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Introduction

The computational steps traditionally taken for most engineering analysis (CFD, structural
analysis, and etc.) are:

¢ Surface Generation -- usually by employing a CAD system

e Grid Generation -- preparing the volume for the simulation

e Flow Solver -- producing the results at the specified operational point

e Post-processing Visualization -- interactively attempting to understand the results

For structural analysis, integrated systems can be obtained from a number of commercial vendors.
These vendors couple directly to a number of CAD systems and are executed from within the
CAD GUTL It should be noted that the structures problem is more tractable than CFD; there are
fewer mesh topologies used and the grids are not as fine (this problem space does not have the
length scaling issues of fluids).

For CFD, these steps have worked well in the past for simple steady-state simulations at the
expense of much user interaction. The data was transmitted between phases via files. In most
cases, the output from a CAD system could go IGES files. The output from Grid Generators and
Solvers do not really have standards though there are a couple of file formats that can be used for a
subset of the gridding (i.e. PLOT3D data formats). The user would have to patch up the data or
translate from one format to another to move to the next step. Sometimes this could take days.
Specifically the problems with this procedure are:

e File based. Information flows from one step to the next via data files with formats specified for
that procedure. File standards, when they exist, are wholly inadequate. For example, geometry
from CAD systems (transmitted via IGES files) is defined as disjoint surfaces and curves (as
well as masses of other information of no interest for the Grid Generator). This is particularly
onerous for modern CAD systems based on solid modeling. The part was a proper solid and
in the translation to IGES has lost this important characteristic. STEP is another standard for
CAD data that exists and supports the concept of a solid. The problem with STEP is that a
solid modeling geometry kernel is required to do anything with this type of file.

e ‘Good’ Geometry. A bottleneck in getting results from a solver is the construction of proper
geometry to be fed to the grid generator. With good’ geometry a grid can be constructed in
tens of minutes (even with a complex configuration) using unstructured techniques. Adroit
multi-block methods are not far behind. This means that a million node steady-state solution
can be computed on the order of hours (using current high performance computers) starting
from this ‘good’ geometry. Unfortunately, the geometry usually transmitted from the CAD



system is not ‘good’ in the grid generator sense. The grid generator needs smooth closed solid
geometry. It can take a week (or more) of interaction with the CAD output (sometimes by
hand) before the process can begin.

e One-Way Comminucation. All information travels on from one phase to the next. This makes
procedures like node adaptation difficult when attempting to add or move nodes that sit on
bounding surfaces (when the actual surface data has been lost after the grid generation phase).

Until this process can be automated, more complex problems such as multi-disciplinary analysis
or using the above procedure for design becomes prohibitive. There is also no way to easily deal
with this system in a modular manner. One can only replace the grid generator, for example, if the
software reads and writes the same files.

Instead of the serial approach to analysis as described above, CAPRI takes a geometry centric
approach. This makes the actual geometry (not a discretized version) accessible to all phases of the
analysis. The connection to the geometry is made through an Application Programming Interface
(API) and NOT a file system. This API isolates the top level applications (grid generators, solvers
and visualization components) from the geometry engine. Also this allows the replacement of one
geometry kernel with another, without effecting the top level applications. For example, if
UniGraphics is used as the CAD package then Parasolid (UG’s own geometry engine) can be
used for all geometric queries so that no solid geometry information is lost in a translation. This is
much better than STEP because when the data is queried, the same software is executed as used in
the CAD system. Therefore, one analyzes the exact part that is in the CAD system.

CAPRI uses the same idea as the commercial structural analysis codes but does not specify
control. Software components of the CAD system are used, but the control of the software session
is specified by the analysis suite, not the CAD operator. This also means that the license issues
(may be) minimized and individuals need not have to know how to operate a CAD system in
order to run the suite.



The CAPRI API

CAPRI is a software building tool-kit that refers to two ideas; (1) A simplified hierarchical view
of a solid part integrating both geometry and topology definitions, and (2) Programming access to
this part and any attached data.

A complete definition of the geometry and application programming interface can be found in the
attached document “CAPRI: Computational Analysis PRogramming Interface”. In summary the
interface is sub-divided into the following functional components:

1.

Utility routines -- These routines include the initialization of CAPRI, loading CAD parts and
querying the operational status as well as closing the system down.

Geometry data-base queries -- This group of functions allow all top level applications to figure
out and get detailed information on any geometric component in the Volume definition.

Point queries -- These calls allow grid generators, or solvers doing node adaptation, to snap
points directly onto geometric entities.

Calculated or geometrically derived queries -- These calls calculate data from the geometry to
aid in grid generation.

Boundary data routines -- This part of CAPRI allows general data to be attached to Boundaries
so that the boundary conditions can be specified and stored within CAPRT’s data-base.

Tag based routines -- This part of the API allows the specification of properties associated with
either the Volume (material properties) or Boundary (surface properties) entities.

Geometry based interpolation routines -- This part of the API facilitates Multi-disciplinary
coupling and allows zooming through Boundary Attachments.

Geometric modification -- This will be used for an automated design system where the goal of
the application is to change the geometry. Routines that allow this have the advantage that if the
data is kept consistent with the CAD package, then the design can be incorporated directly and
therefore is manufacturable.



Status of This Years Work

1. The white paper was written which describes the details of this new system. This has become
the beginning of the documentation for CAPRI and is attached to the proposal as mentioned
above. It includes the description of all but the last group of functions.

2. A first cut of the API was written using Parasolid as the geometry engine. This choice is made
because both GE and Pratt & Whitney use UniGraphics as their CAD software. ICAD also
uses Parasolid as it’s low level solid modeller, therefore this geometry system is also
supported.

Though this was not specified in the proposal, a CAPRI port to Parametric Technology’s
Pro/ENGINEER was also performed. This gave some reassurance that CAPRI’s topology
and geometry definitions were broad enough to support other solids-based CAD systems.

Functional components 1-6 (listed above) have been written and tested using both Parasolid
and Pro/TOOLKIT (the API into Pro/ENGINEER). The C and C++ interfaces are complete.
The FORTRAN interface will be completed by the end of the current contract.

3. Component 7, zooming and multi-disciplinary coupling, will be written and tested before this
contract expires. Though simple in concept (mapping data to and extracting interpolated data
from the actual geometry), the generalization is complex. To properly support turbomachinery
applications it was necessary to include the idea of “replication” and movement of Volumes.
This allows matching of the stator and rotor passages when the entire wheel is not simulated.
Common visualization techniques like “mirroring” become a simple form of replication.

4. On November 18, the first beta version of CAPRI will be delivered to Michael Aftosmis at
NASA Ames Research Center. He is the author of a Cartesian mesh/solver external
aerodynamics CFD system. This system requires the tessellation of surfaces, one of the data
entities associated with the Face entity definition. It should be a simple port. Once complete,
the point-query components can be used to snap surface grid nodes on the actual geometry (not
the triangles of the tessellation). Aftosmis will use both the Parasolid version (he gets parts
from McDonnell-Douglas -- they also use UniGraphics) and he has access to a
Pro/ENGINEER license.



Statement of Work

L.

CAPRI and industry

Clearly for this work to be successful, it must be used. The easiest way to convince industry of
its value is to work on a topical problem of interest that current methods do not provide timely
results. The following will be attempted in conjunction with Frank Sagendorph (Manager -
Product Definition & Analysis Methodologies at GE Aircraft Engines):

GE Aircraft Engines has a well established “Master Model” strategy in which UG part
files and assemblies define a common geometry that is shared with discipline specific
engineering and manufacturing applications. On the engineering side, these applications
typically have to prepare the geometry for meshing, build the mesh, apply boundary
conditions, solve the appropriate physics problem, display the results for interpretation and,
if necessary, initiate another design iteration by changing the geometry.

Although UG is GE’s core geometry modeler, frequently GE needs to operate on the
geometry in a consistent fashion outside of the UG system. GE has developed pieces of
such a system, but there is room for improvement in both the fidelity of the geometric
operations as well as the functionality for mesh creation and boundary condition
application. A current port of the CAPRI system is based on a Parasolid geometry kernel,
as is UG. Therefore GE’s interest is to evaluate CAPRI on a problem of considerable
interest to Aircraft Engines to see if can fill in some of their missing capabilities.

Specifically, we will use a high pressure turbine blade as the geometry for the evaluation.
These blades have internal serpentine cooling passages which produce an extremely
complex geometric definition. We have constructed UG models of these blades and these
models would form the basis for our evaluation. The analysis models would address CFD,
Heat Transfer and Mechanical Design needs. The evaluation will focus initially on these

areas:

A. Assessment of the overall accuracy of the geometry import from and export to
UG.

B. Ability to define and execute simple geometric operations inside CAPRI to prepare

the geometry for meshing. For example, we might like to import the entire geometry and
then de-construct it to isolate the airfoil, the platform, and the shank regions.

C. Productivity gains which would could be attributed to the integrated graphics
displays of CAPRI (the Geometry Viewer).
E. Ease of integration with our existing in-house codes which generate meshes and

apply boundary conditions for structural and CFD analysis models.
F. Ease of integration with commercial packages such as ICEM-CFD and ANSYS.

This evaluation will be conducted on HP workstations since they comprise the bulk of GE
AE’s technical desktop computing resources.

Future areas of interest would include the effective use of UG parametric models with
CAPRI for more rapid design iterations.



2. CATIA
The CAD package CATIA will be the next to be integrated into the CAPRI framework. The
proper licenses will be obtained to allow access to CATIA parts and the geometry kernel.
CATIA is the only other major CAD vendor used by the aerospace industry currently not
covered. This will allow Boeing access to CAPRI and therefore use and contribute to this
work.

3. Geometry Creation and Modification
Once CATIA has been ported, the entire issue of modification and creation of solid-based
geometry can be addressed. At a minimum, functions like scribing and splitting existing
surface are required for grid generation of structured blocks as well as being able to bound and
invert existing solids to create the fluid volume.

