
NASA-TN-112502

UsinllADAtasks to simulate operating equipment

Louis A. DeAcetis

Oron Schmidt and Kumar Krishen

Reprinted from COMPUTERS IN PHYSICS, September/October 1990 _ American Institute of Physics

https://ntrs.nasa.gov/search.jsp?R=19980006835 2020-06-16T00:40:02+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42772283?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UsingADAtasks to simulate operating equipment
Louis A. DeAcetis
Physics Department, Bronx Community College/CUNY, Bronx, New York 10453

Oron Schmidt and Kumar Krishen

NASA, Johnson Space Center, Houston, Texas 77058

(Received 15 November 1989; accepted 5 January 1990)

A method of simulating equipment using ADA tasks is discussed. Individual units of
equipment are coded as concurrently running tasks that monitor and respond to input signals.
This technique has been used in a simulation of the space-to-ground Communications and
Tracking subsystem of Space Station Freedom.

INTRODUCTION

Many computer simulations _ 3 written in procedural lan-
guages (e.g., C, FORTRAN, or PASCAL) simulate sys-
tems of equipment by tracking signals through the compo-
nents. Although this may represent a logical solution to the
problem, it usually requires that a piece of equipment know
not only what it is connected to for input, but also the desti-
nation of its output. This is contrary to the way equipment
generally operates. For example, an amplifier may have
inputs of line voltage, signal level (volts), and load imped-
ance, and control settings of gain and ON/OFF switch po-
sition. Its output would include the output signal level, and
perhaps some parameter indicating the quality of the out-
put. When the input values change, the values of the output
parameters change accordingly. The destination of the out-
put signal is of no concern to the amplifier, and it therefore
does not know (or care) what is connected to its output.
(Note that we are treating loading as the input parameter
"load impedance.")

The ADA language is especially suited to simulating a
piece of equipment because of the "task" construct. 4 Each
piece of equipment can be modeled as a concurrent free-
running task that constantly monitors its input values and
adjusts the outputs accordingly. As each unit reacts to
changes in its input values, one can monitor the signal flow
through a collection of components by placing "sensors" at
strategic locations. Issues of signal transition delays, and
other equipment characteristics can be addressed as need-
ed.

I. METHOD

Each unit of equipment is modeled as an ADA task. The
individual equipment characteristics are supplied in sepa-
rate ADA packages (one for each unit of equipment),
which include the appropriate transfer function (s) for the
input signal (s). All of the values that are external to a piece
of equipment are stored in a global database (or "black-
board" data structure 5), and the individual components
link their internal values to these blackboard values. Each

component task then monitors those blackboard values
that serve as input to the equipment it is simulating, and
while the equipment is ON and running, appropriate out-

put values for that equipment are generated and written
out to the "blackboard" where they can then be monitored
for input by those tasks using them. For example, if all of
the equipment is plugged into the same power source, then
each monitors the blackboard value of the line voltage. If
the line voltage vanishes ("blackout") or is low ("brown-
out"), then this can be incorporated into the determination
of the appropriate output signal (s).

In order to prevent a task from "running" when the
equipment is in the OFF state, an algorithm is used that
requires that the equipment be turned ON in order for it to
process input information. Table I contains the structure of
this ON/OFF algorithm, which is coded in a generic ADA
package so that it can be implemented ("instantiated" in
ADA terminology) for each piece of equipment. One of the
features of the algorithm is that it will accept and ignore
any ON/OFF requests that are redundant, rather than
queue them as might normally be the case with ADA task
rendezvous (i.e., if an ON command is sent to a task that is

already ON, then the command is discarded). Another fea-
ture is that the task of a piece of equipment in the OFF state
does no processing, but merely waits for a rendezvous to
turn it ON. This minimizes the use of CPU resources.

II. ILLUSTRATIVE EXAMPLE

Consider the equipment depicted in Fig. 1, which consists
of a saw-tooth function generator attached to a pulse gener-
ator/amplifier. The circled numbers refer to sensor or test
points whose values are to be monitored. The waveform
produced by the function generator is used by the pulse
generator to determine the pulse width as follows: While
the value of the input to the pulse generator is at or beyond
a certain threshold value (taken as 0.5 V), the value of the

pulse generator output is + 10.0 V; when the value of the
input is below threshold, then the pulse generator output is
0.0 V. We thus have a waveform transformer that converts

a saw-tooth signal into a rectangular pulse. The frequency
of both active signals is the same, and the pulse width can
be varied by changing the amplitude of the saw-tooth sig-
nal. In addition, effects of a "brownout" (line voltage less
than a nominal value of 120 V) have been incorporated in

COMPUTERS IN PHYSICS, SEPIOCT 1990 521

TABLE I. ADA package with task code for algorithm used to simulate an

equipment unit.

