
20671.3

A Geometry Based Infra-structure for Computational Analysis and Design

Robert Haimes

Department of Aeronautics and Astronautics
Massachusetts Institute of Technology

haimes @ orville.mit.edu

8 7 /

Introduction

The computational steps traditionally taken for most engineering analysis (CFD, structural

analysis, and etc.) are:

• Surface Generation -- usually by employing a CAD system

• Grid Generation -- preparing the volume for the simulation
• Flow Solver -- producing the results at the specified operational point

• Post-processing Visualization -- interactively attempting to understand the results

For structural analysis, integrated systems can be obtained from a number of commercial vendors.

These vendors couple directly to a number of CAD systems and are executed from within the

CAD GUI. It should be noted that the structures problem is more tractable than CFD; there are

fewer mesh topologies used and the grids are not as fine (this problem space does not have the

length scaling issues of fluids).

For CFD, these steps have worked well in the past for simple steady-state simulations at the

expense of much user interaction. The data was transmitted between phases via files. In most

cases, the output from a CAD system couId go IGES files. The output from Grid Generators and
Solvers do not really have standards though there are a couple of file formats that can be used for a

subset of the gridding (i.e. PLOT3D data formats). The user would have to patch up the data or

translate from one format to another to move to the next step. Sometimes this could take days.

Specifically the problems with this procedure are:

File based. Information flows from one step to the next via data files with formats specified for
that procedure. File standards, when they exist, are wholly inadequate. For example, geometry

from CAD systems (transmitted via IGES files) is defined as disjoint surfaces and curves (as

well as masses of other information of no interest for the Grid Generator). This is particularly

onerous for modem CAD systems based on solid modeling. The part was a proper solid and
in the translation to IGES has lost this important characteristic. STEP is another standard for

CAD data that exists and supports the concept of a solid. The problem with STEP is that a

solid modeling geometry kernel is required to do anything with this type of file.

'Good' Geometry. A bottleneck in getting results from a solver is the construction of proper
geometry to be fed to the grid generator. With 'good' geometry a grid can be constructed in

tens of minutes (even with a complex configuration) using unstructured techniques. Adroit

multi-block methods are not far behind. This means that a million node steady-state solution

can be computed on the order of hours (using current high performance computers) starting

from this 'good' geometry. Unfortunately, the geometry usually transmitted from the CAD

https://ntrs.nasa.gov/search.jsp?R=19980009321 2020-06-16T00:30:24+00:00Z

systemis not 'good' in thegrid generatorsense.Thegrid generatorneedssmoothclosedsolid
geometry. It can take a week (or more) of interaction with the CAD output (sometimes by

hand) before the process can begin.

One-Way Comminucation. All information travels on from one phase to the next. This makes

procedures like node adaptation difficult when attempting to add or move nodes that sit on

bounding surfaces (when the actual surface data has been lost after the grid generation phase).

Until this process can be automated, more complex problems such as multi-disciplinary analysis

or using the above procedure for design becomes prohibitive. There is also no way to easily deal

with this system in a modular manner. One can only replace the grid generator, for example, if the
software reads and writes the same files.

Instead of the serial approach to analysis as described above, CAPRI takes a geometry centric

approach. This makes the actual geometry (not a discretized version) accessible to all phases of the

analysis. The connection to the geometry is made through an Application Programming Interface

(API) and NOT a file system. This API isolates the top level applications (grid generators, solvers

and visualization components) from the geometry engine. Also this allows the replacement of one

geometry kernel with another, without effecting the top level applications. For example, if

UniGraphics is used as the CAD package then Parasolid (UG's own geometry engine) can be

used for all geometric queries so that no solid geometry information is lost in a translation. This is

much better than STEP because when the data is queried, the same software is executed as used in

the CAD system. Therefore, one analyzes the exact part that is in the CAD system.

CAPRI uses the same idea as the commercial structural analysis codes but does not specify

control. Software components of the CAD system are used, but the control of the software session

is specified by the analysis suite, not the CAD operator. This also means that the license issues

(may be) minimized and individuals need not have to know how to operate a CAD system in
order to run the suite.

TheCAPRI API

CAPRI is asoftwarebuilding tool-kit thatrefersto two ideas; (1) A simplified hierarchical view

of a solid part integrating both geometry and topology definitions, and (2) Programming access to

this part and any attached data.

A complete definition of the geometry and application programming interface can be found in the
attached document "CAPRI: Computational Analysis PRogramming Interface". In summary the

interface is sub-divided into the following functional components:

1. Utility routines -- These routines include the initialization of CAPRI, loading CAD parts and

querying the operational status as well as closing the system down.

2. Geometry data-base queries -- This group of functions allow all top level applications to figure

out and get detailed information on any geometric component in the Volume definition.

3. Point queries -- These calls allow grid generators, or solvers doing node adaptation, to snap

points directly onto geometric entities.

4. Calculated or geometrically derived queries -- These calls calculate data from the geometry to

aid in grid generation.

5. Boundary data routines -- This part of CAPRI allows general data to be attached to Boundaries

so that the boundary conditions can be specified and stored within CAPRI's data-base.

6. Tag based routines -- This part of the API allows the specification of properties associated with

either the Volume (material properties) or Boundary (surface properties) entities.

7. Geometry based interpolation routines -- This part of the API facilitates Multi-disciplinary

coupling and allows zooming through Boundary Attachments.

. Geometric modification -- This will be used for an automated design system where the goal of

the application is to change the geometry. Routines that allow this have the advantage that if the

data is kept consistent with the CAD package, then the design can be incorporated directly and
therefore is manufacturable.

Status of This Years Work

. The white paper was written which describes the details of this new system. This has become

the beginning of the documentation for CAPRI and is attached to the proposal as mentioned
above. It includes the description of all but the last group of functions.

, A first cut of the API was written using Parasolid as the geometry engine. This choice is made

because both GE and Pratt & Whitney use UniGraphics as their CAD software. ICAD also
uses Parasolid as it's low level solid modeller, therefore this geometry system is also

supported.

Though this was not specified in the proposal, a CAPRI port to Parametric Technology's
Pro/ENGINEER was also performed. This gave some reassurance that CAPRI's topology

and geometry definitions were broad enough to support other solids-based CAD systems.

Functional components 1-6 (listed above) have been written and tested using both Parasolid
and Pro/TOOLKIT (the API into Pro/ENGINEER). The C and C++ interfaces are complete.

The FORTRAN interface will be completed by the end of the current contract.

, Component 7, zooming and multi-disciplinary coupling, will be written and tested before this

contract expires. Though simple in concept (mapping data to and extracting interpolated data
from the actual geometry), the generalization is complex. To properly support turbomachinery

applications it was necessary to include the idea of "replication" and movement of Volumes.
This allows matching of the stator and rotor passages when the entire wheel is not simulated.

Common visualization techniques like "mirroring" become a simple form of replication.

. On November 18, the first beta version of CAPRI will be delivered to Michael Aftosmis at
NASA Ames Research Center. He is the author of a Cartesian mesh/solver external

aerodynamics CFD system. This system requires the tessellation of surfaces, one of the data
entities associated with the Face entity definition. It should be a simple port. Once complete,

the point-query components can be used to snap surface grid nodes on the actual geometry (not
the triangles of the tessellation). Aftosmis will use both the Parasolid version (he gets parts

from McDonnell-Douglas -- they also use UniGraphics) and he has access to a
Pro/ENGINEER license.

Statement of Work

. CAPRI and industry

Clearly for this work to be successful, it must be used. The easiest way to convince industry of
its value is to work on a topical problem of interest that current methods do not provide timely

results. The following will be attempted in conjunction with Frank Sagendorph (Manager -

Product Definition & Analysis Methodologies at GE Aircraft Engines):

GE Aircraft Engines has a well established "Master Model" strategy in which UG part

files and assemblies define a common geometry that is shared with discipline specific

engineering and manufacturing applications. On the engineering side, these applications

typically have to prepare the geometry for meshing, build the mesh, apply boundary

conditions, solve the appropriate physics problem, display the results for interpretation and,

if necessary, initiate another design iteration by changing the geometry.

Although UG is GE's core geometry modeler, frequently GE needs to operate on the

geometry in a consistent fashion outside of the UG system. GE has developed pieces of
such a system, but there is room for improvement in both the fidelity of the geometric

operations as well as the functionality for mesh creation and boundary condition

application. A current port of the CAPRI system is based on a Parasolid geometry kernel,

as is UG. Therefore GE's interest is to evaluate CAPRI on a problem of considerable

interest to Aircraft Engines to see if can fill in some of their missing capabilities.

Specifically, we will use a high pressure turbine blade as the geometry for the evaluation.

These blades have internal serpentine cooling passages which produce an extremely

complex geometric definition. We have constructed UG models of these blades and these
models would form the basis for our evaluation. The analysis models would address CFD,

Heat Transfer and Mechanical Design needs. The evaluation will focus initially on these
areas:

A. Assessment of the overall accuracy of the geometry import from and export to
UG.

B. Ability to define and execute simple geometric operations inside CAPRI to prepare

the geometry for meshing. For example, we might like to import the entire geometry and
then de-construct it to isolate the airfoil, the platform, and the shank regions.

C. Productivity gains which would could be attributed to the integrated graphics

displays of CAPRI (the Geometry Viewer).

E. Ease of integration with our existing in-house codes which generate meshes and

apply boundary conditions for structural and CFD analysis models.

F. Ease of integration with commercial packages such as ICEM-CFD and ANSYS.

This evaluation will be conducted on HP workstations since they comprise the bulk of GE
AE's technical desktop computing resources.

Future areas of interest would include the effective use of UG parametric models with

CAPRI for more rapid design iterations.

. CATIA

The CAD package CATIA will be the next to be integrated into the CAPRI framework. The

proper licenses will be obtained to allow access to CATIA parts and the geometry kernel.

CATIA is the only other major CAD vendor used by the aerospace industry currently not

covered. This will allow Boeing access to CAPRI and therefore use and contribute to this
work.

. Geometry Creation and Modification

Once CATIA has been ported, the entire issue of modification and creation of solid-based

geometry can be addressed. At a minimum, functions like scribing and splitting existing

surface are required for grid generation of structured blocks as well as being able to bound and

invert existing solids to create the fluid volume.

With the knowledge of the internals of three major CAD systems, a group of functions can be

specified so that these operations are leasable across these CAD packages. The goal is to

produce an API that is both conceptually simple and very powerful. Boolean operations on

solids may be the foundation for this part of CAPRI.

. Commercial Grid Generators

The turbomachinery industry is beginning to use commercial grid generators. This causes a

problem for CAPRI specifically and automated analysis and design systems in general. The

work here requires that the grid generator use the solid model during the meshing and update

the information in CAPRI with the surface discretization when complete. Wrappers can be

written to merge the operations but a more complete integration is desirable. Attempts will be
made to convince the vendors of these CFD grid generators to hook up to CAPRI (the

packages include ICEM-Hexa, ICEM-Tetra, GridGen and GridPro).

