00 °
gfun.mov Tue Jul 1 16117:30 1997 1
CONDITION # NODE COMPONENT  LAYER
“ 3 1

Z MEDIAN, WEAN, STD. DEV.
0.799604E+04  0.7338048+04  0.213%64Be03
NUMBER OF PROBABILITY LEVELS 1
LVL, Z0, u, PROB. = 1 0.800000E~D4 0.01843 0.307377367
DESIGN POINT COORD., SENSITIVITY FACTORS, STD. DEV. FRON HEAN VALURS
20, PROB. = 0.8000002+04 0.507277567
meD 0.1696856E+08 0.939387 -0.018492
ALFA 0.9500527E-95  -0.015003 0.000277

asssssssrnasenees

CDP RESULTS

2 v PROBABILITY ITEIR. NO.
0.80000000K+04 0.104937582-01  0.30737757R+00 0
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Appendix G

DATA AND OUTPUT FILES FOR CALCULATION OF UNION

PROBABILITY

(Chapter IV)

temp.dat Tue Jul 1 16:23:17 1997 1
7, 2, 1

1, 17000000.0,1700000.0

2, 0.0000095,0.0000019

1, 6.825696

2, 5.721588

3, 4.619647

4, 2.423429

5, 1.328801

6§, 0.236641

7, 0.018497

1, 6.825696 0.993887 -0.015057
2, 5.721588 0.999886 -0.015088
3, 4.619647 0.999886 -0.015071
4, 2.423429 0.999887 -0.015038
5, 1.328801 0.999887 -0.015021
6, 0.236641 0.999888 -0.014953%
7, 0.018497 0.999887 -0.015003

AREERTTRRE BOWDS (2222 R RN
Lower bound = 0.4926211
Upper bound = 0.4926211
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