--Pickage C_lne, tc zqulpl_nt

-- Packaqe conta_ninq talk to implement specific tnatances of 4Klutpment

-- [,elt .pdate: 11-I2-8g LAD

--This packaue hal Ada pzocedurea as formal pa_anmtsra and therefore

--lUSt he InatantIated with pfocldures which Iwplmmlent the trsnsfer
--functlone of the actual mquipment used_

°_In Fa_tlcular_

°° Procedure 5mt OFr VaIues _ FaramatQr v_Iu_s f_ _u_ 0FF_
p_cldu_e Set_¥I_L ON _l_e_ • Val_es fo_ _Ip_e_t _st t_ed ON_

-- _ocedu,m _et_Runni_a_ma _ • _al_s f_r eu_I_ent ON • ru_nI_

_m_m_ic

_Ith _rocedure _t UF_ _alues_

w|th pr_ldu_s $e_ _N_T_L O_ _ai_ai

wi_h p_ced_ $_u_In_ai

p_ka_e GNN_I__E_OIPNENT _a

tssk $_ITC___ONTROL _

• _tzy CLOB__$_ITC_
entry OPE_ $_IT_

en_ _TC___N_ROL_

p_c_d_e _T_O¥i

end GENE_C_U_P_ENT_

package h_y GENEB_C_O_NT IS
oo

TC _ UPE_ _ h_lea_ _ t_uei -- $_it_h _t_ta _pen (e_p_ Is OFF_
_ _ask _s_ _he_sfo_e be _t_ned on _

-- h_f_e _ w_II _n_.

•a+k _d_ $_ITC_CUNTROL is
gI

$_T_NOP_N__
_O_p

_T_B_CLO_E_ON_
loo_

--_ Switch Control _oop _--

$_ITC_CONT_O_
lo_p

_f $_CB _$ OPE_ _S_lect _hen $_C_ 15 OPEN_
then - _ -_ _It for _e_de_o_s _o close It

select

sc_ept O_N$_C_i --Acc_t a_d Ignore U_N rs_ue_ta
o_

accmpt C_ $_I?C_ °°_h_e $_itch I_ a_all_ _losad
$_I_CN_P_ _ fala_

$et_lN_A_O___alu_si oo

e_it $_TC_CO_TR_L_
end aeie_i

e_m
_mlm_t

• _mpt _O_$_¢C_ _A_c_p_ a_d Iu_or_ C_O$E _e_m_t_

e_ $_C___O_i

ac_ep_ OP_ $_lTC_i -_Wn_ $_ch Is actually Ope_md

$_C_ _$ O_N _- _ru_

e_lt $_C_O$N_O_i
_l_e

e_lt $_O_T_i
• _d ae_m_t_

• _d If;

e_d l_p $_I?CN_CON_mO_
o En_ _It_h C_t_l Lo_p _o-

-o$h_uld _nly _e_ h_ if _i_ch i2 ¢l_amd_UN_

dslsy o_ -_d_lsy_es_hmd_le_

• _ l_p $_1_¢N C_O$N_ ONI
.-

--Should _nly _t hmre If Switch waa _et op_md_

$_t OY_ _aI_ai _-

delay $.$$1_ --delay_ea_he_ule_

e_ l_op $_'PC__UPEN_U_F_

_nd _C_ONT_O_

p_s_s _E$_RO_ l_ --Co_ma_ t_ a_o_t tsak _fo_ o_l_ shutdown_

k_l_In

• _t B_O_T_OL_
_d _$_kOY_

end GENERIC_EQUIPMENT;

that the output levels of each device will decrease until a
"minimum operating voltage" for the equipment is
reached: Output from the _ generator vanishes
when the line voltage drops below 90 V, and for line vol-

Function

Main Power Line

FIG. I+Illustrative Example equipment setup consisting of a (saw-tooth)

function generator whose output drives a pulse generator. Circled values

indicate sensors or test points.

FUNCTION GENERATOR/

o_O_L I I " I /_ _,N
I . I

t ////

/
f PULSEGENERATOR ,_'

[TASK

FIG. 2. Flow diagram of data and command information flowing between
the blackboard global database, the ADA equipment simulator tasks, and

the main procedure of the Illustrative Example. Straight line (3/

M) = data; dashed Pine (....) - commands.

tages below 80 V, the.output from the ptr_ generator also
ceases. Figure 2 is a dataflow diagram for this equipment
setup.

Table II contains ADA code that implements the
above for each piece of equipment and includes the struc-
ture of the global database. Table III is a main ADA proce-

TABLE II. ADA code for Illustrative Example equipment, including the

Global Database definition and the packages for the function and pulse

generators.

--package GLOBAL VARIABLES il a global datsblae _hece ihaced Jnfo is

-- stored and wSere connections between signals see made.
--Last update: 11-$2-89 LAO

p_a_ G_O_A_ UA_A_E$ _

--Powe_ $_u_ce _uantlt_es_

$T__LI_E_OLTAG_ _ co_atan_ float _• i_$._
PI_ LINE _O_TAOE _a_t fi_a_ _ _$_o_

L_N___OL_AGE _ float _ $T_LINE_OLTAGE;

_-_un_Io_ Ge_e_ato_ _i_l_ a_ L_ls

FONC_ION _ENE_A_O_ A_P_T0_E _ float 1o$i

'UNCT'OCG+""ATOCOOrPOT: fleEt :: ,.,;

--Pulis Gene_ator Signals and Level+

PU_SE_CEMZNATOm__P_ITUmZ: +lost :. IV.m;
PULSE rmZeGm. _m+mL : float :- i.+;

PULSZ_GZmmmATSR_OUTPUr : float := +,¢;

--Connect PUIII Gmne=ato+ t+tqge+ Input line to Funct, Gen. Output

PUCSm_rmiGGSm_CINE : float tension FUNCTtON_GENEmArOR_OUTPUT;

end GCONAL_VanIABLES;

