
207080 /_'-/X_///--

/XJ-j/- _:'/2

O _"/;T.

PARALLELIZATION OF FINITE ELEMENT ANALYSIS CODES

USING

HETEROGENEOUS DISTRIBUTED COMPUTING

NASA Grant: NAG3-1440

FINAL REPORT

Start Date: January 15, 1993

End Date: March 31, 1996

Submitted by:

Ffisun 0zgiiner

Department of Electrical Engineering

The Ohio State University

2015 Nell Avenue

Columbus, OH 43210

ozguner@ee, eng. ohio-state, edu

RF Project No. 760492/727127

https://ntrs.nasa.gov/search.jsp?R=19980016991 2020-06-16T01:02:28+00:00Z

Contents

1

2

4

Introduction 5

Heterogeneous CSTEM 8

2.1 HENCE 9

2.1.1 The Program Graph 10

2.1.2 Costs Matrix 13

2.1.3 Performance Monitoring 13

2.2 PVM 13

2.2.1 The Implementation of PVM 13

2.2.2 Optimized PVM Versions 16

2.3 CSTEM 17

2.4 The Heterogeneous Version of CSTEM 18

2.4.1 Code Division 18

2.4.2 Data Sharing 19

2.5 Summary 21

Matching and Scheduling 22

3.1 Definitions 22

3.2 Previous Work 23

3.3 Matching and Scheduling with CSTEM 24

3.4 The Levelized Min-Time Algorithm 24

3.4.1 Level Sorting 25

3.4.2 Min-Time 25

3.4.3 Final Considerations 26

3.5 Experimental Results 28

3.6 Summary 30

Execution Time Estimation 31

4.1 Previous Work 32

4.2 Nonparametric Regression 33

4.3 Proposed Estimation Method 35

4.3.1 Boundary Effects 36

4.3.2 Robustness 37

4.3.3 Asymptotic Behavior 38

4.3.4 Computational Complexity 38

4.4 Results 38

4.5 Further Work and Conclusions 39

4.5.1 Multidimensional Parameters 39

2

4.5.2 Summary 43

5 Conclusions 44

3

List of Figures

2.1 Sample HENCE Program Graph

2.2 Special Purpose HENCE Nodes
2.3 The Main Window of htool's Trace Mode

2.4 Other Windows from htool's Trace Mode

2.5 The Implementation of the PVM Interface

2.6 The Main Analysis Routine of CSTEM

2.7 HENCE Program Graph for Heterogeneous CSTEM

3.1 Level Sorting Example

3.2 A Task Graph Showing the Drawback of Not Examining Subsequent

Levels

3.3 Speedup of Heterogeneous CSTEM with Different Processor Speeds..

3.4 Speedups for Different Processor and Network Speeds

4.1 Assigning Weights to Observations

4.2 Compensating for Observation Density.

4.3 Effects of Estimates at the Boundary.

4.4 Estimator Performance for Data Without Outliers

4.5 Estimator Performance for Data With Outliers

11

12

14

15

16

17

20

25

27

29

30

34

35

37

40

41

4

i. Introduction

Performance gains in computer design are quickly consumed as users seek to ana-

lyze larger problems to a higher degree of accuracy. Innovative computational meth-

ods, such as parallel and distributed computing, seek to multiply the power of existing

hardware technology to satisfy the computational demands of large applications. In

the early stages of this project, experiments were performed using two large, coarse-

grained applications, CSTEM and METCAN. These applications were parallelized on

an Intel iPSC/860 hypercube. It was found that the overall speedup was very low, due

to large, inherently sequential code segments present in the applications. The overall

execution time Tp_r of the application is dependent on these sequential segments. If

these segments make up a significant fraction of the overall code, the application will

have a poor speedup measure. This relationship is governed by Amdahl's law, which

states that if f is the fraction of code that is sequential (cannot be parallelized) then

the actual speedup is bounded by the equation:

1

f + (1- f)/N

In addition to the problems with sequentialcode segments, the programming process

was extremely difficult,since the applicationswere not written to support parallel

computing. From these experiments, itwas evident that another parallelcomputing

paradigm was needed to effectivelyincreasethe performance of thistype of applica-

tion: heterogeneous computing.

A typicalapplicationwillcontain a number of code segments. Each of these seg-

ments willbe best suited to a differenttype of computer architecture.Therefore,

an effective way of increasing the performance of an application is to break the ap-

plication into fragments, and execute each fragment on the best suited architecture,

in parallel wherever possible. This technique is known as heterogeneous computing.

Heterogeneous computing is particularly well suited to large coarse grained applica-

tions, like CSTEM. Heterogeneous computing can be formally defined as "the 'tuned'

use of diverse processing hardware to meet distinct computational needs, in which ...

code portions are executed using processing approaches that maximize overall perfor-

mance" [15]. This definition stems from the observation that most high-performance

computers are optimized for a particular type of computation, and often perform very

poorly when executing other types of code. Therefore, the performance bottleneck

tends to be in the portions of the code that do not execute efficiently. To eliminate

this bottleneck, we can use heterogeneous computing to execute each code fragment of

an application on the best suited architecture. In this way, heterogeneous computing

is used as a means of increasing the performance of an application beyond the level it

5

can achieveon any single machine. The specific heterogeneous environment consid-

ered in this project is a loosely coupled set of independent machines. The use type

of environment is known as "heterogeneous distributed computing." Since nearly

all current heterogeneous systems fall into this category, the name "heterogeneous

computing" will be used interchangeably.

The effectiveness of heterogeneous computing (or any kind of parallel computing)

is determined by the choice of which processor should execute each task of the ap-

plication. Typically, this is made to satisfy some set of cost functions. The process

of determining such an assignment is called the matching and scheduling problem.

The solution of the matching and scheduling problem is non-trivial, and the problem

is NP-hard [32]. Therefore, heuristic solutions are commonly used to obtain solu-

tions. In the case of conventional, homogeneous parallel computing, the analog to

the matching and scheduling problem is known as the mapping and sch_uling prob-

lem. To simplify notation, we will refer to both of these problems as "the matching

and scheduling problem." The difference in nomenclature is due to the heterogene-

ity of the target machines, where individual tasks and machines are "matched" as

opposed to a task being "mapped" onto a homogeneous set of processors.

In order for a matching and scheduling algorithm to make an effective schedul-

ing decision, an accurate set of estimates of the execution time of the task on each

potential machine is needed. Since the execution time of a task depends upon the

input data, this problem is rather difficult. In a homogeneous environment, this is a

fairly simple task, since all tasks will perform the same on each processor. However,

in a heterogeneous environment, each task will behave differently depending upon

the machine on which it is run. This feature of heterogeneous environments makes

the process of obtaining estimates of the execution time (called the execution time

estimation problem) very difficult.

The goal of this project was to develop practical techniques for heterogeneous

computing, through experiments with a large, coupled finite element application.

The application chosen, CSTEM, is a good candidate for use with heterogeneous

computing, due to its size and structure. Prior attempts to parallelize it using con-

ventional parallel processors were both time consuming and impractical, as discussed

above. Therefore, we chose to use it to show the advantages of heterogeneous com-

puting for large scientific applications. To effectively use CSTEM with heterogeneous

computing, we developed a heuristic method for solving the matching and scheduling

problem in a heterogeneous environment. Furthermore, as we indicated above, any

matching and scheduling algorithm requires a set of execution time estimates. There-

fore, we have developed a statistical method for predicting the execution time of a

task based upon past values.

The remainder of this repcirt is organized as follows. Section 2 will introduce

CSTEM and describe HENCE, the tool used to create the heterogeneous version of

CSTEM. In addition, Section 2 will also provide detailed explanation of the software

6

engineeringdecisionsmadein creatingheterogeneousCSTEM. Section3 will address
the matchingand schedulingproblem,by presentinga new heuristic called the LMT

Algorithm. Since the matching and scheduling algorithm can only make good decisions

when it has accurate execution time estimates, Section 4 will present a statistical

scheme for estimating the execution time of tasks using past observations. Finally,

Section 5 will offer some conclusions from the results obtained in this project.

2. Heterogeneous CSTEM

CSTEM, an acronym for Coupled Structural/Thermal/Electromagnetic Analy-

sis/Tailoring of Graded Composite Structures, is a finite element-based computer

program developed for the NASA Lewis Research Center [16]. As its name implies,

CSTEM analyzes and optimizes the performance of composite structures using a

variety of dissimilar analysis modules, including a structural analysis module, a ther-

mal analysis module, an electromagnetic absorption analysis module, and an acoustic

analysis module. Large, coupled structures codes, like CSTEM, have huge demands

for computational resources. CSTEM, for example, consists of approximately 81,000

lines of FORTRAN code, and requires several minutes of CPU time even for small,

trivial problems.

To increase the performance of CSTEM, an initial attempt was made to parallelize

a significant portion of the code on the Intel iPSC/860 hypercube. It was quickly

apparent that this approach was impractical, due to the overall size of the source

code, the large amount of memory required by CSTEM, and the limitations inherent

in the FORTRAN programming language. The data parallelprogramming style of

the Intelhypercube and other distributedmemory parallelprocessorsisstilla valid

method for obtaining a significantspeedup in the performance of CSTEM, however.

The data parallelapproach needs to be used in conjunction with some other method

that can help alleviatethe problems caused by the sizeof the code and the memory

requirements of the program.