, Assistance with Object Oriented DataBase coupling

NASA Lewis Research Center personnel are now looking into the use of Object Orientated

DataBases with and within analysis suites. CAPRI provides a natural test-bed for this work.

Assistance will be rendered in using this framework. Parasolid will the first CAD kernel used
in that it is easy to intercept the CAD part definition and change how and where it is read and
written.

CAPRI: Computational Analysis PRogramming Interface

PreRelease Manual

Robert Haimes

Massachusetts Institute of Technology

haimesgorville.mit.edu

November 5, 1997

A Solid Modeling Based Infra-structure for
Engineering Analysis and Design

Abstract

CAPRI is a CAD-vendor neutral application programming interface designed for the con-

struction of analysis suites and design systems. By allowing access to the geometry from

within all modules (grid generators, soh'ers and post-processors) such tasks as meshing on

the actual surfaces, node enrichment by soh'ers and defining which mesh faces are bound-

aries (for the soh'er and visualization system) become simpler. The overall reliance on file

'standards' is minimized.

This 'Geometry Centric' approach makes multi-physics (multi-disciplinary) analysis

codes much easier to build. By using the shared (coupled) surface as the foundation, CAPRI

provides a single call to interpolate grid-node based data from the surface discretization in

one volume to another. Finally, design systems are possible where the results can be brought

back into the CAD system (and therefore manufactured) because all geometry construction

and modification are performed using the CAD system's geometry kernel.

License

This software is being provided to you, the LICENSEE, by the Massachusetts Institute of

Technology (M.I.T.) under the following license. By obtaining, using and/or copying this

software, you agree that you have read, understood, and will comply with these terms and

conditions:

Permission to use, cop3", modify and distribute, this software and its documentation for

an 3" purpose and without fee or royalty is hereby granted, provided that you agree to comply

with the following copyright notice and statements, including the disclaimer, and that the

same appear on ALL copies of the software and documentation:

Copyright 1997 by the Massachusetts Institute of Technology. All rights reserved.

THIS SOFT\\\-_RE IS PROVIDED "AS IS", AND M.I.T..MAKES NO REPRESEN-

TATIONS OR \\:-_RRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT

NOT LIMITATION, M.I.T. MAKES NO REPRESENTATIONS OR \\\4.RRANTIES OF

MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT

THE USE OF THE LICENSED SOFT\V-kRE OR DOCUMENTATION \\'ILL NOT IN-

FRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER

RIGHTS.

The name of the Massachusetts Institute of Technology or M.I.T. may NOT be used

in advertising or publicity pertaining to distribution of the software. Title to copyright in

this software and any associated documentation shall at all times remain with M.I.T., and

USER agrees to preserve same.

2

Contents

1 Introduction

CAPRI

2.1 Geometry and Topology

2.2 Boundaries

2.2.1

2.2.2

2.2.3

2.2.4

2.3

Boundary Discretization

Special Groupings

Boundary Attachments

Boundary Tags

The CAPRI API

9

10

12

13

14

14

14

15

A Utility Calls 20

A.1 Start - Initialize CAPRI 20

A.2 LoadPart Load Volume(s) from CAD part file 20

A.3 SavePart - Save Volume(s) to CAD part file 20

A.4 NumVolumes - Returns the Number of Active Volumes 20

A.5 Stop - Terminate CAPRI "..... 21

B Geometry Data-Base Queries 22

B.1 GetNode - Returns the Data for a Node 22

B.2 GetEdge - Returns the Data for an Edge 22

B.3 GctFace - Returns the Data for a Face 23

B.4 GetBoundary - Returns the Data for a Boundary 24

B.5 NewBoundary - Creates a New Boundary for the Volume 24

B.6 MoveFace - Assigns a Face to a Boundary 25

B.7 NameVolume - Assign a Title to a Volume 25

B.8 GetVolume - Returns the Data for a Volume 25

B.9 Box - Return the Bounding Coordinates for the Volume 26

3 The Geometry Viewer 18

C Point Queries 27

C.1 PointOnEdge- ReturnstheCoordinatesOn theEdge 27

C.2 NearestOnEdge- FindstheNearestPositionto the Edge 27

C.3 PointOnFace- Returnsthe CoordinatesO11the SpecifiedFace 28

C.4 NearestOnFace- Findsthe NearestPositionto the Face........... 28

C.5 NormalToFace - Finds the Normal at the Specified Parameters 29

C.6 InEdge - Is the Point Contained in the Edge 29

C.7 InFace - Is the Point Contained oll the Face 30

C.8 InBoundary - Is the Point Contained on the Boundary 30

C.9 InVolmne - Is the Point Contained within the Volume 30

D Calculated or Geometrically Derived Queries 31

D.1 LengthOfEdge - Returns the arc-length of tile Edge 31

D.2 CurvOfEdge - Gets the tangent and curvature for an Edge point 31

D.a MaxCurvOfEdge - Gets the maximum curvature for the attached Faces . . 32

D.4 CurvOfFace Gets the principal directions and curvature at a Face point 32

D.5 MaxCurvOfFace Returns the maximum curvature of a Face point 33

E Boundary data routines

E.1

E.2

E.3

E.4

E.5

E.6

E.7

E.8

E.9

E.10

E.11

34

SetDiscret - Declares the Discretization for the Boundary 34

GetDiscret - Returns data about the Discretization for the Boundary . . . 37

GetCoord - Returns the Boundary Discretization Coordinates 38

GetTris - Returns the Disjoint Triangle Discretization 38

GetQuads - Returns the Disjoint Quadrangle Discretization 39

GetQMesh - Returns the Quad-.Mesh Discretization 39

Get3DNode - Translates the Boundary node to 3D node number 40

SetSpecial - Specify/Update a Special Grouping 41

GetSpecial - Return the info for a Special Grouping 41

GetISpecial - Get a Special Grouping by Index 42

DelSpecial - Remove a Special Grouping 42

F Geometry Based Interpolation Routines " 43

F.1 SetAttach- Specify/UpdateaBoundaryAttachment............. 43

F.2 GetAttach- Geta BoundaryAttachment 44

F.3 GetIAttach- Geta BoundaryAttachmentby Index 44

F.4 DelAttach- Removea BoundaryAttachment 45

F.5 GetDisplace- Getsthe Volume'sdisplacementmatrix 45

F.6 SetDisplace- SettheVolume'sdisplacementmatrix 46

F.7 GetReplicate- GetstheVolume'sreplicationdata 46

F.8 SetReplicate- Setthe Volume'sreplicationdata 47

F.9 InterAttach- Interpolateto Produce/UpdateBoundaryAttachment 47

G Tag

G.1

G.2

G.3

G.4

G.5

G.6

G.7

G.8

Routines 48

GetNumVolume- Returnsthe numberof VolumeTags............ 48

GetVolume- Getsthe VolumeTag 48

GetIVolume- Getsthe VolumeTagby index 48

SetVolume- Setsthe VolumeTag 49

GetNumBoundary- Returnsthenmnberof BoundaryTags 49

GetBoundary Returnsthe BoundaryTag 49

GetIBoundary- Getsthe BoundaryTagby index............... 50

SetBoundary- SetstheBoundaryTag 50

H Return Codes 51

1 Introduction

The computational steps traditionally taken for Computational Fluid D,'namics (CFD),

Structural Analysis, and other simulation disciplines (or when these are used in design) are:

Surface Generation

The surfaces of the object(s) are generated usually from a CAD system. This creates

the starting point for the analysis and is what is used for manufacturing.

Grid Generation

These surfaces are used (with possibly a bounded outer domain) to create the vol-

ume of interest. Usually for the analysis of external aerodynamics, the aircraft is

surrounded by a domain that extends many body lengths away from the surfaces.

This enclosed volume is then discretized (subdivided) in one of many different ways.

Unstructured meshes are built by having the subdivisions usually comprised of tetra-

hedral elements. Another technique breaks up the domain into sub-domains that

are hexahedral. These sub-domains are fllrther divided in a regular manner so that

individual cells in the block can be indexed via an integer triad.

Flow Solver or Simulation

The soh'er takes as input the grid generated by the second step (and information about

how to apply conditions at the bounds of the domain). Because of the different styles

of gridding, the soh'er is usually written with ability to use only one of the volume

discretization methods. In fact there are no standard file types, so most soh'ers are

written in close cooperation with the grid generator. For fluids, the solver usually

simulates either the Euler or Navier-Stokes equations in an iterative manner, storing

the results either at the nodes in the mesh or in the element centers. The output of

the soh'er is a file that contains the solution.

Post-processing Visualization

After the solution procedure has successfully completed, the output from the grid

generator and the simulation are displayed and examined in a graphical manner by

the fourth step in this process. Usually a workstation with a 3D graphics adapter is

used to quickly render the output fl'om data extraction techniques. The tools (such as

iso-surfacing, geometric cuts and streamlines) allow the examination of the volumetric

data produced by the solver. Even for steady-state solutions, much time is usually

required to scan, poke and probe the data in order to understand the physics in the

flow field.

These steps have worked well in the past for simple steady-state simulations at the

expense of much user interaction. The data was transmitted between phases via files (the

Figure1: The TraditionalComputational Analysis Suite

arrows in Figure 1). In most cases, the output from a CAD system could go to IGES files.

The output from Grid Generators and soh'ers do not really have standards though there are

a couple of file formats that can be used for a subset of the problem space (i.e. PLOT3D

data formats for CFD). The user would have to patch up the data or translate from one

format to another to move to the next step. Sometimes this could take d_'s. Specifically,

the problems with this procedure are:

• File based

Information flows from one step to the next via data files with formats specified for

that procedure. Historically, this allows individuals or groups to work in isolation on

the construction of one of these components; unfortunately the user (or team) suffers

greatly because of the lack of integration. In many cases the files that get used do not

contain all the information required to couple all components so that the user can be

removed fi'om the mechanics of running the suite.

• 'Good' Geometry

A bottleneck in getting results from a soh'er is the construction of proper geometry

to be fed to the grid generator. With 'good' geometry a grid can be constructed in

tens of minutes (even with a complex configuration) using unstructured techniques.

Adroit multi-block methods are not far behind. This means that a million node

CFD steady-state solution can be computed on the order of hours (using current high

performance computers) starting fiom this 'good' geometry. Unfortunately, geometry

from CAD systems (especially when transmitted via IGES files) is not 'good' in the

grid generator sense. The data is usually defined as disjoint and unconnected surfaces

and curves (as well as masses of other information of no interest for the mesh). The

grid generator needs smooth closed solid geometry. It can take a week (or more) of

interaction with the CAD output (sometimes by hand) before the process can begin.

