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Abstract

Artificial numerical dissipation is an important issue in large Reynolds number compu-

tations. In such computations, the artificial dissipation inherent in traditional numerical

schemes can overwhelm the physical dissipation and yield inaccurate results on meshes of

practical size. In the present work, the space-time conservation element and solution ele-

ment method is used to construct new and accurate numerical schemes such that artificial

numerical dissipation will not overwhelm physical dissipation. Specifically, these schemes

have the property that numerical dissipation vanishes when the physical viscosity goes to

zero. These new schemes therefore accurately model the physical dissipation even when it

is extremely small. The method of space-time conservation element and solution element,

currently under development, is a nontraditional numerical method for solving conservation

laws. The method is developed on the basis of local and global flux conservation in a space-

time domain, in which space and time are treated in a unified manner. Exphcit solvers for

model and fluid dynamic conservation laws have previously been investigated. In this paper,

we introduce a new concept in the design of implicit schemes, and use it to construct two

highly accurate solvers for a convection-diffusion equation. The two schemes become iden-

tical in the pure convection case, and in the pure diffusion case. The implicit schemes are

apphcable over the whole Reynolds number range, from purely diffusive equations to purely

inviscid (convective) equations. The stabihty and consistency of the schemes are analysed,

and some numerical results are presented. It is shown that, in the inviscid case, the new

schemes become explicit and their amplification factors are identical to those of the Leapfrog

scheme. On the other hand, in the pure diffusion case, their principal amplification factor

becomes the amplification factor of the Crank-Nicolson scheme. We also construct an ex-

plicit solver with the treatment of diffusion being based on that in the imphcit solvers. The

explicit solver has only a CFL stability hmitation on the Courant number, yet it retains the

second-order spatial accuracy of the imphcit schemes.



1 Introduction

The method of space-time conservation element and solution element (the CE/SE method,

for short) is a new numerical discretization method for solving conservation laws ([1]-[27]).

The distinguishing features of the method are (i) an emphasis on solving a general space-time

integral form of the conservation laws, (ii) the requirement of local and global conservation of

space-time fluxes as a basis for the method, Off) the construction of numerical schemes so as

to reflect the initial-value/boundary-value nature and invariance properties of the governing

equations, (iv) use of only the simplest discretization stencils, (v) the absence of upwind-

biasing of fluxes and approximate Riemann solvers with their attendant complexities, (vi)

the absence of directional splitting techniques and the difficulties associated with them, for

flow computations in multiple spatial dimensions, and (vi) the treatment of flow property

gradients as additional unknowns, thus eliminating the need for gradient reconstruction

using ad hoc polynomial fitting and flux limiters. Reference [11] is a review of the CE/SE

method that details the differences between the CE/SE method and the traditional numerical
methods for conservation laws.

Based upon the physics of a scalar convection equation, [6] contains a discussion of the

requirements for a numerical scheme to be an ideal solver for such a conservation law. The

desirability of the distinguishing features mentioned in the previous paragraph follows from

the requirements listed in [6], and from an emphasis in the CE/SE method on simplicity,

generality and accuracy. With these requirements and this emphasis as guiding principles,

several two-level explicit schemes were constructed in [6, 4] to solve (i) the pure convection

equation
Ou Ou

+ = o (1.1)
with given initial values, and (ii) the convection-diffusion equation

Ou Ou 02u

+ - = o (1.2)

with given initial and boundary values. In the foregoing equations, the convection velocity a,

and the viscosity coefficient _ (> 0) are constants. These schemes were then extended to solve

the 1-D time-dependent Euler and Navier-Stokes equations of a perfect gas [6, 4]. Moreover,

except for the Navier-Stokes solver, the above 1-D schemes have been generalized to their

2-D counterparts [7, 5]. Because of the inherent simplicity and generality of the current

method, the above multidimensional generalization is a straightforward matter. Also, as a

result of the similarity in their designs, each of the above 2-D schemes shares with its 1-D

version virtually the same fundamental characteristics.

We now discuss the appropriateness of using an implicit, rather than explicit, solver for

initial-value/boundary-value problems such as that represented by Eq. (1.2). For a two-level

explicit scheme, the value of a solution at any mesh point has a finite domain of dependence
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at the previous time level. As an example,considera finite-differencesolverfor Eq. (1.1).
Let u_, the mesh value of u at any mesh point (j,n) (point P in Fig. l(a)) be determined

nJ--1 n--1 n--1 n
by us_l, uj , and uj+ 1 . Then the numerical domain of dependence of u s at the (n - 1)th

time level contains three mesh points. Also, one can see that uy is dependent only on the

initial data given on the line segment AB.

