-

View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by NASA Technical Reports Server

NASA-TM-112502 S

Using ADA tasks to simulate operating equipment

Louis A. DeAcetis

Oron Schmidt and Kumar Krishen

Reprinted from COMPUTERS IN PHYSICS, September/October 1990 © American Institute of Physics

https://core.ac.uk/display/42772283?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Using ADA tasks to simulate operating equipment

Louis A. DeAcetis

Physics Department, Bronx Community College/CUNY, Bronx, New York 10453

Oron Schmidt and Kumar Krishen

NASA, Johnson Space Center, Houston, Texas 77058

{Received 15 November 1989, accepted 5 January 1990)

A method of simulating equipment using ADA tasks is discussed. Individual units of
equipment are coded as concurrently running tasks that monitor and respond to input signals.
This technique has been used in a simulation of the space-to-ground Communications and
Tracking subsystem of Space Station Freedom.

INTRODUCTION

Many computer simulations'™ written in procedural lan-
guages (e.g., C, FORTRAN, or PASCAL) simulate sys-
tems of equipment by tracking signals through the compo-
nents. Although this may represent a logical solution to the
problem, it usually requires that a piece of equipment know
not only what it is connected to for input, but also the desti-
nation of its output. This is contrary to the way equipment
generally operates. For example, an amplifier may have
inputs of line voltage, signal level (volts), and load imped-
ance, and control settings of gain and ON/OFF switch po-
sition. Its output would include the output signal level, and
perhaps some parameter indicating the quality of the out-
put. When the input values change, the values of the output
parameters change accordingly. The destination of the out-
put signal is of no concern to the amplifier, and it therefore
does not know (or care) what is connected to its output.
(Note that we are treating loading as the input parameter
*“load impedance.”}

The ADA language is especially suited to simulating a
piece of equipment because of the “task” construct.* Each
piece of equipment can be modeled as a concurrent free-
running task that constantly monitors its input values and
adjusts the outputs accordingly. As each unit reacts to
changes in its input values, one can monitor the signal flow
through a collection of components by placing ‘‘sensors” at
strategic locations. Issues of signal transition delays, and
other equipment characteristics can be addressed as need-
ed.

I. METHOD

Each unit of equipment is modeled as an ADA task. The
individual equipment characteristics are supplied in sepa-
rate ADA packages (one for each unit of equipment),
which include the appropriate transfer function(s) for the
input signal(s). All of the values that are external to a piece
of equipment are stored in a global database (or “‘black-
board” data structure’), and the individual components
link their internal values to these blackboard values. Each
component task then monitors those blackboard values
that serve as input to the equipment it is simulating, and
while the equipment is ON and running, appropriate out-

put values for that equipment are generated and written
out to the ‘“‘blackboard’ where they can then be monitored
for input by those tasks using them. For example, if all of
the equipment is plugged into the same power source, then
each monitors the blackboard value of the line voltage. If
the line voltage vanishes (“blackout™) or is low (‘‘brown-
out”), then this can be incorporated into the determination
of the appropriate output signal(s).

In order to prevent a task from *“‘running” when the
equipment is in the OFF state, an algorithm is used that
requires that the equipment be turned ON in order for it to
process input information. Table I contains the structure of
this ON/OFF algorithm, which is coded in a generic ADA
package so that it can be implemented (“instantiated” in
ADA terminology) for each piece of equipment. One of the
features of the algorithm is that it will accept and ignore
any ON/OFF requests that are redundant, rather than
queue them as might normally be the case with ADA task
rendezvous (i.e., if an ON command is sent to a task that is
already ON, then the command is discarded). Another fea-
ture is that the task of a piece of equipment in the OFF state
does no processing, but merely waits for a rendezvous to
turn it ON. This minimizes the use of CPU resources.

Il. ILLUSTRATIVE EXAMPLE

Consider the equipment depicted in Fig. 1, which consists
of asaw-tooth function generator attached to a pulse gener-
ator/amplifier. The circled numbers refer to sensor or test
points whose values are to be monitored. The waveform
produced by the function generator is used by the pulse
generator to determine the pulse width as follows: While
the value of the input to the pulse generator is at or beyond
a certain threshold value (taken as 0.5 V), the value of the
pulse generator output is + 10.0 V; when the value of the
input is below threshold, then the pulse generator output is
0.0 V. We thus have a waveform transformer that converts
a saw-tooth signal into a rectangular pulse. The frequency
of both active signals is the same, and the pulse width can
be varied by changing the amplitude of the saw-tooth sig-
nal. In addition, effects of a “brownout’ (line voltage less
than a nominal value of 120 V) have been incorporated in

COMPUTERS IN PHYSICS, SEP/OCT 1890 §21

TABLEL ADA package with task code for algorithm used to simulate an

equipment unit.

ge Genetric_Equipment

kage contalning task to implement specific instances of equipment

t update: 11-92-89 LAD

pack. has Ada p es as formal parametars and therefore

be instantisted with procedures which implement the tranefer

functions of the actual equipment used.