-- tunctlon Genezator simulator -- cast update: 11-13-$9 _A+

__1 PiCkleS with Procedumea foe the simulation of a +unction Gmne+ltO+ *

--" which will gene/lte a Saw-tooth _avs_o+a of variable sIplltode

--* (nomlnil vllue il l.I v). output ii degraded if _IM$ VOLT_Gg IN *

--" i+ lesi than 121 v I'b_ownout"l. and ceases uhen LINZ--VOLTAGm--IN
_m_cetI+---. 12 < 81 v I=blackout"). Louis A, *

__ll*lll

.Ith Gmmzmlc_zouzPmZ,+;

._th GLOBAL VAmlAm_ms; -- Global Database where Iiqnai values i¢e sto_ed

- and +iqnaI connections arm lids

package PUNCrION_GENZmATOR i+

procedure OFF values;

procedure INItiAL_ON_Values;

p_oceduze OUTPUTValue;

package _QUIPMENT Ii ne_ GENERIC__0UIBN_NT(

OFF_Values. INITIAL_Ol/_Valuei, OUTPUT_VaIue};

type PROBE NANSS Is (ON off $w, OUTPUT $IGNA_)i

type PROBE--ARRAY TYPE 1; sr_ay(PRos£ NXME$) Of float;

PROBE : _ROBE__RR&¥_TYPE :- luther; -> $.II; --Initialize sEniors to $

COUNTER : float :- _.I; --Cycle count

end FUNCTION GENERATORi

..

with calenda[i

packsge body FUNCTION_GENERATOR Is

--Explicitly associate local vaziabteI with values In Global Database:

LINE VOLT&GB IN : float rena_i GLOBAL VARZaBLZS,LIN_ VOL_CE;

$TDLIN__VOL¥&GE: _loat renames GLOBAL_V&RI_BL[S.STD_EIN__VOLT&GE;

512 _ I I_IIII, IBIIlll II

TABLE II. (Continued.)

AMPLITUDE : float rmnamMle GLOBAL_VARIABLES.FUNCTION_GENERATOR_AMPLITUDE;

OUTPUT : float tenses aLOBAL_VARIAELES.rUNCTION_GENmRATOR_OUTPUT;

INC_EMENT _ calendaroday_duration_
dAW TOOTH VALUE _ fleat;

BAS_ TIME-- _ calendar.day duration :_ calendar.second_(calendar_ciockll

procedure OEE Values is
bmgin -- --Set outputl to values for equipment in OPP state:

PROBE{ON OPt SWI := d.g;
OUTPUT :o g.g;

P_OBE(OOTPOTSIGNAL) :--- OUTPUT;
end;

procedure INITIAL ON Values is

b, tgin -TSe_ values for when equipment juet Eurned ON:
PROBE_O" OEE sw_ :- 1.,,
OUTPUT -- -- :- R.g;

PROBE(OUTPUT SIGNAL(:= OUTPUT;
saw TOOTHVA_UE :" S.R;
BASE_TIRE-- :. calendar.seconds(calendar.clock);

end;

procedure OBTPUTVALUE is --Set output values for equipment ON sad running

function WAVE_VALUE {AMPLITUDE : float) return float ie

function SAN TOOTH return float Is
begin

INCREMENT :- calendar.seconds{calendar.clock) - BASE_TIME;

SAW TOOTH VALUE :- _loat{INCREMENT}/S.S;

if _AN TOOTH VALUE > I,S then

SAW TOOTB VALUE :- g.S;
BASE TIRE :. calendar.seconds(calendar.clock);

end if;

return SAW TOOTH VALUE;

end SAW_TOOT_; --

begin

return AMPLITUDE*SAN_TOOTH;

end WAVEVALUE;

begin

COUNTER := COUNTER +I°S; --COUnt cycles for monitoring purposes

if LINE VOLTAGE IN < SR.S then --'Blackout" condition

OUTPUT :m ¢.¢_

eiee
OUTPUT := LINE VOLTAGE IN/STD LINE VOLTAGE" --"Brownout factor"

WAVE_VALUEIA_PLITUD_); --
end if;

PROSE(OUTPUT SIGNal(:" OUTPUT;

end OUTPUT VALUE;

end fUNCTION_GENERATOR;

-- Pulse Generator Simulator -- Last Update: I1-RY-B9 LAD

..**,,,,,,,,,,,o,,,,,*****,,,,,******,*,*******,,,,,o********,,************

--* Package with Procedures _or the simulation of a Pulse Generator which *

--" generates a pulse o_ heiqht PULSE GENERATOR AMPLITUDE when the value
--* of the TRIGGER INPUT is greater t_an the va_ue ol the TRIGGERLEVEL

--* (output is zer_ otherwise). Output is degraded if LINE VOLTAGE IN is °

--. less than 12@ v ("brownout"), and ceases when LIHE_VOLT&GE_IN is

--* < 9S v ('blackout'/. Louis A. DeAcetis "
._,***,o,,o**,***,**,,*,**,*********,*,***,,*,,*,oo*,****,''°******''****'"

with GENERIC_EOUIPHENT;

with GLOBAL VARIABLES; -- Global Database where signal values are stored

- and signsl connections are made

package PULSE_GENERATOR)s

procedure OEEValues;

procedure INITIAL_ON_Values;

procedure OUTPUT_Value;

package EQUIPMENT is new GENERIC_EQUIPMENT(

OFP_Values,INITIAL_ONVaIues,OUTPUT_Value);

type PROSE NAMES is (ON_OFF_SW, OUTPUT_SIGNAL);
type PROBE--ARRAY TYPE is array(PROBE NAMES) o_ float;