With the knowledge of the internals of three major CAD systems, a group of functions can be
specified so that these operations are feasable across these CAD packages. The goal is to
produce an API that is both conceptually simple and very powerful. Boolean operations on
solids may be the foundation for this part of CAPRL

4. Commercial Grid Generators :
The turbomachinery industry is beginning to use commercial grid generators. This causes a
problem for CAPRI specifically and automated analysis and design systems in general. The
work here requires that the grid generator use the solid model during the meshing and update
the information in CAPRI with the surface discretization when complete. Wrappers can be
written to merge the operations but a more complete integration is desirable. Attempts will be
made to convince the vendors of these CFD grid generators to hook up to CAPRI (the
packages include ICEM-Hexa, ICEM-Tetra, GridGen and GridPro).

5. Assistance with Object Oriented DataBase coupling
NASA Lewis Research Center personnel are now looking into the use of Object Orientated
DataBases with and within analysis suites. CAPRI provides a natural test-bed for this work.
Assistance will be rendered in using this framework. Parasolid will the first CAD kernel used
in that it is easy to intercept the CAD part definition and change how and where it is read and
written.
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Abstract

CAPRI is a CAD-vendor neutral application programming interface designed for the con-
struction of analysis suites and design systems. By allowing access to the geometry from
within all modules (grid generators, solvers and post-processors) such tasks as meshing on
the actual surfaces, node enrichment by solvers and defining which mesh faces are bound-
aries (for the solver and visualization system) become simpler. The overall reliance on file

‘standards’ is minimized.

This ‘Geometry Centric’ approach makes multi-physics (multi-disciplinary) analysis
codes much easier to build. By using the shared (coupled) surface as the foundation, CAPRI
provides a single call to interpolate grid-node based data from the surface discretization in
one volume to another. Finally, design systems are possible where the results can be brought
back into the CAD system (and therefore manufactured) because all geometry construction

and modification are performed using the CAD system’s geometry kernel.



License

This software is being provided to you, the LICENSEE, by the Massachusetts Institute of
Technology (M.I.T.) under the following license. By obtaining, using and/or copying this
software, you agree that you have read, understood, and will comply with these terms and

conditions:

Permission to use, copy, modify and distribute, this software and its documentation for
any purpose and without fee or royalty is hereby granted, provided that you agree to comply
with the following copyright notice and statements, including the disclaimer, and that the

same appear on ALL copies of the software and documentation:
Copyright 1997 by the Massachusetts Institute of Technology. All rights reserved.

THIS SOFTWARE IS PROVIDED #AS IS”, AND M.I.T. MAKES NO REPRESEN-
TATIONS OR WARRANTIES, EXPRESS OR INIPLIED. BY WAY OF EXAMPLE, BUT
NOT LIMITATION, ML.LT. MAKES NO REPRESENTATIONS OR WARRANTIES OF
AMERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT
THE USE OF THE LICENSED SOFTWARE OR DOCUMENTATION WILL NOT IN-
FRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER
RIGHTS.

The name of the Massachusetts Institute of Technology or M.LT. may NOT be used
in advertising or publicity pertaining to distribution of the software. Title to copyright in
this software and any associated documentation shall at all times remain with MLI.T., and

USER agrees to preserve same.
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1 Introduction

The computational steps traditionally taken for Computational Fluid Dynamics (CFD),

Structural Analysis, and other simulation disciplines (or when these are used in design) are:

e Surface Generation
The surfaces of the object(s) are generated usually from a CAD system. This creates

the starting point for the analysis and is what is used for manufacturing.

e Grid Generation
These surfaces are used (with possibly a bounded outer domain) to create the vol-
ume of interest. Usually for the analysis of external aerodynamics, the aircraft is
surrounded by a domain that extends many body lengths away from the surfaces.
This enclosed volume is then discretized (subdivided) in one of many different ways.
Unstructured meshes are built by having the subdivisions usually comprised of tetra-
hedral elements. Another technique breaks up the domain into sub-domains that
are hexahedral. These sub-domains are further divided in a regular manner so that

individual cells in the block can be indexed via an integer triad.

e Flow Solver or Simulation
The solver takes as input the grid generated by the second step (and information about
how to apply conditions at the bounds of the domain). Because of the different styles
of gridding, the solver is usually written with ability to use only one of the volume
discretization methods. In fact there are no standard file types, so most solvers are
written in close cooperation with the grid generator. For fluids, the solver usually
simulates either the Euler or Navier-Stokes equations in an iterative manner, storing
the results either at the nodes in the mesh or in the element centers. The output of

the solver is a file that contains the solution.

e Post-processing Visualization

After the solution procedure has successfully completed, the output from the grid
generator and the simulation are displayed and examined in a graphical manner by
the fourth step in this process. Usually a workstation with a 3D graphics adapter is
used to quickly render the output from data extraction techniques. The tools (such as
iso-surfacing, geometric cuts and streamlines) allow the examination of the volumetric
data produced by the solver. Even for steady-state solutions, much time is usually
required to scan, poke and probe the data in order to understand the physics in the
flow field.

These steps have worked well in the past for simple steady-state simulations at the

expense of much user interaction. The data was transmitted between phases via files (the
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Figure 1: The Traditional Computational Analysis Suite

arrows in Figure 1). In most cases, the output from a CAD system could go to IGES files.
The output from Grid Generators and solvers do not really have standards though there are
a couple of file formats that can be used for a subset of the problem space (i.e. PLOT3D
data formats for CFD). The user would have to patch up the data or translate from one
format to another to move to the next step. Sometimes this could take days. Specifically,

the problems with this procedure are:

e File based
Information flows from one step to the next via data files with formats specified for
that procedure. Historically, this allows individuals or groups to work in isolation on
the construction of one of these components; unfortunately the user (or team) suffers
greatly because of the lack of integration. In many cases the files that get used do not
contain all the information required to couple all components so that the user can be

removed from the mechanics of running the suite.

e ‘Good’ Geometry
A bottleneck in getting results from a solver is the construction of proper geometry
to be fed to the grid generator. With ‘good’ geometry a grid can be constructed in
tens of minutes (even with a complex configuration) using unstructured techniques.
Adroit multi-block methods are not far behind. This means that a million node
CFD steady-state solution can be computed on the order of hours (using current high
performance computers) starting from this ‘good’” geometry. Unfortunately, geometry
from CAD systems (especially when transmitted via IGES files) is not ‘good’ in the
grid generator sense. The data is usually defined as disjoint and unconnected surfaces
and curves (as well as masses of other information of no interest for the mesh). The
grid generator needs smooth closed solid geometry. It can take a week (or more) of
interaction with the CAD output (sometimes by hand) before the process can begin.
This is particularly onerous if the CAD system is based on solid modeling. The
part was a proper solid with topology and in the translation to IGES has lost these

important characteristics.

e One-Way Comminucation

All information travels on from one phase to the next. This makes procedures like



node adaptation difficult when attempting to add or move nodes that sit on bounding
surfaces (when the actual surface data has been lost after the grid generation phase).

In fact, the information passed from phase to phase is not enriched but is filtered.

Until this process can be automated, more complex problems such as Multi-disciplinary
analysis or using the above procedure for design becomes prohibitive. There is also no
way to easily deal with this system in a modular manner. One can only replace the grid

generator, for example, if the software reads and writes the same files.

Procedures like zooming, defined within the Numerical Propulsion System Simulation

(NPSS), are difficult to acheive when the surface definition for the coupling between the
simulations is lost.



2 CAPRI

Instead of the serial approach to analysis as described above, CAPRI uses a geometry
centric approach. This makes the actual geometry (not a discretized version) accessible to
all phases of the analysis. The connection to the geometry is made through an Application
Programming Interface (API) and NOT a file system. This API isolates the top level
applications (grid generators, solvers and visualization components) from the geometry
engine. Also this allows the replacement of one geometry kernel with another, without
effecting the top level applications. For example, if UniGraphics is used as the CAD package
then Parasolid (UG’s geometry engine) can be used for all geometric queries so that no solid
geometry information is lost in a translation. If Pro/E is used then Pro/Toolkit is accessed

when geometric information is required. See Figure 2.
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Figure 2: The CAPRI based Computational Analysis Suite

It is very important to consider the design goals when building a new software architec-
ture. Without properly setting a broad foundation, the system may not be able to function
as desired. The goals for CAPRI are:

¢ Modular
The system must support a modular or building-block method for construction. This
facilitates a plug and play approach at the top level as well as the underlying geometry

kernel.

¢ Multiple languages
It is important to support FORTRAN, C and C++. Many CFD codes are currently
written in FORTRAN. On many machines, the FORTRAN compiler produces more

highly optimized code, giving much better performance. Forcing the core of these



algorithms to another language. just because the rest of the system is in that language,

is not be part of the philosophy found in CAPRI

s Transient solutions
This system must support unsteady simulations as well as steady-state, which include

the underlying geometry changing with time.

e Allow Multi-discipline coupling and zooming
This system must be general enough to allow coupling from codes of other disciplines
(including but not limited to — structural analysis, heat transfer, acoustic codes). In
fact the coupling could be close, in that the analysis code could be made a part of the

overall design system.

2.1 Geometry and Topology

To insure that the design goals can be met and the resulting interface is not overly complex,
it is crucial that the geometry description be uncomplicated (but not too simple as to
impair functionality). Most systems that deal with CAD data make the distinction between
geometry (points, curves and surfaces) and topology (the hierarchical connections between

geometric entities). CAPRI mixes these in a simple geometry data definition.