In Particular:
Procedure Set_OFF_Values : Piranot-x values for equip. OPF;
Procedure Set_INITIAL_ON Values: Values for equipment just turned ON;
Procedure Set_Running_vaTues : " values for equipment ON & running

generic
with procedure Set OFF_Values;
with procedure Set INITIAL_ON Values;
with procedure Set_Running_Values;

package GENERIC_EQUIPMENT is

task SWITCH_CONTROL is
entry CLOSE_SWITCH;
entry OPEN SNITCN,

end SWITCH_CONTROL;

procedure DESTROY;

end GENERIC_EQUIPMENT;

package body GENERIC_BQUIPMENT is

SWITCH_IS_OPEN : boolean := true; -- Switch starts open (equip. is OFF)
- - Task must therefore be “turned on"
- before it will “run®.
task body SWITCH_CONTROL is
begln
SWITCH_OPEN_OFF:
loop
SWITCH_CLOSED_ON:
loop
==t Switch Control Loop ***--
SWITCH_COMTROL:

loop
if SWITCH_IS_OPER --Select when SWITCH_IS OPEN:
then -+ Wait for trendezvous to close it
selact
accept OPER_SWITCH; --Accept and ignore OPEN requests
or
accept CLOSE_SWITCH; -=Where Switch is actually Closed

SWITCH_IS_OPEN := [alac.

exit SWITCH_COMTROL;
end select;

else
lect
accept CLOBE_SMITCH; --Accept and ignore CLOSE requests
exit SWITCH_COMTROL;
ox
accept OPEN_SWITCH; --Where Switch is actually Opened

SWITCH_LS DPIN te true;
exit SWITCH _CLOSED_ON;
else
xit SWITCH_CONTROL;
end select;
end if;
end loop SWITCH_CONTROL;
--¢+¢"End Switch Control Loop *##--
--Should only get hale i(Switch is Closed/ON:

~~delay/Reschedule)

end loop SWITCH_CLOSED_ON;

--Should only get here if Switch was just opened:

delay @, iﬂl, --delay/feschadule;

end loop SWITCH_OPEM_OPF;

end SWITCH_CONTROL;

procadure DESTROY ia ~--Command to abort task (for ordecly shutdown)
begin

abort SWITCH_CONTROL;
end DESTROY;

end GENERIC_EQUIPMENMT;

that the output levels of each device will decrease until a

“minimum operating voltage” " for the equipment is
reached: Output from the generator vanishes
when the line voltage drops below 90 V, and for line vol-

Function Pulse
Generator 2 Generator @
J1

DH—

Main Power Line

FIG. 1. Illustrative Example equipment setup consisting of a (saw-tooth)
function generator whose output drives a pulse generator. Circled values

indicate sensors or test points.

522 COMPUTERS W PHYSICS, SEP/OCT 1990

FUNCTION GENERATOR
TASK

N
~ ‘\\\‘
GLOBAL MAIN
DATABASE ' SGval ™
(BLACKBOARD) vEs | PROCEDURE
a
INVEVOLTAGE .
e)
y rd
e

PULSE GENERATOR
TASK

FIG. 2. Flow diagram of data and command information flowing between
the blackboard global database, the ADA equipment simulator tasks, and
the main procedure of the Illustrative Example. Straight line (3/
M) = data; dashed hne (- - — -} = commands.

fuwetien
tages below 80 V, the output from the puise generator also
ceases. Figure 2 is a dataflow diagram for this equipment
setup.
Table II contains ADA code that implements the
above for each piece of equipment and includes the struc-
ture of the global database. Table II1 is a main ADA proce-

TABLE II. ADA code for Illustrative Example equipment, including the
Global Database definition and the packages for the function and pulse
generators.

--package GLOBAL VARIABLES is a global database where shared info is
~- stored and where connections between signals are made.
--Last Update: 11-d2-89 LAD

package GLOBAL_VARIABLES is

--Power Source Quantities:

S5TO_LINE_VOLTAGE : constant float := 120.0;
MAX”LINE _VOLTAGE i constant float := 139.9;
LIHI VOLTAGE t float := STD_LINE_VOLTAGE;
--Functjon Generator Signala and Levels
FUNCTION_GENERATOR_AMPLITUDE : float 3. l.0;
FUNCTION_GEHERATOR_OUTPUT : float Ead @.90;
--Pulse Generator Signals and Levels
PULSE_GENERATOR_AMPLITUDE : float 1= 10.0;
PULSE_TRIGGER_LEVEL : float 1. 9.5;
PULSE_GENERATOR_OUTPUT : float = 9.49;
--Connect Pulse Generator trigger input line to Funct, Gen, Output
PULSE_TRIGGER_LINE : float renames PUNCTION_GENERATOR_OUTPUT;

end GLOBAL_VARIABLES;

nerator §i
Nesrnnnanee

Puaction
arannans

for the simulation of a Function
Saw-tooth waveform of variable amplitude *
). Output is degraded {f LINE_VOLTAGE_IN *

* package with Procedu

which will generate

* {(nominal value is 1
1 v

* is less tha rownout"), and ceases Ihen LINE VOLTAG .
--* is < BD V L .
—otrrARETTRRARAR s EEREERERRARIER RN .
with GENERIC_EQUIPMENT;
with GLOBAL_VARIABLES; -- Global Database where signal values are stored