PROBE : _ROBE__RRAY_TYPE :- [other_ => a.¢_; --Initialize sensors to 0

COUNTER : float := J.@; --Cycle count

end PULSE_GENERATOR;

..

package body PULSE_GENERATOR is

--Explicitly associate local variables with values in Global Database
LINE VOLTAGE IN : float rena_8 GLOBAL VARIABLES.LINE VOLTAGE;

STD_INEVOLTAGE: Iloat renames GLOBAL_VARIABLES.STD_LINEVOLTAGE;

AMPLITUDE : IIoat renames GLOBALVARIABLES.PULSE_GENERATOR_AMPLITUDE;

TRIGGER INPUT : float renames GLOBAL VARIABLES.PULSE TRIGGER LINE;

TRIGGER_LEVEL : float renames GLOBAL:VARIABLES.PULSE_TRIGGER:LEVEL;

OUTPUT : [lost renames GLOBAL_VARIABLES.PULSE_GENERATOR_OUTPUT;

..

procedure OFF Values is

begin - --Set outputs to values for equipment in OPP state:

OUTPUT :- g.¢;

PROBE[OUTPUT SIGNALI :- OUTPUT;

PROBE(ON OFF--SW) :- _.i;

end OFF Values;

procedure INITIAL ON Values _s

-:Se_ outputs for values when equipment just tur_ed ON:begin

PROBE(ON OFF sw) :- 1.s;

OUTPUT := S.Q;

PNOBE(OUTPUT_SlGNAL) :- OUTPUT;
end;

procldutl OUTEUT_VRLUE il --Set output vlIuel lot equipment ON and running

begin
PROBE(ON OFt SU) t* l. Si -- Switch sensor On

COUNTEn -- -- :- COONTE_ + I.¢;

_f LINE VOLTAGE IN < 9g.R or -- "Blackout" condition check

-- T_GGZR_/NPUT < TRIGGER_LEVEL

then

OUTPUT :" R.R;

else
OUTPUT :- LINE_VOLTAGE_IN/STDLINEVOLTAGE * --"BrOWnout factor"

AMPLITODE_

mad if;

PROBE(OUTPUT_SIGNAL) :" OUTPUT;

end OUTPUT_VALUE;

mnd PULSKGENERATOR;

TABLE IlI. ADA code for the procedure SIMULATE which displays

the sensor and signal values for the Illustrative Example equipment.

-- Main program to exercise equip_nt: Function generator
-- Pulse generator

-- and display sensor reading_.

Last U_ate: II-S2-89 Louis A, OeAcetis

..

with GLOBAL_VARIABLES;

with FUNCTION_GENERATOR;

with PULSE_GENERATOR;

with text io;

use text_io;

--DOS interface packages for Alsys or Meridian compilers:

--with ttyl with video; --Meridian compiler

--with DOS; --Alsys compiler

procedure SIMULATE is

package INT iO is new Integer lo{integer);

use INT_IO;

package _LOT IO is new float iotflost);

use PLOT_IO;

VALUE : float :" R.R;
PARAM character := aecii.nul;

subtype ABSISSA is integer range 5..36;

subtype ORDINATE is integer range 9..23;

Xl, X2 : ABSISSA;
LAST LINE : ORDINATE := ORDINATE'last;

THAR_ER : ABSISSA;

BLANK LINE : string(ABSlSSA'flrst..{ASSISS&'last+4)} :- {others ->' ');

WINOO__ARRAY : array(OROINATE) of etring(ABSlSSA'firet..(ABSZSSA'last+4))
:- (others -> BLANK_LINE};

type PRonE NAME is {MAIN POWER LINE VOLTAGE,

- E GE_ ON O_E SW7
_--GE.--OUTPUT?
P GEM ON OEE SW,
P--GEN--OU_PUT_;

type PROBE ARRAY_TYPE is array(PROBE_NAME) of float;

PROBE : PROBE ARRAY TYPE := (others -> S.S}; --Initialize sensors to R

PREVIOUS PROBE--: PROBE ARRAY TYPE :- {others -> S._};

COUNTE@:--PROBE_ARRAYT_PE :---(I.S, others -> S.R);

--create link between local values and Global Values:

LINE VOLTAGE : float renames GLOBAL VARIABLES.LINE VOLTAGE;

MAX LINE VOLTAGE : float renames GLOBAL--VARIABLES.MAX _INE VOLTAGE;

FUNCTION--GENERATOR AMPLITUDE : float re_a_s -- --

m -- GLOBAL VARIABLES.FUNCTION GENERATOR AMPLITUDE;

PULSE GENERATOR AMPLITUDE : fi_at renames -- --
-- -- GLOBAL VARIABLES.PULSE GENERATOR AMPLITUDE;