These problems can be minimized through the use of heterogeneous distributed

computing. First,since the code is divided into a number of independent tasks,

the overallsizeof the source code and memory requirements of each individualtask

are greatly reduced (memory use is reduced because FORTRAN only uses static data

allocation). Second, the total amount of parallelization that must be performed is

reduced, since the tasks that do not make a significant contribution to the total

execution time and the tasks that are not part of the critical execution path do

not contribute to the overall execution time. Therefore, these tasks do not need

to be placed on a parallelprocessor in order to increase the overallperformance of

the application.Finally,tasks that are illsuited to the distributedmemory parallel

architecturecan be run on another architecturethat isbettersuitedto that type of

computation.

Clearly, heterogeneous computing simplifiesthe subsequent paraUelization of

CSTEM on a distributed memory multiprocessor. But, before the heterogeneous

version ispresented,some background information on HENCE, the toolused to cre-

ate the heterogeneous CSTEM will be presented, along with detailsof PVM, the

heterogeneous message passing libraryused by HENCE.

8

2.1 HENCE

HENCE, an acronym for Heterogeneous Network Computing Environment, is an au-

tomated tool for the development of heterogeneous applications developed at Oak

Ridge National Laboratories. Using HENCE, a programmer can quickly write a het-

erogeneous application, since HENCE eliminates the tedious task of writing the code

used to maintain and coordinate a set of processes running on different machines

and the code used to transfer data between the different processes. To create a het-

erogeneous application, the HENCE programmer only needs to provide a set of C

or FORTRAN function calls and a data dependency graph. HENCE also provides a

graphical interface, called htool, for creating HENCE applications and for graphical

performance monitoring. HENCE is built upon the PVM (Parallel Virtual Machine)

message passing libraries, also developed at Oak Ridge. PVM provides a set of mes-

sage passing, synchronization, and data conversion utilities allowing a heterogeneous
set of networked machines to communicate with each other in a manner similar to

distributed memory multiprocessors.

There are several steps required to create and run a program using HENCE [3]:

I. Create a program graph, specifying a function calland parameters for each

node.

2. Write sequential code for each node, based upon the function call specified

above.

3. Provide the names of the machines that are to execute the code.

4. Input estimated computation costs for each subroutine/machine pair.

5. Automatically generate wrapper code with necessary PVM function calls.

6. Automatically build makefiles, and use these to build the executable files.

7. Execute the program and trace the results.

All of these steps can be initiated from htool. An important feature of HENCE is that

there is no requirement that the source code for a node's function call be the same

on each different architecture. For example, HENCE can choose, at run time, to use

either a vectorizable algorithm or a parallelizable algorithm, depending only on the

machine to which the node is assigned. This allows the optimum algorithm to be

used on each architecture.

9

2.1.1 The Program Graph

The program graph defines the data dependencies that exist between the functions

comprising the HENCE application. The program graph is a directed, acyclic graph

(DAG), with the nodes of the graph representing the subroutine to be executed and

the edges representing the data dependencies between the nodes. Please note that

HENCE uses an "upside-down" convention, where graphs flow from bottom to top.

A sample program graph is shown in Figure 2.1. In addition to nodes that call

functions,HENCE alsohas a number of specialpurpose nodes which allow the graph

to be dynamically reconfigured as the applicationexecutes. There are four types

of specialnodes, providing four differentstylesof controlflow: loops,parallelloops

(fan),conditionalexecution, and pipelinedexecution. Figure 2.2 shows how these

nodes appear in htooL The loop nodes allow the set of nodes enclosed by the pair to

be executed multiple times ina sequentialmanner. Fan nodes operate in the same way

as loop nodes, but execute the set of nodes in parallel.Pipelinenodes send multiple

setsof data through a set of nodes in a pipelinedmanner. Finally,conditionalnodes

evaluate an expression,and based upon the result,conditionallyexecute the enclosed

nodes.

The execution of each node in the program graph has three phases [3]:

1. Getting Parameters: The node queries itsancestors for the data required

for its computation. The node gets itsdata from the closestancestor. For

example, the node program firstchecks to see ifits parent nodes have the

necessary information,then itsgrandparent nodes, etc.

2. Executing the Function Call: The node callsitsassociatedsubroutine.

3. Sending Parameters: At thispoint,the node has finisheditsexecution,and

its children may be started. However, the node does not terminate. Instead,

the node sleeps,waiting to provide any data required by itsdescendants when

requested.

This three-phased execution process forcesthe program graph to be an acyclic

graph. A node cannot send data to a descendant node and laterreceivedata from

that descendant without violatingthe execution process defined above. The node's

execution process is controlled by a node program. The node program is specified us-

ing HeNCE's node language. A node program specifies the parameters held by a node,

how to acquire them, and how to pass them to the node's subroutine. There are three

types of parameters, input only, input-output, and output only. Input parameters are

loaded from an ancestor node, and cannot be sent to a descendant. Input-output pa-

rameters are loaded from an ancestor, and may be sent to a descendant. Output

parameters are created within the node, and may be sent to a descendant. A pa-

rameter can be specified to be "NEW", telling the node to create and initialize the

10

16 0 bar

T

6 (I mumble

1 Imumble

15 0 fo0

Figure 2.1: Sample HENCE Program Graph

11

4f'_

_0 _0 _0 _0

_0 _0 _0 _0

II_.J

Loop Fan Pipe Conditional

Figure 2.2:SpecialPurpose HENCE Nodes.

12

parameter locally. Otherwise, the parameter is loaded from the node's ancestors. If

the parameter does not exist on any ancestor, however, it is treated as if it were

"NEW".

2.1.2 Costs Matrix

The costs matrix defines the suitability of a node to be executed on each machine

used in the computation. An integer value is assigned to each node/machine pair,

indicating the estimated cost of executing the node on that machine. A cost of zero

indicates that a node cannot be assigned to that machine. HENCE allocates nodes to

machines using a simple method. HENCE keeps track of the total cost it has assigned

to each machine, and, when each node is ready to begin, HENCE will assign that

node to the machine such that the resulting total cost is minimized [4].

2.1.3 Performance Monitoring

HENCE provides a graphical performance monitoring facility in htool, providing in-

formation on process timing, machine allocation, and communication overhead. It

is capable of running in real time or as a post-mortem analysis. Figure 2.3 and

Figure 2.4 show sample views of this facility.

2.2 PVM

As was stated above, HENCE is built upon the PVM message passing library. PVM

provides message passing and synchronization functions to user applications running

on a wide variety of workstations and supercomputers. These routines allow a col-

lection of networked machines to function as if it were a distributed memory parallel

processor. Furthermore, there is no requirement that the communicating machines

are homogeneous, making the development of true heterogeneous applications possi-

ble. PVM also incorporates automatic data conversion for communication between

dissimilar machines. These facts, combined with the wide variety of machines sup-

porting PVM, made PVM the ideal choice as the message passing mechanism for

HENCE [4].

2.2.1 The Implementation of PVM

Figure 2.5 shows a diagram detailingthe implementation of PVM. On each machine

included in the computation, a PVM daemon process must be present. This process

servesas an interfacebetween the PVM processesrunning on that machine and the

network. PVM processescommunicate with the daemon through a setoffunctioncalls

which together form the PVM library.The PVM daemon and libraryare described

in greaterdetailin [17].The most significantaspect of thisstructureisto note that

13

(31 htnel _]
00:00:13o1772/;3 RU_qHZNG F 00
00:00:14.0104/3 RUNNING F 00
00:00:14.041i 5/3 RUHNTNC F 0 0
00:0a:14.0S81/4 AUNNTJ_; F 00

:(_:14.0n 1/4 RUIMING F 00

I dt rKt0r}P: dwoS II grmh: hllt_t. |r IIcosts:II tr,ceftl,: h,,ce.trucell ! m_uuge: ¢ I

----711co, flg II_fldJ_ Ist,rt mll.xK., IID.t.t I_'_'_

(bsr) 1SO 0r,0t

0u/)| e) I P4r.0t

(foo) 15 eor,ol

Figure 2.3: The Main Window of htool's Trace Mode

14

No_ Ready

Node Started

) uflcttofl Executing

(_ Functton C(_mple_od

Node £xttad

Wurntng tn Graph Program

Error tn ¢rl_)h Program

_ lust1 n

tg

snoopy

thud

1 se¢ ,Q.

mmmm
mmmmm
immmm

00:00 00:05 00:10 00:15

]

Figure 2.4:Other Windows from htool'sTrace Mode

15

Machine 1
°0.0....000...°0°0°00. 0...0.o.0.°.°...0

Machine 2
°°0.°0..0..°..000.0.o.0.0.0.0.00°..0°.0..o.

User AppUcation Librsry _

Mschine .3
.......... °.o.°...°.°°°..........°..

User Application Ubrury _

B°ee....*t._..o.o.**e*oo*o*°o..°ol.oo*****.°..°.o°°.0

U

7

Figure 2.5: The Implementation of the PVM Interface

itcauses PVM to have a relativelyhigh overhead associatedwith each message. Each

message sent iscopied eitherfivetimes, ifthe source and destinationprocessesare

on differentmachines, or four times,ifboth processesare on the same machine. The

fivecopying steps are from the source process'sdata structureto the PVM library,

PVM libraryto the daemon, over the network to the destinationdaemon, to the

destinationprocess'slibrary,and finallyto the destinationproceas'sdata structures.

Minimizing communication volume and frequency,therefore,are criticalto designing

a good PVM-based application.