This is particularly onerous if the CAD system is based on solid modeling. The

part was a proper solid with topology and in the translation to IGES has lost these

important characteristics.

• One-Way Comminucation

All information travels on from one phase to the next. This makes procedures like

nodeadaptationdifficult whenattemptingto addor movenodesthat sit onbounding
surfaces(whenthe actualsurfacedatahasbeenlostafter thegrid generationphase).
In fact, the informationpassedfrom phaseto phaseis not enrichedbut is filtered.

Until thisprocesscanbeautomated,morecomplexproblemssuchasMulti-disciplinary
analysisor usingthe aboveprocedurefor designbecomesprohibitive. There is alsono
way to easilydealwith this systemin a modularmanner.Onecanonly replacethe grid
generator,for example,if thesoftwarereadsandwritesthe samefiles.

Procedureslike zooming,definedwithin the NumericalPropulsionSystemSimulation
(NPSS),aredifficult to acheivewhenthe surfacedefinitionfor the couplingbetweenthe
simulationsis lost.

8

2 CAPRI

Instead of the serial approach to analysis as described above, CAPRI uses a geometry

centric approach. This makes the actual geometry (not a discretized version) accessible to

all phases of the analysis. The connection to the geometry is made through an Application

Programming Interface (API) and NOT a file system. This API isolates the top level

applications (grid generators, solvers and visualization components) from the geometry

engine. Also this allows the replacement of one geometry kernel with another, without

effecting the top level applications. For example, if UniGraphics is used as the CAD package

then Parasolid (UG's geometry engine) can be used for all geometric queries so that no solid

geometry information is lost in a translation. If Pro/E is used then Pro/Toolkit is accessed

when geometric information is required. See Figure 2.

CAD Gridding ---q Solving

I

,L

i I API

I I
Geo. Kernel Geo. DataBase

Figure 2: The CAPRI based Computational Analysis Suite

It is very important to consider the design goals when building a new software architec-

ture. Without properly setting a broad foundation, the system may not be able to function

as desired. Tile goals for CAPRI are:

Modular

The system must support a modular or building-block method for construction. This

facilitates a plug and play approach at the top level as well as the underlying geometry

kernel.

.Multiple languages

It is important to support FORTRAN, C and C++. Many CFD codes are currently

written in FORTRAN. On many machines, the FORTRAN compiler produces more

highly optimized code, giving much better performance. Forcing the core of these

algorithmsto anotherlanguage,just becausetile restofthesystemis in that language,
is not bepart of thephilosophyfoundin CAPRI.

Transientsolutions

Thissystemmustsupportunsteadysimulationsaswellassteady-state,whichinclude
the underlyinggeometrychangingwith time.

Allow Multi-disciplinecouplingandzooming
Thissystemmustbegeneralenoughto allowcouplingfrom codesof otherdisciplines
(includingbut not limited to - structural analysis,heattransfer,acousticcodes).In
fact thecouplingcouldbeclose,in that theanalysiscodecouldbemadea part of the
overalldesignsystem.

2.1 Geometry and Topology

To insurethat thedesigngoalscanbemet andtheresultinginterfaceis notoverlycomplex,
it is crucial that the geometrydescriptionbe uncomplicated(but not too simpleas to
impair functionality).Mostsystemsthat dealwith CADdatamakethedistinctionbetween
geometry(points,curvesandsurfaces)andtopology(thehierarchicalconnectionsbetween
geometricentities).CAPRI mixesthesein asimplegeometrydatadefinition.

Thegeometryandtopologyaredefinedin CAPRI in the followingmanner:

• Nodes

Thesearethesimplestentitiesandarejust pointsin 3 space.

• Edges
Edgesarecurves.EachEdgeis boundedby two uniqueNodes.The Edge is param-

eterized with t, where the first Node has a value at train and the second bounding

Node has a value of tmax. The value of tmin is always less than trnaz.

To aid in plotting, there is an attached discretization of the curve. This is defined as

a poly-line with a specified length. The line is defined starting at the first Node and

terminates with the second.

Note: Circles, ellipses and other closed loops found in the original CAD definition are

broken up by CAPRI so that there is no parameterization that is periodic. Any closed

loop will be broken in two and therefore may have two Nodes added so that the Edge

can be properly" bounded.

• Faces

Faces are parameterized (u, v) surfaces. The parameter range for u is u_i_ to Umax

and v ranges fl'om t;rnin to Vmax,, but the relationship between (_, v) and the bounding

10

Edges is not as simple as the Edge-Node definitions. This is because Faces may be

bounded bv more than 4 Edges. In fact, a Face can be a very complex surface where

the ranges of the parameterization are only limits and should not be used throughout

its entirety (i.e. there may be a hole or the result of some trimming).

The bounds of the Face are defined by closed set(s) of Edges. There may be one or

more of these loops for each Face. Stored with each defining Edge is an orientation so

_hat it is known whether to look at the Edge as specified or in the opposite sense. The

loop is an ordered suite that defines the orientation of the Face. The outer loop(s),

specify the boundary of the surface, and traverse the Face in a right-handed manner

- defining the outward pointing normal (out of the volume). Any holes are specified

by a left-handed traversal of Edges. See Figure 3.

Face

Node

Figure 3: A simple Volume with a cylinder cutout - Edges marked for front Face

Each Edge can be found bounding two Faces, one in the forward and one in the

opposite sense.

Again, to aid in plotting and to have a complete representation of this (possibly

complex) Face, there is an attached discretization. This is defined as suite of disjoint

triangles of a specified length. Each triangle is right-handed with the normal pointing

out of the volume.

Note: Cylinders, and other periodic surfaces found in the original CAD definition

are broken up by CAPRI so that the parameterization is not periodic. Any periodic

surface will be broken in two and therefore may have two Edges added so that the

Face's parameter space is simple.

• Boundaries

Boundaries are simply collections of one or more Faces. These entities are the connec-

11

tion betweenthegeometryandtherestof theanalysissuite,asdescribedabove.The
Facesneednot coupletogether(i.e.,a periodicboundaryupstreamanddownstream
from a turbineor compressorblade)but areusedto insurethat the grid generation
knowsthat thesesurfacescouldbe treatedin specialways. And, the solverknows
whichboundaryconditionto apply to what sectionof the resultantmesh.

Boundarieshaveanassociatedname(i.e., far-field,body,wing andetc).

Volumes

Volumesarecompletelyclosedregionsof 3space.Volumesareboundedby thesumof
all of the Facesfoundin theBoundaries.TheseFacesmatchup at thesharedEdges,
that terminateat the Nodes.CAPRI canhandleoneor moreVolumesat a time.

Each Volume can be named with strings like; 'Fluids passage', 'Blade', and etc.

Volumes may have a number of associated Tags to indicate global conditions for the

discipline. Each Tag has an assigned value string. For example; the Volume 'Fluids

passage' may have the Tags 'gamma' (with the value string of '1.4') and 'smoothing'

(with the associated string '0.2 0.02').

The geometric entities described above are handled within CAPRI with integer handles

or indices. Each Volume is assigned a handle when loaded. All entities contained within

that volume (Nodes, Edges, Faces and Boundaries) are given indices ranging from 1 to the

total number of entities in that class. Therefore, it usually requires 2 handles to describe

an entity, the volume and the entity indices.

There is a special Boundary index (zero) which refers to all currently unassigned Faces.

When a Volume (or number of Volumes) is first read from the CAD system, this Boundary

is fully populated with all Faces. As Faces become assigned, they are pulled fl'om this

Boundary and put in the appropriate place.

2.2 Boundaries

Boundaries are the pivotal data objects used within CAPRI. Boundaries are the entities

that the grid generators should build the exposed parts of the mesh about. Different solver

functions (boundary conditions) are then applied across these facets of the volume. When

.Multi-disciplinary analysis are run, boundaries are where these different physical models

share information to drive the coupled solution.

The data that comes flom CAD systems does not ahvays provide a proper separation

of surfaces (Edges, as specified above) that coincide with what is required by the analysis

suite. This is for two reasons; (1) the CAD operator, by the order of construction, may

produce artifacts (such as sliver surfaces) or detail at a level more complex than the analysis

12

suiterequires.(2) Curvedsurfacessuchasfilletshavebreaks,onwherethesesurfacesmate
with othersurfaces,usuallynot at the centerof curvaturewherethe analysissuitewould
requirethe edgeof the boundary.

The first of theseproblemsis resolvedin CAPRI by allowing the collection of CAD

surfaces. The analysis suite can query this collection and get to the detailed CAD surfaces

if required. This has the advantage over what is done in automated techniques used for

grid generation in that the CAD artifacts can be meshed through as opposed to becoming

features in the grid. For example, a sliver surface would end up completely resolved, in an

automated surface gridding procedure, requiring potentially large numbers of small cells in

those regions.

Scribing and splitting CAD surfaces so that the analysis boundaries can be defined is

a function of CAPRI. Initially this is done interactively or through program control (if the

analysis suite can determine where to break the surfaces). In the filture, work will be done

to attempt to automate this procedure.

Interactive flmctions are also provided within the CAPRI framework to collect these

CAD surfaces and produce the boundaries as well as setting up the information to run the

entire suite.

2.2.1 Boundary Discretization

Each Boundary can have an attached discretization. This discretization can be from dif-

ferent mesh topologies that touch the Boundary. There are 3 types of cell faces that build

this structure:

• Disjoint Triangles - 3 bnodes per entity

• Disjoint Quadrangles - 4 bnodes per entity

• Quad-Meshes - these are produced from grid 'planes' of structured blocks

These entities are supported via Boundary nodes (bnodes). The bnode numbering used

is local within the Boundary. The node numbering used differentiates between the nodes

in the non-block regions (formed by the disjoint faces) and the structured blocks. Figure 4

shows a schematic of the bnode space, ndnode is the number of nodes for the non-block

(disjoint primitive) grid. Each Qua&Mesh (m) adds .Vim * Ndm * :\'Kin nodes to the node

space (where NI, NJ and ArK are the number of nodes in each direction). The node

numbering within the block follows the memory storage, that is, (i,j,k) in FORTRAN and

IkJ[j][i] in C. The bnode number = base + i + (j - 1) • _\'Im + (k - 1) *-\'Im * XJm.

13

Notes:

1) All indicesstart at 1.
2) Either NI, NJ or NK must be 1 for each Quad-Mesh.

3) Disjoint Tri and Quad definitions may contain nodes defined within the Quad-_Ieshes.

Quad-Meshes

1 ndnode nbnode

Figure 4: Boundary Node Space

2.2.2 Special Groupings

Special groupings are simply lists of bnodes that may be required by the solver's boundary

condMon routines. This is to flag "special" nodes. For example, if IBlanking is used,

there could be a list that contains the IBlanked nodes. If nodes along the Edges between

Boundaries need to be treated differently fi'om those interior nodes, then these edge nodes

can be placed in a Special group.