-— and signal connections are made
package PUNCTION_GENERATOR is
procedure OFF_Values;

procedure IMITIAL_ON_Values;
procedure OUTPUT Valie;

package EQUIPMENT is new GENERIC_EQUIBMENT (
oP?_values, INITIAL_ON Values, OUTPUT_Value};
typc PROBE_NAMES is (ON_OFF_SW, OUTPUT SIGNAL);
type PROBE_ARRAY_TYPE 3 arTay (PROBE_NAMES) of float;
PROBE FROBE_ARRAY_TYPE :+ (others »> 8.8); --Initialize sansors to @

'I‘ll ;3 float := 0.9; --Cycle count

end PUNCTIOH _GENERATOR;

with calendar;

pack. body FUNCTION_GEWERATOR im

ariables with values in Global Database:
s GLOBAL_VARIABLES.LINE_VOLTAGE;
s GLOBAL VARIIBLES STD_| LIHZ VOLTAGE;

--Explicitly associate local
LINE_VOLTAGE_IN : float r
STD_LINE_VOLTAGE: float

TABLE 1. (Continued.) TABLE I1I1. ADA code for the procedure SIMULATE which displays
the sensor and signal values for the Illustrative Example equipment.

AMPLITUDE : float renames GLOBAL_VAIIRBL!S.PUNC'I'lOI_G!NlIATOR_AHPLITUDEG

-- Main program to exercise equipment: Functlon generator
-- Pulse generator
and display sensor readings.

OUTPUT : float renames GLOBAL_VARIABLES,FUNCTION_GENERATOR_OUTPUT;

INCREMENT 1 calendar.day_duration;
SAW_TOOTH_YALUE : float;
BAST, TIH! : calendar.day_duration := calendar.seconda(calendar.clock);

-- Last Update: 11-02-89 Louis A, DeAcetis

procedure OFF_Values is i
begin -Set outputs to values for equipment in OFF state: with GLOBAL_VARIABLES;
PROBE (ON_OPF_SW) 1= 4

QUTPUT with PUNCTION_GENERATOR;

PROBE {OUTPUT_SIGNAL) OUTPUT;
d;

with PULSE_GENERATOR;

procedure INITIAL_ON_Values i with text_io;

begin -Z5et values for when equipment just turned ON: use text_io;
PROBB(OH OFF_5W} 1= 1,85
ouTPUT 9.9; --DOS interface packages for Alsys or Meridian compilers:
PROBE {OUTPUT_SIGNAL) OUTEUT; ~-with tty; with video; --Meridian compiler
SAW_TOOTH_VALUE 9.9; --with DOS; --Alsys compiler

BASE_TIME calendar,seconds (calendar.clock);
end; procedure SIMULATE is
procedure OUTPUT_VALUE is ~-Set output values for equipment ON and running package INT_10 is new integer_io{integer);

use INT_10;

function WAVE_VALUE (AMPLITUDE : float) return float is
package FLOT_IC is new float_io(fioat);

function SAW_TOOTH return float is use PLOT_LO;

begin
INCREMENT := calendar.seconds{calendar.clock) - BASE_TIME; VALUE : float := 0.6;
SAW_TOOTH_VALUE := float {INCREMENT)/5.9; PARAM : character := ascii.nul;

if 3AW_TOGTH_VALUE > 1.9 then

SAW_TOOTH_VALUE 4.9; subtype ABSISSA is integer range 5..36;
BASE_TIME calendar.seconds (calendar.clock) ; subtype ORDINATE is integer range 9..23;
end if;
return SAW_TOOTH_VALUE; X1, X2 : ABSISSA;
end SAW_TOOTH; LAST_LINE : ORDINATE := ORDINATE'last
-- THARKER : ABSISSA;
begin BLANK_LINE : string(ABSISSA'first., (ABSISSA'last+d)} := {others =>' '};
Ieturn AMPLITUDE*SAN_TOOTH; WINOOW_ARRAY : array(ORDINATE) of string (ABSISSA'first..(ABSISSA®last+d)
end WAVE_VALUE; i= (others => BLANK_LINE}
begin type PROBE_NAME is (HAIN POWER_LINE_VOLTAGE,
COUNTER := COUNTER + 1.8; --Count cycles for monitoring purposes _GEN_ON_OFF_swW,
p TGEN_OUTPUT,
if LINE_VOLTAGE_IN < 89.9 then --"Blackout” condition P_GEN_ON_OPF_SW,
ouTPOT := #.97 P_GEN_OUTPUTT ;
else
OUTPUT LINE_VOLTAGE_IN/STD_LINE_VOLTAGE* --"Brownout factor® type PROBE_ARRAY_TYPE is array (PROBE_NAME) of float;
WAVE_VALUE (ANPLITUDE) ;
end if; PROBE : PROBE_ARRAY_TYPE := (others => ¢.9); --Initislize sensors to ¥
- PREVIOUS_PROBE : PROBE_ARRAY_TYPE {others => 9.8}
PROBE (OUTPUT_SIGNAL) := OUTPUT; COUNTER: PROBE_ARRAY_TYPE := (1.0, others => 8.9);
end OUTPUT_VALUE; ~-Create link betwaen local values and Global Values:
- LINE_VOLTAGE : float renames GLOBAL_VARIABLES.LINE_VOLTAGE;
end PUNCTION_GENERATOR; MAX_LINE_VOLTAGE : float renames GLOBAL_VARIABLES.MAX_LINE_VOLTAGE;
ammanns ey PUNCTION_GENERATOR_AMPLITUDE : float cenames
Generator Simulator -- Last Updat: 1-97-89 LAD GLOBAL_VARIABLES.FUNCTION_GENERATOR_AMPLITUDE;
toenver B AL e S A A Al PULSE_GENERATOR_AMPLITUDE : float ranames
. GLOBAL_VARIABLES.PULSE_GENERATOR_AMPLITUDE;