2.2.2 Optimized PVM Versions

On machines with specialhigh performance networking features,optimized versions

of PVM have been constructed to help alleviatethe high cost of sending PVM mes-

sages. For example, there isa versionof PVM forthe InteliPSC/860 hypercube which

translatesPVM message passing callsintonative Intelfunction calls,allowing PVM

applicationsto take advantage of the network featuresavailableon the hypercube,

16

START]

Geometry

Input

Analysis

Input

Material

Properties

Heat

Transfer

I MaterialProperties

i

I
I
I
b

Structural

Solution

t
Acoustic

Analysis

t
Eigenvalue

Solution

Lumped Mass ICalculation

t

Structural !
Stiffness

Print Results

(Structural)

Buckling

Analysis

ICAN IAnalysis

Analysis

Another ICase?

Figure 2.6: The Main Analysis Routine of CSTEM.

while stillremaining portable between differentmachines supporting PVM. There

alsoisan optimized versionavailableon NASA Lewis Research Center's LACE clus-

ter,a collectionof 32 IBM RS/6000 workstations connected by a high performance

network.

2.3 CSTEM

As mentioned in the beginning of thissection,CSTEM combines a varietyof multi-

disciplinaryanalysis options together to provide a unifiedtool for the design and

optimization of composite aircraftgas turbine engine (AGTE) components. CSTEM

consistsof a number of stand-alone finiteelement codes. These codes are coupled

together by an iterativeoptimization routine. Figure 2.6 shows a flowchartdetailing

the main analysis routine. The optimization routine executes thisroutine multiple

times,adjusting the design untilitconverges upon the desiredsolution.

17

The finite element method is a popular method of finding an approximate solution

to a complex system. The popularity of the finite element method is due in part to

its ability to be applied to a wide variety of systems in a broad range of different

fields. For example, the finite element method has broad applications in the fields

of mechanics, thermodynamics, electromagnetics, and fluid dynamics, to name just

a few. The finite element method can be applied to both discrete and continuous

systems; for discrete systems, the actual solution to the system is computed, while an

approximate solution is calculated when applied to continuous systems. In the case

of CSTEM, the system is a three-dimensional composite structure, and this system

is solved for the variety of responses described above, including heat transfer, struc-

tural displacement under different loads, and electromagnetic absorption. Further

details about the finite element method and CSTEM can be found in [2] and [16, 30],

respectively.

2.4 The Heterogeneous Version of CSTEM

There are several important design issues that arose during the creation of the het-

erogeneous version of CSTEM. The most significant of these issues was to develop

a set of criteria that could be used to split CSTEM into a number of independent

code blocks. Once this issue was determined, issues of secondary importance could

be established: including methods of passing data structures between blocks, sharing

files between blocks, and keeping the data in these files coherent. This rest of this

section will discuss how these issues were resolved, and will examine the structure of

the heterogeneous version of CSTEM.

2.4.1 Code Division

As described above, CSTEM consists of a number of diverse analysis routines coupled

together to form a single analysis tool. (See Figure 2.6 for the flowchart.) Almost

all of these analysis routines are called from a single FORTRAN subroutine. Data is

passed between these routines using three different means: as parameters of functions,

in COMMON blocks, or in files. To complicate matters, these methods are often used

interchangeably and inconsistently, largely because CSTEM derives a large portion

of its code from existing applications.

For the initial version of heterogeneous CSTEM, it was decided, for the sake of

simplicity, not to exploit any data parallelism in the code. When using data paral-

lelism, the data is divided among several processors, with each processor executing

the same code on its share of the data. Instead, CSTEM would exploit only task

parallelism---where each processor receives all of the data, but the code is split into

a series of heterogeneous subtasks, each assigned to a different processor, executing

in parallel where possible. A number of factors need to be balanced when splitting

18

the code in this manner. Any split should attempt to maximize the number of tasks

executing in parallel, minimize the communications volume between tasks, and split

the code at function call boundaries, in order to minimize the number of modifications

to existing code.

After weighing all of these parameters, CSTEM was divided into 15 separate tasks.

Each of these tasks has its own separate source code, simplifying the process of port-

ing individual tasks to different architectures. Although no data parallelism is used

in this version, individual tasks that are in the critical execution path can be paral-

lelized using data parallel techniques to increase the overall performance. Figure 2.7

shows a representation of the resulting HENCE program graph. The numeric values

within the nodes of the graph represent the approximate execution time, in seconds,

upon a Sun workstation, excluding any communication costs. The edges between

the nodes represent the precedence relationships between the nodes. These edges

do not represent all of the nodes which communicate, however. Adding all of the

communication edges would have made the graph unreadable. The names assigned

to the nodes are arbitrary names uniquely identifying each task. As stated above,

CSTEM was mostly split along function call boundaries, so the individual tasks do

not necessarily correlate with the items in the flowchart shown in Figure 2.6. From

the numeric values in the program graph, the tasks causing performance bottlenecks

are clearly visible, making the tasks "xsnd0" and "xstiff()" definite candidates for

parallelization in later versions. Now, with the code split into a set of individual

tasks, the next section will examine how data is passed between those tasks.

2.4.2 Data Sharing

As stated above, data is passed between routines using three methods: as function

parameters, in COMMON blocks, or in files. Passing data through function parameters

is the simplest scheme to contend with. Each parameter is made into a HENCE

variable, which HENCE will pass on demand between the different tasks. Data passed

through COMMON blocks and files require more specialized handling, however. Since

data held in a COMMON block cannot be passed as a function parameter, the data in

the COMMON block must be copied into a series dummy variables. These variables

are passed between tasks as function parameters, and the data is copied back into the

appropriate COMMON block. This method, however, produces a large, unmanageable

number of dummy variables. Fortunately, the FORTRAN EQUIVALENCE statement

provides a manageable way to accomplish this task. The EQUIVALENCE statement
allows two dissimilar data structures to occupy the same block of physical memory.

Using this statement, the COMMON block can be made to share its memory with an

array of integers. The data in.this array can easily be copied into a dummy array

and then be passed between tasks.

The final method of passing data between blocks is through files. CSTEM is

19

C Finish

P

E F

D

C B

A

G

(s_)

Figure2.7:HENCE Program Graph forHeterogeneousCSTEM

20

very dependent upon its file structure; it is almost constantly performing some file

operation. CSTEM was designed to minimize the amount of physical memory used

by keeping all unnecessary data stored in files.

At the present time, there is no coherent parallel file system available on the

machines used by heterogeneous CSTEM. Therefore, two techniques have been used

to simulate such a file system. The first is to use Sun's Network File System, also

known as NFS. NFS allows files stored on a remote file server to be accessed locally by

multiple machines, each as if the file was on a local disk. Thus, NFS allows the tasks

of heterogeneous CSTEM to simultaneously read a single file. No writing may be

done to a file while another task has that file open for reading, since data corruption

may occur.

Although most workstations support NFS, not allmachines are linkedby a single

NFS volume. NFS cannot be configuredby a user,limitingthe use ofNFS to machines

configured by the system administrator to share a filesystem. For machines not

connected by NFS, another method of filesharing must be used, based upon the

remote copy network service,also known as rcp. Rcp isa network serviceallowing

filesto be copied between differentmachines. To use rcp with heterogeneous CSTEM,

one machine, preferablethe machine eitherrunning the most tasksor having accessto

the NFS volume used by most of the tasks,would hold allof the files.Tasks not able

to accessfileswould use rcp to copy the needed filesto a localdrive beforebeginning

execution, and would return modified filesto the host machine upon completion.

Clearly, transferring files via NFS and rcp have significant drawbacks, but until a

full-featured parallel file system is available for distributed workstations, they are the

only options available to support file operations across heterogeneous machines.

2.5 Summary

Clearly,for large applications,there is a distinctadvantage to using heterogeneous

computing to exploitparallelismand simplifythe programming process.HENCE pro-

videsa convenient toolforquicklycreatingheterogeneous applications,and, therefore,

was used to createheterogeneous CSTEM. Now, an efficientmatching and schedul-

ing algorithm is needed to allocate the individual tasks to a set of heterogeneous

machines. The next section will examine the proposed matching and scheduling tech-

nique developed in this project.

21

3. Matching and Scheduling

As stated above, the most difficult problem associated with heterogeneous dis-

tributed computing, as well as parallel computing in general, is the matching and

scheduling problem. This problem assigns the individual code fragments, or tasks, to

the set of processors such that the overall completion time of the application is mini-

mized. The matching and scheduling problem is a very broad problem, taking different

forms depending upon the processor architecture, the network architecture, and the

task structure. It is also very costly to compute an exact solution to the matching and

scheduling problem, since the problem is NP-hard [32]. Therefore, heuristic methods

are used to obtain approximate solutions. This report presents a new matching and

scheduling heuristic, the Levelized Min-Time (LMT) algorithm [21, 22]. To evaluate

the performance of this algorithm, and the performance of heterogeneous CSTEM, a

series of simulations were performed. These simulations estimate the performance of

heterogeneous CSTEM on a variety of potential clusters of heterogeneous machines.
3.1 Definitions

The following set of definitions will be used in presenting the matching and scheduling

algorithm. The set of parallel tasks can be represented by a directed, acyclic graph

(DAG) G - (V, E), where the set of vertices V -- {vl, v2,..., on} represents the set

of tasks to be executed, and the set of directed edges E represents communication

between tasks, where e_j - (vi, vj) E E indicates communication from task v_ to vj.

The collection of heterogeneous machines used in the computation can be represented

by the set P- {pt,P2,...,pq}.