The geometry and topology are defined in CAPRI in the following manner:

e Nodes

These are the simplest entities and are just points in 3 space.

e Edges
Edges are curves. Each Edge is bounded by two unique Nodes. The Edge is param-
eterized with ¢, where the first Node has a value at tnin and the second bounding

Node has a value of t;,0z. The value of ¢y, is always less than tmaz-

To aid in plotting. there is an attached discretization of the curve. This is defined as
a poly-line with a specified length. The line is defined starting at the first Node and

terminates with the second.

Note: Circles, ellipses and other closed loops found in the original CAD definition are
broken up by CAPRI so that there is no parameterization that is periodic. Any closed
loop will be broken in two and therefore may have two Nodes added so that the Edge

can be properly bounded.

e Faces
Faces are parameterized (u,v) surfaces. The parameter range for u is Umin tO Umaz

and v ranges from Umin tO Umaz. but the relationship between (u, v) and the bounding
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Edges is not as simple as the Edge-Node definitions. This is because Faces may be
bounded by more than 4 Edges. In fact, a Face can be a very complex surface where
the ranges of the parameterization are only limits and should not be used throughout

its entirety (i.e. there may be a hole or the result of some trimming).

The bounds of the Face are defined by closed set(s) of Edges. There may be one or
more of these loops for each Face. Stored with each defining Edge is an orientation so
that it is known whether to look at the Edge as specified or in the opposite sense. The
loop is an ordered suite that defines the orientation of the Face. The outer loop(s),
specify the boundary of the surface, and traverse the Face in a right-handed manner
— defining the outward pointing normal (out of the volume). Any holes are specified

by a left-handed traversal of Edges. See Figure 3.

Edge

» Node

Face

Figure 3: A simple Volume with a cylinder cutout - Edges marked for front Face

Each Edge can be found bounding two Faces, one in the forward and one in the

opposite sense.

Again, to aid in plotting and to have a complete representation of this (possibly
complex) Face, there is an attached discretization. This is defined as suite of disjoint
triangles of a specified length. Each triangle is right-handed with the normal pointing

out of the volume.

Note: Cylinders, and other periodic surfaces found in the original CAD definition
are broken up by CAPRI so that the parameterization is not periodic. Any periodic
surface will be broken in two and therefore may have two Edges added so that the

Face’s parameter space is simple.

Boundaries

Boundaries are simply collections of one or more Faces. These entities are the connec-
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tion between the geometry and the rest of the analysis suite, as described above. The
Faces need not couple together (i.e., a periodic boundary upstream and downstream
from a turbine or compressor blade) but are used to insure that the grid generation
knows that these surfaces could be treated in special ways. And, the solver knows

which boundary condition to apply to what section of the resultant mesh.

Boundaries have an associated name (i.e., far-field, body, wing and etc).

e Volumes
Volumes are completely closed regions of 3 space. Volumes are bounded by the sum of
all of the Faces found in the Boundaries. These Faces match up at the shared Edges,

that terminate at the Nodes. CAPRI can handle one or more Volumes at a time.
Each Volume can be named with strings like; ‘Fluids passage’, ‘Blade’, and etc.

Volumes may have a number of associated Tags to indicate global conditions for the
discipline. Each Tag has an assigned value string. For example; the Volume ‘Fluids
passage’ may have the Tags ‘gamma’ (with the value string of ‘1.4°) and ‘smoothing’

(with the associated string ‘0.2 0.027).

The geometric entities described above are handled within CAPRI with integer handles
or indices. Each Volume is assigned a handle when loaded. All entities contained within
that volume (Nodes, Edges, Faces and Boundaries) are given indices ranging from 1 to the
total number of entities in that class. Therefore, it usually requires 2 handles to describe

an entity, the volume and the entity indices.

There is a special Boundary index (zero) which refers to all currently unassigned Faces.
When a Volume (or number of Volumes) is first read from the CAD system, this Boundary
is fully populated with all Faces. As Faces become assigned, they are pulled from this

Boundary and put in the appropriate place.

2.2 Boundaries

Boundaries are the pivotal data objects used within CAPRI. Boundaries are the entities
that the grid generators should build the exposed parts of the mesh about. Different solver
functions (boundary conditions) are then applied across these facets of the volume. When
Multi-disciplinary analysis are run, boundaries are where these different physical models

share information to drive the coupled solution.

The data that comes from CAD systems does not always provide a proper separation
of surfaces (Edges, as specified above) that coincide with what is required by the analysis
suite. This is for two reasons; (1) the CAD operator, by the order of construction, may

produce artifacts (such as sliver surfaces) or detail at a level more complex than the analysis
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suite requires. (2) Curved surfaces such as fillets have breaks, on where these surfaces mate
with other surfaces, usually not at the center of curvature where the analysis suite would

require the edge of the boundary.

The first of these problems is resolved in CAPRI by allowing the collection of CAD
surfaces. The analysis suite can query this collection and get to the detailed CAD surfaces
if required. This has the advantage over what is done in automated techniques used for
grid generation in that the CAD artifacts can be meshed through as opposed to becoming
features in the grid. For example, a sliver surface would end up completely resolved, in an
automated surface gridding procedure, requiring potentially large numbers of small cells in

those regions.

Scribing and splitting CAD surfaces so that the analysis boundaries can be defined is
a function of CAPRI. Initially this is done interactively or through program control (if the
analysis suite can determine where to break the surfaces). In the future, work will be done

to attempt to automate this procedure.

Interactive functions are also provided within the CAPRI framework to collect these
CAD surfaces and produce the boundaries as well as setting up the information to run the

entire suite.

2.2.1 Boundary Discretization

Each Boundary can have an attached discretization. This discretization can be from dif-
ferent mesh topologies that touch the Boundary. There are 3 types of cell faces that build

this structure:

e Disjoint Triangles — 3 bnodes per entity
e Disjoint Quadrangles - 4 bnodes per entity

o Quad-Meshes — these are produced from grid ‘planes’ of structured blocks

These entities are supported via Boundary nodes (bnodes). The bnode numbering used
is local within the Boundary. The node numbering used differentiates between the nodes
in the non-block regions (formed by the disjoint faces) and the structured blocks. Figure 4
shows a schematic of the bnode space. ndnode is the number of nodes for the non-block
(disjoint primitive) grid. Each Quad-Mesh (m) adds NI, * NJm * N Kp nodes to the node
space (where NI, NJ and NK are the number of nodes in each direction). The node
numbering within the block follows the memory storage, that is, (i,j.k) in FORTRAN and
[K][j][i] in C. The bnode number = base + i+ (j — 1) * NIm + (k= 1) * NIy * NJp.
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Notes:
1) All indices start at 1.
2) Either NI, NJ or NK must be 1 for each Quad-Mesh.

3) Disjoint Tri and Quad definitions may contain nodes defined within the Quad-\eshes.

Quad-Meshes

!
I
|
|

1 ndnode nbnode

Figure 4: Boundary Node Space

2.2.2 Special Groupings

Special groupings are simply lists of bnodes that may be required by the solver’s boundary
condition routines. This is to flag “special” nodes. For example, if IBlanking is used,
there could be a list that contains the IBlanked nodes. If nodes along the Edges between
Boundaries need to be treated differently from those interior nodes, then these edge nodes

can be placed in a Special group.

2.2.3 Boundary Attachments

Boundary attachments are collections of data that are associated with the bnodes of the
Boundary discretization. The attachments are identified by a name and can have an addi-
tional string that can indicate information on how and/or when the attachment was created.
These attachments can be used to communicate boundary level data between modules (i.e.,
heat transfer to the visualization module), perform Zooming or otherwise couple like simu-

lations at boundaries and perform multi-disciplinary coupling between Volumes.

2.2.4 Boundary Tags

Tags are character strings associated with the Boundary. Each string has an attached value
string. These Tag entities are useful for specifying conditions or material information for
the application of boundary conditions by the solver. For example; the Boundary named

“Wall' may have a Tag ‘temperature’ with the associated value *300K".
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2.3 The CAPRI API

The CAPRI API is sub-divided into the following components:

1. Utility routines
These routines include initialization of CAPRI, loading CAD parts and querying sta-
tus as well as closing the system down:
e gi_uStart - Initialize CAPRI
e gi.uLoadPart - Loads a Volume or number of Volumes from a CAD part
e gi_uSavePart — Save away the CAD part
e gi_uNumVolumes - Returns the number of active Volumes
e gi_uStop — Terminates CAPRI
2. Geometry data-base queries
This allows all top level applications to figure out and get detailed information on any
geometric component in the Volume definition:
o gi_dGetNode — Returns the data for a Node
e gi_dGetEdge — Returns the data for an Edge
o gi_dGetFace — Returns the data for a Face
e gi_dGetBoundary — Returns the data for a Boundary
e gi_dNewBoundary - Creates a new Boundary for the Volume
e gi_d)MoveFace - Moves a Face from one Boundary to another
e gi_dNameVolume - Assigns a string to a Volume

e gi_dGetVolume — Returns the name of the Volume and the number of Nodes,

Edges, Faces and Boundaries attached
e gi_dBox - Returns the min and max coordinates for the Volume
3. Point queries

These calls allow grid generators, or solvers doing node adaptation, to snap points

directly on geometric entities:
e gi_gPointOnEdge - Returns the point at the ¢ parameter and optionally derivi-
tives
e gi_qNearestOnEdge — Returns the ¢ parameter given a point

e gi_qPointOnFace — Returns the point at the (u,v) parameters and optionally

derivitives



e gi_qNearestOnFace — Returns the (u,v) parameters given a point
s gi_qNormalToFace ~ Returns the normal to the given (u,v) parameters
e gi_gInEdge - Returns whether the given point is on the Edge.

e gi_gInFace — Returns whether the given point is in the Face or not (in some hole

or trimmed-off region)

e gi_dInBoundary - Returns whether the given point is in the Boundary and asso-

ciated Face index if it is.
¢ gi_gInVolume - Returns whether the given point is contained within the specified