2.2.3 Boundary Attachments

Boundary attachments are collections of data that are associated with the bnodes of the

Boundary discretization. The attachments are identified by a name and can have an addi-

tional string that can indicate information on how and/or when the attachment was created.

These attachments can be used to communicate boundary level data between modules (i.e.,

heat transfer to the visualization module), perform Zooming or otherwise couple like simu-

lations at boundaries and perform multi-disciplinary coupling between Volumes.

2.2.4 Boundary Tags

Tags are character strings associated with the Boundary. Each string has an attached value

string. These Tag entities are useful for specifying conditions or material information for

the application of boundary conditions by the soh'er. For example; the Boundary named

'Wall' may have a Tag 'temperature' with the associated value '300K'.

14

2.3 The CAPRI API

The CAPRI API issub-dividedinto the followingcomponents:

1. Utility routines
Theseroutinesincludeinitializationof CAPRI, loadingCAD partsandqueryingsta-

tus aswellasclosingtile systemdown:

• gi_uStart- InitializeCAPRI

• gi_uLoadPart- Loadsa Volumeor numberof Volumesfrom a CAD part

• gi_uSavePart-Saveawaytile CAD part

• gi_uNumVolumesReturnsthe numberof activeVolumes

• gi_uStop- TerminatesCAPRI

2. Geometrydata-basequeries
Thisallowsall top levelapplicationsto figureout andgetdetailedinformationonany

geometriccomponentin theVolumedefinition:

• gi_dGetNode- Returnsthe data for a Node

• gi_dGetEdge- Returnsthe data for an Edge

• gi_dGetFace- Returnsthedata for a Face

• gi_dGetBoundary- Returnsthe data for a Boundary

• gi_dXewBoundary- Createsa newBoundaryfor the\blume

• gi_dMoveFace- Movesa Facefrom oneBoundaryto another

• gi_dNameVolume- Assignsa string to a Volume

• gi_dGetVolume- Returnsthe nameof the Volumeand the numberof Nodes,
Edges,FacesandBoundariesattached

• gi_dBox- Returnsthe min andmaxcoordinatesfor theVolume

3. Pointqueries
Thesecallsallowgrid generators,or solversdoingnodeadaptation,to snappoints

directly ongeometricentities:

• gi_qPointOnEdge- Returnsthe point at the t parameter and optionally derivi-

tives

• gi_qNearestOnEdge - Returns the t parameter given a point

• gi_qPointOnFace - Returns the point at the (u,v) parameters and optionally

derivitives

15

• gi_qXearestOnFace- Returnsthe (u,t,) parametersgivena point

• gi_qXormalToFace- Returns the normal to the given (u, v) parameters

• gi_qInEdge - Returns whether the given point is on the Edge.

• gi_qInFace - Returns whether the given point is in the Face or not (in some hole

or trimmed-off region)

• gi_dInBoundary - Returns whether the given point is in the Boundary and asso-

ciated Face index if it is.

• gi_qInVolume - Returns whether the given point is contained within the specified

Volume

4. Calculated or geometrically derived queries

These calls calculate data fl'om the geometry to aid in grid generation:

• gi_cLengthOt-Edge - Returns the arc-length of the Edge

• gi_cCurvOfEdge - Returns the curvature at a point on the Edge

• gi_cMaxCurvOfEdge - Returns the maxinmm Face curvature of a point on the

Edge

• gi_cCurvOfFace Returns the curvatures and principal directions at a point on

the Face

• gi_cMaxCurvOfFace - Returns the maximum curature of a point on the Face

5. Boundary data routines

This part of CAPRI allows general data to be attached to Boundaries so that the

boundary conditions can be specified and stored within CAPRIs data-base:

• gi_bSetDiscret - Sets the discretization for the Boundary

• gi_bGetDiscret - Returns the discretization for the Boundary

• gi_bGetCoord - Returns the discretization coordinates

• gi_bGetTI'is - Returns the disjoint triangle diseretization

• gi_bGetQuads - Returns the disjoint quad discretization

• gi_bGetQMesh - Returns the quad-mesh discretization

• gi_bGet3DNode - Translate boundary node index to 3D mesh node

• gi_bSetSpecial - Set/Update a Special grouping

• gi_bGetSpecial - Return data about a Special grouping

• gi_bGetISpecial - Return data about a Special grouping (by index)

• gi_bDelSpecial - Removes a Special grouping

16

6. Geometrybasedinterpolationroutines
Thispartof theAPI facilitates._Iulti-disciplinarycouplingandallowszoomingthrough
BoundaryAttachments:

• gi_iSetAttach- Set/Update a Boundary Attachment

• gi_iOetAttach - Return data about a Boundary Attachment

• gi_iGetIAttach - Return data about a Boundary Attachment (by index)

• gi_iDelAttach - Removes a Boundary Attachment

• gi_iOetDisplace - Returns Volume displacement matrix used for interpolation

• gi_iSetDisplace Specifies Volume displacement matrix

• gi_iOetReplicate - Returns Volume replication used for interpolation

• gi_iSetReplicate - Specifies Volume replication for interpolation

• gi_iInterAttach - Interpolate to produce/update Boundary Attachment

7. Tag based routines

This part of the API allows the specification of properties associated with either tt_e

Volume or Boundary entities:

• gi_tOetNurnVolurne Returns the number of Volume Tags

• gi_tOetVolume Return associated string for the specified Tag

• gi_tOetIVolurne - Return data for the specified Tag (by index)

• gi_tSet\blurne - Set/Update a Tag

• gi_tOetNurnBoundary - Returns the number of Boundary Tags

• gi_tOetBoundary - Return associated string for the specified Tag

• gi_tOetIBoundary - Return data for the specified Tag (by index)

• gi_tSetBoundary - Set/Update a Tag

8. Geometric modification

This will be used for an automated design system where the goal of the application

is to change the geometry. Routines that allow this have the advantage that if the

data is kept consistent with the CAD package, then the design can be incorporated

directly and therefore is rnanufacturable.

Not yet defined!

17

3 The Geometry Viewer

The Geometry Viewer is not an integral part of the CAPRI API, but is a stand-alone tool-

kit that augments CAPRI. It is designed to be able to become the visual interface to the

entire analysis suite,

The Geometry Viewer has been written to be modular and attachable to applications

that that deal _'itt_ point, line, surface and volume data. The Vie_ver has two execution

modes; (1) normal, serial, execution where program control is passed to the graphics, the

data is examined and then when the user is satisfied, execution resumes in the calling pro-

gram. (2) Multi-threading where the data is shared between to executing threads (applica-

tion and graphics) and both can be concurrently active allowing viewing as the application

runs. This is particularly useful in the debugging of grid generators.

The user interface is multi-windowed and has the same look and feel as Visual3 appli-

cations and the pV3 Server and Viewer. Because the Geometry Viewer was not designed as

a scientific visuaIization system, there is onIy the ability to deal with grids and geometry.

More effort has been put towards lighting models and the ability to light either faceted (nor-

reals based on cell faces) as well as smoothly (normals based on nodes). The 2D window is

only used for a planar cutting surface so that the interior of volumes may be examined.

The Geometry Viewer has the following features:

• OpenGL

All 3D and 2D rendering is performed in OpenOL to achive high performance and

good animation.

• 3D Viewing

Items may be rendered in a specified color or colored via scalars that are either defined

at nodes or facets. The line and surface primitives may be either indexed (based on a

list of points) or non-indexed. The following attributes may be interactively adjusted:

- Points: Rendering on/off

- Lines: Rendering on/transparent/off, Moved forward (not obscured by surfaces),

Orientation (direction) on/off

- Surfaces: Rendering on/transparent/off, Lighting faceted/smooth, Orientation

(front vs. back) on/off, .Mesh on/moved forward/off.

• 2D Viewing

The intersection of the pIane and lines are ptotted as points in the 2D window. Inter-

sected surfaces are displayed as curves. Any 3D mesh that is cut is displayed as the

intersected cell faces (lines) within the volume.

I8

• PickingandLocating.Picking(pointingat andselectingobjects)in the3Dwindowis
supported.This isusefulin CAPRIfor speci_'ingtheBoundaryentitiesinteractively.
Locating (3D pointing and retrieving3 spacecoordinates)is useflll for interactive
modificationof geometry.

• Data-baseA windowis dedicatedto theobjectswithin theGeometryViewer.This is
werethe interactivecontrolof theplotting attributesis performed.

19

A Utility Calls

A.1 Start - Initialize CAPRI

icode = gi_uStart()

ICODE- IG_USTART()

This must be the first call to CAPRI. It initializes the system.

I: icode Return code

A.2 LoadPart - Load Volume(s) from CAD part file

icode -- gi_uLoadPart(char *name)

ICODE -- IG_ULOADPART(NAhIE)

Before examining any CAD data a "solids" part must be loaded.

C: name

I: icode

Character string containing the file-name for the part

Return code

A.3 SavePart - Save Volume(s) to CAD part file

icode = gi_uSavePart(char *name)

ICODE = IG_USAVEPART(NAME)

This call allows the output of the part once data has been modified.

C: name Character string containing the file-name for the part -

should be a different name than used to read the part

I: icode Return code

A.4 NumVolumes - Returns the Number of Active Volumes

numVl = gi_uNumVolumes0

NUMVL = IG_UNUMVOLUMES()

Any negative return is the indication of an error.

I: numV1 Number of Volumes/Return code

2O

A.5 Stop - Terminate CAPRI

icode -- gi_uStop(exit)

ICODE = IG_USTOP(exit)
This mustbe the last call to CAPRI, It terminates the system and frees up all memory.

CAPRI will need to be re-initialized before using any functions.

I: exit

I: icode

0 - return; otherwise exit in the appropriate manner.

Return code

21

B Geometry Data-Base Queries

B.1 GetNode - Returns the Data for a Node

icode = gi_dGetNode(int vol, node, double *point)

ICODE = IG_DGETNODE(VOL, NODE, POINT)

Returns the 3D coordinates associated with the Node.

I: vol Volume index

I: node Node index

D: point Point - length 3 (returned)

I: icode Return code

B.2 GetEdge - Returns the Data for an Edge

icode = gi_dGetEdge(int vol, edge, double *trange, int *nodes, *npts,

double **points)

ICODE = IG_DGETEDGE(VOL, EDGE, TRANGE, NODES, NPTS, POINTS)

Returns the data associated with the Edge.

I: vol

I: edge

D: trange

I: nodes

I: npts

D: points

I: icode

Volume index

Edge index

train and tmax - length 2 (returned)

Node endpoint indices - length 2 (returned)

Number of points in discretization (returned)

pointer to polyline discretization (returned)

Return code

FORTRAN note: The pointer is not returned. NPTS must be set with the size of

POINTS at the call. It is returned with the actual length. If POINTS is not declared large

enough (by the calling routine) the return code CAPRI_OVERFLOW is set but all the data

up to that length is correct.

