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ABSTRACT

Atomic screening effects on nonrelativistic electron-atom bremsstrahlung radiation are investigated using a

simple analytic solution of the Thomas-Fermi model for many-electron atoms. The Born approximation is

assumed for the initial and final states of the projectile electron. The results show that the screening effect is

important in the soft radiation region and is decreasing with increasing radiation. These results help provide

correct information about the behavior of bound electrons in the target atom in bremsstrahlung processes.

Subject headings: atomic processes radiation mechanisms: nonthermal

1. INTRODUCTION

Electron bremsstrahlung radiation has received much attention because of its applications in many areas of physics, such as

atomic physics, astrophysics, and plasma physics. However, most of the literature has dealt with electron-nucleus bremsstrahlung
radiation rather than electron-atom bremsstrahlung. Although some authors (see Heitler 1954; Bethe & Salpeter 1957) have already

investigated the screening effects of the bound electrons in the target atom, their cases are extreme relativistic bremsstrahlung

processes. Thus, in this paper, we investigate the screening effects on electron-atom bremsstrahlung radiation in the nonrelativistic

limit because nonrelativistic bremsstrahlung processes are known to be an important source of continuum X-ray radiation and

because this situation is quite different from the extreme relativistic case. Also, it is well known that in astrophysical environments

an important source of opacity is inverse bremsstrahlung in the scattering of electrons by neutral atoms. The screening effect of the

atomic electrons plays an important role in the cross section itself, as well as in the radiation power spectrum. In this paper we use

the nonrelativistic Born approximation for both the initial and the final states of the projectile election. The potential energy of a

many-electron atom is given by an analytic solution of the Thomas-Fermi field suggested by Mott & Massey (1965). Our result is

perhaps useful and can readily be applied to a number of associated problems in atomic physics, astrophysics, and plasma physics

since we obtain a simple analytic solution in terms of the atomic parameters.

In § 2 we derive the general formulation for the electron bremsstrahlung cross section using the nonrelativistic Born approx-

imation. In § 3 we obtain a simple analytic form of the electron-atom bremsstrahlung radiation cross section using an analytic

solution of the Thomas-Fermi model for many-electron atomic systems. In § 4 a comparison is made between the electron-atom and

electron-ion bremsstrahlung spectra. Finally, in § 5 we discuss these results and their applications.

2. NONRELATIVISTIC BREMSSTRAHLUNG CROSS SECTION

2.1. Formulations

If we assume the target atom is at rest and make use of second-order nonrelativistic perturbation theory (see Gould 1990), the

differential cross section for the electron-atom bremsstrahlung process is

d2ob = da c dW_, , (I)

where da c is the differential elastic Coulomb-scattering cross section,

1

dtrc - 2rth2v2o I F'(q) jZq dq , (2)

and P(q) is the Fourier transform of the Coulomb potential V(r),

= fdar e-i_"V(r) . (3)

Here q (= k 0 -- kl) is the momentum transfer and ko and k I are the wavevectors of the initial and final states of the projectile
electron, respectively. And, dW_ is the photon emission probability in the solid angle dfl:

dW, o = _ A 2 _ le "qi 2 do) dD (4)
47[ 2 ¢D '

e
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where _t(= e2/hc) and A ( = h/mc) are the fine-structure constant and the Compton wavenumber, respectively. After some algebra, we
can define the differential bremsstrahlung radiation cross section as

d2zb - d2trb hto. (5)
do9 dq dto dq

For a bare nucleus target with charge Z, the unscreened Coulomb potential is

Ze 2
V.(r) = -- -- (6)

r

In this case, the calculation of the cross section is straightforward and is known as the nonrelativistic Bethe-Heitler formula. This
will be briefly discussed in the following subsection. For an atomic target system, in most cases the polarization of the atomic
electrons by the incident electron is unimportant and the potential Va(r) is of form

Ze 2 e 2

Va(r) = - -- + _ , (7)r . It- rjl

where rj is the position vector of the jth bound electron. In this case, the calculation of the cross section is complicated by the
electron-electron interaction term. A recent paper by Jung & Gould (1991) gave prescriptions for screening constants and effective
nuclear charges for bound electrons in many-electron atoms using the orthogonal Slater orbitals. These results are very useful for
describing the total and individual electron states up to 3d electrons. However, the total average potential is more convenient to
evaluate for atomic processes involving many-electron systems, owing to its great simplicity. Thus, in this paper, we employ the
Thomas-Fermi model for many-electron atoms.