* package -xtn Procedures Eor the simulation of a Pulse Generator which
generates a pulse of height PULSE_GENERATOR_AMPLITUDE when the value
--* of the TRIGGER_INPUT is greater than the value of the TRIGGER LEVEL
(output is 7erd otherwisel. Output is degraded if LINE_VOLTAGE_IN is
* less than 126 V ("brownout™), and ceases when LINE_VOLTAGE_IW is in intager) is sequences. Requires
< 94 v ("blackout™). Louis A. DeAcetis SCREEN_WIDTH : integer a; DRIVER = ANSI.SYS
P e i e e S S L LT LT N T T T T T T) XX,YY T integer; —= in MS-DOS CONFIG.SYS file

with GENERIC_EQUIPMENT; begin

PULSE_TRIGGER_LEVEL : float renames GLOBAL_VARIABLES.PULSE_TRIGGER_LEVEL;

in integer; ~=NOTE: Uses ANSI escape

.
-
.
.

procedure SET_CURSOR {

i€ X <1 then XX e 1;
with GLOBAL_VARIABLES; -- Global Databas h signal lues a tored ’
- S a1 Databage where 810l mage s MrO stere elsif X > SCREEN_WIDTH then XX := SCREEN WIDTH;

and signal connections are made e
end if;

i

package PULSE_GENERATOR is

Qf ¥ < 1 then YY := 1;

procedure OFF Values;
procedure [NITIAL_ON_values; oiut(¥ > 24 then YY := 24;
procedure OUTPUT_Value; .n: ;:.Yv 1= ¥;

plchlqe EQUIPMENT is new GENERIC_EQUIPMENT(e
oFF values,leTxAL Ok_values,OUTPUT_Value); text_jo.put(ascii.esc & “[" & integer’ xmuqn(vvolﬂ!)(].. &
integer®image (XX+1999){3..5] &

s
end SET_CURSOR;

type PROBE_NAMES is (ON_OFF_SW, OUTPUT_SIGNAL):

type PROBECARRAY_TYPE i5 artay (PROBE_NAMES) of Float;

PROBE : PROBE_RRRAY_TYPE :» [others => 8.9); --Initialize sensors to & P‘z:;?:" CLEAR_SCREEN is
COUNTER : float := @.@; --Cycle count

end PULSE_GENERATOR;

text_fo,put(ascii.esc & "[237);
end CLEAR_SCREEN;

proc-dur- DISPLAY_SENSORS is

- - begin
package body PULSE_GENERATOR is --Display screen label
----- if COUMTER(MAIN_POWER_CLINE_VOLTAGE) = 1.9 then
--Explicitly associate local variables with values in Global Database SET_CURSOR(2, -
LINE_VOLTAGE_IN : float renames GLOBAL_VARIABLES.LINE_VOLTAGE; taxt Lo.put ("Probe Reading Cycle Count*)
STO_CINE_VOLTAGE: float renames GLOBAL_VARIABLES.STO_LINE_VOLTAGE; tor I Tn PROBE_NAME'FIRST..PROBE_NAME'LAST loop
-- SET_CURSOR (2, PROBE_NAME'pos(1)+2);
AMPLITUDE : float renames GLOBAL_VARIABLES,PULSE_GENERATOR_AMPLITUDE; text_to.put (PROBE_NAME' IMAGE (1)) ;
- end loop;

TRIGGER_INPUT : Float renames GLOBAL_VARIABLES.PULSE_TRIGGER_LINE; end if;
TRIGGER_LEVEL : float renames GLOBAL_VARIABLES.PULSE_TRIGGER_LEVEL;
for I in PROBE_NAME'FIRST..PROBE_NAME'LAST loop