Volume

4. Calculated or geometrically derived queries
These calls calculate data from the geometry to aid in grid generation:
e gi_cLengthOfEdge — Returns the arc-length of the Edge
o gi_cCurvOfEdge — Returns the curvature at a point on the Edge

o gi_cAMaxCurvOfEdge - Returns the maximum Face curvature of a point on the

Edge

o gi_cCurvOfFace - Returns the curvatures and principal directions at a point on

the Face
e gi_cMaxCurvOfFace — Returns the maximum curature of a point on the Face
5. Boundary data routines

This part of CAPRI allows general data to be attached to Boundaries so that the
boundary conditions can be specified and stored within CAPRIs data-base:

e gi_bSetDiscret — Sets the discretization for the Boundary

e gi_bGetDiscret — Returns the discretization for the Boundary

o gi_bGetCoord — Returns the discretization coordinates

o gi_bGetTris ~ Returns the disjoint triangle discretization

e gi_bGetQuads - Returns the disjoint quad discretization

e gi_ bGetQMesh - Returns the quad-mesh discretization

o gi_bGet3DNode - Translate boundary node index to 3D mesh node

e gi_bSetSpecial - Set/Update a Special grouping

e gi_bGetSpecial — Return data about a Special grouping

e gi_bGetISpecial - Return data about a Special grouping (by index)

s gi_bDelSpecial - Removes a Special grouping
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6. Geometry based interpolation routines
This part of the API facilitates Multi-disciplinary coupling and allows zooming through
Boundary Attachments:
e gi_iSetAttach - Set/Update a Boundary Attachment
o gi_iGetAttach - Return data about a Boundary Attachment
e gi_iGetIAttach - Return data about a Boundary Attachment (by index)
e gi_iDelAttach — Removes a Boundary Attachment
e gi_iGetDisplace - Returns Volume displacement matrix used for interpolation
e gi_iSetDisplace — Specifies Volume displacement matrix
e gi_iGetReplicate — Returns Volume replication used for interpolation
e gi_iSetReplicate — Specifies Volume replication for interpolation
e gi_ilnterAttach — Interpolate to produce/update Boundary Attachment
7. Tag based routines
This part of the API allows the specification of properties associated with either the
Volume or Boundary entities:
o gi_tGetNumVolume - Returns the number of Volume Tags
e gi_tGetVolume — Return associated string for the specified Tag
e gi_tGetIVolume - Return data for the specified Tag (by index)
o gi_tSetVolume — Set/Update a Tag
e gi_tGetNumBoundary — Returns the number of Boundary Tags
e gi_tGetBoundary — Return associated string for the specified Tag
e gi_tGetIBoundary - Return data for the specified Tag (by index)
e gi_tSetBoundary — Set/Update a Tag
8. Geometric modification
This will be used for an automated design system where the goal of the application
is to change the geometry. Routines that allow this have the advantage that if the

data is kept consistent with the CAD package, then the design can be incorporated

directly and therefore is manufacturable.

Not yet defined!
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3 The Geometry Viewer

The Geometry Viewer is not an integral part of the CAPRI AP, but is a stand-alone tool-
kit that augments CAPRI It is designed to be able to become the visual interface to the

entire analysis suite.

The Geometry Viewer has been written to be modular and attachable to applications
that that deal with point, line, surface and volume data. The Viewer has two execution
modes; (1) normal, serial, execution where program control is passed to the graphics, the
data is examined and then when the user is satisfied, execution resumes in the calling pro-
gram. (2) Multi-threading where the data is shared between to executing threads (applica-
tion and graphics) and both can be concurrently active allowing viewing as the application

runs. This is particularly useful in the debugging of grid generators.

The user interface is multi-windowed and has the same look and feel as Visual3 appli-
cations and the pV'3 Server and Viewer. Because the Geometry Viewer was not designed as
a scientific visualization system, there is only the ability to deal with grids and geometry.
More effort has been put towards lighting models and the ability to light either faceted (nor-
mals based on cell faces) as well as smoothly (normals based on nodes). The 2D window is

only used for a planar cutting surface so that the interior of volumes may be examined.

The Geometry Viewer has the following features:

e OpenGL
All 3D and 2D rendering is performed in OpenGL to achive high performance and

good animation.

¢ 3D Viewing
Items may be rendered in a specified color or colored via scalars that are etther defined
at nodes or facets. The line and surface primitives may be ecither indexed (based on a

list of points) or non-indexed. The following attributes may be interactively adjusted:

— Points: Rendering on/off
— Lines: Rendering on/transparent /off, Moved forward (not obscured by surfaces),
Orientation (direction) on/off

— Surfaces: Rendering on/transparent/off, Lighting faceted/smooth, Orientation
(front vs. back) on/off, Mesh on/moved forward/off.

e 2D Viewing
The intersection of the plane and lines are plotted as points in the 2D window. Inter-
sected surfaces are displayed as curves. Any 3D mesh that is cut is displayed as the

intersected cell faces (lines) within the volume.
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e Picking and Locating. Picking (pointing at and selecting objects) in the 3D window is
supported. This is useful in CAPRI for specifying the Boundary entities interactively.
Locating (3D pointing and retrieving 3 space coordinates) is useful for interactive

modification of geometry.

¢ Data-base A window is dedicated to the objects within the Geometry Viewer. This is

were the interactive control of the plotting attributes is performed.
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A Utility Calls
A.1 Start — Initialize CAPRI

icode = gi_uStart()
ICODE = IG_USTART()
This must be the first call to CAPRI. It initializes the system.

I: icode Return code

A.2 LoadPart — Load Volume(s) from CAD part file

icode = gi_uLoadPart(char *name)
ICODE = IG_.ULOADPART(NAME)

Before examining any CAD data a “solids” part must be loaded.

C: name Character string containing the file-name for the part

I: icode Return code

A.3 SavePart — Save Volume(s) to CAD part file

icode = gi_uSavePart(char *name)
ICODE = IG_USAVEPART(NAME)

This call allows the output of the part once data has been modified.

C: name Character string containing the file-name for the part —

should be a different name than used to read the part

I: icode Return code

A.4 NumVolumes — Returns the Number of Active Volumes

numV] = gi_uNumVolumes()
NUMVL = IG_.UNUMVOLUMES()

Any negative return is the indication of an error.

I: numVl] Number of Volumes/Return code
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A.5 Stop — Terminate CAPRI

icode = gi_uStop(exit)
ICODE = IG_USTOP (exit)
This must be the last call to CAPRI. It terminates the system and frees up all memory.

CAPRI will need to be re-initialized before using any functions.

I: exit 0 - return; otherwise exit in the appropriate manner.

I: icode Return code
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B Geometry Data-Base Queries
B.1 GetNode — Returns the Data for a Node

icode = gi_dGetNode(int vol, node, double *point)
ICODE = IG DGETNODE(VOL, NODE, POINT)

Returns the 3D coordinates associated with the Node.

I: vol Volume index

I: node Node index

D: point Point - length 3 (returned)
I: icode Return code

B.2 GetEdge — Returns the Data for an Edge

icode = gi_dGetEdge(int vol, edge, double *trange, int *nodes, *npts,
double **points)
ICODE = IG _DGETEDGE(VOL, EDGE, TRANGE, NODES, NPTS, POINTS)

Returns the data associated with the Edge.

I: vol Volume index

I: edge Edge index

D: trange tinin and tmer — length 2 (returned)

I: nodes Node endpoint indices - length 2 (returned)
I: upts Number of points in discretization (returned)
D: points pointer to polyline discretization (returned)
I: icode Return code

FORTRAN note: The pointer is not returned. NPTS must be set with the size of
POINTS at the call. It is returned with the actual length. If POINTS is not declared large
enough (by the calling routine) the return code CAPRI.OVERFLOW is set but all the data

up to that length is correct.
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B.3 GetFace — Returns the Data for a Face

icode = gi_dGetFace(int vol, face, double *urange,

int *nloop, **loops, **edges, *npts, double **points)

ICODE = IG_DGETFACE(VOL, FACE, URANGE, NLOOP, LOOPS, NPTS,

POINTS)

Returns the data that defines the Face.

I: vol
I: face
D: urange

I: nloop

I: npts

D: points

I: icode

Volume index

Face index

Umin+ Umin: Umaz and tmer — length 4 (returned)
Number of Edge loops (returned)

pointer to Edge loop lengths (returned)

pointer to Edge data that make up all of the loops, each
entry contains 2 integers, first the Edge index and second
the sense (—1 or 1) — data length is the sum of all loop

lengths (returned)

Number of points in disjoint triangle descritization (re-

turned)
pointer to the disjoint triangle discretization (returned)

Return code

FORTRAN notes: Pointers are not returned — >
1) NLOOP must be set with the length of LOOPS and LOOPS(1) must be set with the
size of EDGES before the call is executed. LOOPS and EDGES are filled with the actual
data and NLOOP is set with the number of loops for the Face. If either of the declared

lengths are not long enough to store the data, then the return code CAPRI.OVERFLOW

is set. Information is filled up to that limit.

2) NPTS must be set with the size of POINTS at the call. It is returned with the actual
length. If POINTS is not declared large enough (by the calling routine) the return code
CAPRI.LOVERFLOW is set but all the data up to that length is correct.
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B.4 GetBoundary — Returns the Data for a Boundary

icode = gi_dGetBoundary(int vol, bound, *nface, **faces, char **name)
ICODE = IG. DGETBOUNDARY(VOL, BOUND, NFACE, FACES, NAME)

Returns the data associated with the Boundary.

I: vol Volume index

I: bound Boundary index (0 - “UnAssigned™)
I: nface Number of faces (returned)

I: faces pointer to the faces (returned)

C: name pointer to character string (returned)
I: icode Return code

FORTRAN note: The pointer is not returned. NFACES must be set with the size of
FACES at the call. Tt is returned with the actual length. If FACES is not declared large
enough (by the calling routine) the return code CAPRI.OVERFLOW is set but all the data

up to that length is correct.