2.2. Nonrelativistic Bethe-Heitler Equation

In this subsection we will briefly review the nonrelativistic Bethe-Heitler formulation for electron-pure-ion bremsstrahlung
radiation. In this case the differential bremsstrahlung radiation cross section is readily obtained by the Fourier transform of the pure
Coulomb potential (eq. [6]). Thus, dxddto for the electron-ion bremsstrahlung process is given by

do/,- Ze-- 3 -C _,-_C2,] --62m'fl\x/Eo---- Eox/%-_--_J' (8)

where E0 = Eo ryd- l and • = ho ryd- 1. Equation (8) is called the nonrelativistic Bethe-Heitler formula (see Heitler 1954; Bethe &
Salpeter 1957; Jackson 1975; Jung 1994a). A simple Coulomb correction to the Bethe-Heitler formula by the "Elwert-Sommerfield
(ES) factor" (see Bethe & Salpeter 1957) is well known. Recently, Gould (1990) gave a detailed discussion of the ES factor. Also, it
has been shown that the ES factor can modify the electron-impact excitation cross section near thresholds (see Jung 1992). In
another recent investigation by Jung (1994a), the thermal and nonthermal bremsstrahlung radiation powers including the first- and
second-order Coulomb correction using the ES factor have been discussed. However, in this paper we neglect the Coulomb
correction to the Bethe-Heitler formula near the cutoff spectral region and employ exclusively the Born approximation, since the
investigation of the screening effects of bound electrons is the main purpose of this paper. In the following section, we will discuss the
Thomas-Fermi model approximation to electron-atom bremsstrahlung radiation.

3. THOMAS-FERMI MODEL

As we discussed in § 2.1, our major difficulty comes from the evaluation of the Fourier transform of the atomic potential with
respect to the momentum transfer q. For convenience, the atomic potential can also be written in the form

Ze 2 _ n(r')
V(r) = - -- + e2 d3r ' -- (9)

r J Ir-r'l '

where Z is the nuclear charge and n(r') is the charge distribution for the bound electrons in the target atom. Then, the Fourier-
transformed potential is given by

4rte 2

V(q) qS- [Z - F(q)]. (10)

F(q) is called the atomic form factor:

F(q) =- f dar ' n(r')e iq''' (1 la)

4n( b )2 fo_q _ dxxn(x) sin (_x), (llb)



832 JUNG& LEE Vol.440

where x (= r'Zt/3/b) is the new dimensionless variable and t_(= bq/Z t/3) is the new dimensionless momentum transfer, b = (1/2X3n/
4)2/3 ao (_ 0.8853ao), and ao (= h2/me 2) is the Bohr radius. If the target is a bare nucleus with charge Z, the factor F(q) becomes zero.
When the target is an atom, F(q) becomes greater than zero because of the screening effects. In the Thomas-Fermi model, the
number density n(x) is given by (Condon & Odabasi 1980)

n_x)= 4-_ (12)

where X(x) is the solution of the Thomas-Fermi equation. Substituting equation (12) into equation (1 lb), we obtain

F(_) = Z[1 - _J(c_)], (13)

where

J(_) - dx X(x) sin (_x). (14)

Therefore, the screening effects of the bound electrons can readily be obtained by J(gl), i.e., the solution of the Thomas-Fermi
equation X(x). For many purposes it is convenient to use an analytic approximation solution in exponential form (see Mott &
Massey 1965):

X(x) g e -'x (s = 0.66). (15)