OUTPUT : Eloat renames GLOBAL_VARIABLES.PULSE_GENERATOR_OUTPUT; if COUNTER({I) /e ¢.@ then
SBT?CURSOR(OU +PROBE_NAME'pos(I)+2); put{integer (COUNTER(I)),5);
e e e oo end if;
procedure OFF_Values is ’
begin --Set ocutputs to values for equipment in OFF state: if not (PROBE(1) = PREVIOUS_PROBE(I}) then
OUTPUT 1w @.0; SET_CUBSOR(27,PROBE_NAME' pos(i)+2);
PROBE (OUTPUT_SIGNAL) := OUTEUT; putTPROBE(1}, 3, 2, @
PROBE (ON_OFF_SW) 1w 8.9 PREVIOUS_PROBE(I) = PRO!E(X)
end OFF_values} end if;

end 1oop;
procedure INITIAL_ON Values is hois '

begin -=Set outputs for values when equipment just turned ON: new_line; -- Fotce output to screen with new_line
PROBE (ON_OFF_SW) i 1~ end DTSPLAY_SENSORS; -
QUTPUT = a, - -
EHS?OBE(OUTPUTVSIGNAL) 1= OUTBUT; peocedure PLOT_SIGNALS is
----- ’ begin
rocedure QUTPUT_VALUE is --Set output values for equipment ON and running --8croll "window"™ contents:
P beqin - --Include following if Meridian Compiler:
PROBE (ON_OFPF_SW) := 1.9; Switch sensor On --vidoo scroll_up(l, ORDINATE'first-1, ABSISSA'first-1,
COuNTER - - 1= COUNTER + 1.&; ORDINATE® last, ABSISSA*last+2};
lf LINE_VOLTAGE_IN < 99.9 or -- "Blackout™ condition check --\/ Include following if not Meridian Compiler
TRIGGER_INPUT < TRIGGER_LEVEL for 1Y In ORDINATE'€irst+l..LAST_LINE loop
thea SET_CURSOR(ABSISSA'firse,1Y- l),
OUTPUT := @.9; text_io.put (WINDOW_ARRAY (IY)
else WINDDW_ARRAY (1Y-1) := HXNDOH_ARRAY(IY);
OUTPUT :» LINE_VOLTAGE_IW/STD_LINE_VOLTAGE * --"Brownout factor® end loop;
AMPLTTUDE;
end if; --Blank out last line:

- WINDOW_ARRAY [LAST_LINE) := BLANK_LINE;
PROBE (OUTPUT_SIGNAL) := OUTPUT;
- WINDOW_ARRAY {LAST_LINE} (
end OUTPUT_VALUE; (ABSTSSA'last-ABSISSA'first) /2+ABSISSA ' firstel) 1o v

end PULSE_GENERATOR; X1 := integer (PROBE(F_GEN_ QUTPUT) *float (ABSISSA® last-ABSISSA ' first)/
— 2.8/FUNCTION GENERATOR AMPLITUDE) + ABSISSA'first;

524 COMPUTERS IN PHYSICS, SEP/OCT 1990

TABLE IIL (Continued.)

TABLE I11. (Continued.)

X2 1= integer (PROBE(P_GEN_OUTPUT}*float (ABSISSA'last~ABSISSA'flret)/
2.9/PULSE_{ GENERATOR AHPLXTUDBIO(ABS[SSA'lllt*lBSISSA'flrlt)/z ~1;

WINDOW_ARRAY (LAST_LINE) {X1} e ety
WINDOW ARRAI(LAST LINE) (X243} e **°;

SET_CURSOR{ABSISSA'first, LAST_LIME);
text_io.put (WINDOW_ARRAY {LAST_LINE));

new_line; -~ Force output with new_line
end PLOT_SIGNALS;

begin
--5et up Screen for displays:
CLEAR_SCREEN;

--Draw "box" around data plotting "window"
SBT_CURSOR(ABSISSA'first-1,0RDINATE first-2};
text_io.put(’/’'};

for 1 in ABSISSA'first+)l, ABSISSA'last+5 loop
taxt io put('~");

end loop

text_io. put(N

--Mark trigger level over Function Generator output plot:
TMARKER := integer (PULSE_TRIGGER_LEVEL®
£1oat (ABSISSA’ last-ABSISSA first)/2.9/
PUNCTION_GENZRATOR_AMPLITUDE+ 0.5) + ABSISSA'first;
SET_CURSOR (TMARKER,ORDINATE ' first-2); text_jo.put('V');

for 1 in ORDINATE'first-1..ORDINATE'last loop
SET_CURSOR(ABSISSA'first-1,1); text_lo,put(’'
S8BT CUISOR(ABS!SSA' lastss, I) 7 text_io.put(’
end loop;

SET_CURSOR(ABSISSA'first ¢ 1, ORDINATE'flrst-1);
text_fo.put(“Punction Gen:");

SET_CURSOR((ABSISSA'last-ARSISSA'first)/2 + ABSISSA'first+l,
ORDINATE'firat-l);
text_io,put('|');
SET, CURSOR((ABS1SSA'
text_lo,put(“Pulse:

+ABSISSA"first)/2+4,0RDINATE first-1);

SET_CURSOR (43, 7}; text_io.put{"COCOOOOOOOOOCOOOOOOO");
SET_CURSOR(43, 8); text_io.put{"To change equipment parameters use:®);
SET_CURSOR ({45, 9); text
ET_CURSOR{45,18); text
SBT_CURSOR(45,11};

: Function Generator®);

io.pul(' : Pulse Generator™);

o.put("L: Line Voltage®};

.put ("A: Output Ampl. of Punction Gen.™);

.put('VALU!. Off = §.8; On = 1.4%);
*Voltage, Amplitude: float™;

.put('lntnx ?,P,L,A(space) VALUE: “);