PULSE TaIGGER LEVEL : float renames G_OBAL VA_IAB_ES.PULSE__RIGGER_LEVEL;
....... T T =

procedure SET CURSOR (X: in integer; --NOTE: Uses ANSI escape

-- ¥: in integer) is m-- sequences. Requires

SCREEN WIDTH : integer :- 8S; -- DRIVER - ANSI.EYE
xx,Y_ _ integer; m-- in MS-DOS CONFIG.SYS file

begin

if x < I then xx :- 1;

elsif X > SCREEN WIDTH then xx :- SCREEN_WIDTH;

else xx :- x; -

end l[;

if Y < 1 then YY :- 1;

elsif Y > 24 then YY :" 24;

else YY :- ¥;

end if;

text io.put(aecii.esc & "[" & integer'image(YY+ISSl(I..41 &

-;- & intever'imagelxx+lSRS){3.°B] k MH");

end SET CURSOR;

procedure CLEAR_SCREEN is
begin

text_io.put(ascii.esc & "[2J');

end CLEAR SCSEEN;

procedure DISPLAY_SENSORS is
beqin

--Display screen labels:

if COUlTER(MAIN POWER_LIBEVOLTAGE) - 1.R then

SET CURSOR(2,_);

t;xt lo.put("Probe Rlading Cycle Count');

_or [_n PROBE NAMEIFIBST..PROBE_NAME'LAST loop

SET CURSOR(2,PROBENAME'poI(I)÷2);

teItio.put(PROBBNAME'IMAGE(1));

end Loop;

end if;

for I in PROBB_NARE'FIRST..PROBE__AME'LAST loop

if COUNTBR(I) /- g._ then

SBT CURSOB(4g,PROBE_NAME_pOg(i(÷21; put(integer(COUNTER{l)),51;

end i_;

if not (PROBE(1) " PREVIOUS PROBE(I)(then

SET CURSOR(27,PROBE_NAME'p_s(i)+2};

put'PROBE(1), 3, 2, R);

PREVIOUS PROBE(1) =- PROBE(1);
end if;

end loop;

new llne; -- Force output to arisen with new_line

end DYSPLAYSENSORS;

procedure PLOT_SIGNALS il

begtn
--Scroll "winduP" co_tentl_

--Include followin_ |f Neridian Compiler:

--vtdeo.lcroll_up(1, ORDIN&Tg'fitlt-l, ABSiSSA'fltlt-_,

-- ORDIWATE'telt, AB$1SSA'IaSt_2};

--V Include followinq if not Meridian Compiler

for iY In OROIRATE'fir_t+I..L&STLIBE loop
SET CUESOB(ABSI$SA'fttst,I¥-t);

tex_ iOopUt(WINOOW_ARRAY(IY));

WINDOW AREA¥(IY-1) :- WINDOW_ARRAY{I¥);

end loop;

-mBlank out last line:

W1NDOW_ARRAY{LAST_LZ_E) :" BLANC_LINE;

WINDOW ARRAY{LAST LINE)(

{ABS_SSA'Iast-A_SISSA'first)/2+ABSISSA'firSt÷I(:" 'I';

X1 :" Integer[PROBE_F GEM OUTPUT)*float{ABSISSA'Iast-ABSISSA'first}/

2.R/FUNCTION GENERATOR AMPLITUDE) + ABSISSA'first;

624 COMPUTEH IN PHYSICS, SlEPIOCT 1990

TABLE III. (Continued.) TABLE III. (Continued.)

x2 :- lntege¢(PROBE(p GENOUTPOT)*float(ABSISSAtLaat-ABS[SSA'firIt)/

2.4/PULSE_GENE_XTOR_AMPLITUDZ)*(&BSISSA'lxxt÷_BSISSA'first)/2-1;

WINDOW_kRRAY(L_ST_LINE)(II) :- '÷';

WIUDCW_ARRA_(LAST_LIUE) (X2÷3) :- ''';

SET CURSOR(ABSISS_'first, L_ST LINE);

te=__io.put(WlNOOW_A_RA_(LAST__INE));

.ew_liM; -- Force output with new_line

end PLOT SIGWALS;

begin

--SEE up Sczeen for displays:

CLEAR_SCREEn;

--Draw "bum# around data plotting "window"

SET CURSORIABSISSA'firsE-I,ORDINATE'Eirst-2);

text io.put('/'}i

for--I in ABSISSA'first+I..ABSISSA'Iast÷5 loop

text io.put('-');

end loop;

text_to.put('\');

--Mark trigger level over Function Generator output plot:

TMARKER :- integerlPULSE TRIGGER LEVEL"
floatlABSlS_A'lsst-_BSlSSA'ftrat)/2.S/

FUNCTION GSNSR&TORAMPLITUDE+ g.5) + ABSlSSA'first;

SET CURSOR(TMARKER,ORDINATE'Elrst-2); text_lo.pot('V');

for 1 in ORDINATE'Elrst-I..OEDINATE'laat loop

SET CURSDe(aeSISSA'first-t,I); text to.put(' ');
SET--CURSOR(ABSISSA'tast.5,I); text_io.put('l');

end l_op;

SET CURSOR(ABSISSA'firot + 1, ORD[NATE'fI_It-I);

t;xt_io.put("Punctlon Gen:');

SET_CURSOR((&BSISSA'laSt-ABSISSA'first)/2 ÷ &BSISS&'fizst+l,

ORDINkTZ'firmt-l);

text_to.put('l');
SET CURSOR((ABSISSA'Isst+ABSISSA'firlt)/2+4,0RDINATE'first-1);

t_ztio.put('Pul_:');