The computation cost matrix X, xq represents the execution costs of n tasks on

q heterogeneous machines. The value x_j E X represents the computation cost of

task v_ on machine pj. The communication matrix Cnxn holds the number of bytes

sent between the tasks. The value of c_j E E is equal to the communication volume

if e_j E E, otherwise, c_j - 0.

A solution to the matching and scheduling problem is defined as/_ : V -_ P,

matching the tasks onto the heterogeneous machines. Thus, task v_ is mapped onto

machine/z(vi). The communication cost function 6 : .hi" x P x P -+ .Af defines the

communication costs of a given matching, where _ is the set of natural numbers.

The value 6(c_j, #(v_),/z(vj)) represents the cost of sending c_ bytes from task vi on

processor p(v_) to task vj on proce_or p(vj).

A path W through the DAG G = (V, E) is defined as a sequence of nodes such

that, for all adjacent pairs nodes vi and vj in the sequence (v_ is ordered before vj),

e_j E E. The cost _bof a solution to the matching and scheduling problem, for a given

matching, is defined as the path W through the graph that maximizes the sum of the

communication costs and computation costs along that path. This can be represented

22

by the expression:

v_EW

(1)
v_,viEW

3.2 Previous Work

There are a wide variety of different approaches that have been taken solve the

matching and scheduling problem. The methods that have been used include it-

erative methods [38], global optimization methods [37, 28], greedy selection methods

[10, 20], hierarchical methods [5, 8], and combination methods [6]. Many of these

methods do not explicitly consider the precedence relations that exist between tasks,

and instead concentrate on matching tasks onto the processors. These methods, in

most circumstances, are not applicable to the type of task system defined above.

Therefore, methods which directly consider precedence relations will be empha-

sized. These methods can be broken down into two categories: those for homo-

geneous processor systems [34, 20, 40, 9, 1] and those for heterogeneous processor

systems [11, 26, 36]. The remainder of this section will examine some of the relevant

homogeneous and heterogeneous methods.

For homogeneous task systems, Sarkar and Hennessy [34] present a two-stage

technique known as internalization, which first clusters the tasks into an arbitrary

number of groups, and assigns these groups to the physical processors. Hwang et al.

[20] present a heuristic called earliest task first (ETF), which uses a greedy selection to
schedule tasks in homogeneous processor systems. Yang and Gerasoulis [40] present

the DSC algorithm, which, on an unbounded number of processors, produces better

results than either of the methods presented in [34] or [20]. Colin and Chr_tienne

[9] present a polynomial algorithm for optimally scheduling tasks on a homogeneous

array of processors, provided task duplication is allowed. This method uses a critical

path based algorithm. Atallah et al. [1] examine a method for balancing a background

computation across a cluster of distributed, homogeneous workstations.

For heterogeneous processor systems, Kim and Browne [26] present a technique

called linear clustering, which clusters tasks into chains of tasks, and maps the clusters

onto the physical machines. El-l_wini and Lewis [11] present an algorithm known

as the MH algorithm. This algorithm prioritizes the tasks based upon an estimate

of the starting time, and assigns the tasks based upon those priorities. Both of these

heterogeneous methods have limited application to the problem formulated here, since

they assume that the individual processors perform uniformly for all code types (i.e.

the performance of a task on each heterogeneous processor varies only by a scale

factor). This assumption leads to sub-optimal results when applied to a heterogeneous

system composed of a diverse range of machine architectures. Sih and Lee [36] present

a technique for matching and scheduling in heterogeneous processor systems called

23

Dynamic Level Scheduling,which assigna seriesof dynamically changingpriorities
to the tasks being scheduled. This method is very similar to the technique used
by E1-Rewini,although it usesa more robust assumption about the nature of the

heterogeneous processors, avoiding the problems associated with the MH algorithm.

3.3 Matching and Scheduling with CSTEM

Since many matching and scheduling algorithms are optimized for specific types of

problems, when searching for an algorithm, there are several characteristics that need

to be matched to the problem. Obviously, with heterogeneous CSTEM, any algorithm

must either support heterogeneity or be capable of being extended to support hetero-

geneity. Other important details include finding an algorithm suitable for both the

type of network and the type of machine used. The heterogeneous environment used

in this project consists of a variety of general purpose workstations and supercomput-

ers, connected by either a shared medium, like ethernet, or a completely connected

packet switched medium, like an ATM switch. In either case, the communication cost

between nodes is, under most circumstances, independent of the physical locations of

the sending and receiving processors. This type of network is also known as a uniform
network.

An algorithm must also be suitable for the type of tasks to be allocated. The

amount and grain size of the parallelism, combined with the number of precedence

relations between individual tasks, plays a key role in the performance of any algo-

rithm. When parallelising an existing application, the tasks tend to have a large

number of precedence constraints and a relatively low degree of parallelism between

them. Precedence is the single most limiting factor to the overall performance of the

algorithm; therefore, an algorithm that handles precedence well is essential.

3.4 The LeveHzed Min-Time Algorithm

The combination of precedence constraintsand variableexecution times complicates

the assignment process. To simplifythe problem, a two phase approach willbe used.

The firstphase reduces the precedence constrainedmatching and scheduling problem

into a seriesof non-precedence constrained sub-problems. The technique that will

be used to accomplish thisis known as levelsorting [31,7]. Once the problem has

been divided using thistechnique,a much simpler algorithm can be used to solve the

individualsub-problems. This algorithm iscalledthe Min- Time algorithm. Together,

these two stagesform the LevelizedMin-Time (LMT) algorithm.

Considering each subproblem to be completely independent does cause some inac-

curaciesto be introduced intothe solution.Therefore,inorder to improve the quality

of the solution,some techniqueswillbe given that willincludesome information from

the other subproblems.

24

() Level 0

Level 1

Level 2

Level 3

Figure 3.1: Level Sorting Example.

3.4.1 Level Sorting

The method used for the first phase is a technique for ordering the nodes based upon

their precedence constraints, called level sorting. Level sorting has applications in

several different areas, including logic simulation, fault simulation, and scheduling

[31, 7].

The exact definition of the level sorting process can be given recursively: Given a

graph O = (V, E), level 0 contains all vertices v_ such that there is no vertex vi with

eij E E. (i.e. v_ does not have any incident edges). Level k consists of all vertices v_

such that, for all edges e_j E E, every vertex v_ is in a level less than k, and at least

one vertex is in level k- 1. Figure 3.1 shows a sample DAG that has been level sorted.

The level sorting technique clusters nodes that are able to execute in parallel. By

clustering tasks in this fashion, the tasks within each level have no precedence con-

straints between them. The second stage of the LMT algorithm will assign tasks level

by level, using an assignment heuristic which does not use precedence information.

3.4.2 Min-Time

The second stage of the assignment process uses a heuristic called the Min-Time

algorithm. The Min-Time algorithm is a greedy method that attempts to assign each

task to the "best" processor--the processor on which the task runs the fastest.

The algorithm operates according to the following steps. First, the average exe-

cution time of each task, across all available machines, is calculated. Second, if the

number of tasks is greater than the number of available processors, the number of

tasks is reduced by merging the smallest tasks (based on the average time) until the

25

number of tasks is equal to the number of processors. Third, the tasks are sorted

in reverse order (largest first) by the average execution time. Finally, each task is

assigned, in sorted order, to the processor on which it executes the fastest, with at

most one task per processor. The sorting process increases the likelihood of large tasks

being assigned to the fastest processors, while less demanding tasks are assigned to

slower processors.

3.4.3 Final Considerations

Above, the assumption was made that the matching and scheduling problem could be

decomposed into a number of independent subproblems. In reality, these problems

are not completely independent. The interactions between tasks in different levels

can affect the overall cost of a matching. This section will present some features that

improve the quality of the solutions.

First, when making an assignment, there is a possibility that the Min-Time algo-

rithm might have to choose between two or more identical machines. An effective way

to resolve such a choice is to assign the task to the processor from which it receives

most of its data, since the cost of sending a byte to another machine is significantly

higher than the cost of communicating that byte locally. Therefore, by including

the additional information regarding communication between the separate levels, the

overall solution can be improved. The simplest way to add this information is to

include the cost of communicating with tasks in previous levels into the overall ex-

ecution cost of each task, increasing the likelihood that tasks which share a large

amount of data are assigned to the same processor.

Another drawback with the original assumption results from the Min-Time algo-

rithm falling to look at tasks in subsequent levels. The algorithm assumes that in

order for a task on level i -t- 1 to begin, every task on level i must be complete. In

reality, the results produced by task i may not be used for several successive levels,

giving that task more time to execute without creating a bottleneck. For example,

consider the graph shown in Figure 3.2. If task C is large when compared to task B,

under the LO algorithm task C would automatically get priority for assignment to

the fastest processors. However, the results produced by task C are first used by task

G in level 5. Therefore, Task C will not produce a performance bottleneck unless its

execution time is greater than the sum of the execution times of tasks B, D, E, and

F. There is a significant problem that occurs when trying to incorporate this infor-

mation into an algorithm: the execution times of tasks D, E, and F are unknown

when tasks B and C are being assigned. Furthermore, in a more realistic example,

there would be more than one task in levels 2, 3, and 4, making the the time when

task G will begin even more difficult to compute. To solve this problem, a method

is needed to establish a reasonable estimate of the execution time of each subsequent

level. The method used in this algorithm to estimate this time, is to use the average

26

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Figure 3.2: A Task Graph Showing the Drawback of Not Examining Subsequent

Levels.

time of all of the tasks in the level as an estimate of the execution time of that level.