B.5 NewBoundary — Creates a New Boundary for the Volume

icode = gi_.dNewBoundary(int vol, char *name)
ICODE = IG. DNEWBOUNDARY (VOL, NAME)

Creates the new Boundary for the volume with the given name.

I: vol Volume index
C: name character string for the name of the Boundary
I icode Created Boundary index/Return code
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B.6 MoveFace — Assigns a Face to a Boundary

icode = gi_dMoveFace(int vol, face, bound)
ICODE = IG_DMOVEFACE(VOL, FACE, BOUND)
Moves the Face from one Boundary to the assigned Boundary index. Note: All current

discretizations, groupings and attachments are removed from both source and destination

Boundaries.

I: vol Volume index

I: face Face index

I: bound Boundary index - target
I: icode Return code

B.7 NameVolume — Assign a Title to a Volume

icode = gi_dNameVolume(int vol, char *name)
ICODE = IG_ DNAMEVOLUME(VOL, NAME)

Gives the Volume a name.

I: vol Volume index
C: name character string assigned to the volume
I: icode Return code

B.8 GetVolume — Returns the Data for a Volume

icode = gi_.dGetVolume(int vol, *nnode, *nedge, *nface, *nbound,
char **name)
ICODE = IG.DGETVOLUME(VOL, NNODE, NEDGE, NFACE, NBOUND,
NAME)

Returns the number of entities associated with the Volume index.

I: vol Volume index

I: nnode number of Nodes associated with the volume (returned)
I: nedge number of Edges associated with the volume (returned)
I: nface number of Faces associated with the volume (returned)
I: nbound number of Boundaries found within the volume (returned)
C: name pointer to the string for the Volume’s name (returned)

I: icode Return code
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B.9 Box — Return the Bounding Coordinates for the Volume

icode = gi_dBox(int vol, double *box)
ICODE = IG_DBOX(VOL, BOX)

Returns the coordinate box that contains the Volume.

I: vol Volume index

D: box Nmin. Ymin. Zmins Xmaz: Ymar and Zmey — length 6 (re-
turned)

I: icode Return code
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C Point Queries
C.1 PointOnEdge — Returns the Coordinates On the Edge

icode = gi_qPointOnEdge(int vol, edge, double t, *point, int der,
double *d1, *d2))
ICODE = IG_QPOINTONEDGE(VOL, EDGE, T, POINT, DER, D1, D2)

Returns the Point and derivitives (optionally) at the ¢ parameter.

I: vol Volume index

I: edge Edge index

D:t t parameter

D: point Point - length 3 (returned)
I: der Derivative Flag:

0 - No derivatives (only return point)
1 - Compute and return first derivative

2 - Compute and return first and second derivatives

D:dl First derivative - length 3 (returned, der > 0)
D: d2 Second derivative — length 3 (returned, der > 1)
I: icode Return code

C.2 NearestOnEdge — Finds the Nearest Position to the Edge

icode = gi_qNearestOnEdge(int vol, edge, double *coor, *point, *t)
ICODE = IG_.QNEARESTONEDGE(VOL, EDGE, COOR, POINT, T)

Returns the closest coordinates to the input point on the Edge and the ¢ parameter.

I: vol Volume index

I: edge Edge index

D: coor Input point — length 3

D: point Point - length 3 (returned)
D:t t parameter (returned)

I: icode Return code
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C.3 PointOnFace — Returns the Coordinates On the Specified Face

icode = gi_qPointOnFace(int vol, face, double u, v, *point, int der,
double *du, *dv, *duu, *duv, *dvv)
ICODE = IG_QPOINTONFACE(VOL, FACE, U, V, POINT, DER, DU, DV,
DUU, DUV, DVV)

Returns the Point and derivitives (optionally) at the (u,v) parameters.

I: vol Volume index

I: face Face index

D:u u parameter

D:v v parameter

D: point Point - length 3 (returned)
I: der Derivative Flag:

0 - No derivatives (only return point)
1 - Compute and return first derivative

2 - Compute and return first and second derivatives

D: du First derivative of u - length 3 (returned, der > 0)
D: dv First derivative of v — length 3 (returned, der > 0)
D: duu Second derivative of u — length 3 (returned, der > 1)
D: duv Cross derivative — length 3 (returned, der > 1)

D: dvv Second derivative of v — length 3 (returned, der > 1)
I: icode Return code

C.4 NearestOnFace — Finds the Nearest Position to the Face

icode = gi_qNearestOnFace(int vol, face, double *coor, *point, *u, *v)
ICODE = IG.QNEARESTONFACE(VOL, FACE, COOR, POINT, U, V)

Returns the closest coordinates to the input point on the Face and the (u,v) parameters.

I: vol Volume index

I: face Face index

D: coor Input point - length 3

D: point Point — length 3 (returned)
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D:u u parameter (returned)
D: v v parameter (returned)

I: icode Return code

C.5 NormalToFace — Finds the Normal at the Specified Parameters

icode = gi_qNormalToFace(int vol, face, double u, v, *point, ¥*norm)
ICODE = IG_.QNORMALTOFACE(VOL, FACE, U, V, POINT, NORM)

Returns the normal to the Face at the (u,v) parameters.

I: vol Volume index

I: face - Face index

D:u u parameter

D:v v parameter

D: point Point - length 3 (returned)
D: norm Normal - length 3 (returned)
I: icode Return code

C.6 InEdge — Is the Point Contained in the Edge

icode = gi_qInEdge(int vol, edge, double *point)
ICODE = IG_QINEDGE(VOL, EDGE, POINT)

Returns a condition indicating whether the point is on the Edge.

I: vol Volume index

I: edge Edge index

D: point Point — length 3

I: icode Return code - CAPRI_.OUTSIDE is returned when the

point is not contained on the Edge
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C.7 InFace — Is the Point Contained on the Face

icode = gi_qInFace(int vol, face, double *point)
ICODE = IG_.QINFACE(VOL, FACE, POINT)

Returns a condition indicating whether the point is on the Face.

I: vol Volume index

I: face Face index

D: point Point - length 3

I: icode Return code - CAPRI.OUTSIDE is returned when the

point is not contained on the Face

C.8 InBoundary — Is the Point Contained on the Boundary

icode = gi_qInBoundary(int vol, bound, double *point, int *face)
ICODE = IG_.QINBOUNDARY(VOL, BOUND, POINT, FACE)

Returns a condition indicating whether the point is on the Boundary.

I: vol Volume index

I: face Bound index

D: point Point - length 3

I: face Face index for Face containing the point (returned)

I: icode Return code — CAPRI_LOUTSIDE is returned when the

point is not contained on the Boundary

C.9 InVolume ~ Is the Point Contained within the Volume

icode = gi_qInVolume(int vol, double *point)
ICODE = IG_QINVOLUME(VOL, POINT)

Returns a condition indicating whether the point is in the Volume.

I: vol Volume index
D: point Point - length 3
I: icode Return code — CAPRI_.OUTSIDE is returned when the

point is not contained within the Volume

30



D Calculated or Geometrically Derived Queries

D.1 LengthOfEdge — Returns the arc-length of the Edge

icode = gi_cLengthOfEdge(int vol, edge, double t1, t2, *len)
ICODE = IG_.CLENGTHOFEDGE(VOL, EDGE, T1, T2, LEN)

Returns the length along the Edge between the parameter range ¢; and t2.

I: vol
I: edge
D: tl
D: t2

D: len

I: icode

Volume index
Edge index
t parameter for the start of the calculation

t parameter for the end of the calculation - t; must be less

than ts.
the resultant length (returned)

Return code

D.2 CurvOfEdge — Gets the tangent and curvature for an Edge point

icode = gi_cCurvOfEdge(int vol, edge, double t, *tang, *curv)
ICODE = IG_.CCURVOFEDGE(VOL, EDGE, T, TANG, CURV)

Returns the curvature and unit tangent found at ¢ along the Edge.

I: vol

I: edge
D:t

D: tang
D: curv

I: icode

Volume index

Edge index

t parameter along the Edge

the unit tangent — length 3 (returned)
the curvature (returned)

Return code
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D.3 MaxCurvOfEdge — Gets the maximum curvature for the attached

Faces

icode = gi_cMaxCurvOfEdge(int vol, edge, double t, *curv)
ICODE = IG_.CMAXCURVOFEDGE(VOL, EDGE, T, CURV)

Returns the maximum curvature found at ¢ along the Edge for the Faces that share the

Edge.

I: vol
I: edge
D:t

D: curv

I: icode

Volume index

Edge index

t parameter along the Edge

the maximum curvature (returned)

Return code

D.4 CurvOfFace — Gets the principal directions and curvature at a Face

point

icode = gi_cCurvOfFace(int vol, face, double u, v, *dirl, *curl, *dir2, *cur2)
ICODE = IG_CCURVOFFACE(VOL, FACE, U, V, DIR1, CUR1, DIR2, CUR2)

Returns the curvature and principle directions at (u,v) in the Face.

I: vol
I: face
D:u
D: v
D: dirl
D: curl
D: dir2
D: cur2

I: icode

Volume index

Face index

u parameter for the Face

v parameter for the Face

the first principal direction — length 3 (returned)

the curvature for first principal direction (returned)
the second principal direction - length 3 (returned)
the curvature for second principal direction (returned)

Return code
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D.5 MaxCurvOfFace — Returns the maximum curvature of a Face point

icode = gi_cMaxCurvOfFace(int vol, face, double u, v, *curv)
ICODE = IG_.CMAXCURVOFFACE(VOL, FACE, U, V, CURV)

Returns the maximum curvature found at (u,v) in the Face.