SaT CURSOR(4], 7); text_io.put('<><><><><><><><><><><><><><><><><><>');

Sg_r--CUREOR(43, 8); test_io.put("To chan_e e<luipaent parameters use:');

SET--CURSOR(4S, 9); text to.put{"F: Function Genezatoz');
SET--CURSOR(45,10}; text lo.put{"P: Pulse Generator');

SET--CURSOR(45,11); text_lo.putl"L: Line Voltsse'};

SET--CURSOR(45,1R); text to.pUll'A: Output _pl. of Function Gen.");

SET--CURSOR(SS,14); text--io.put{'V_LD_: off - g.u; on - l.e'l;

SZT--CORSOR(SR,ISl; text--io.put("Voltage, _plitude: float"It

SET_CURSOS(45,_7(; text_io.put("Ente_ F,P,L,A(spsce]VALUE: ");

--TU_. on equipment

FUNCTION GENERATOR.EOUIPMENT.SWtTCH CONTROL.CLOSE SNZTCH;

PULSE_GENERATOR.EOUIPaENT.SWITCH_COtITROL.CLOSE_SWITCH;

delay e.eel;

DISPL&I_SEMEORS;

OUTER_LOOP: loop

begin --Exception block

loop

loop -- Is there input from the keyboard?

--exit when OOS.KBD_OATA_AVAILABLE; --Atsys Compiler

--exit when try.CHAR READY; --Meridian compiler

.... k/Include if no interface to DOS is used:

--k/ (pauses every 2# cycles for i_put):

exit when integer{COUNTER{MAINPOWER_LINE_VOLTAGEII/2R*2S -

integer{COUNTER(MAIN_POWERLINE_VOLT&GE)) • S;

COUNTER{F GEM ON OFF SW) FUNCTION GENERATOR.COU_TER;

COUNTERIP_GEN_ONOFFSW) _: PULSE GENERATOR.COUNTER;

--Fetch probe values from equipment and store locally for display

PROBE(MAIN POWER LINE VOLTAGE) :" LINE VOLTAGE;

PSOBS(E_GEN_ON_O_FSW_ :" FUNCTION GENESATOR.PROBE

(PUNC_IONGENER&TOE.ON_OFF_SW);

:- FUNCTION GENERATOR.PROBEPROBE(F_GENOUTPUT)

IFUNC_IONGENERATOR.OUTP_TSIGNAL};

PROBE(PGEN_ON_OFF_$W) :ffi PULSE GENERATOR. PROBE

(P_LSEGENERATOR.ON_OFE_$W);

:- PULSE GENERATOR. PROBEPROBE[P_GEN_OUTPUT]

(PULSE_GENERATOR.OUTPUT_SIGNALS;

if (LINE_VOLTAGE > MAX_LINE_VOLTAGE) and

(PROBE(Z_GEN_ON_OF__SW) + PROBE(P_GEN_ON_DFF_SW) /- E.R)
then

CLEAR SCREEN; new ii_e(LR);

telt__o.put("****¢Overvoltage on Line Voltage--"); n_laline;

text io.put("*****"l; new line;

text_to.put("***** Fuses blown-- Output ceases"); new_line;
text io.put("***** Replace blown fuses and start again.");

new line(S);

FUN_TION_GENERATOR.E_UIPMENT.DESTROY; --Abort Funct. Gen. task

PULSE GENERATOR,EQUIPMENT,DESTROY; --abort Pulse Gen. task

exit OUT'SLOOP;
end if;

COUNTER(MAIN_POWERLINE_VOLTACE) :ffi

COUNTER(MAIN_POWEE_LINE_VOLTAGE)+I,_;

DISPLAY_SENSORS;

PLOT_SIGNALS;

delay _.25;

end loop;

SET CURSOR[72,17); text io.putI" "};

SET_CURSOR(72,17_;

get(PARAM); get(VALUEI;

--Increment local cycle count:

COUNTER(MAIN_POWERLINEVOLTAGEI :-

COUNTER(MAIM_POWER_LINE_VOLTAGEI+I.R;

--Clear out er¢or message if present f/om prevlous _nput:

SET CURSOR(45,RI); text_io.put(" "};

SET_CU_SO_(47,22); text io.put(....);

SET_CURSORIES,2S); text_io.put(" ");

--Check input from keyboard for valid command:

case PARAM is

when 'f'l'F' - >
if VALUE - g.g then

FUNCTION_GENERATOR.EQUIPMENT.SWITCH_CONTROL.OPEN_SWITCH;
else

FUNCTION GENERATOR.EQUIPMENT,SWITCH CONTROL.CLOSE SWITCH;

end if; -- -- --

when 'p'I'P' ->
if VALUE - R R then

PULSE GENER&TOR.EGUIPMENT.SWITCS CONTROL.OPEN SWITCH;

else -- -- --

PULSS_GENERATOR.EOUIPMENT.SWITCHCONTROL.CLOSE_SNITCH;

end if;

when 'l' 'L' o>

L[NE_V_LTAGE :- VALUE;

vhen '='|'A' ->
FUNCTION GENERATOR ;U_PLITUDE := VALUE;
if PULSE--T_I_EE L_VEL > V_LUE then

VALUE T- FUNCTION GENERXTOR AMPLITUOE;

elsif VALUE < S.e _hen --

VALUE :o e._i

else VALUE :- PULSE_TRIGGER_LEVEL;
end if;