Therefore, if the results from a task in level 1 are not used until level 5, the sum of

the average times for the levels 2 through 4 can be used as an estimate of the extra

time that the task has to complete execution.

By including the above factors, the formal definition of this algorithm is:

Procedure: LMT

begin

Level sort tasks.

For each level,in order,do:

begin

Assign tasks in leveli using Min-Time.

end

end

Procedure: Min-Time

begin
For each task v, do:

27

begin
Let avg_ = average value of x, i for all possible j.

Adjust average values based upon when results will be
needed.

end

Sort groups in reverse order by avg,.
For each task v_ in sorted order do:

begin

Find j such that processor pj does not have a task assigned

to it and xii + _, _(ckz,#(vk),pj) is minimal.

Assign task vs to processor pj.
end

end

3.5 Experimental Results

The intended execution environment for heterogeneous CSTEM is the Advanced Com-

putational Concepts Laboratory (ACCL) at the NASA Lewis Research Center. This

laboratory consists of a variety of high performance workstations and parallel ma-

chines connected by several different high performance networks. To evaluate poten-

tial heterogeneous clusters within this environment while limiting the overall program-

ming effort, a series of simulations were performed. A custom event-based simulator,

using timing information derived from actual measurements (shown in Figure 2.7) on

a Sun Microsystems Sparc 10 workstation, was used to generate these results. The

network timings were measured from standard PVM over a conventional ethernet

based network. In addition to execution time and network speeds, the simulator also

considers the effects of multiprogramming in its computations. The high communica-

tion overhead of PVM over a conventional network greatly affects the performance of

CSTEM. The setup time for communication using PVM is exceptionally high, clearly

creating a performance bottleneck. This problem can be reduced by using a more

advanced network with an optimized version of PVM. Several of these networking

technologies are available at ACCL, including ATM and other high speed switching

technologies.

The results presented in this section are not intended to perform an accurate

evaluation of the LMT algorithm, but to explore the potential performance of het-

erogeneous CSTEM. Given the amount of task parallelism present in the task graph,

heterogeneous CSTEM can only effectively utilize about three machines in parallel.

Therefore, Figure 3.3 shows the overall speedup obtained by applying the LMT algo-

rithm to heterogeneous CSTEM, using various three machine heterogeneous clusters.

The machines in these clusters could potentially be any type of machine, including

workstations, parallel machines, or vector supercomputers. One trace shows the es-

28

4.5

4

3.5

3

2.5

2

1.$

. . , +
i _ .o+

I F.t P_..w -.-- ,

/

,,/
/-

1

0 ,S 10 I$ 2O

,SpeecW _ F'-* Pmeem_s)

Figure 3.3:Speedup of Heterogeneous CSTEM with DifferentProcessor Speeds.

timated speedup when one of the three machines iseither2,5, i0,or 20 times faster

than the baselinemachine. The second traceshows the speedup when two of the ma-

chines are either2, 5, 10,or 20 times fasterthan the referencemachine. The network

timings are that of a conventional ethernet based network.

As predicted,these resultsshow that heterogeneous CSTEM isvery communica-

tion bound, clearlyindicatingthe need for a more advanced network architecture.It

isalsoclear from the structureof the task graph shown in Figure 2.7 that there isa

limited amount of parallelismpresent in the taskgraph. An effectivesolutionto this

problem isto exploitdata parallelismwithin individualtasks.

In the above simulation,itisassumed that any task can execute on any processor.

This assumption may not be validin a realheterogeneous environment, sinceitmay

not be worth the programming effortto port non-criticaltasks to every available

architecture.Therefore,to demonstrate a more realisticexample, Figure3.4 shows the

overallspeedup obtained from increasingthe speed of the fivemost computationally

intensivetasks (M, F, E, K, and N in Figure 2.7) by a factorof 20, as well as

the effectsof increasingthe speed of the network by a factorof 2, 4, and 8. These

resultsshow that, given adequate network resources,heterogeneous computing has

the potentialto provide a significantspeedup, while limitingthe programming effort

to the most computation intensivetasks.

29

!

i, i , T , ,

iI____i_ii_ii_i_................................_............................._.................._.............i_¥k¸

_ J..',," [

i .'".# 4r i

i _>" ! J L

0 2 3 4

Number _ Tl_m _th $1_edup. 20

I

Figure 3.4:Speedups forDifferentProcessor and Network Speeds

3.6 Summary

An effectivematching and scheduling algorithm is an essentialelement of heteroge-

neous computing, especiallyone which can take advantage of the availablearchitec-

tural featuresof a given heterogeneous processing system. In thissection,we have

presented the the LMT algorithm, an effectivematching and scheduling algorithm

for heterogeneous computing. We have shown, through simulations,that that het-

erogeneous computing isan effectivemeans of increasingthe performance of large,

scientificapplications.However, sincea matching and scheduling algorithm requires

and accurate set of execution time estimates to make effectivescheduling decisions,

we will,in the next section,present a method forobtaining thisset of estimates.

3O

4. Execution Time Estimation

In order for a matching and scheduling algorithm to make a scheduling decision, an

accurate set of estimates of the execution time of the task on each potential machine

is needed. It is well known that the execution time of a computer algorithm is a

function of the size and properties of the input data. The order of this function is

known as the computational complexity. In the homogeneous case, it can be assumed

that each particular task performs identically on each target machine. Therefore, a

single estimate of the execution time of each task is required, and is fairly easy to

obtain. This, however, is not true for heterogeneous distributed computing, since an

execution time estimate is required for each task-machine pair, and there are many

factors unique to heterogeneous systems which can affect the execution time, including

processor architecture, processor speed, memory size and speed, and machine loading.

Furthermore, the heterogeneous environment can be dynamic (unlike many dedicated

parallel machines, where the user is granted exclusive use of a portion of the machine)

and some of the factors can only be determined at run time. Therefore, it may be be

advantageous to have a scheme which could estimate the execution time just before

the task is to execute. In this way, the run-time factors could be considered when

making the estimate. However, the primary disadvantage of run-time estimation is

the speed in which the estimate must be computed. At best, all of the execution time

estimates, as well as the matching and scheduling decision, need to be determined in

a very small time window, in order to prevent the scheduling overhead from affecting

the overall program performance. So, any run-time scheduling technique will have to

be computationally efficient.

To meet these requirements, we propose an execution time estimation algorithm

which statistically estimates the execution time using past observations [23]. This

approach offers a number of advantages. First, a statistical method can compensate

for many different factors, without requiring a distinct model for each of the different

machine architectures. Second, statistical estimates will improve with time, as the

number of previous observations increases. Finally, statistical schemes can be made

to be computationally efficient, making them practical for use at run time. One

potential criticism of statistical schemes is the need to have a large number of past

observations to obtain accurate estimates. This issue will be addressed in Section 4.4.

The method we will present is based upon the statistical technique known as non-

parametric regression. Nonparametric regression has the advantage of being able to
estimate the execution time, as a function of several parameters, without any knowl-

edge of the function itself. Since we make no assumptions on the functional form,

this prediction scheme does not require any knowledge of either the task or the target

architecture, making it applicable in a very general sense. This estimation scheme

operates in the following manner. A set of previous observations of the execution

31

time of a task on each potential machine or class of machines is maintained by the

algorithm. Using this set of observations, the execution time of a task on each poten-

tial machine can be estimated, and the matching and scheduling algorithm can use

these estimates to make a scheduling decision. After the task execution is complete,

the actual time taken to execute is added to the set of observations,to be used to

improve future predictions.By storingpast observations,the estimation algorithm is

able to improve itsestimates over time.

Before we examine the detailsof this proposed method, we will examine some

of the previous work relevant to this paper in the next section. In Section 4.2, the

statisticalmethods used to solve the execution time estimation problem willbe dis-

cussed. In Section 4.3,the specificdetailsof the method used to solvethe execution

time estimation problem willbe presented. Finally,Sections 4.4 and 4.5 willdiscuss

the experimental resultsand conclusionsdrawn from these results,respectively.

4.1 Previous Work

Most of the previous work in execution time estimation forheterogeneous distributed

computing centerson a theoreticalframework known as analyticalbenchmarking/code

profiling. In analytical benchmarking, the source code of a task is analyzed to obtain

some set of parameters summarizing the behavior of the task. This technique is used

in conjunction with code profding, where the behavior of each machine is summarized

in another set of parameters. Once these steps are complete, the information from

the tasks and machines can be combined to create an execution time estimate. This

framework, first proposed by Freund [14], has appeared often in the literature [39, 24].

Currently, this method is still only a framework, and is far from being a real imple-
mentation.

However, other work has been performed in the area of execution time estimation,

particularly in reference to estimating execution time directly from the source code.

Often, these methods are either targeted for a specific subset of architectures, or are

meant to estimate the execution time of source code without reference to a particular

architecture. This category includes the work by Li et al [27], who present a method

for obtaining execution time estimates for SIMD/SPMD mixed-mode heterogeneous

architectures, and Reistad and Gifford [33], who present a method for determining

expressions for execution costs, for use with optimizing compilers and for automatic

parallelization.