22

B.3 GetFace - Returns the Data for a Face

icode = gi_dGetFace(int vol, face, double *urange,
int *nloop, **loops, **edges, *npts, double **points)

ICODE = IG_DGETFACE(VOL, FACE, URANGE, NLOOP, LOOPS, NPTS,
POINTS)

Returnsthedata that definestheFace.

I: vol

I: face

D: urange

I: nloop

I: loops

I: edges

I: npts

D: points

I: icode

Volumeindex

Faceindex

llmin, Vmin, tlma x and vma:r - length 4 (returned)

Number of Edge loops (returned)

pointer to Edge loop lengths (returned)

pointer to Edge data that make up all of the loops, each

entry contains 2 integers, first the Edge index and second

the sense (-1 or 1) - data length is the sum of all loop

lengths (returned)

Number of points in disjoint triangle descritization (re-

turned)

pointer to the disjoint triangle discretization (returned)

Return code

FORTRAN notes: Pointers are not returned - >

1) NLOOP must be set with the length of LOOPS and LOOPS(l) must be set with the

size of EDGES before the call is executed. LOOPS and EDGES are filled with the actual

data and NLOOP is set with the number of loops for the Face. If either of the declared

lengths are not long enough to store the data, then the return code CAPRI_OVERFLOW

is set. Information is filled up to that limit.

2) NPTS must be set with the size of POINTS at the call. It is returned with the actual

length. If POINTS is not declared large enough (by the calling routine) the return code

CAPRI_OVERFLOW is set but all the data up to that length is correct.

23

B.4 GetBoundary - Returns the Data for a Boundary

icode = gi_dGetBoundary(int vol, bound, *nface, **faces, char **name)
ICODE = IG_DGETBOUNDARY(VOL, BOUND, NFACE, FACES, NAME)
Returnsthedataassociatedwith theBoundary.

I: vol

I: bound

I: nface

I: faces

C: name

I: icode

Volmneindex

Boundaryindex(0 - "UnAssigned")

Numberof faces(returned)

pointerto the faces(returned)

pointerto characterstring (returned)

Returncode

FORTRANnote: The pointer is not returned. NFACESmustbeset with the sizeof
FACESat the call. It is returnedwith the actual length. If FACESis not declaredlarge

enough(bythecallingroutine)thereturncodeCAPRI_OVERFLOWissetbut all thedata
up to that length iscorrect.

B.5 NewBoundary - Creates a New Boundary for the Volume

icode = gi_dNewBoundary(int vol, char *name)
ICODE = IG_DNE_,VBOUNDARY(VOL, NAME)
CreatesthenewBoundaryfox"thevolumewith the givenname.

I: vol

C: name

I: icode

\olume index

characterstring for the nameof the Boundary

Created Boundary index/Return code

24

B.6 MoveFace - Assigns a Face to a Boundary

icode -- gi_dMoveFace(int vol, face, bound)

ICODE = IG_DMOVEFACE(VOL, FACE, BOUND)

Moves the Face from one Boundary to the assigned Boundary index. Note: All current

discretizations, groupings and attachments are removed from both source and destination

Boundaries.

I: vol Volume index

I: face Face index

I: bound Boundary index - target

I: icode Return code

B.7 NameVolume - Assign a Title to a Volume

icode = gi_dNameVolume(int vol, char *name)

ICODE = IG_DNAMEVOLUME(VOL, NAME)

Gives the Volume a name.

I: vol

C: name

I: icode

Volume index

character string assigned to the volume

Return code

B.8 GetVolume - Returns the Data for a Volume

icode -- gi_dGetVolume(int vol, *nnode, *nedge, *nface, *nbound,

char **name)

ICODE = IG_DGETVOLUME(VOL, NNODE, NEDGE, NFACE, NBOUND,

NAME)

Returns the number of entities associated with the Volmne index.

I: vol \blume

I: nnode number

I: nedge number

I: nface number

I: nbound number

C: name

I: icode

index

of Nodes associated with the volume (returned)

of Edges associated with the volume (returned)

of Faces associated with the volume (returned)

of Boundaries found within the volume (returned)

pointer to the string for the \-olume's name (returned)

Return code

25

B.9 Box - Return the Bounding Coordinates for the Volume

icode -- gi_dBox(int vol, double *box)

ICODE -- IG__DBOX(VOL, BOX)

Returns the coordinate box that contains the Volume.

I: vol

D: box

I: icode

Volume index

Xmin, }'rnin, Zmin, Xmax, }max and Zmax - length 6 (re-

turned)

Return code

26

C Point Queries

C.1 PointOnEdge - Returns the Coordinates On the Edge

icode = gi_qPointOnEdge(int vol, edge, double t, *point, int der,

double *dl, *d2))

ICODE = IG_QPOINTONEDGE(VOL, EDGE, T, POINT, DER_ D1, D2)

Returns the Point and derivitives (optionally) at the t parameter.

I: vol \blume index

I: edge Edge index

D: t t parameter

D: point Point - length 3 (returned)

I: der Derivative Flag:

0 - No derivatives (only return point)

1 - Compute and return first derivative

2 - Compute and return first and second derivatives

D: dl First derivative - length 3 (returned, der> 0)

D: d2 Second derivative length 3 (returned, der> 1)

I: icode Return code

C.2 NearestOnEdge - Finds the Nearest Position to the Edge

icode = gi_qNearestOnEdge(int vol, edge, double *coor, *point, *t)

ICODE = IG_QNEARESTONEDGE(VOL, EDGE, COOR, POINT, T)

Returns the closest coordinates to the input point on the Edge and the t parameter.

I: VO1

I: edge

D: coor

D: point

D: t

I: icode

Volume index

Edge index

Input point - length 3

Point - length 3 (returned)

parameter (returned)

Return code

27

C.3 PointOnFace - Returns tile Coordinates On the Specified Face

icode = gi_qPointOnFace(int vol, face, double u, v, *point, int der,
double *du, *dv, *duu, *duv, *dvv)

ICODE = IG_QPOINTONFACE(VOL, FACE, U, V, POINT, DER, DU, DV,
DUU, DUV, DVV)

Returnsthe Pointandderivitives(optionally)at the (u,v) parameters.

I: vol

I: face

D:u

D: v

D: point

I: der

D: du

D: dv

D: duu

D: duv

D: dvv

I: icode

Volume index

Face index

u parameter

t' parameter

Point - length 3 (returned)

Derivative Flag:

0 - No derivatives (only return point)

1 - Compute and return first derivative

2 - Compute and return first and second derivatives

First derivative of u - length 3 (returned, der> 0)

First derivative of v - length 3 (returned, der > 0)

Second derivative of u - length 3 (returned, der > 1)

Cross derivative - length 3 (returned, der > 1)

Second derivative of v- length 3 (returned, der > 1)

Return code

C.4 NearestOnFace - Finds the Nearest Position to the Face

icode = gi_qNearestOnFace(int vol, face, double *coor, *point, *u, *v)

ICODE = IG_QNEARESTONFACE(VOL, FACE, COOR, POINT, U, V)

Returns the closest coordinates to the input point oi1 the Face and the (u, v) parameters.

I: vol

I: face

D: coor

D: point

Volume index

Face index

Input point - length 3

Point - length 3 (returned)

28

D: u

D:v

I: ieode

u parameter (returned)

v parameter (returned)

Return code

C.5 NormalToFace - Finds tile Normal at the Specified Parameters

icode -- gi_qNormalToFace(int vol, face, double u, v, *point, *norm)

ICODE -- IG_QNORMALTOFACE(VOL, FACE, U, V, POINT, NORM)

Returns the normal to the Face at the (u, v) parameters.

I: vol Volume index

I: face Face index

D: u u parameter

D: v c parameter

D: point Point - length 3 (returned)

D: norm Normal - length 3 (returned)

I: icode Return code

C.6 InEdge - Is the Point Contained in the Edge

icode = gi_qInEdge(int vol, edge, double *point)

ICODE -- IG_QINEDGE(VOL, EDGE, POINT)

Returns a condition indicating whether the point is on the Edge.

I: vol

I: edge

D: point

I: icode

Volume index

Edge index

Point length 3

Return code - CAPRI_OUTSIDE is returned when the

point is not contained on the Edge

29

C.7 InFace - Is the Point Contained on the Face

icode -- gi_qInFace(int vol, face, double *point)

ICODE = IG_QINFACE(VOL, FACE, POINT)

Returns a condition indicating whether the point is on the Face.

I: vol

I: face

D: point

I: icode

Volume index

Face index

Point length 3

Return code - CAPRI_OUTSIDE is returned when the

point is not contained on the Face

C.8 InBoundary - Is the Point Contained on the Boundary

icode = gi_qInBoundary(int vol, bound, double *point, int *face)

ICODE = IG_QINBOUNDARY(VOL, BOUND, POINT, FACE)

Returns a condition indicating whether tile point is on the Boundary.

I: vol

I: face

D: point

I: face

I: icode

Volume index

Bound index

Point length 3

Face index for Pace containing the point, (returned)

Return code - CAPRI_OUTSIDE is returned when the

point is not contained on the Boundary

C.9 InVolume - Is the Point Contained within the Volume

icode = gi_qInVolume(int vol, double *point)

ICODE = IG_QINVOLUME(VOL, POINT)

Returns a condition indicating whether the point is in the Volume.

I: vol

D: point

I: icode

Volume index

Point - length 3

Return code - CAPRI_OUTSIDE is returned when the

point is not contained within the Volume

3O

D Calculated or Geometrically Derived Queries

D.1 LengthOfEdge - Returns the arc-length of the Edge

icode = gi_cLengthOfEdge(int vol, edge, double tl, t2, *len)

ICODE = IG_CLENGTHOFEDGE(VOL, EDGE, T1, T2, LEN)

Returns the length along the Edge between the parameter range tl and t2.

I: vol

I: edge

D: tl

D: t2

D: len

I: icode

\blume index

Edge index

t parameter for the start of the calculation

t parameter for the end of the calculation - tl must be less

than t2.

the resultant length (returned)

Return code

D.2 CurvOfEdge - Gets the tangent and curvature for an Edge point

icode = gi_cCurvOfEdge(int vol, edge, double t, *tang, *curv)

ICODE = IG_CCURVOFEDGE(VOL, EDGE, T, TANG, CURV)

Returns the curvature and unit tangent found at t along the Edge.

