
Final Report

Development and Demonstration of an Ada Test
Generation System

Kestrel Institute

August 8,1996

Contract NAS-9-19113

https://ntrs.nasa.gov/search.jsp?R=19980008067 2020-06-16T00:22:12+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42772153?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1. Summary

In this project we have built a prototype system that performs Feasible Path Analysis on
Ada programs: given a description of a set of control flow paths through a procedure, and a
predicate at a program point feasible path analysis determines if there is input data which
causes execution to flow down some path in the collection reaching the point so that the
predicate is true. Feasible path analysis can be applied to program testing, program slicing,
array bounds checking, and other forms of anomaly checking.

FPA is central to most applications of program analysis. But, because this problem is
formally unsolvable, syntactic-based approximations are used in its place. For example, in
dead-code analysis the problem is to determine if there are any input values which cause
execution to reach a specified program point. Instead an approximation to this problem is
computed: determine whether there is a control flow path from the start of the program to
the point. This syntactic approximation is efficiently computable and conservative: if there
is no such path the program point is clearly unreachable, but if there is such a path, the
analysis is inconclusive, and the code is assumed to be live.

Such conservative analysis too often yields unsatisfactory results because the
approximation is too weak. As another example, consider data flow analysis. A du-pair is
a pair of program points such that the first point is a definition of a variable and the second
point a use and for which there exists a detinition-free path from the definition to the use.
The sharper, semantic definition of a du-pair requires that there be a feasible definition-free
path from the definition to the use. A compiler using du-pairs for detecting dead variables
may miss optimizations by not considering feasibility. Similarly, a program analyzer
computing program slices to merge parallel versions may report conflicts where none exist.

In the context of software testing, feasibility analysis plays an important role in identifying
testing requirements which are infeasible. This is especially true for data flow testing and
modified condition/decision coverage.

Our system uses in an essential way symbolic analysis and theorem proving technology,
and we believe this work represents one of the few successful uses of a theorem prover
working in a completely automatic fashion to solve a problem of practical interest.

We believe this work anticipates an important trend away from purely syntactic-based
methods for program analysis to semantic methods based on symbolic processing and
inference technology. Other results demonstrating the practical use of automatic inference is
being reported in hardware verification, although there are significant differences between
the hardware work and ours. However, what is common and important is that general
purpose theorem provers are being integrated with more special-purpose decision
procedures to solve problems in analysis and verification.

We are pursuing commercial opportunities for this work, and will use and extend the work
in other projects we are engaged in. Ultimately we would like to rework the system to
analyze C, C++, or Java as a key step toward commercialization.



2. Technical Contributions

Our overall technical achievement was to demonstrate effective use of theorem proving
technology for program analysis. Effective means that the prover executes with tolerable
response times in an interactive system; that it discovers and exploits interesting program
properties that could not be determined by the usual analysis methods, and that it scales to
large problems.

Our detailed technical achievements include:

• New and effective methods for integrating symbolic evaluation and theorem

proving techniques.

• New methods for integrating linear arithmetic decision procedures into a
general theorem prover.

• New techniques for formalizing array operations within a theorem prover.

• Demonstration of the scalability of feasible path analysis on complex Ada

programs.

We will not go into a description of the prototype system or its technical approach, but
instead cite two papers included in the appendix. The first, called "Applications of Feasible
Path Analysis to Program Testing" describes the overall capabilities, structure, and
application of the system. The second describes our approach to combining symbolic
analysis and theorem proving methods, which is one of the key technical advances of the
work.

The references are:

Goldberg, and T.C. Wang, "Integration of Symbolic Evaluation and Specialized Inference
Components for Software Analysis, 1995, submitted for publication.

Goldberg, A., Wang, T.C., Zimmerman, D.. Applications of Feasible Path Analysis to
Program Testing, Proceedb_gs of the bzternational Symposhtm on Software Testing and
Analysis, Seattle, WA, Aug. 1994.



3. Tasks and results

On this research effort we executed most task as initially planned. We spent considerably
more effort than initially estimated on tuning the theorem prover to obtain as the best
simplification results we could. As a consequence we did not perform two tasks:
construction of a path optimizer and a test data generator. The table below summarizes our
effort.

Task Designator Task Description Status

F. 1. ATG Advanced Prototype
Development

F. 1.1. Platform done

F. 1.2. Ada Preprocessor

F. 1.2.1. Parse and Static Analysis done

F. 1.2.2.

F.1.2.3.

In-lining called sub-program
units

"Slicing" with respect to
control structure

Loop AnalysisF. 1.2.4.

done (task defn. modified,
we skolemize rather than

inline)

not done, determined

unnecessary

loops unrolled, and
abstracted

F. 1.4. I. Interface definition done

F. 1.4.2. Control Flow Graph done
Processing

F. 1.4.2.1. Variable partitioning done

F. 1.4.2.2. Variable substitution done
construction

F. 1.4.2.3. Data type axiomitization done

F. 1.4.3. Back substitution procedure done

F. 1.4.3.1. Path regular expression done
processing

F. 1.4.3.2. Control structures all but forward goto, and
execeptions

F. 1.4.4. Simplification done, very substantial task

F. 1.5. Satisfiabitity Tester done

F. 1.2.5. Subset Checker (Stub) done

F. 1.2.6. Axiom creation done

F.1.2.7. Control flow graph creation done

F. 1.3. Path Regular Expression done w/nice graphical
Generator interface that was not

initially tasked

F. 1.4. Path Analyzer



F. 1.6. Path Optimizer not done

F.i.7. Test Data Generator not done

F. 2. ATG Test Plan done

F.3. ATG Integration Plan done

F.4. Periodic Reviews and Final done

Report



4. Deliverables

We are including along with this report a combined User Manual and Installation
Instructions. In order to run the prototype it must be loaded onto a SUN SPARC computer
running under the Solaris Operating System. The system uses the Refine Ada language
system. This is a commercial product requiring a license. The delivered system includes a
Refine/Ada demonstration copy which can only be used for demonstration and evaluation

purposes.