Several authors have applied statistical and probabilistic techniques to distributed

computing problems. The SmartNET heterogeneous scheduling tool offers a statis-

tical execution time estimation technique, but no details of its implementation have

yet been published [25]. Hou and Shin [19, 35] present techniques, based on Bayesian

decision theory, for load sharing in both homogeneous and heterogeneous distributed

real-time systems. These methods load balance such that the probability of a real-

time task meeting its deadline is maximized. Some of the methods Hou and Shin

32

presenthaveusefulapplicationsin heterogeneousdistributed computing,particularly
the useof Bayesiandecisiontheory for estimation of the state of individual pro-
cessors.Although the techniquesare not directly applicable to the execution time
estimation problem, it would be desirableto usesomeof Hou and Shin's techniques
in conjunction with the method presented here.

4.2 Nonparametric Regression

For the execution time estimation problem defined in this paper, the execution time of

a task is considered to be a function re(x) of a parameter x. For example, x could be

the problem size. While the estimation algorithm does not know any details about the

functional form of re(x), it does have a set of n previous observations of the execution

time ((Yi, xi)}'_=t, where yi is the observed execution time for the parameter value xl.

These observations are assumed to contain some amount of random error e_, such
that

= m(x) + (1)

The goal of the execution time estimation problem is, for some given value of the

parameter x, to obtain an estimate rh(x) of the execution time, using the set of

previous observations. In statistics, this problem is called a regression problem.

In a regression problem, there is a system y that is a function of some parameter x,

following the form of equation 1. The function re(x) is the regression function, and e is

zero-mean, random error. Both x and re(x) are deterministic values, while the random

error e is stochastic, making y stochastic. In order to simplify the presentation, we

will consider x to be a scalar value, although all of the methods presented here can be

extended to support a vector of parameters. Estimation with a vector of parameters

will be discussed in Section 4.5. The statistical techniques shown in this section and

the next, as well as the notation, are derived from the methods collected in the books

by S_dle [18] and Eubank [13].

There are a variety of different techniques to solve this problem, that can be

divided into two classes:parametric techniques and nonparametric techniques. In

the parametric case, itis assumed that the functionalform of re(x) is known. For

example, re(x) may be a fourth order polynomial, and the regressionproblem would

be to determine the coefficientsof that polynomial. A popular parametric technique

for solving this type of problem is the leastsquares method. It is important to

emphasize that the functionalform must be correctin order to obtain a meaningful

resultfrom a parametric regressiontechnique. Otherwise, inaccurate resultsmay

be produced. Since,for the execution time estimation problem defined above, itis

difficultto make any assumptions on the functionalform of re(z) without specific

knowledge of the task and the machine in question,parametric techniques are not

well suitedto thisproblem. Nonparametric techniques are a betterchoice.

33

y
(Execution

Time)

Lower Weight

(far from A)

x

x

x

x

x

x
X

x x x
x

x

x
x

High_ Weight

(ne& A)

v

A x
(Problem Size)

Figure 4.1: Assigning Weights to Observations.

Nonparametric regressiontechniques (alsocallednonparametric estimators)make

no assumption on the functionalform of re(x),and thereforecan be considered to be

data driven,since the estimate rh(x) only depends upon the set of previous observa-

tions.Nonpaxametric techniques are alsocalledsmoothing techniques,sincethey act

to smooth out variationsin the observed data caused by the random error _.

All nonparametric regressiontechniques eitherfollowor can be modeled by

n

= _1]Ew, Cx)v, (2)
71 i=l

where W_(z) isa weighting sequence [18].From thisfunction,we see that rh(x),for

any given value of x, isa weighted average ofthe y valuesofthe previousobservations.

The weight function W_(z) isa function of x, since itwillassignhigher weights to

observationscloseto the parameter x, and lower weights to observationsfartheraway

from x. This isillustratedin Figure 4.1.In practice,many nonparametric regression

techniques only include points within some neighborhood of the parameter x in the

average, assigning a weight of '_ero" to observationsoutside of thisneighborhood.

This makes the estimate rh(z) a "local"average of the observationsnear the value

of the parameter z. To relatethis to the execution time estimation problem, the

estimate rh(A) of the execution time for x = A, willbe a weighted average of the

observationsy_ which have parameter valuesx_ closeto the value A.

There are a number of factorsto consider when choosing an appropriate non-

parametric regressiontechnique. It isimportant to noticethat care must be taken

when forming the localaverage to compute rh(x). Iftoo many observationsare in-

cluded in the average, the resultwillbe overly biased,making the resultingcurve

too smooth. On the other hand, iftoo few observationsare averaged,the resultwill

be subject to the variationsof the individualsamples, making the curve too "noisy."

34

Y

(Execution

Time)

SparseRegion
Use points fa.'_erawly

_C
• •

x

x

x

X X

X X

X x
x

X

U_ close points oe,ly

[I v
x

A B
(Problem Size)

Figure 4.2: Compensating for Observation Density.

Furthermore, as the number of observations tends toward infinity, it is desirable that

the estimate rh(x) approach the true value re(x). This problem is known as the

bias-variance tradeoff, and is present in all nonparametric regression techniques.

Another factor to consider is the density of the observations. If the observations

are not uniformly distributed on the x-axis, the technique needs to be able to com-

pensate for sparse and dense regions of observations. In the dense regions, the average

should only include points very close to the parameter value x, while in the sparse

regions, points further away from x should be included in the average. This is illus-

trated in Figure 4.2. One way to accomplish this is to use a fixed number of points

in the average. In the next section, we will present an estimation method which uses

this technique to compensate for variations in the density of the observations.

4.3 Proposed Estimation Method

The regression technique used for the execution time estimation problem in this paper

is based upon a technique known as k-Nearest Neighbor (k-NN) smoothing. In k-NN

smoothing, the estimate rh(x) for the parameter value A is constructed from the k

observations with x values closest to the parameter A. With regard to the execution

time estimation problem, there are two primary advantages of k-NN smoothing. First,

since the estimate is always constructed from an average of k points, the method can

easily adapt to sparse or dense regions in the observations. Second, the method can

be implemented in a computationally efficient manner.

With uniform weights, the k-NN estimator can be formally defined using the

weight function

{-Wi(z) = _, if i E Jz (3)
0 otherwise

35

where J= = {i : x_ is one of the k nearest neighbors of x}. This weight function

is used in equation 2, forming the basic k-NN estimator. However, to improve the

performance of the method, weights can be assigned to the k observations in the

average, based upon the distance of each observation from the parameter value x,

with the points closer to the parameter x getting higher weights. A weighting func-

tion, (also called a kernel function) with certain optimality properties [12, 13] is the

Epanechnikov Kernel K(u), where

=](1 - (4)

and [u[< 1. To incorporate this kernel function into the koNN estimator, we need to

ensure that it is properly scaled and normalized. To accomplish this, let

KR(z-zdW,(x) = 1,(0=) , if i E J=otherwise (5)

where KR(u) is the scaled Epanechnikov kernel

1 u

KR(u) = _K(_). (6)

The Epanechnikov kernelisscaledby the factorR, which, for the k points in Jffi,is

defined to be

R = max(x- x,). (T)

Finally, the factor jR(x) in equation 5 is a normalizing factor, defined as

1

]a(x) = "_ _ KR(x - x,). (8)
J,

This weighted estimator will be used to solve the problem presented in this paper.

However, in order to further improve the performance of this estimator, we will define
some additional modifications.

4.3.1 Boundary Effects

A factor that needs to be accounted for is the behavior of the regression technique at

the boundaries of the set of previous observations (i.e. no observations lie beyond the

boundary). As x approaches a boundary, the local average becomes biased, since more

observation points will be on one side of point x than the other. This is illustrated

in Figure 4.3, where the estimated function rh(x) will tend to "fall away" near the

boundary [13, 18]. Therefore, a nonparametric regression technique should be able

to compensate for this effect.

36

J Estimated Curvc I

Boundary

Figure 4.3: Effects of Estimates at the Boundary.

One computationally efficient method of compensating for the boundary effects

is to ensure that the interval from which the points in the local average are selected

is "evenly spaced," where x always lies at the center of the interval. For example, if

the observations are bounded to the interval [a, b], and the value of x is near b, we

can restrict the points in the local average to be from the interval [x - (b - x), hi.

Similarly, if the value of x is near a, we can restrict the points in the local average to

be from the interval [a, x + (x - a)]. To accomplish this, we can formally redefine the

set Jz to be

JZ _" {i : x_ is one of the k nearest neighbors of x} n

{i: x, e [a,x + - a)]}n
{i: xi e [x- (b- x),b]}. (9)

By defining the set in this fashion, the local average will be more likely to have an

equal number of points above and below the parameter value x. The disadvantage

of this technique is that estimates close to the boundary will have a higher variance,

because fewer points are used to compute the average. However, the higher variance

is preferable to the biased estimates, since, as the number of observations grows, the

variance will decrease.

4.3.2 P_bustness

Another desirable factor to consider is how the technique behaves when erroneous

data points are included in the data set. These points, called outliers, do not conform

37

to the model described in equation 1. These outliers may end up in the data set

due to erroneous readings, an overloaded machine, or due to other poorly modeled

effects. An estimator with the ability to disregard these points is called a robust

estimator. One suitable technique to accomplish this is called L-Smoothing [18],

where a set percentage of the observations with the largest and smallest values of yi

are eliminated from the local average. L-Smoothing can be implemented by sorting

the observations {(xi, yi)} E Jz by yi, then computing

1 k-r.-.,1
rh(x) W (x)yi21 k1 z.,i=r,,,A:l

(lO)

The value of a, where 0 < a < 0.5, controls the percentage of observations excluded

from the average.