I: vol

I: edge

D:t

D: tang

D: curv

I: icode

\blume index

Edge index

t parameter along tile Edge

the unit tangent - length 3 (returned)

the curvature (returned)

Return code

31

D.3 MaxCurvOfEdge - Gets the maximum curvature for the attached

Faces

icode = gi_cMaxCurvOfEdge(int vol, edge, double t, *curv)
ICODE = IG_CMAXCURVOFEDGE(VOL, EDGE, T, CURV)
Returnsthe maximumcurvature found at t along the Edge for the Faces that share the

Edge.

I: vol

I: edge

D:t

D: curv

I: icode

Vohune index

Edge index

t parameter along the Edge

the maximum curvature (returned)

Return code

D.4 CurvOfFace - Gets the principal directions and curvature at a Face

point

icode = gi_cCurvOfFace(int vol, face, double u, v, *dirl, *curl, *dir2, *cur2)

ICODE = IG_CCURVOFFACE(VOL, FACE, U, V, DIR1, CUR1, DIR2, CUR2)

Returns the curvature and principle directions at (u, v) in the Face.

I: vol

I: face

D:u

D: v

D: dirl

D: curl

D: dir2

D: cur2

I: icode

Volume index

Face index

u parameter for the Face

v parameter for the Face

the first principal direction - length 3 (returned)

the curvature for first principal direction (returned)

the second principal direction - length 3 (returned)

the curvature for second principal direction (returned)

Return code

32

D.5 MaxCurvOfFace - Returns tile maximum curvature of a Face point

icode -- gi_chlaxCurvOfFace(int vol, face, double u, v, *curv)

ICODE = IG_ChlAXCURVOFFACE(VOL, FACE, U, V, CURV)

Returns the maximum curvature found at (u, t,) in the Face.

I: VOI

I: face

D: u

D" v

D: curv

I: icode

Volume index

Face index

u parameter for the Face

t' parameter for the Face

the maximum curvature (returned)

Return code

33

E Boundary data routines

E.1 SetDiscret - Declares the Discretization for the Boundary

icode = gi_bSetDiscret(int vol, bound, ndnode, ntris, nquads, nqmeshs,

flag, *nbnode)

ICODE -- IG_BSETDISCRET(VOL, BOUND, NDNODE, NTRIS, NQUADS,

NQMESHS, FLAG, NBNODE)

This routine sets the grid discretization for the Boundary. This may be comprised of a

homogenous or heterogenous collection of disjoint triangles, disjoint quadrangles and quad-

meshes. This call implicitly defines a boundary node (bnode) numbering, where NDXODE

is the number of nodes associated with the disjoint primitives, the rest of the bnodes are

defined from the quad-meshes (attached to structured blocks). This routine will cause the

execution of as many as 5 supplied routines, based on the arguments. These call-backs

define the collection of data for the bnodes, triangles, quadrangles, quad-meshes and node

coordinates.

I: vol

I: bound

I: ndnode

I: ntris

I: nquads

I: nqmeshs

I: flag

Vohnne index

Boundary index

Number of nodes associtated with the disjoint primitives

Nmnber of disjoint triangles assigned to the Boundary

Number of disjoint quadrangles assigned to the Boundary

Number of quad-meshes (from structured blocks)

Update flag (if the Discretization changes):

0 - Remove all Attachments and Special groupings

1 - Remove all Special groupings, interpolate to new

bnodes for Attachments

I: nbnode

I: icode

Total number of bnodes for the Boundary (returned)

Return code

NOTE: If ntris, nquads and nqmeshs are all zero, then the descritization is removed.

34

gibFillCoord(int vol, bound, nbnode, double *xyz)
IGBFILLCOORD(VOL, BOUND, NBNODE, XYZ)
This routinemustbesuppliedfor an)"call to gi_bSetDiscret.Its responsibilityis to fill the
coordinatedataassociatedwith thebnodes.

I: VO1

I: bound

I: nbnode

D: xyz

\'olmne index

Boundary index

Number of Boundary nodes

The 3-space coordinates for each bnode. Length is 3*nbn-

ode (filled)

gibFillTris(int vol, bound, ntris, *tris, *ctrls)

IGBFILLTRIS(VOL, BOUND, NTRIS, TRIS, CTRIS)

This routine must be supplied if the call to gi_bSetDiscret specifies any disjount triangles

(ntris ¢ 0). gibFillTris' responsibility is to fill the data required for disjoint triangles.

I: vol

I: bound

I: ntris

I: tris

I: ctris

Volunm index

Boundary index

Number of disjoint triangles assigned to the Boundary

3 bnode numbers are required for the definition of each

triangle. The bnode numbers may come from either the set

of disjoint nodes and/or the nodes defined via the quad-

meshes. Length is 3*ntris (filled)

The mesh 3D cell number containing the trianglar face.

Note: This is not used internally by CAPRI. Length is

ntris (filled)

gibFillQuads(int vol, bound, nquads, *quads, *cquads)

IGBFILLQUADS(VOL, BOUND, NQUADS, QUADS, CQUADS)

This routine must be supplied if the call to gi_bSetDiscret specifies any disjount quads

(nquads _ 0). gibFillQuads' responsibility is to fill the data required for disjoint quadran-

gles.

I: vol Volume index

I: bound Boundary index

35

17:nquads

I: quads

I:cquads

Numberof disjointquadranglesassignedto the Boundary

4 bnodenumbersare requiredfor the definition of each
quad. The bnodenumbersmaycomefrom either the set
of disjoint nodesand/or the nodesdefinedvia the quad-
meshes.Lengthis 4*nquads(filled)

Themesh3Dcellnumbercontainingthequadface.Note:
This is not usedinternallyby CAPRI. Length is nquads
(filled)

gibFillQMesh(int vol, bound, nqmeshs, *block, *bslzes, *lims)
IGBFILLQMESH(VOL, BOUND, NQMESHS, BLOCK, BSIZES, LIMS)
This routinemustbesuppliedif the call to gi_bSetDiscretspecifiesanyquad-meshes(i.e.,
nqmeshs _ 0). gibFillQMesh's responsibility is to fill the data required for faces of struc-

tured Mocks mapped to the Boundary.

I: rot

I: bound

I: nqmeshs

I: block

I: bsizes

I: lims

Volume index

Boundary index

Number of quad-meshes touching the Boundary

Block number (in the complete grid) with the associated

mapping. Length is nqmeshs (filled)

The sizes (.\), .\r j, .\).) for the block. Length is 3*nqmeshs

(filled)

6 entries that define the extent of the exposed block. The

first 2 entries are the min and max indices for the first

index (usually I). The next 2 entries are the min and

max for the second index (g). The last 2 entries are the

rain and max indices for the last index (usually K). One

of the set nmst be the same and numbering is 1 biased.

For example: 1,1, 1,23, 10,100 - specifies the first I plane,

with or going from the first index up to (and including) 23

and K starting at 10 and continuing up to 100 specifying

1980 quads. Length is 6*nqmeshs (filled)

36

gibFillDNodes(int vol, bound, ndnode, *nodes)
IGBFILLDNODES(VOL, BOUND, NDNODE, NODES)
This routine must be suppliedif the call to gi_bSetDiscret specifies any disjoint nodes

(ndnode 7_ 0) and CAPRI is to be used to translate bnode numbers back to 3D mesh

indices (calls to gi_bGet3DNode are used).

I: vol

I: bound

I: ndnode

I: nodes

Volume index

Boundary index

Number of nodes used in the disjoint tris and quads.

3D node number (in the complete grid). Length is ndnode

(lled)

E.2 GetDiscret - Returns data about the Discretization for the Boundary

icode = gi_bGetDiscret(int vol, bound, *nbnode, *ndnode, *ntris, *nquads,

*nqmeshs, *nattach, *nspecial)

ICODE = IG_BGETDISCRET(VOL, BOUND, NBNODE, NDNODE, NTRIS,

NQUADS, NQhIESHS, NATTACH, NSPECIAL)

This routine gets the sizes of grid discretization and the lengths for any associated data for

tile Boundary.

I: vol

I: bound

I: nbnode

I: ndnode

I: ntris

I: nquads

I: nqmeshs

I: nattach

I: nspecial

I: icode

Volume index

Boundary index

Number of bnodes found in the Boundary (returned)

A zero indicates no discretization

Number of disjoint bnodes found in the Boundary (re-

turned)

Number of disjoint triangles (returned)

Number of disjoint quadrangles (returned)

Number of quad-meshes (returned)

Number of associated attachments (returned)

Number of associated special groups (returned)

Return code

37

E.3 GetCoord - Returns the Boundary Discretization Coordinates

icode -- gi_bGetCoord(int vol, bound, *nbnode, double **xyz)

ICODE -- IG_BGETCOORD(VOL, BOUND, NBNODE, XYZ)

This routine returns the coordinates associated with all of the bnodes.

I: vol

I: bound

I: nbnode

D: xyz

I: icode

Volume index

Boundary index

Nmnber of Boundary nodes (returned)

pointer to the 3-space coordinates for each bnode. Length

of data is 3*nbnode (returned)

Return code

FORTRAN note: The pointer is not returned. NBNODE must be set with the size of

XYZ at the caII. It is returned with the actual iength used. If XYZ is not declared large

enough (by the calling routine) the return code CAPRI_OVERFLOW is set but all the data

up to that length is correct.

E.4 GetTris - Returns the Disjoint Triangle Discretization

icode = gLbGetTris(int vol, bound, *ntris, **tris, **ctris)

ICODE = IG_BGETTRIS(VOL, BOUND, NTRIS, TRIS, CTRIS)

This routine returns the list of disjoint tris defining the Boundary discretization.

I: vol

I: bound

I: ntris

I: tris

I: ctris

I: icode

Vohune index

Boundary index

Nmnber of disjoint triangles (returned)

pointer to 3 bnode nmnbers for the definition of each tri-

angle. Length of data is 3*ntris (returned)

pointer to the mesh 3D cell number containing the tri-

anglar face. Length of data is ntris (returned)

Return code

FORTRAN note: The pointers are not returned. NTRIS must be set with the size of

TRIS and CTRIS at the call. It is returned with the actual length used. If the length is

not large enough, then the return code CAPRI_OVERFLOW is set but all the data up to

the declared length is correct.

38

E.5 GetQuads - Returns the Disjoint Quadrangle Discretization

icode = gi_bGetQuads(int vol, bound, *nquads, **quads, **cquads)
ICODE = IG_BGETQUADS(VOL, BOUND, NQUADS, QUADS, CQUADS)

This routine returns the list of disjoint quads defining the Boundary discretization.

I: vol

I: bound

I: nquads

I: quads

I: cquads

I: icode

Volume index

Boundary index

Number of disjoint quadrangles (returned)

pointer to 4 bnode numbers for the definition of each tri-

angle. Length of data is 4*nquads (returned)

pointer to the mesh 3D cell number containing the quad

face. Length of data is nquads (returned)

Return code

FORTRAN note: The pointers are not returned. NQUADS must be set with the size of

QUADS and CQUADS at the call. It is returned with the actual length used. If the length

is not large enough, then the return code CAPRI_OVERFLOW is set but all the data up

to the declared length is correct.