T_AR_ER := lnteger(VaLUE*float(_BStSSA'lsst-ABStSSA'first)/

2.S/FUNCTI__GENERA_R__PLITUDE*S.5) ÷ kEStSSA'first;

SET_CURSOR(ABS[SSA'firgt,ORDIN_TE'first-2);

foe ! in ABSlSSA'ftr=t+l.._BSlSSA'last*S loop

text_lo.put('-');
end loop;

SET_CURSOR(TNAREER,ORDIN_TE'first-2); text_io.put('V');

when others ->

raise data_error;

end case;

delay S.gel;

end loop;

exception

vhen data_error ->
SET_CURSOR(45,2i); text_io.put('Zrroneous input ignored--");
SET CURSOR(47,22) test io.put(=Proper form e=_ples: L 11e. R');

SET--CUESOR(Sg,Z])I te_t_io.put(=A e.8");

tex__io.put{ascti.bel);
end; --Exception block

end LOOP OUTER_L_P;

end SIMULATE;

dure, called SIMULATE, which interfaces with the simu-
lator and produces output similar to that in Fig. 3.
Although this is a simple application, it does illustrate the
method and suggests how greater sophistication is possible.

Ill IMPLEMENTATION

Figure 4 is a block diagram of the starboard portion of the
proposed Space-to-Ground subsystem of the Communica-
tions and Tracking System on Space Station Freedom. As
above, the circled numbers represent sensors whose values
can be monitored. The oval enclosed numbers represent
sensors whose values indicate the ON/OFF state of the

equipment. This system has been simulated using the above
paradigm: Each rectangular box is represented by a task

that, when "ON," monitors the values of its input signals
and sets the values of the output values and sensors accord-
ingly. The simulator may be controlled by other programs
or using a keyboard interface program that permits the
asynchronous entry of commands to turn equipment ON/
OFF and set cross-strapping switches. There are upward of

Probe Reading

BIN POWER Ll_£ VOLTAGE l_o.o0
r CE_0uTw_r - o.go
P GEM OUTPUT 1o.00

F_GEN'_ON_OFF_SW 1.00

P_GEN_ON_OFF_SW 1.00

'........ v \

Function Gen: i Pulse:

o

Cycle Count

71

277

274

F: Function G*nlrator

P: Pulse Glnsrstor

L: Line Voltage
A: Amplitude of Function Gen.

VALUE: Off - 0.0; On - t.o

Voltage, _mplitude: float

Enter F,P,L,A space VALUE:

FIG, 3, Sample output of procedure SIMULATE which displays probe

readings and signal levels for the Illustrative Example. The outputs of the

function and pulse generators are displayed graphically and scroll upward

to show the changes with time. The "cycle count" indicates the number of
cycles completed by each running task and procedure SIMULATE.

COMPUTBllIN INIYDCI, IIEPIOC'IrIMO §l$

TDRSS
Pedeltal

Eleclron ,LCS
A

i
ilF Switches AJB

Ku-Band

TDRSS
Transceiver

/MODEM

@

HDR
Recorder

"_J Video BSP

FIG. 4. Block diagram of the starboard space-to-ground subsystem of the

Communications and Tracking System of Space Station Freedom. The
numbers are sensor identifiers. BSP: baseband signal processor; HDR:
high data rate recorder; TDRSS: Tracking and Data Relay Satellite Sys-
tem.

34 tasks for the total system (which includes the port sys-
tem and contingency communications equipment not
shown here). At present, the simulator transforms signal
levels and sets sensor readings to typical values. Once the
detailed electronic characteristics for this equipment (un-
der development) are established, they can be incorporated
into the corresponding tasks.

The simulator has been compiled under a variety of
ADA compilers (including Alsys, DEC, Meridian, and
Verdix), and runs under MS-DOS on PC's (80286 and
80386 CPU's), and DEC VMS and Ultrix operating sys-
tems. Although it is unlikely that all of the communica-
tions equipment on the Space Station would be ON simul-
taneously, the current simulator has been run in that state

with no major problems. (As more tasks are switched
"ON," they do slow execution somewhat, especially on an
IBM PC-AT.)

Additional refinements of the model presented here
are possible, most especially in the area of information hid-
ing. One of the major problems with a blackboard ap-
proach is that signal information is not only visible to all of
the equipment tasks, but accessible (i.e., modifiable) as
well. It is thus possible for the Function Generator to get
access to the output value of the Pulse Generator even
though it has no electrical connection to that output. How-
ever, from the code in Table II, it can be seen that one
would deliberately have to associate a local variable with
an improper global variable in order to accomplish such a
connection. There are ADA constructs that can be used to

prevent any unwarranted access to normally inaccessible
signal levels, 6but the level of abstraction and programming
complexity required would obscure what is basically a sim-
ple concept and implementation, and these were deemed

beyond the scope and intent of the present article.