I: vol Volume index

I: face Face index

D:u u parameter for the Face

D:v v parameter for the Face

D: curv the maximum curvature (returned)
I: icode Return code

33



E Boundary data routines

E.1 SetDiscret — Declares the Discretization for the Boundary

icode = gi_bSetDiscret(int vol, bound, ndnode, ntris, nquads, nqmeshs,

flag, *nbnode)

ICODE = IG_BSETDISCRET(VOL, BOUND, NDNODE, NTRIS, NQUADS,

NQMESHS, FLAG, NBNODE)

This routine sets the grid discretization for the Boundary. This may be comprised of a

homogenous or heterogenous collection of disjoint triangles, disjoint quadrangles and quad-

meshes. This call implicitly defines a boundary node (bnode) numbering, where NDXNODE

is the number of nodes associated with the disjoint primitives, the rest of the bnodes are

defined from the quad-meshes (attached to structured blocks). This routine will cause the

execution of as many as 5 supplied routines, based on the arguments. These call-backs

define the collection of data for the bnodes, triangles, quadrangles, quad-meshes and node

coordinates.

I: vol

I: bound
I: ndnode
I: ntris

I: nquads
I: nqmeshs

I: flag

I: nbnode

I: icode

Voluine index

Boundary index

Number of nodes associtated with the disjoint primitives
Number of disjoint triangles assigned to the Boundary
Number of disjoint quadrangles assigned to the Boundary
Number of quad-meshes (from structured blocks)

Update flag (if the Discretization changes):

0 - Remove all Attachments and Special groupings

1 - Remove all Special groupings, interpolate to new
bnodes for Attachments

Total number of bnodes for the Boundary (returned)

Return code

NOTE: If ntris, nquads and ngmeshs are all zero, then the descritization is removed.
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gibFillCoord(int vol, bound, nbnode, double *xyz)
IGBFILLCOORD(VOL, BOUND, NBNODE, XYZ)
This routine must be supplied for any call to gi_bSetDiscret. Its responsibility is to fill the

coordinate data associated with the bnodes.

I: vol Volume index

I: bound Boundary index

I: nbnode Number of Boundary nodes

D: xyz The 3-space coordinates for each bnode. Length is 3*nbn-

ode (filled)

gibFillTris(int vol, bound, ntris, *tris, *ctris)
IGBFILLTRIS(VOL, BOUND, NTRIS, TRIS, CTRIS)
This routine must be supplied if the call to gi-bSetDiscret specifies any disjount triangles

(ntris # 0). gibFillTris’ responsibility is to fill the data required for disjoint triangles.

I: vol Volume index

I: bound Boundary index

I: ntris Number of disjoint triangles assigned to the Boundary

I: tris 3 bnode numbers are required for the definition of each

triangle. The bnode numbers may come from either the set
of disjoint nodes and/or the nodes defined via the quad-

meshes. Length is 3*ntris (filled)

I: ctris The mesh 3D cell number containing the trianglar face.
Note: This is not used internally by CAPRI. Length is
ntris (filled)

gibFillQuads(int vol, bound, nquads, *quads, *cquads)
IGBFILLQUADS(VOL, BOUND, NQUADS, QUADS, CQUADS)
This routine must be supplied if the call to gi_bSetDiscret specifies any disjount quads

(nquads # 0). gibFillQuads’ responsibility is to fill the data required for disjoint quadran-

gles.
I: vol Volume index
I: bound Boundary index
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I: nquads

I: quads

I: cquads

Number of disjoint quadrangles assigned to the Boundary

4 bnode numbers are required for the definition of each
quad. The bnode numbers may come from either the set
of disjoint nodes and/or the nodes defined via the quad-
meshes. Length is 4*nquads (filled)

The mesh 3D cell number containing the quad face. Note:
This is not used internally by CAPRI. Length is nquads
(filled)

gibFillQMesh(int vol, bound, nqmeshs, *block, *bsizes, *lims)
IGBFILLQMESH(VOL, BOUND, NQMESHS, BLOCK, BSIZES, LIMS)

This routine must be supplied if the call to gi_bSetDiscret specifies any quad-meshes (i.e.,

ngmeshs # 0). gibFillQ\Mesh’s responsibility is to fill the data required for faces of struc-

tured blocks mapped to the Boundary.

I: vol
I: bound
I: nqmeshs

I: block

I: bsizes

I: lims

Volume index
Boundary index
Number of quad-meshes touching the Boundary

Block number (in the complete grid) with the associated

mapping. Length is nqmeshs (filled)

The sizes (N7, Nz, Ny ) for the block. Length is 3*ngmeshs
(filled)

6 entries that define the extent of the exposed block. The
first 2 entries are the min and max indices for the first
index (usually 7). The next 2 entries are the min and
max for the second index (J). The last 2 entries are the
min and max indices for the last index (usually A’). One
of the set must be the same and numbering is 1 biased.
For example: 1,1, 1,23, 10,100 - specifies the first I plane,
with J going from the first index up to (and including) 23
and K starting at 10 and continuing up to 100 specifying
1980 quads. Length is 6*nqmeshs (filled)
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gibFillDNodes(int vol, bound, ndnode, *nodes)

IGBFILLDNODES(VOL, BOUND, NDNODE, NODES)

This routine must be supplied if the call to gi-bSetDiscret specifies any disjoint nodes
(ndnode # 0) and CAPRI is to be used to translate bnode numbers back to 3D mesh
indices (calls to gi-bGet3DNode are used).

I: vol Volume index

I: bound Boundary index

I: ndnode Number of nodes used in the disjoint tris and quads.

I: nodes 3D node number (in the complete grid). Length is ndnode
(filled)

E.2 GetDiscret — Returns data about the Discretization for the Boundary

icode = gi_bGetDiscret(int vol, bound, *nbnode, *ndnode, *ntris, *nquads,
*ngmeshs, *nattach, *nspecial)
ICODE = IG_BGETDISCRET(VOL, BOUND, NBNODE, NDNODE, NTRIS,
NQUADS, NQMESHS, NATTACH, NSPECIAL)
This routine gets the sizes of grid discretization and the lengths for any associated data for

the Boundary.

I: vol Volume index
I: bound Boundary index
I: nbnode Number of bnodes found in the Boundary (returned)

A zero indicates no discretization

I: ndnode Number of disjoint bnodes found in the Boundary (re-
turned)

I: ntris Number of disjoint triangles (returned)

I: nquads Number of disjoint quadrangles (returned)

I: nqmeshs Number of quad-meshes (returned)

I: nattach Number of associated attachments (returned)

I: nspecial Number of associated special groups (returned)

I: icode Return code
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E.3 GetCoord — Returns the Boundary Discretization Coordinates

I:
I: bound
I: nbnode

icode = gi_bGetCoord(int vol, bound, *nbnode, double *¥*xyz)
ICODE = IG_BGETCOORD(VOL, BOUND, NBNODE, XYZ)

This routine returns the coordinates associated with all of the bnodes.

vol

D: xyz

I:

up to that length is correct.

icode

Volume index
Boundary index
Number of Boundary nodes (returned)

pointer to the 3-space coordinates for each bnode. Length

of data is 3*nbnode (returned)

Return code

FORTRAN note: The pointer is not returned. NBNODE must be set with the size of
NY7Z at the call. Tt is returned with the actual length used. If XYZ is not declared large
enough (by the calling routine) the return code CAPRI.OVERFLOW is set but all the data

E.4 GetTris — Returns the Disjoint Triangle Discretization

I:
I:
I:
I:

the declared length is correct.

icode = gi_bGetTris(int vol, bound, *ntris, **tris, **ctris)
ICODE = IG_BGETTRIS(VOL, BOUND, NTRIS, TRIS, CTRIS)

This routine returns the list of disjoint tris defining the Boundary discretization.

vol

bound

ntris

tris

: ctris

: icode

Volume index
Boundary index
Number of disjoint triangles (returned)

pointer to 3 bnode numbers for the definition of each tri-

angle. Length of data is 3*ntris (returned)

pointer to the mesh 3D cell number containing the tri-

anglar face. Length of data is ntris (returned)

Return code

FORTRAN note: The pointers are not returned. NTRIS must be set with the size of
TRIS and CTRIS at the call. It is returned with the actual length used. If the length is
not large enough, then the return code CAPRLLOVERFLOW is set but all the data up to
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E.5 GetQuads — Returns the Disjoint Quadrangle Discretization

icode = gi_bGetQuads(int vol, bound, *nquads, **quads, **cquads)
ICODE = IG_BGETQUADS(VOL, BOUND, NQUADS, QUADS, CQUADS)

This routine returns the list of disjoint quads defining the Boundary discretization.

I: vol Volume index

I: bound Boundary index

I: nquads Number of disjoint quadrangles (returned)

I: quads pointer to 4 bnode numbers for the definition of each tri-

angle. Length of data is 4*nquads (returned)

I: cquads pointer to the mesh 3D cell number containing the quad

face. Length of data is nquads (returned)

I: icode Return code

FORTRAN note: The pointers are not returned. NQUADS must be sct with the size of
QUADS and CQUADS at the call. It is returned with the actual length used. If the length
is not large enough, then the return code CAPRI.OVERFLOW is set but all the data up

to the declared length is correct.

E.6 GetQMesh ~ Returns the Quad-Mesh Discretization

icode = gi_bGetQMesh(int vol, bound, *nqmeshs, **block, **psizes, **lims)
ICODE = IG_BGETQMESH(VOL, BOUND, BLOCK, BSIZES, LIMS)

This routine returns the list of quad-meshes used in the Boundary discretization.