SB‘l‘ '_CURSOR(45,17};
~=Turn on equipment

FURCTIOR_GENERATOR.EQUIPMENT ,SWITCH_CONTROL.CLOSE_SWITCH;
PULSI GENERATOR. EQUIPMENT . SWITCH_(_CONTROL . CLOSE_. _SWITCH;

delay 9.001;

DISPLAY_SEMSORS;
OUTER_LOOP: lo0p

begin --Exception block
loop
1oop -- Is there input from the keyboard?

xit when DOS.KBD_OATA_AVAILABLE; --Alsys compiler
xit when tty.CHAR_READY; ~-Meridian compiler

--=-\/Include if no interface to DOS is used:
--\/ {pauses every 28 cycles for input):
exit when integer {COUNTER{MAIN_POWER_LINE_ VOLTAGE))/20+%2d -
integer {COUNTER (MAIN_ POHBR LINE VOLTAGE)} -8

COUMTER (F_GEN_ON_OFF_SW)
COUNTER (P_GEN_ON_OFF_SW)

:= FUNCTION_GENERATOR.COUNTER;
PULSE_GENERATOR.COUNTER;

--Fetch probe values from equipment and store locally for display

PROBE (MAIN_POWER_LINE_VOLTAGE) := LINE_VOLTAGE;

PROBE (¢_GEN_OM_OFF_SW] := FUNCTION_GENERATOR,PROBE
(PUNCTION_GENERATOR.ON_OPF_SW) ;

PROBE(E‘_G!N_OUTPUT) = PUHCTION GENERATOR. PROBE
(FUNCT]ON GENERATOR.OUTPUT_SIGNAL} ;

PROBE (P_GEN_ON_OFF_SW) := PULSE_GENERATOR.PROBE
(PULSE_GEWERATOR.ON_OFF_5W) ;

PROBE (P_GEN_OUTPUT]) := PULSE_GENERATOR.PROBE
(POLSE_GENERATOR.OUTPUT_SIGNAL) ;

if (LINE_VOLTAGE > MAX_LINE_VOLTAGE) and
{PROBE (F_GEN_ON_OFP_SW) ¥ PROBE(P_GEN_ON_OPP_SW) /= 08.0)
then
CLEAR_SCREEN; new_line(12);
text_io.put{"*****Qvervoltage on Line Voltage--"}; new_line;
text_io.put{"**++«%); gew line;
text_io.put{"****4 Fuses Blown-- Output ceases”); new_line;
text io.put("###e+ Replace blown fuses and start again.");
new_Tine(S):

FUNCTION_GENERATOR,EQUIPMENT.DESTROY; ~-~Abort Funct. Gen. task
PULSE_GENERATOR.EQUIPMENT.DESTROY; --Abort Pulse Gen. task
exit CUTER_LOOP;
end if; -

COUNTER (MAIN_POWER_LINE_VOLTAGE) :=
COUNT!R(HAXN POH!R LINE_VOLTAGE) +1.90;

DISPLAY_SENSORS;
PLOT_SIGHALS;
delay #.25;

end loop;

SET_CURSOR{72,17}; text_io.put(" "
SET_CURSOR(72,17) ; -
getTPARAM) ; get (VALUE];
--1Increment local cycle count:
COUNTER (MAIN_POWER_LINE_VOLTAGE) :=
- T COUMTER (MAIN_POWER_LINE_VOLTAGE) +1.0;

--Clear out error message if present from previous input:

SET_CURSOR(45,21}; text_io.put(" "Yi
SET_CURSOR(47,22); text_io.put(" "y
SET_CURSOR(69,23); text_jo.put (" AR

~-Check input from keyboard for valid command:
case PARAM is
when "f'|'F' =)
if VALUE = 9.9 then
FUNCTION_GENERATOR.EQUIPMENT.SWITCH_CONTROL.OPEN_SWITCH;

else
FUNCTION_GENERATOR.EQUIPMENT.SWITCH_CONTRCL.CLOSE_SWITCH;
end if;
when ‘p'|'P' =
if VALUE = 9.9 then

PULSE_GENERATOR.EQUIPMENT.SWITCH_CONTROL.OPEN_SWITCH;
else

PULSE_GENERATOR.EQUIPMENT,SWITCH_CONTROL.CLOSE_SWITCH;
end if;

when ‘1°{'L' =>
LINE_VOLTAGE := VALUE;

when 'a'|'A' =>
FUNCTIUN_GENERATOR_AMPLITUDE := VALUE;
if PULSE_TRIGGER_LEVEL > VALUZ then
VALUE i= FUNCTION_GENERATOR_AMPLITUDE;
elalf VALUE < 8,9 then
VALUE := 9.8;
else VALUE := PULSE_TRIGGER_LEVEL;
end if;

TMARKER := integer (VALUE*float (ABSISSA'last-ABSISSA'first)/
2.4/PUNCTION_GENERATOR_AMPLITUDE+9.5) + ABSISSA'first;

SET_CURSOR(ABSISSA'first ,ORDINATE first-2);

for I in ABSISSA'flrst+l.,ABSISSA'last+5 loop
text_lo.put('~');

end loap;