E.6 GetQMesh - Returns the Quad-Mesh Discretization

icode = gi_bGetQMesh(int vol, bound, *nqmeshs, **block, **bsizes, **lims)

ICODE = IG_BGETQMESH(VOL, BOUND, BLOCK, BSIZES, LII_IS)

This routine returns the list of quad-meshes used in the Boundary discretization.

I: vol

I: bound

I: nqmeshs

I: block

I: bsizes

I: liras

I: icode

Volume index

Boundary index

Number of quad-meshs in the Boundary (returned)

pointer to the block number (in the complete grid). Length

of data is nqmeshs (returned)

pointer to the sizes (Art, A'j, _Y,,-) for the block. Length of

data is 3*nqmeshs (returned)

pointer to 6 entries that define the extent of the exposed

block. Length of data is 6*nqmeshs (returned)

Return code

39

FORTRAXnote:The pointersarenot returned.NQMESHSmustbesetwith the size
of BLOCK, BSIZESand LIMS at the call. It is returned with the actual length used. If

the length is not large enough, then the return code CAPRI_OVERFLOW is set but all the

data up to the declared length is correct.

E.7 Get3DNode - Translates the Boundary node to 3D node number

icode -- gi_bGet3DNode(int vol, bound, bnode, *type, *location)

ICODE = IG_BGET3DNODE(VOL, BOUND, BNODE, TYPE, LOCATION)

This routine returns the 3D mesh index associated with the bnode.

I: vol

I: bound

I: bnode

I: type

I: location

I: icode

Volume index

Boundary index

Boundary node index - starts at 1.

Xode type (returned)

0 - from a node associated with disjoint primitives

1 - from a node associated with quad-meshes

Mesh location (returned)

Type 0: 3D Node number

Type 1: I, J, K and Block # - 4 integers

Return code

4O

E.8 SetSpecial - Specify/Update a Special Grouping

icode ----gi_bSetSpecial(int vol, bound, char *name, int size)
ICODE -- IG_BSETSPECIAL(VOL, BOUND, NAME, SIZE)
This routinespecifiesa Speciallisting (by name).Thesespecialgroupingscan be used to

indicate lists of bnodes that may have special boundary condtions applied (such as at the

Edge between two Boundaries). If the listing already exists, it is overwritten with the new

data. This routine will cause a call-back (documented next) to be executed.

I: vol

I: bound

C: name

I: size

I: icode

\blume index

Boundary index

Listing name (i.e., "hub edge", "wing-body edge")

The length of the list

Grouping index/Return code

gibFillSpecial(int vol, bound, char *name, int size, *list)

IGBFILLSPECIAL(VOL, BOUND, NAME, SIZE, LIST)

This call-back will be executed after a call to gi_bSetSpecial. The routines responsibility is

to fill the list requested for the grouping.

I: vol

I: bound

C: name

I: size

I: list

\blume index

Boundary index

Special grouping name

The nmnber of entries for the list

Special list- length is size (filled)

E.9 GetSpecial - Return the info for a Special Grouping

icode = gi_bGetSpecial(int vol, bound, char *name, int *size_ **list)

ICODE = IG_BGETSPECIAL(VOL, BOUND, NAME, SIZE, LIST)

This routine returns data about a Special grouping (by name).

I: VOI

I: bound

C: name

I: size

\blume index

Boundary index

Special grouping name

The length of the list (returned)

41

I: list

I: icode

pointer to the list - datalength is size(returned)

Returncode

FORTRANnote: Thepointerisnot returned.SIZEnmstbesetwith the lengthofLIST
at the call. It is returnedwith the actuallengthused. If tile length is not largeenough,
then thereturncodeCAPRI_OVERFLOWissetbut all thedataup to the declaredlength
is correct.

E.10 GetISpecial- Get a Special Grouping by Index

icode = gi_bGetISpecial(int vol, bound, index, char **name, int *size, **list)
ICODE = IG_BGETISPECIAL(VOL, BOUND, INDEX, NAME, SIZE, LIST)
This routinereturnsdataabouta Specialgrouping(by index).

I: vol

I: bound

I: index

C: name

I: size

I: list

I: icode

Volumeindex

Boundaryindex

Groupingindex- bais1.

Groupingname(returned)

The lengthof the grouping(returned)

pointer to the list data lengthis size(returned)

Returncode

FORTRANnote: Thepointerisnot returned.SIZEnmstbesetwith the lengthofLIST
at the call. It is returnedwith the actuallengthused. If the length is not largeenough,
then thereturncodeCAPRI_OVERFLOWissetbut all thedataup to the declaredlength
is correct.

E.11 DelSpecial - Remove a Special Grouping

icode = gi_bDelSpecial(int vol, bound, char *name)
ICODE = IG_BDELSPECIAL(VOL, BOUND, NAME)
This routinedeletesthe dataassociatedwith a Specialgrouping.NOTE: the indicesused

with thegroupingswill beaffected.

I: vol Volumeindex

I: bound Boundaryindex

C: name Special listing name

I: icode Return code

42

F Geometry Based Interpolation Routines

F.1 SetAttach - Specify/Update a Boundary Attachment

icode -- gi_iSetAttach(int vol, bound, char *name, int rank, char *update)

ICODE = IG_ISETATTACH(VOL, BOUND, NAME, RANK, UPDATE)

This routine specifies a Boundary attachment (by name). If the attachment already exists,

it is overwritten with the new data. This routine will cause call-back (documented next) to

be executed.

I: vol

I: bound

C: name

I: rank

C: update

I: icode

Volume index

Boundary index

Attachment name (i.e., "pressure", "heat transfer")

The number of entries per bnode, i.e., scalars are 1, vec-

tors are 3 (or -3 - do not apply replication/displacement).

A character string to indicate something about the at-

tachment. For example, if the simulation is transient this

could contain the solvers time when last filled.

Attachment index/Return code

giiFillAttach(int vol, bound, char *name, int rank, char *update, int nbnode,

double *data)

IGIFILLATTACH(VOL, BOUND, NAME, RANK, UPDATE, NBNODE,

DATA)

This call-back will be executed after a call to gi_iSetAttach that specifies a non-zero rank.

The routines responsibility is to fill the data requested for the attachment.

I: rol

I: bound

C: name

I: rank

C: update

I: nbnode

D: data

Volume index

Boundary index

Attachment name

The number of entries per bnode

A character string to indicate something about the attach-

ment.

Number of boundary nodes

Attached data - length is rank*nbnode (filled)

43

F.2 GetAttach - Get a Boundary Attachment

icode -- gi_iGetAttach(int vol, bound, char *name, int *rank, char **update,

int *nbnode, double **data)

ICODE -- IG_IGETATTACH(VOL, BOUND, NAME, RANK, UPDATE,

NBNODE, DATA)

This routine returns data about a Boundary attachment (by name).

I: vol

I: bound

C: name

I: rank

C: update

I: nbnode

D: data

I: icode

Volume index

Boundary index

Attachment name

The number of entries per bnode (returned)

pointer to the update character string (returned)

Number of boundary nodes (returned)

pointer to attached data - data length is rank*nbnode

(returned)

Return code

FORTRAN note: The pointer is not returned. NBNODE must be set with tile size of

DATA at the call. It is returned with the actual length used. If tile length is not large

enough, then the return code CAPRI_OVERFLOW is set but all the data up to tile declared

length is correct.

F.3 GetIAttach - Get a Boundary Attachment by Index

icode = gi_iGetIAttach(int vol, bound, index, char **name, int *rank,

char **update, int *nbnode, double **data)

ICODE = IG_IGETIATTACH(VOL, BOUND, INDEX, NAIkIE, RANK,

UPDATE, NBNODE, DATA)

This routine returns data about a Boundary attachment (by index).

I: vol

I: bound

I: index

C: name

I: rank

Volume index

Boundary index

Attachment index- bais 1.

Attachment name (returned)

Tile number of entries per bnode (returned)

44

C: update

I: nbnode

D: data

I: icode

pointerto theupdatecharacterstring (returned)

Numberof boundarynodes(returned)

pointer to attacheddata - data length is rank*nbnode
(returned)

Returncode

FORTRANnote: The pointer is not returned. NBNODEnmstbesetwith the sizeof
DATA at the call. It is returnedwith the actuallengthused. If the length is not large

enough,thenthereturncodeCAPRI_OVERFLOWissetbut all thedataup to thedeclared

lengthis correct.

F.4 DelAttach - Remove a Boundary Attachment

icode = gi_iDelAttach(int vol, bound, char *name)
ICODE = IG_IDELATTACH(VOL, BOUND, NAME)
This routinedeletesthedataassociatedwith a Boundaryattachment.NOTE:the indices
usedwith the attachmentswill beaffected.

I: vol Volumeindex

I: bound Boundaryindex

C: name Attachmentname

I: icode Return code

F.5 GetDisplace - Gets the Volume's displacement matrix

icode = gi_iGetDisplace(int vol, double *dmatrix)
ICODE = IG_IGETDISPLACE(VOL, DMATRIX)
This routine returns the displacementmatrix associatedwith the specifiedvolume. The

displacementmatrix is a column-majormatrix that is 4 columnsby 3 rowsand declared
in C as [4][3]and in FORTRANas (3,4). This matrix is usedto multiply all Volume
coordinatesbeforeinterpolationis performedand therforesupportsany combinationof

displacement,rotation and scaling.

I: vol

D: dmatrix

I: icode

Volumeindex

Thedisplacementmatrix

Returncode

45

F.6 SetDisplace - Set the Volume's displacement matrix

icode -- giASetDisplace(int vol, double *dmatrix)
ICODE ----IG_ISETDISPLACE(VOL, DMATRIX)
This routinespecifiesthe displacementmatrix associatedwith the specifiedvolume. The

displacementmatrix is a column-major matrix that is 4 columns by 3 rows and declared in

C as [4][3] and in FORTRAX as (3,4).

I: vol

D: dmatrix

I: icode

Vohune index

The displacement matrix

Return code

F.7 GetReplicate - Gets the Volume's replication data

icode -- gi_iGetReplicate(int vol, *nrep, double *rmatrix)

ICODE = IGIGETREPLICATE(VOL, NREP, RMATRIX)

This routine returns the replication data associated with the specified volume. This in-

formation is comprised of a matrix and the number of times to apply this matrix to the

Volume. The replication matrix is a column-major matrix that is 4 columns by 3 rows

and declared in C as [4][3] and in FORTRAN as (3,4). This matrix is used to multiply

all Volume coordinates in order to produce additional instances of the Vouhne (before the

Displacement matrix is applied) and then the interpolation is performed. When properly

used this allows mirroring and periodic volumes (like found in turbomachinery).