I: vol Volume index

I: bound Boundary index

I: ngmeshs Number of quad-meshs in the Boundary (returned)

I: block pointer to the block number (in the complete grid). Length

of data is nqmeshs (returned)

I: bsizes pointer to the sizes (N7, N, N ) for the block. Length of

data is 3*nqmeshs (returned)

I: lims pointer to 6 entries that define the extent of the exposed

block. Length of data is 6*ngmeshs (returned)

I. icode Return code
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FORTRAN note: The pointers are not returned. NQMESHS must be set with the size
of BLOCK, BSIZES and LIMS at the call. It is returned with the actual length used. If
the length is not large enough, then the return code CAPRI.OVERFLOW is set but all the

data up to the declared length is correct.

E.7 Get3DNode — Translates the Boundary node to 3D node number

icode = gi_bGet3DNode(int vol, bound, bnode, *type, *location)
ICODE = IG. BGET3DNODE(VOL, BOUND, BNODE, TYPE, LOCATION)

This routine returns the 3D mesh index associated with the bnode.

I: vol
I: bound
I: bnode

I: tyvpe

I: location

I: icode

Volume index
Boundary index
Boundary node index - starts at 1.

Node type (returned)
0 - from a node associated with disjoint primitives

1 - from a node associated with quad-meshes

Mesh location (returned)
Type 0: 3D Node number
Type 1: I, J, K and Block # - 4 integers

Return code
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E.8 SetSpecial — Specify/Update a Special Grouping

icode = gi_bSetSpecial(int vol, bound, char *name, int size)
ICODE = IG_BSETSPECIAL(VOL, BOUND, NAME, SIZE)
This routine specifies a Special listing (by name). These special groupings can be used to
indicate lists of bnodes that may have special boundary condtions applied (such as at the
Edge between two Boundaries). If the listing already exists, it is overwritten with the new

data. This routine will cause a call-back (documented next) to be executed.

I: vol Volume index

I: bound Boundary index

C: name Listing name (i.e., “hub edge”, “wing-body edge”)
I: size The length of the list

I: icode Grouping index/Return code

gibFillSpecial(int vol, bound, char *name, int size, *list)
IGBFILLSPECIAL(VOL, BOUND, NAME, SIZE, LIST)
This call-back will be executed after a call to gi_bSetSpecial. The routines responsibility is

to fill the list requested for the grouping.

I: vol Volume index

I: bound Boundary index

C: name Special grouping name

I: size The number of entries for the list
I: list Special list — length is size (filled)

E.9 GetSpecial — Return the info for a Special Grouping

icode = gi_bGetSpecial(int vol, bound, char *name, int *size, **list)
ICODE = IG_BGETSPECIAL(VOL, BOUND, NAME, SIZE, LIST)

This routine returns data about a Special grouping (by name).

I: vol Volume index

I: bound Boundary index

C: name Special grouping name

I: size The length of the list (returned)
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I: list pointer to the list - data length is size (returned)

I: icode Return code

FORTRAN note: The pointer is not returned. SIZE must be set with the length of LIST
at the call. It is returned with the actual length used. If the length is not large enough,
then the return code CAPRI.LOVERFLOW is set but all the data up to the declared length

is correct.

E.10 GetlISpecial — Get a Special Grouping by Index

icode = gi_bGetISpecial(int vol, bound, index, char **name, int *size, **list)
ICODE = IG_BGETISPECIAL(VOL, BOUND, INDEX, NAME, SIZE, LIST)

This routine returns data about a Special grouping (by index).

I: vol Volume index

I: bound Boundary index

I: index Grouping index — bais 1.

C: name Grouping name (returned)

I: size The length of the grouping (returned)

I: list pointer to the list — data length is size (returned)
I: icode Return code

FORTRAN note: The pointer is not returned. SIZE must be set with the length of LIST
at the call. It is returned with the actual length used. If the length is not large enough,
then the return code CAPRILOVERFLOW is set but all the data up to the declared length

is correct.

E.11 DelSpecial - Remove a Special Grouping

icode = gi_bDelSpecial(int vol, bound, char *name)
ICODE = IG BDELSPECIAL(VOL, BOUND, NAME)
This routine deletes the data associated with a Special grouping. NOTE: the indices used

with the groupings will be affected.

I: vol Volume index

I: bound Boundary index

C: name Special listing name
I: icode Return code
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F Geometry Based Interpolation Routines
F.1 SetAttach — Specify/Update a Boundary Attachment

icode = gi_iSetAttach(int vol, bound, char *name, int rank, char *update)
ICODE = IG_ISETATTACH(VOL, BOUND, NAME, RANK, UPDATE)
This routine specifies a Boundary attachment (by name). If the attachment already exists,
it is overwritten with the new data. This routine will cause call-back (documented next) to

be executed.

I: vol Volume index

I: bound Boundary index

C: name Attachment name (i.e., “pressure”, “heat transfer”)

I: rank The number of entries per bnode. i.e., scalars are 1, vec-

tors are 3 (or -3 - do not apply replication/displacement).

C: update A character string to indicate something about the at-
tachment. For example, if the simulation is transient this

could contain the solvers time when last filled.

I icode Attachment index/Return code

giiFillAttach(int vol, bound, char *name, int rank, char *update, int nbnode,
double *data)
IGIFILLATTACH(VOL, BOUND, NAME, RANK, UPDATE, NBNODE,
DATA)
This call-back will be executed after a call to gi-iSetAttach that specifies a non-zero rank.

The routines responsibility is to fill the data requested for the attachment.

I: vol Volume index

I: bound Boundary index

C: name Attachment name

I: rank The number of entries per bnode

C: update A character string to indicate something about the attach-
ment.

I: nbnode Number of boundary nodes

D: data Attached data - length is rank*nbnode (filled)
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F.2 GetAttach — Get a Boundary Attachment

icode = gi_iGetAttach(int vol, bound, char *name, int *rank, char **update,
int *nbnode, double **data)
ICODE = IGIGETATTACH(VOL, BOUND, NAME, RANK, UPDATE,
NBNODE, DATA)

This routine returns data about a Boundary attachment (by name).

I: vol Volume index

I: bound Boundary index

C: name Attachment name

I: rank The number of entries per bnode (returned)

C: update pointer to the update character string (returned)

I: nbnode Number of boundary nodes (returned)

D: data pointer to attached data — data length is rank*nbnode
(returned)

I: icode Return code

FORTRAN note: The pointer is not returned. NBNODE must be set with the size of
DATA at the call. It is returned with the actual length used. If the length is not large
enough, then the return code CAPRI.LOVERFLOW is set but all the data up to the declared

length is correct.

F.3 GetIAttach — Get a Boundary Attachment by Index

icode = gi.iGetIAttach(int vol, bound, index, char **name, int *rank,
char **update, int *nbnode, double **data)
ICODE = IG_IGETIATTACH(VOL, BOUND, INDEX, NAME, RANK,
UPDATE, NBNODE, DATA)

This routine returns data about a Boundary attachment (by index).

I: vol Volume index

I: bound Boundary index

I: index Attachment index - bais 1.

C: name Attachment name (returned)

I: rank The number of entries per bnode (returned)
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C: update pointer to the update character string (returned)

I: nbnode Number of boundary nodes (returned)

D: data pointer to attached data — data length is rank*nbnode
(returned)

I: icode Return code

FORTRAN note: The pointer is not returned. NBNODE must be set with the size of
DATA at the call. It is returned with the actual length used. If the length is not large
enough, then the return code CAPRILOVERFLOW is set but all the data up to the declared

length is correct.

F.4 DelAttach — Remove a Boundary Attachment

icode = gi_iDelAttach(int vol, bound, char *name)
ICODE = IGIDELATTACH(VOL, BOUND, NANMIE)
This routine deletes the data associated with a Boundary attachment. NOTE: the indices

used with the attachments will be affected.

I: vol Volume index

I: bound Boundary index
C: name Attachment name
I: icode Return code

F.5 GetDisplace — Gets the Volume’s displacement matrix

icode = gi_iGetDisplace(int vol, double *dmatrix)
ICODE = IGIGETDISPLACE(VOL, DMATRIX)
This routine returns the displacement matrix associated with the specified volume. The
displacement matrix is a column-major matrix that is 4 columns by 3 rows and declared
in C as [4][3] and in FORTRAN as (3,4). This matrix is used to multiply all Volume
coordinates before interpolation is performed and therfore supports any combination of

displacement, rotation and scaling.

I: vol Volume index
D: dmatrix The displacement matrix
I: icode Return code



F.6 SetDisplace — Set the Volume’s displacement matrix

icode = gi_iSetDisplace(int vol, double *dmatrix)
ICODE = IGISETDISPLACE(VOL, DMATRIX)
This routine specifies the displacement matrix associated with the specified volume. The
displacement matrix is a column-major matrix that is 4 columns by 3 rows and declared in
C as [4][3] and in FORTRAN as (3,4).

I: vol Volume index
D: dmatrix The displacement matrix
I: icode Return code

F.7 GetReplicate — Gets the Volume’s replication data

icode = gi_iGetReplicate(int vol, *nrep, double *rmatrix)
ICODE = IGIGETREPLICATE(VOL, NREP, RMATRIX)
This routine returns the replication data associated with the specified volume. This in-
formation is comprised of a matrix and the number of times to apply this matrix to the
Volume. The replication matrix is a column-major matrix that is 4 columns by 3 rows
and declared in C as [4][3] and in FORTRAN as (3,4). This matrix is used to multiply
all Volume coordinates in order to produce additional instances of the Voulme (before the
Displacement matrix is applied) and then the interpolation is performed. When properly

used this allows mirroring and periodic volumes (like found in turbomachinery).

I: vol Volume index

I: nrep Number of times to apply the matrix
D: rmatrix The replication matrix

I: icode Return code
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F.8 SetReplicate — Set the Volume’s replication data

icode = gi_iSetReplicate(int vol, nrep, double *dmatrix)
ICODE = IG ISETREPLICATE(VOL, NREP, RMATRIX)
This routine specifies the replication data associated with the specified volume. The repli-
cation matrix is a column-major matrix that is 4 columns by 3 rows and declared in C as
[4][3] and in FORTRAN as (3,4). nrep set to zero turns off all replication.