SET_CURSOR{TMARKER,ORDINATE'first-2); text io.put('v');

when others =>
raise data_error;

end case;
delay 8.0891;

end loop;
exception
when data_error =>

SET CURSOK(IS 21l); text_io.put({“Erconeous input ignored--"j;
SET_ *_CURBEOR({47,22}; text “io.put ("Proper form examples: L 110.9%);
SET_CURSOR (69,23} ; text_ic.put{"A 4.8");
text_fo.put{ascii.bel);

end; --Exception block

and LOOP OUTER_LOOP;

end SIMULATE;

dure, called SIMULATE, which interfaces with the simu-
lator and produces output similar to that in Fig. 3.
Although this is a simple application, it does illustrate the
method and suggests how greater sophistication is possible.

Hl. IMPLEMENTATION

Figure 4 is a block diagram of the starboard portion of the
proposed Space-to-Ground subsystem of the Communica-
tions and Tracking System on Space Station Freedom. As
above, the circled numbers represent sensors whose values
can be monitored. The oval enclosed numbers represent
sensors whose values indicate the ON/QOFF state of the
equipment. This system has been simulated using the above
paradigm: Each rectangular box is represented by a task
that, when “ON,” monitors the values of its input signals
and sets the values of the output values and sensors accord-
ingly. The simulator may be controlled by other programs
or using a keyboard interface program that permits the
asynchronous entry of commands to turn equipment ON/
OFF and set cross-strapping switches. There are upward of

Probe Reading Cycle Count
MAIN_POWER_LINE_VOLTAGE 120.00 71
F_GEN_OUTPUT 0.90
P_GEN_OUTPUT 10.00
F_GEN_ON_OFF_SW 1.00 277
P_GEN_ON_OFF_5W 1.00 274
———————— -- .
Function Gen Pulse
+ . F: Function Generator
+ * Pulse Gensrator
+ . Line Voltage
+ . A: Amplitude of Function Gen.
. .

VALUE: Off = 0.0; On =
voltage, Alplitude float

+
)

Enter F,P,L,A space VALUE:

“wee

FIG. 3. Sample output of procedure SIMULATE which displays probe
readings and signal levels for the Illustrative Example. The outputs of the
function and pulse generators are displayed graphically and scroll upward
to show the changes with time. The “cycle count™ indicates the number of
cycles completed by each running task and procedure SIMULATE.

COMPUTENS IN PHYSICS, SEP/OCT 1880 523

I
f— Subsystem
Emns Parab. Ant. Assem. (Sea]

TDRSS
Pedestal
Electronics |

A @"' @

@@

e @29

Ku-Band
TDRSS

Transceiver | o) (r1) (3) (ss)
/MODEM | —F " S -

Y
N

Recorder

Vidoo Sqnal |~ W 18}
5
. Video BSP q
L

Video Control |- -

FIG. 4. Block diagram of the starboard space-to-ground subsystem of the
Communications and Tracking System of Space Station Freedom. The
numbers are sensor identifiers. BSP: baseband signal processor; HDR:
high data rate recorder; TDRSS: Tracking and Data Relay Satellite Sys-
tem.

34 tasks for the total system (which includes the port sys-
tem and contingency communications equipment not
shown here). At present, the simulator transforms signal
levels and sets sensor readings to typical values. Once the
detailed electronic characteristics for this equipment (un-
der development) are established, they can be incorporated
into the corresponding tasks.

The simulator has been compiled under a variety of
ADA compilers (including Alsys, DEC, Meridian, and
Verdix), and runs under MS-DOS on PC’s (80286 and
80386 CPU’s), and DEC VMS and Ultrix operating sys-
tems. Although it is unlikely that all of the communica-
tions equipment on the Space Station would be ON simul-
taneously, the current simulator has been run in that state

with no major problems. (As more tasks are switched
“ON,” they do slow execution somewhat, especially on an
IBM PC-AT.)

Additional refinements of the model presented here
are possible, most especially in the area of information hid-
ing. One of the major problems with a blackboard ap-
proach is that signal information is not only visible to all of
the equipment tasks, but accessible (i.e., modifiable) as
well. It is thus possible for the Function Generator to get
access to the output value of the Puise Generator even
though it has no electrical connection to that output. How-
ever, from the code in Table II, it can be seen that one
would deliberately have to associate a local variable with
an improper global variable in order to accomplish such a
connection. There are ADA constructs that can be used to
prevent any unwarranted access to normally inaccessible
signal levels,® but the level of abstraction and programming
complexity required would obscure what is basically a sim-
ple concept and implementation, and these were deemed
beyond the scope and intent of the present article.

IV. CONCLUSIONS

One of the unique aspects of the ADA programming lan-
guage is the ability to do logically “parallel” processing
using the task construct. This is especially useful in simu-
lating concurrently running equipment. Satisfactory re-
sults are readily obtainable for situations where transient
states can be ignored (e.g., where we are not concerned
with the output of the pulse generator during the transi-
tions between its minimum and maximum voltage states).
When the latter are important, timing considerations can
greatly increase the complexity of the problem. Real-time
simulations, which require timing and interrupt consider-
ations, constitute a further challenge in ADA,’~'" which is
not considered here.