IV. CONCLUSIONS

One of the unique aspects of the ADA programming lan-
guage is the ability to do logically "parallel" processing
using the task construct. This is especially useful in simu-
lating concurrently running equipment. Satisfactory re-
suits are readily obtainable for situations where transient
states can be ignored (e.g., where we are not concerned
with the output of the pulse generator during the transi-
tions between its minimum and maximum voltage states).
When the latter are important, timing considerations can
greatly increase the complexity of the problem. Real-time
simulations, which require timing and interrupt consider-
ations, constitute a further challenge in ADA, 7-n° which is
not considered here.

ACKNOWLEDGMENT

This work was done while the first author held a National

Research Council-NASA Senior Research Associateship.

REFERENCES

I. G. Gordon, System Simulation (Prentice-Hall, Englewood Cliffs, NJ, 1978),

2nd ed.

2. B. W. Marsden, Software-Prac. Exper. 14, 659 (1984).

3_ A. Hac, Software-Prac. Exper. 14, 696 (1984).

4. G. Booch, SofiwareEngineering WithAda (Benjamin/Cummings, MenloPark,

CA, 1987), 2rid ed., Chap. 16.

5. W. K. Erickson, Proc. AIAA/ACM/NASA/IEEE Computers Aerospace V

Conference, Long Beach, CA (October 1985), p. 33.

6. G. Booch, IEEE Trans. Software Eng. SE-12, 211 (1986).

7. J. D. Laird, R. L Victa, M. R. Koppes, and B. A. Burton, Pro(:. AIAA/ACM/

NASA/IEEE Computers Aerospace V Conference, Long Beach, CA (October

1985), p. 285.

8. M. Narotam, C. Layton, and J. Slish, EDN (20 August 1087), p. 133.

9. H. Falk, Comput. Des: 27, 55 (April 1988).

10. G. Chitwood, Def. Comput. 1, 32 (July-August 1988).

COMPUTIEBM PHYMCS, SIP/OCT 1990 525

Modeling superconductingnetworks containingJosephson
junctions by means of PC-based circuit simulation
software
James A. Blackburn

Department of Physics and Computing, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5,
Canada

H. J. T. Smith

Department of Physics, University of Waterloo, Waterloo, Ontario N2L 3C5, Canada

(Received 30January 1990;accepted 18May 1990)

Software packages are now available with which complex analog electronic circuits can be
simulated on desktop computers. Using Micro Cap II| it is demonstrated that the modeling
capabilities of such software can be extended to include superconducting networks by means
of an appropriate equivalent circuit for a Josephson junction.

INTRODUCTION

Superconducting circuits, containing Josephson devices,
inductances, capacitors, and resistors, have many impor-
tant practical applications. L2 These include SQUID mag-
netometers, high-speed superconducting computer ele-
ments, and voltage standards. The usual procedure for
predicting the behavior of such circuits has been to solve
the corresponding sets of nonlinear differential equations
numerically. However, as we shall demonstrate, supercon-
ducting electronics can be included within the modeling
capabilities of presently available circuit simulation soft-
ware, and this provides a powerful and flexible alternative
method of analysis.

With the advent of computer-aided engineering
(CAE) software, analog circuits can be simulated on a
computer before a hardware prototype is constructed. A
well-known mainframe oriented software package is
SPICE, 3which was developed at UC Berkeley in the 1970s.

The appearance of high-performance personal computers
based on the 80386, and most recently 80486, chips has

made CAE simulation of relatively large circuits feasible
on desktop machines. Micro Cap III 4 (which was selected
for the present work) is a leading simulation package for
use on PC's. It has an extensive library of standard devices.

Each specific component, such as a 2N2222 transistor or
an LM741 op-amp, is modeled so as to replicate accurately
that device's static and dynamic characteristics. As will be
shown, this library can be extended by creating an equiva-
lent circuit for a Josephson junction.

I. JOSEPHSONJUNCTIONSIMULATION

The circuit for simulating a current-biased noncapacitive
Josephson device is shown in Fig. 1. The principal elements
are an operational amplifier (op-amp) and a voltage-con-
trolled oscillator (VCO). MicroCap III does not provide a
VCO in its component library, and so a separate macro,
described below, was designed for this purpose.

The VCO shown schematically in Fig. 2 contains
three separate submacros:

(1) SPDT--a voltage-controlled switch set to act as a
zero crossing detector; this is formed by combining two
voltage-controlled single-pole/single-throw switches pro-
vided within MicroCap III.

(2) X a simple voltage multiplier created from a vol-
tage-controlled voltage source in MicroCap III.

(3) SINECONV--a four-diode triangle-to-sine wave
converter s as shown in Fig. 3. This type of sine converter

possesses the important attribute of not introducing any
phase shift in the waveform.

The input voltage to the VCO is applied to PIN 1, and
then is passed to the control terminal of the first SPDT
(which enables the VCO to handle both positive and nega-
tive input voltages) and to the multiplier. The action of the
circuit may be followed by assuming for the moment that
V_,, > 0. Suppose the present state of the circuit is as indicat-

ed in the schematic. One input to the multiplier is 8 V, the
other is Vm. The multiplier output is thus + 8 × _,, and so

R0

RB

VB __N
VO

FIG. I.Circuit for simulating a current-biased resistively shunted Joseph-
sonjunction. The polarity shown for V_,isrequired for positive equivalent
bias current. Note that in this and subsequent figures, Micro Cap III rep-
resents V_,as VB, R_ as RB, etc.

lin _ IN PlliYSIIC$, SlEPIOCT lilR