4.3.3 Asymptotic Behavior

As described in Section 4.2, there is a tradeoff between the bias and the variance of the

estimated curve. If too many points are used in the k-NN average, the bias E{_h(z) -

re(x)} will be too large, while using too few points in the average will cause the

variance E{rh2(z)} will be too large. Therefore, the value of k must be chosen

with reasonable care. Also, the value of k depends upon the number of sample

observations n, and, therefore, needs to be adjusted accordingly. It has been shown

that, by increasing k in proportion to n_, the k-NNtechnique will maintain a constant

tradeoff between the variance and the bias [18, 29].

4.3.4 Computational Complexity

The methods presented in this section can be implemented in a computationally

efficientmanner. Excluding the robust, L-smoothing technique, thisestimator can

be implemented with an algorithm which islinearin the parameter k. Since k isset

to be proportionalto n|, thismakes the overallalgorithm O(n|) with respect to the

number of observations n. The L-smoothing estimator isnot quite as efficient,since

the observations ((Yi, z_)}_=l must be sorted by the value of yi, which is an O(k log k)

operation, making the overall complexity O(n$ log n).

4.4 Results

A number of simulations were performed to evaluate the effectiveness of the proposed

method. In these simulations, the execution time is assumed to follow the model de-

scribed in equation 1. The simulations begin by choosing a function re(x), and com-

puting an initial set of 10 previous observations. Then, in each step, a random value

38

of parameter x is generated. Using the method presented above, an estimate rh(x)
of the execution time is made. To simulate the execution of the task, the actual

"execution time" is computed to be the value of re(x) plus some zero mean random

error, as shown in equation 1. Now, given the predicted time and the "actual" time,

the prediction error can be computed. Finally, the "actual" execution time is added

into the set of observations, and the simulation process repeats. In this fashion, we

can observe the behavior of the error as the number of observations (n) increases.

To illustrate the importance of each of the different components described in

Section 4.3, we compare the behavior of four versions of the k-NN algorithm: us-

ing uniform weights only, using uniform weights and boundary compensation, using

nonuniform weights and boundary compensation, and using the complete, robust

algorithm. The mean absolute error measure is used to evaluate each of the four
estimation schemes. This was done because the absolute error is easier to relate to

actual measurements, as opposed to the mean squared error.

In Figure 4.4, the algorithm is applied to data which does not contain outliers.

Figure 4.4(a) shows the normalized mean error, as a function of the number of obser-

vations, while Figure 4.4(b) shows the actual curve re(x) and the observations. In this

case, the best performing algorithm is the weighted k-NN algorithm. The robust al-

gorithm has slightly, but not significantly worse performance, due to the fact that the
robust modifications described in Section 4.3 discard some of the points from the av-

erage. For this simulation, the mean prediction error over 50 observations falls below

10% for all algorithms except for the simple, uniformly weighted k-NN algorithm.

In Figure 4.5, the algorithm is applied to data which contains outliers. In this

case, 10% of the observations do not conform to the model described by equation 1.

This can be seen clearly in Figure 4.5(b). As in the previous case, Figure 4.5(a)

shows the normalized mean error, as a function of the number of observations. In

this case, the value of having a robust algorithm is clear, where the full algorithm

clearly outperforms all of the others. It is important to observe that this estimation

technique produces good results with a small number of observations. With as few as

10 observations, the mean prediction error is less than 20% of the "true value" of re(x).

Obtaining ten observations for each task/machine pair is quite reasonable, since these

measurements can be made during the testing and debugging of the application.

This, coupled with the "learning" capability of this algorithm, make it an effective

prediction scheme.

4.5 Further Work and Conclusions

4.5.1 Multidimensional Parameters

Thus far, this paper has only considered execution time estimation as a function

of a scalar parameter x. However, it is highly desirable to be able to compute an

39

Meln Error _ OtAJenl)

140 ! !

:

j: l,o........

0 160 200 250

Number of

(a) Normalized Mean Error For Different Numbers of Observations

smmmmd oa (w_ Ou_m|

J :;..,.,,.

: ' :: 4": ÷'1"

i : ÷:+

i : : : : , : ÷ _ '4"I'÷ 4" ,P+: : . + ÷
: + .;I:+ i _+ _++
. " - : i + ' + i+÷

I0¢ :......... : :.......... :......... . •••.,,,_.,.__ ::...... _...
: " ÷ + ÷ + +i

i : i ÷i+ + : : ÷

! + • ÷ i :

200 2100 400 500 eO0 7_0 I100 900 1000 1100
Pw'limelw Vlllul

(b) Simulated Execution Time Function and Random Observations

Figure 4.4: Estimator Performance for Data Without Outliers.

4O

Norm_zed Mean _ (W'_ Ou_k_l)
180

T i ! !_

160 IO,W "

6G _.t :- . !

40 _................. :, .::_ ;_

2O

o I I I I

-0 50 100 150 2o0 250
Number of OOeerva_

(a) Normalized Mean Error for Different Numbers of Observations

smummd Dm (W_ Oum_)
_0 r f f w i i i i i

÷ /

J + P,amllmnOt_eww_l_ldY
450 _.......................... • _ AdumlVmlueomre(x)I

+4.: "" +

j:.. 4.

.+

........ :+. .: ++;
4. 4

4" 4"
................. f¢--_

" " : : : : '4. : +4._+ _t_' +_'*'_"_["_,_, e+

15(] i.......... i.................... i' "" ":6' "',_" "_. "_I@'+' "_-'_..'-_. --

' " + t. : +

)0 200 300 400 SO0 (I00 7(X) 800 900 1000 1100
Pm Vlkal

(b) Simulated Execution Time Function and Random Observations

Figure 4.5: Estimator Performance for Data With Outliers.

41

execution time estimateusinga vectorof parameters X - [xlx 2... x"]. In principle,

the task of modifying the methods presented in Section 4.3 to support a vector of

parameters is straightforward. Given an m dimensional vector X = [xlx 2... x'_], the

execution time estimate is computed from the k observations closest to the vector X

in Euclidean distance. All of the equations presented above can be easily redefined
in terms of this vector X.

While the multidimensional case is theoretically simple, there is significant impact

upon the computational efficiency of the estimation method. This impact is primarily

due to the complexity of finding the k nearest neighbors of X, which is a point in

m-dimensional space. In the scalar case, the observations can be stored in an array

sorted by their x value, making the process of finding the k nearest neighbors a simple

task. This storage scheme cannot be easily be modified to suit a multidimensional

implementation, greatly increasing the computational cost of computing the estimate.

To improve the efficiency of the proposed estimation method for multidimensional

parameters, we propose a scheme which will obtain an estimate by interpolating

between a set of precomputed values of rh(X). To accomplish this, a number of

estimates for evenly spaced values of X would be computed off-line, and then, at

run time, an estimate for an arbitrary value of X can be obtained by interpolating

between the precomputed values. When the task completes execution, the actual

execution time would be stored, and, at a later time, would be added into the existing

observations, and the values of rh(X) would be recalculated. The actual interpolation

method could either be a simple linear interpolation, or a more accurate (and costly)

higher order approximation. Although experimental results are incomplete, the linear

interpolation will probably produce estimates with sufficient accuracy.

The principal advantage to this approach is the reduction of the on-line compu-

tation costs. This scheme would even reduce the computation cost of execution time

estimate with a scalar parameter. The disadvantages of this scheme are that new ob-

servations are not immediately incorporated into future estimates, and that off-line

processing of the data is required. The impact of the off-line processing is not sig-

nificant, since the estimates can be updated with new observations either at off-peak

times or by running the task in the background at a low priority. The impact of not

immediately incorporating new observations into future estimates is more significant,

particularly for applications with few observations. Therefore, more frequent updates

may be required for applications which do not have a sufficient number of previous
observations.

A minor modification to the interpolation based scheme can improve the estimates

for observations which lie beyond the range of the current set of observations. Since

the nonparametric estimation scheme presented in this paper computes the execution

time estimate from previous observations, estimates beyond the range of the current

set of previous observations can be inaccurate. However, similar to the interpolation

scheme, estimates beyond the range of current observations can be extrapolated from

42

the set of precomputedresults.

4.5.2 Summary

In this section, we have presented an efficient method for estimating the execution

time of a task in order to to facilitate efficient matching and scheduling algorithms

in a distributed heterogeneous environment. This method statistically estimates the

execution time based upon previous observations, compensating for the parameters

upon which the execution time depends. This method has been shown to be computa-

tionally efficient, and extensions have been proposed to further improve its efficiency.

Experimental results show that the execution time estimates are accurate, even when

there are relatively few previous values from which to compute an estimate. These

features, combined with the ability for the estimates to improve with time, make this

method useful for matching and scheduling in a heterogeneous environment.

43

5. Conclusions

Applications based upon the finiteelement method are well known for their de-

mand for computational resources. An effectivemethod for satisfyingthisdemand

is heterogeneous parallelcomputing. In thisreport, we have presented the results

obtained by applying heterogeneous computing to a large finiteelement application:

CSTEM. A difficultproblem associatedwith heterogeneous computing isthe match-

ing and scheduling problemmthe process of assigningthe tasks of a parallelprogram

to the individual processors. A simple assignment heuristic, Levelized Min-Time

(LMT), has been presented, along with simulated results from applying the LMT

algorithm to heterogeneous CSTEM on a variety of different heterogeneous machine
clusters.