ACKNOWLEDGMENT

This work was done while the first author held a National
Research Council-NASA Senior Research Associateship.

REFERENCES

1. G. Gordon, System Simulation (Prentice-Hall, Englewood Cliffs, NJ, 1978),

2nd ed.

2. B. W. Marsden, Software-Prac. Exper. 14, 659 (1984).

3. A. Hac, Software-Prac. Exper. 14, 696 (1984).

4. G. Booch, Software Engineering With Ada (Benjamin/Cummings, Menlo Park,

CA, 1987), 2nd ed., Chap. 16.

5. W. K. Erickson, Proc. ALAA/ACM/NASA/IEEE Computers Aerospace V
Conference, Long Beach, CA (October 1985), p. 33.

. G. Booch, IEEE Trans. Software Eng. SE-12, 211 (1986).

. J. D. Laird, R. L. Victa, M. R. Koppes, and B. A. Burton, Proc. AIAA/ACM/
NASA/IEEE Computers Aerospace V Conference, Long Beach, CA (October
1985), p. 285.

8. M. Narotam, C. Layton, and J. Slish, EDN (20 August 1987), p. 133.

9. H. Falk, Comput. Des: 27, 55 (April 1988).

. G. Chitwood, Def. Comput. 1, 32 (July-August 1988).

-~ o

=)

COMPUTERS IN PHYSICS, SEP/OCT 1980 525

Modeling superconducting networks containing Josephson
junctions by means of PC-based circuit simulation

software

James A. Blackburn

Department of Physics and Computing, Wilfrid Laurier University, Waterloo, Ontario N2L 3CS5,

Canada
H.J. T. Smith

Department of Physics, University of Waterloo, Waterloo, Ontario N2L 3C5, Canada

{Received 30 January 1990; accepted 18 May 1990)

Software packages are now available with which complex analog electronic circuits can be
simulated on desktop computers. Using Micro Cap I1I it is demonstrated that the modeling
capabilities of such software can be extended to include superconducting networks by means
of an appropriate equivalent circuit for a Josephson junction.

INTRODUCTION

Superconducting circuits, containing Josephson devices,
inductances, capacitors, and resistors, have many impor-
tant practical applications.’ These include SQUID mag-
netometers, high-speed superconducting computer ele-
ments, and voltage standards. The usual procedure for
predicting the behavior of such circuits has been to solve
the corresponding sets of nonlinear differential equations
numerically. However, as we shall demonstrate, supercon-
ducting electronics can be included within the modeling
capabilities of presently available circuit simulation soft-
ware, and this provides a powerful and flexible alternative
method of analysis.

With the advent of computer-aided engineering
(CAE) software, analog circuits can be simulated on a
computer before a hardware prototype is constructed. A
well-known mainframe oriented software package is
SPICE,* which was developed at UC Berkeley in the 1970s.
The appearance of high-performance personal computers
based on the 80386, and most recently 80486, chips has
made CAE simulation of relatively large circuits feasible
on desktop machines. Micro Cap III* (which was selected
for the present work) is a leading simulation package for
use on PC’s. It has an extensive library of standard devices.
Each specific component, such as a 2N2222 transistor or
an LM741 op-amp, is modeled so as to replicate accurately
that device’s static and dynamic characteristics. As will be
shown, this library can be extended by creating an equiva-
lent circuit for a Josephson junction.

I. JOSEPHSON JUNCTION SIMULATION

The circuit for simulating a current-biased noncapacitive
Josephson device is shown in Fig. 1. The principal elements
are an operational amplifier (op-amp) and a voltage-con-
trolled oscillator (VCO). MicroCap 111 does not provide a
VCO in its component library, and so a separate macro,
described below, was designed for this purpose.

520 COMPUTERS IN PHYSICS, SEP/OCT 1880

The VCO shown schematically in Fig. 2 contains
three separate submacros:

(1) SPDT—a voltage-controlled switch set toactas a
zero crossing detector; this is formed by combining two
voltage-controlled single-pole/single-throw switches pro-
vided within MicroCap II1.

(2) X—asimple voltage multiplier created from a vol-
tage-controlled voltage source in MicroCap III.

(3) SINECONV—a four-diode triangle-to-sine wave
converter® as shown in Fig. 3. This type of sine converter
possesses the important attribute of not introducing any
phase shift in the waveform.

The input voltage to the VCO is applied to PIN 1, and
then is passed to the control terminal of the first SPDT
{which enables the VCO to handle both positive and nega-
tive input voltages) and to the multiplier. The action of the
circuit may be followed by assuming for the moment that

n > 0. Suppose the present state of the circuit is as indicat-
ed in the schematic. One input to the multiplier is 8 V, the
otheris V,,. The multiplier output is thus + 8 X ¥, ,and so

in?

RC
veo

RO

RB

vl N V0
I 5

FIG. L. Circuit for simulating a current-biased resistively shunted Joseph-
son junction. The polarity shown for V,, is required for positive equivalent
bias current. Note that in this and subsequent figures, Micro Cap I11 rep-
resents V, as VB, R, as RB, etc.