I: VO1

I: nrep

D: rmatrix

I: icode

Volume index

Number of times to apply the matrix

The replication matrix

Return code

46

F.8 SetReplicate - Set the Volume's replication data

icode -- gi_iSetReplicate(int vot, nrep, double *dmatrlx)

ICODE = IG_ISETREPLICATE(VOL, NREP, RMATRIX)

This routine specifies tim replication data associated with the specified volume. The repli-

cation matrix is a column-major matrix that is 4 columns by 3 rows and declared in C as

[4][3] and in FORTRAN as (3;4). nrep set to zero turns off all replication.

I: vol

I: nrep

D: rmatrix

I: icode

Volume index

Number of times to apply the matrix

The replication matrix

Return code

F.9 InterAttach - Interpolate to Produce/Update Boundary Attachment

icode = gi_iInterAttach(int vol, bound, char *name, int vold, boundd,

char *named, *updated)

ICODE = IG_IINTERATTACH(VOL, BOUND, NAhIE_ VOLD, BOUNDD,

NAMED, UPDATED)

This routine interpolates the source attachment onto the discretization for the destination

boundary. A new attachment is created if NAMED does not already exist, otherwise the

data is replaced. Any rank 3 Attachments have the displacement and replication matrices

applied (just like the coordinates).

I: vol

I: bound

C: name

I: vold

I: boundd

C: named

C: updated

I: icode

Volume index - source

Boundary index - source

Attachment name - source

Vohune index - destination

Boundary index - destination

Attachment name - destination

The update character string - destination

Return code

47

G

G.1

Tag Routines

GetNumVolume - Returns the number of Volume Tags

icode -- gi_tGetNumVolume(int vol, *num)

ICODE = IG_TGETNUMVOLUME(VOL, NUM)

This routine returns the number of Tags for the Volume.

I: VO]

I: num

I: icode

Volume index

Number of Tags associated with this Volume

1Return code

G.2 GetVolume - Gets the Volume Tag

icode = gi_tGetVolume(int vol, char *tag, **val)

ICODE = IG_TGETVOLUME(VOL, TAG, VAL)

This routine returns the string associated with the Volume Tag.

I: vol Volume index

C: tag The Tag string

C: val The associated string

I: icode Return code

G.3 GetIVolume - Gets the Volume Tag by index

icode = gi_tGetIVolume(int vol, index, char **tag, **val)

ICODE -- IG_TGETIVOLUME(VOL, INDEX, TAG, VAL)

This routine returns the string associated with the index for the Volume Tag.

I: vol

I: index

C: tag

C: val

I: icode

Volume index

Tag index - range 1 to the number of Tags.

The Tag string

The associated string

Return code

48

G.4 SetVolume - Sets the Volume Tag

icode = gi_tSetVolume(int vol, char *tag, *val)
ICODE = IG_TSETVOLUME(VOL, TAG, VAL)
This routinesetsthe string associatedwith the VolmneTag.

string is applied.

If the Tag existsthe new

I: vol

C: tag

C: val

I: icode

\blume index

TheTagstring

Theassociatedstring - A NULL valuedeletestheTag.

Returncode

G.5 GetNumBoundary - Returns the number of Boundary Tags

icode = gi_tGetNumBoundary(int vol, bound, *num)
ICODE = IG_TGETNUMBOUNDARY(VOL, BOUND, NUM)
This routinereturnsthe numberof Tagsfor theBoundary.

I: vol

I: bound

I: num

I: icode

\blume index

Boundaryindex

Numberof Tagsassociatedwith this Boundary

Returncode

G.6 GetBoundary - Returns the Boundary Tag

icode = gi_tGetBoundary(int vol, bound, char *tag, **val)
ICODE = IG_TGETBOUNDARY(VOL, BOUND, TAG, VAL)
This routinereturnsthe stringassociatedwith theBoundaryTag.

I: vol \-olumeindex

I: bound Boundaryindex

C: tag TheTagstring

C: val The associated string

I: icode Return code

49

G.7 GetIBoundary - Gets the Boundary Tag by index

icode = gi_tGetIBoundary(int vol, bound, index, char **tag, **val)

ICODE = IG_TGETIBOUNDARY(VOL, BOUND, INDEX, TAG, VAL)

This routine returns the string associated with the index for the Boundary Tag.

I: vol

I: bound

I: index

C: tag

C: val

I: icode

Volume index

Boundary index

Tag index - range 1 to the number of Tags.

The Tag string

The associated string

Return code

G.8 SetBoundary - Sets the Boundary Tag

icode = gi_tSetBoundary(int vol, bound, char *tag, *val)

ICODE = IG_TSETBOUNDARY(VOL, BOUND, TAG, VAL)

This routine sets the string associated with the Boundary Tag. If the Tag exists the new

string is applied.

I: vol

I: bound

C: tag

C: val

I: icode

Volume index

Boundary index

The Tag string

The associated string - A NULL value deletes the Tag.

Return code

50

H Return Codes

-12 - CAPRI_XOTFOUXD

-11 - CAPRI_XODISCRET

-10 - CAPRI_OVERFLOW

-9 - CAPRI_INUSE

-8 - CAPRI_RAXGERR

-7 - CAPRI_\IODELERR

-6 - CAPRI_\'OLOAD

-5 - CAPRI_INDEX

-4 - CAPRI_UXSUPPORT

-3 - CAPRI_\IALLOC

-2 - CAPRI__LREADYOX

-1 - CAPRI_\'OIXIT

0 - CAPRI_SUCCESS

1 - CAPRI_OUTSIDE - Not an error

51

From February 6, 1998

1. Direct Labor (salaries, wages, and
fringe benefits)

Other Direct Costs:

a. Subcontracts

b. Consultants

c. Equipment

d. Supplies

e. Travel

f. Other

Indirect Costs

Other Applicable Costs

Sub-total- Estimated Costs

Less Proposed Cost Sharing (if any)

Carryover Funds (if any)
a. Anticipated Amount 0

b. Amount used to reduce budget

8. Total Estimated Costs

APPROVED BUDGET

.

.

4.

5.

6.

7.

Budget Summary

to February 5, 1999

NASA USE ONLY

A B C

41,794

0

0

0

240

3,630

875

29,552

0

76,091

0

0

76,091

XXXXXXX XXXXXXX

XXXXXXX

Instruction8

1. Provide a separate budget summary sheet for each year of the proposed research.

2. Grantee estimated costs should be entered in Column A. Columns B and C are for NASA

use only. Column C represents the approved grant budget.

° Provide in attachments to the budget summary the detailed computations of estimates in

each cost category, along with any narrative explanation required to fully explain proposed
costs.

......................... ADDITIONAL INSTRUCTIONS ON REVERSE

PROPOSED COST ESTIMATE

2/6/98-2/5/99

SALARIES & WAGES

Principal Research Engineer (Haimes)
Res. Administrative Staff

Project Support Staff

TOTAL SALARIES & WAGES

EMPLOYEE BENEFITS (excluding UROP) @

EMPLOYEE BENEFITS (excluding Res. Asst. & UROP) @
VACATION ACCRUAL (excluding Professorsand students) @

OTHER COSTS

Travel (Domestic)

Office Supplies, xerox, telephone, postage
ReportCosts

TOTAL OTHER COSTS

TOTAL DIRECT COSTS

iNDiRECT COSTS (F&A) @

TOTAL

3O%
5%

4%

46.2%

29%
11%

63.5%

2/6/98-

6/30/98

10,319
1,03t

417

11,767

5,436

1,462
97

352

1,911

19,114

12,137

31,251

7/1/98-
2/5/99

15,400
1,539

626

17,565

5,094

1,932

2,168
143
523

2,834

27,425

17,415

44,840

Total

25,719
2,570

1,043

29,332

5,436

5,094
1,932

3,630
24O
875

4,745

46,539

29,552

76,091

BackupInformation Page1

Direct Labor

Current Salary
Number Titl._._e MM Base (see note1).

1 Principal Research Engineer(Haimes) 3.6 82,100 /year
1 ResearchAdministrative Staff (seenote2) 0.6 49,250 /year
1 Project Support Staff (see note 2) 0.48 25,350 /year

Salary Increase
Effective

January 1
January 1

April 1

Employee Benefits (UROP excluded) @ 46.2% FY' 98

Employee Benefits (Research Assistants & UROP excluded) @ 29% FY' 99 and out years (seenot,3)

Vacation Accrual (excluding Professors and students) @ 11% (seenote4)

Other Costs

Office supplies, xerox, telephonetoll calls, and postagecurrentlyaverages$20 per monthbased on past history
Report Costs--Pagecharges in a professionaljournal (based onAIAA rate of $875 per journal article)

Travel

Destination: Cleveland,OH

No. of People
No.of days
No.of Trips

Air Fare (full coach) @
Hotel (perday) @ S75
Food (per day) @ $25
RentalCar (per day) @ $45
Misc (taxi, tel calls, Parking,etc) @ $25

Total per persontrip
Total

Destination:Cincinnati

1 No. of People 1
3 No.of days 3
2 No.of Trips 1

750.00 Air Fare@ 750.00
225.00 Hotel @ S75 225.00
75.00 Food @ $25 75.00

I35.00 RentalCar @ S45 135.00
25.00 Misc @ 825 25.00

1210.00 Total per person trip 1210.00
2420.00 Total 1210.00

Indirect Costs @ 63.5% of total direct costs excluding Equipment for MIT FY '98
Indirect Costs (Facilities & Administrative) @ 63.5% of total direct costs for MIT FY '99 and out years

NOTES:

(1) Salary increases @4% roundedto nearestS100andare currentas of Nov-97
(2) 5% of Adminstrativeand clericalsupport is budgeted as an estimateof time requiredto provide ctericatand administrative

support for the P.I. as requiredfor the performanceof this project. Duties includebut are not limitedto the following: verifying
payroll distribution,arrangementof travel relativeto this project,submittalof appropriateforms to MIT purchasing,accounting,
sponsoredprograms andother officesto meet regulatory,auditing andcompliancerequirements.

(3) At the present time, the tuition of graduate researchassistants is chargedto the employeebenefitpool and the stipendto the

researchaccount. BeginningJuly 1, 1998,RA tuitionwillno longerbe includedin the employeebenefit pool. The net effect of this
change will be an estimatedreductionof 17.2 points in the oncampus EBand 22.9 points in the off-campus EB. None of the RA cost

will be subjectto the EB rate, and the tuitionwill not be subjectto either EB or F&A.
(4) Vacation accrual,beginningJuly 1, 1998, has been removedfromthe EB rate andvacation accrualcosts are distributed only to

those salarygroups (research,hourly and supportstaff)which are actuallyaccrued. This charge will bear the prevailing research
F&A rate.