In order to make effective matching and scheduling decisions, an accurate set of

execution time estimates is required. Therefore, we have also presented an efficient,

run-time, statistical scheme for estimating the execution time of a task, in order to

facilitate matching and scheduling in a distributed heterogeneous computing envi-

ronment. This scheme is based upon a nonparametric regression technique, where

the execution time estimate for a task is computed from past observations. This

technique is able to compensate for different parameters upon which the execution

time depends, and does not require any knowledge of the architecture of the target

machine. Itisalsoable to make accurate predictionswhen erroneous data ispresent

in the set of observations,and has been experimentally shown to produce estimates

with very low error,even with few past valuesfrom which to calculatea new estimate.

From the resultspresented above, heterogeneous computing has been shown to

have the potentialto significantlyincreasethe performance of existingapplications.

Furthermore, heterogeneous computing offersa number ofadvantages over other tech-

niques in itsabilityto take advantage of differentarchitecturalfeatures,and, with

suitableprogramming tools,to limitthe overallprogramming effort.

44

References

[1]M. J. Atallah, C. Lock, D. C. Marinescu, H. J. Seigel, and T. L. Casavant, "Co-

scheduling compute-intensive tasks on a network of workstations: Models and

algorithms," in The 1991 IEEE Inter. Conf. Distributed Computing Systems.,

pp. 344-352, July 1991.

[2] K. Bathe, Finite Element Procedures in Engineering Analysis. Prentice-Hall, Inc.,
1982.

[3]

[4]

[5]

[6]

A. Beguelin, J. Dongarra, G. A. Geist, R. Mancheck, K. Moore, R. Wade,

J. Plank, and V. Sunderam, HENCE Users' Manual, Dec. 1992.

A. Beguelin, J. Dongarra, G. A. Geist, R. Mancheck, and V. S. Sunderam,

"Graphical development tools for network-based concurrent supercomputing,"

in Supercomputing 91, pp. 435-444, The IEEE Computer Society Press, Nov.

1991.

N. S. Bowen, C. N. Nikolaou, and A. Ghafoor, "On the assignment problem

of arbitrary process systems to heterogeneous distributed computer systems,"

IEEE Trans. Computers, vol. 41, pp. 257-273, Mar. 1992.

V. Chaudhary and J. K. Aggarwal, "A generalized scheme for mapping parallel

algorithms," IEEE Trans. Parallel and Distributed Systems, vol. 4, pp. 328-346,

Mar. 1993.

[7] C. L. Chen, C. S. G. Lee, and E. S. H. Hou, "Efficient scheduling algorithms for

robot inverse dynamic computation on a multiprocessor system," IEEE Trans.

Systems, Man, Cybernetics, vol. 18, pp. 729-743, Sept. 1988.

[8] S. Chen, M. M. Eshaghian, A. Khokhar, and M. E. Shaaban, "A selection the-

ory and methodology for heterogeneous supercomputing," in Proe. of the 1993

Workshop on Heterogeneous Processing, pp. 15-22, The IEEE Computer Society

Press, 1993.

[9]

[10]

[11]

J. Y. Colin and P. Chr6tienne, "C.P.M. scheduling with small communication

delays and task duplication," Operational Research, vol. 39, no. 4, pp. 680--684,

1991.

K. Ere, "Heuristic models of task assignment scheduling in distributed systems,"

IEEE Computer, vol. 15, pp. 50--56, June 1982.

H. E1-Rewini and T. G. Lewis, "Scheduling parallel program tasks onto arbitrary

target machines," J. Parallel Distributed Computing, vol. 9, pp. 138-153, 1990.

45

[12]

[13]

[14]

[15]

[16]

[17}

[18]

[19]

[2o]

[21]

[22]

[23]

[24]

V. A. Epanechnikov, "Non-parametric estimation of a multivariate probability

density," Theory of Probability and Its Applications, vol. 14, pp. 153-158, 1969.

R. L. Eubank, Spline smoothing and nonparametric regression. M. Dekker, 1988.

R. Freund, "Optimal selection theory for superconcurrency," in Proceedings of

the 1989 Supercomputing Conference, pp. 13-17, The IEEE Computer Society

Press, 1989.

R. F. Freund and H. J. Siegel, "Heterogeneous processing," IEEE Computer,

vol. 26, pp. 13-17, June 1993.

G.E. Aircraft Engines, CSTEM Users Manual, Mar. 1992.

A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Mancheck, and V. Sunderam,

PVM 3 User's Guide and Reference Manual. Oak Ridge National Lab., May
1993.

W. H_irdle, Applied nonparametric regression. Cambridge University Press, 1990.

C.-J. Hou and K. G. Shin, "Load sharing with consideration of future task ar-

rivals in heterogeneous distributed real-time systems," IEEE Trans. Computers,

vol. 43, pp. 1076-90, Sept. 1994.

J.-J. Hwang, Y.-C. Chow, F. D. Anger, and C.-Y. Lee, "Scheduling precedence

graphs in systems with interprocessor communication times.," SIAM J. Com-

puting, vol. 18, pp. 244-257, Apr. 1989.

M. A. Iverson, "Mapping and scheduling in a distributed, heterogeneous comput-

ing environment," Master's thesis, The Ohio State University, Columbus, Ohio,

1994.

M. A. Iverson, F. Ozgiiner, and G. FoUen, "Parallelizing existing applications in

a distributed heterogeneous environment," in Proc. of the 1995 Heterogeneous

Computing Workshop, (Santa Barbara, CA), pp. 93--100, Apr. 1995.

M. A. Iverson, F. (_zgiiner, and G. Follen, "Run-time statistical estimation

of task execution times for heterogeneous distributed computing," in Proc. of

the 1996 High Performance Distributed Computing Conference, (Syracuse, NY),

pp. 263-270, Aug. 1996.

A. A. Khokhar, V. K. P_asanna, M. E. Shaaban, and C.-L. Wang, "Hetero-

geneous computing: Challenges and opportunities," IEEE Computer, vol. 26,

pp. 18-27, June 1993.

46

[25] T. Kidd, D. Hensgen, L. Moore, R. Freund, D. Charley, M. Halderman,
and M. Janakiraman, "Studies in the useful predictability of programs in

a distributed and homogeneous environment.," The Smartnet Home Page

(http:////papaya. nosc. rail: 80/Smartget/), 1995.

[26] S. J. Kim and J. C. Browne, "A general approach to mapping parallel computa-

tions upon multiprocessor architectures.," in The 1988 Inter. Conf. on Parallel

Processing, vol. 3, pp. 1-8, 1988.

[27] Y. A. Li, J. K. Antonio, H. J. Seigel, M. Tan, and D. K. Watson, "Estimating

the distribution of execution times for SIMD/SPMD mixed-mode programs," in

Proc. of the 1995 Heterogeneous Computing Workshop, pp. 35-46, The IEEE

Computer Society Press, Apr. 1995.

[28] V. M. Lo, "Heuristic algorithms for task assignment in distributed systems,"

IEEE Trans. Computers, vol. 37, pp. 1384-1397, Nov. 1988.

[29] Y. P. Mack, "Local properties of k-NN regression estimates," SIAM J. Alg. Disc.

Meth., vol. 2, no. 3, pp. 311-323, 1981.

[30] R. McKnight, "Coupled disciplinary analysis for aircraft gas turbine engines," in

The 1992 Interdisciplinary System Simulation and Design Workshop, pp. 7-21,

The Ohio Aerospace Institute, 1992.

[31] R. R. Muntz and E. G. Coffman, "Optimal preemptive scheduling on two-

processor systems," IEEE Trans. Computers, vol. C-18, pp. 1014-1020, Nov.

1969.

[32] M. J. Quinn, Parallel Computing: Theory and Practice. McGraw-Hill Book Com-

pany, 1993.

[33] B. Reistad and D. K. Gifford, "Static dependent costs for estimating execution

time," in Proc. of the 1994 ACM Conference on LISP and functional program-

ming, pp. 65-78, The ACM Press, June 1994.

[34] V. Sarkar and J. Hennessy, "Compile-time partitioning and scheduling of parallel

programs," ACM SIGPLAN, vol. 21, pp. 17-26, July 1986.

[35] K. G. Shin and C.-J. Hou, "Design and evaluation of effective load sharing in

distributed real-time systems," IEEE Trans. Parallel and Distributed Systems,

vol. 5, pp. 704-19, July 1994.

[36] G. C. Sih and E. A. Lee, "A compile-time scheduling heuristic for

interconnection-constrained heterogeneous processor architectures," IEEE

Trans. Parallel and Distributed Systems, vol. 4, pp. 175-187, Feb. 1993.

47

[37]

[3s]

[39]

[40]

H. S. Stone, "Multiprocessor scheduling with the aid of network flow algorithms,"

IEEE Trans. Software Engineering, vol. SE-3, pp. 85-93, Jan. 1977.

L. Tao, B. Narahari, and Y. C. Zhao, "Heuristics for mapping parallel computa-

tions to heterogeneous parallel architectures," in Proc. of the 1993 Workshop on

Heterogeneous Processing, pp. 36-41, The IEEE Computer Society Press, 1993.

J. Yang, I. Ahmad, and A. Ghafoor, "Estimation of execution times on het-

erogeneous supercomputer architectures," in The 1993 Inter. Conf. on Parallel

Processing, vol. 1, pp. 219--226, The CRC Press, Aug. 1993.

T. Yang and A. Gerasoulis, "DSC: Scheduling tasks on an unbounded number of

processors," IEEE Trans. Parallel and Distributed Systems, vol. 5, pp. 951-967,

Sept. 1994.

48