Although the above approximation, equation (15), is not very accurate (e.g., off by 22% at x = 1, compared with the exact
expression), this simple analytic expression of the Thomas-Fermi solution is adequate for estimating the total screening effects of
many electrons. It is not so difficult to show that this choice of the Thomas-Fermi solution is equivalent to the Bohr potential. Then,
we have the atomic form factor:

Z2(Z_/304

IF(Q)I 2 = rQ 2 + (z1/302] 2 , (16)

where Q = qao and _ = Sao/b (= 0.7455). With this factor, the radiation cross section for electron-atom bremsstrahlung becomes

(dxb_ 16Z2e2(e2_2 1 f q*_" Q3dQ
dO/e-.Atom -- 3 c \me2] _-i 0Qm,. (Q2 + _2)2, (17)

where _ -= _Z 1/3 (=0.7455Z t/3) and other parameters are already defined in equation (8). As we mentioned before, the Coulomb
correction is neglected in equation (17). The Coulomb correction in the atomic target is very different from that in the bare nucleus
target because of the complex atomic potential. The correction to electron-atom bremsstrahlung will be treated elsewhere (Jung
1994b) using the effective charge method in terms of the mean radius of the total potential. A comparison is made between
electron-atom and electron-nucleus bremsstrahlung cross sections in the following section.

4. COMPARISON

From equations (8) and (17), we can obtain the ratio of the electron-atom and electron-ion bremsstrahlung cross sections.

(dadd(o),-.Atom

(d(Tb/d°))e--z,

(dx_/dc°),--Atom

(dxdd_)_-.ze

= In _2 + (_0 - %,,/_-_-E)2J [_2 + (,/770+ _oo-7)_lr# _+ (v/7_o- _o,,/7-oT7-_)_lJ/ k,d'7_o-_o,,/7-o_--7-U '

(18)

In Figure 1 the graphical comparison is given for Cu (Z = 29) at % = 1500. In the hard spectral region, the ratio approaches unity
as _ approaches _0- However, in the soft spectral region, the ratio is far from unity, so that the screening effect is significant. The
screening effect is greater than 10% when the electron loses less than one-fifth of its initial energy. As _ increases, the screening effects
become less important. Also, Figure 2 gives the graphical comparison for Pb (Z = 82) at Eo = 1500. In this case the screening effect
is greater than 10% when the electron loses less than one-third of its initial energy because the screening effect is increasing with
decreasing number of electrons. As we see in equation (18), the screening effect becomes relatively less important with increasing
incident energy %. However, in the relativistic region, the screening effect increases with increasing _o (see Bethe & Salpeter 1957).

5. SUMMARY AND DISCUSSION

In this paper we provide a simple estimation of the atomic screening effects on the electron-atom bremsstrahlung process in the
nonrelativistic limit. The Born approximation is applied to describe both the initial and final states of the projectile electron. To
retain the analytic procedure, we use an analytic approximate solution of the Thomas-Fermi model. Applications were made to Cu
(Z = 29) and Pb (Z = 82). The results show that the screening effects are significant in the soft spectral region. In both cases (Cu and
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FIG. l.--Ratio (eq. [ 18]) of the electron-atom to electron-ion bremsstrahlung cross sections for Cu (Z = 29) at % = 1500
FIG. 2.--Ratio (eq. [ 18]) of the electron-atom to electron-ion bremsstrahlung cross sections for Pb (Z = 82) at c o = 1500

Pb), when the electron loses less than one-third of its initial energy, the screening effects are more than 10%. As the radiation

spectrum (E) increases, the screening effect becomes less important; i.e., the ratio of electron-atom to electron-ion bremsstrahlung

cross sections approaches unity rapidly. Also, the screening effect is decreasing with increasing Eo. These results will be useful for

obtaining correct information about the behavior of bound electrons in the target atom. Also, these results can readily be applied to

a number of associated problems in atomic physics, astrophysics, and plasma physics since we obtain a simple analytic solution.
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