I: vol Volume index

I: nrep Number of times to apply the matrix
D: rmatrix The replication matrix

I: icode Return code

F.9 InterAttach — Interpolate to Produce/Update Boundary Attachment

icode = gi_iInterAttach(int vol, bound, char *name, int vold, boundd,
char *named, *updated)
ICODE = IGIINTERATTACH(VOL, BOUND, NAME, VOLD, BOUNDD,
NAMED, UPDATED)
This routine interpolates the source attachment onto the discretization for the destination
boundary. A new attachment is created if NAMED does not already exist, otherwise the
data is replaced. Any rank 3 Attachments have the displacement and replication matrices

applied (just like the coordinates).

I: vol Volume index - source

I: bound Boundary index - source

C: name Attachment name - source

I: vold Volume index - destination

I: boundd Boundary index - destination

C: named Attachment name - destination

C: updated The update character string — destination
I: icode Return code

47



G Tag Routines
G.1 GetNumVolume — Returns the number of Volume Tags
icode = gi_tGetNumVolume(int vol, *num)

ICODE = IG.TGETNUMVOLUME(VOL, NUM)

This routine returns the number of Tags for the Volume.

I: vol Volume index
I: num Number of Tags associated with this Volume
I: icode Return code

G.2 GetVolume — Gets the Volume Tag

icode = gi_-tGetVolume(int vol, char *tag, **val)
ICODE = IG_.TGETVOLUME(VOL, TAG, VAL)

This routine returns the string associated with the Volume Tag.

I: vol Volume index

C: tag The Tag string

C: val The associated string
I: icode Return code

G.3 GetIVolume — Gets the Volume Tag by index

icode = gi_tGetIVolume(int vol, index, char **tag, **val)
ICODE = IG_TGETIVOLUME(VOL, INDEX, TAG, VAL)

This routine returns the string associated with the index for the Volume Tag.

I: vol Volume index

I: index Tag index - range 1 to the number of Tags.
C: tag The Tag string

C: val The associated string

I: icode Return code
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G.4 SetVolume — Sets the Volume Tag

icode = gi_tSetVolume(int vol, char *tag, *val)
ICODE = IG_TSETVOLUME(VOL, TAG, VAL)
This routine sets the string associated with the Volume Tag. If the Tag exists the new

string is applied.

I: vol Volume index

C: tag The Tag string

C: val The associated string — A NULL value deletes the Tag.
I: icode Return code

G.5 GetNumBoundary — Returns the number of Boundary Tags

icode = gi_-tGetNumBoundary(int vol, bound, *num)
ICODE = IG_.TGETNUMNBOUNDARY (VOL, BOUND, NUM)

This routine returns the number of Tags for the Boundary.

I: vol Volume index

I: bound Boundary index

I: num Number of Tags associated with this Boundary
I: icode Return code

G.6 GetBoundary — Returns the Boundary Tag

icode = gi_tGetBoundary(int vol, bound, char *tag, **val)
ICODE = IG_.TGETBOUNDARY(VOL, BOUND, TAG, VAL)

This routine returns the string associated with the Boundary Tag.

I: vol Volume index

I: bound Boundary index

C: tag The Tag string

C: val The associated string
I: icode Return code
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G.7 GetIBoundary — Gets the Boundary Tag by index

icode = gi_tGetIBoundary(int vol, bound, index, char **tag, **val)
ICODE = IG. TGETIBOUNDARY(VOL, BOUND, INDEX, TAG, VAL)

This routine returns the string associated with the index for the Boundary Tag.

I: vol Volume index

I: bound Boundary index

I: index Tag index - range 1 to the number of Tags.
C: tag The Tag string

C: val The associated string

I: icode Return code

G.8 SetBoundary — Sets the Boundary Tag

icode = gi_tSetBoundary(int vol, bound, char *tag, *val)
ICODE = IG.TSETBOUNDARY(VOL, BOUND, TAG, VAL)
This routine sets the string associated with the Boundary Tag. If the Tag exists the new

string is applied.

I: vol Volume index

I: bound Boundary index

C: tag The Tag string

C: val The associated string - A NULL value deletes the Tag.
I: icode Return code



H Return Codes

-12 - CAPRILNOTFOUND
-11 - CAPRI_NODISCRET
-10 - CAPRI.LOVERFLOW
-9 - CAPRIINUSE

-8 - CAPRI.LRANGERR
-7 - CAPRIANODELERR
-6 - CAPRIXNOLOAD

-5 - CAPRILINDEX

-4 - CAPRILUNSUPPORT
-3 - CAPRIAIALLOC

-2 - CAPRI_LALREADYON
-1 - CAPRINOINIT

0 - CAPRI.SUCCESS

1 - CAPRI.OUTSIDE - Not an error



Budget Summa

From February 6, 1998 to February 5, 1999

NASA USE ONLY
A B C

1.  Direct Labor (salaries, wages, and
fringe benefits) 41,794

2. Other Direct Costs:
a. Subcontracts 0

b. Consultants

c. Equipment 0]
d. Supplies 240
e. Travel 3,630
f. Other 875
3. Indirect Costs 29,552
4. Other Applicable Costs 0
5. Sub-total — Estimated Costs 76,091
6. Less Proposed Cost Sharing (if any) 0
7. Carryover Funds (if any)
a. Anticipated Amount 0
b. Amount used to reduce budget 0
8. Total Estimated Costs 76,091 XXXXXXX
APPROVED BUDGET XXXXXXX XXXXXXX

Instructions

1. Provide a separate budget summary sheet for each year of the proposed research.

2. Grantee estimated costs should be entered in Column A. Columns B and C are for NASA
use only. Column C represents the approved grant budget.

3.  Provide in attachments to the budget summary the detailed computations of estimates in
each cost category, along with any narrative explanation required to fully explain proposed
costs.

ADDITIONAL INSTRUCTIONS ON REVERSE --



PROPOSED COST ESTIMATE

2/6/98-2/5/99

SALARIES & WAGES
Principal Research Engineer (Haimes)

Res. Administrative Staff
Project Support Staff

TOTAL SALARIES & WAGES
EMPLOYEE BENEFITS (excluding UROP) @
EMPLOYEE BENEFITS (excluding Res. Asst. & UROP) @
VACATION ACCRUAL (excluding Professors and students) @
OTHER COSTS

Travel (Domestic)

Office Supplies, xerox, telephone, postage

Report Costs
TOTAL OTHER COSTS
TOTAL DIRECT COSTS
INDIRECT COSTS (F&A) @

TOTAL

2/6/98-

6/30/98

30% 10,319
5% 1,031

4% 417

11,767

46.2% 5,436
29% -

11%

1,462

97

352

1,911

19,114

63.5% 12,137

31,251

7/1/98-
2/5/99

15,400
1,539
626
17,565

5,094
1,932

2,168
143
523

2,834

27,425
17,415

44,840

—
=3
=3

|

25,719
2,570
1,043

29,332
5,436

5,094
1,932

3,630
240
875

4,745

46,539
29,552

76,091



Backup Information

Direct Labor
Number Title
1 Principal Research Engineer (Haimes)
1 Research Administrative Staff (seenote2)
1 Project Support Staff (see note 2 )

Employee Benefits (UROP excluded) @ 46.2% FY' 98

MM
3.6
06
0.48

Employee Benefits (Research Assistants & UROP excluded) @ 23% FY' 99 and out years (seenote3)
Vacation Accrual (excluding Professors and students) @ 11% (see note4)

Other Costs

Office supplies, xerox, telephone toll calls, and postage currently averages $20 per month based on past history
Report Costs--Page charges in a professional journal (based on AlAA rate of $875 per journal article)

Travel

Destination:  Cleveland, OH

No. of People

No. of days

No. of Trips

Air Fare (full coach) @

Hotel (per day) @ $75
Food (per day) @ 825
Rental Car {per day) @ 545
Misc (taxi, tel calls, Parking, etc) @ $25

Total per person trip

Total

1

3

2
750.00
225.00
75.00
135.00
25.00

1210.00

2420.00

Page 1
Current Salary Salary Increase
Base {seenole 1) Effective
82,100 /year January 1
49,250 /year January 1
25,350 /year April 1
Destination; Cincinnati

No. of People 1

No. of days 3

No. of Trips 1

Air Fare @ 750.00

Hotel @  §75 225.00

Food @ 825 75.00

RentalCar @  $45 135.00

Misc @ $25 25.00

Total per persontrip  1210.00

Total  1210.00

Indirect Costs @ 63.5% of total direct costs excluding Equipment for MIT FY '8
Indirect Costs (Facilities & Administrative) @ 63.5% of total direct costs for MIT FY '99 and out years

NOTES:

(1) Salary increases @ 4% rounded to nearest $100 and are current as of

Nov-97

(2) 5% of Adminstrative and clerical support is budgeted as an estimate of time required to provide clerical and administrative
support for the P.1. as required for the performance of this project. Duties include but are not limited to the following: veritying
payroll distribution, arrangement of travel relative to this project, submittal of appropriate forms to MIT purchasing, accounting,

sponsored programs and other offices to meet regulatory, auditing and compliance requirements.

(3) Atthe present time, the tuition of graduate research assistants is charged to the employee benefit pool and the stipend to the

research account. Beginning July 1, 1998, RA tuition will no longer be included in the employee benefit pool. The net effect of this
change will be an estimated reduction of 17.2 points in the on campus EB and 22.9 points in the off-campus EB. None of the RA cost
will be subject to the EB rate, and the tuition will not be subject to either EB or F&A.
(4) Vacation accrual, beginning July 1, 1998, has been removed from the EB rate and vacation accrual costs are distributed only to
those salary groups (research, hourly and support staff) which are actually accrued. This charge will bear the prevailing research

F&A rate.