For an initial-value problem, such as a time-dependent Euler problem or a problem in-

volving Eq. (1.1), the exact solution at any point in space-time also has a finite domain of

dependence on the initial plane. As a result, explicit schemes could be ideal solvers for such

a problem if they satisfy the requirement that the physical domain of dependence be a subset

of the numerical domain of dependence. The latter requirement manifests itself as a CFL

stability limit on the Courant number.

On the other hand, the solution of an initial-value/boundary-value problem at any point

in space-time is dependent on the initial data and the boundary data up to the time of the

point under consideration. As an example, consider a problem involving Eq. (1.2). As shown

in Fig. l(b), the exact solution at point P is dependent on the initial/boundary data given

on EC, CD, and DF, where E, P, and F are at the same time level. Let this problem

be solved using the explicit scheme that was explained with reference to Fig. l(a). Let P

also be a mesh point (j, n). Then the numerical solution value u_ is dependent only on the

initial/boundary data given on AC, CD and DB. It is completely independent o[ those

data given on AE and BF. Contrarily, if the same problem is solved using an implicit

scheme, then u}_ is dependent on the initial/boundary data given on EC, CD, and DF. In
other words, the numerical domain of dependence of the implicit scheme is consistent with

the physical domain of dependence of the problem under consideration, while that of the

explicit scheme is not.
Two observations can be made as a result of the above discussions.

(a) Generally speaking, an explicit scheme is not an ideal solver for an initial-value/boundary-

value problem. Because a time-dependent Navier-Stokes problem is such a problem, the

above argument implies that an explicit scheme cannot be used to solve a time-dependent

Navier-Stokes problem except for the special circumstance in which errors caused by ne-

glecting certain initial/boundary data (such as those given on AE and BF in Fig. l(a))

are relatively small. The factors that help achieve the above special circumstance include:

(i) a small time-step size to spatial-mesh interval ratio, (ii) a small time rate of change

of boundary data, and (iii) a small contribution of the viscous terms in the Navier-Stokes

equations relative to that of the inertial terms. Note that condition (iii) may be met by a

high-Reynolds-number flow. Under the special circumstance when an explicit solver may be

used, such a solver may have the advantage of being computationaUy less expensive than an

implicit solver for the same problem.

(b) Generally, an implicit scheme is not an ideal solver for an initial-value problem. This

is because the domain of dependence in the former is far greater than in the latter. As a

result, although an implicit solver meets stability criteria, the resulting solution tends to be



contaminated by extraneousinformation.

With theseconsiderationsin mind, in this paperwewill constructand analysetwo implicit
solvers for Eq. (1.2). For reasons(including remark (b) above) that will be explained in
Section 3, the implicit solverswill be constructed in sucha way that when the viscosity
coefficient # vanishes,the schemeswill becomean explicit schemefor Eq. (1.1), termed the
a scheme, that was described in [6]. A special case of the implicit schemes was described

without analysis in [8]. We will also construct and analyse an explicit scheme which also,

in the inviscid case, reduces to the a scheme. The explicit scheme is suitable as a solver

for Eq. (1.2) either when the time-step to spatial-mesh-interval ratio is small enough, or

when the time rate of change of boundary data is zero and only a 'steady-state' limit of the

solution is of interest.

The CE/SE explicit solvers referred to earlier, and the implicit and explicit solvers to be

described herein, are all built on a foundation of flux conservation in space-time. Although

the differential equation representing a conservation law is used in the CE/SE method,

emphasis is placed on a space-time integral form of the conservation law. In the following

paragraphs, we explain the space-time integral formulation of conservation laws.

Let Eqs. (1.1) and (1.2) be in dimensionless form. Let xl = x and x2 = t be considered as

the coordinates of a two-dimensional Euclidean space E2. Consider the integral conservation

law

f_. d_= O. (1.3)(R)

Here (i) S(R) is the boundary of an arbitrary space-time region R in E2 (see Fig. 2), (ii)

f_ is a current density vector in E2, and (iii) d_" = da g with da and g, respectively, being

the area and the outward unit normal of a surface element on S(R). Note that (i) h. d_' is

the space-time flux of f_ leaving the region R through the surface element dg, and (ii) all

mathematical operations can be carried out as though E2 were an ordinary two-dimensional

Euclidean space.

If we set

fz= (au, u) (1.4)

in Eq. (1.3), then it can be shown that Eq. (1.1) is the differential form of Eq. (1.3), under

suitable smoothness assumptions on u. This can be done by using Gauss' divergence theorem

in the space-time E2. If, instead, we set

f_ = (au - #_xx, U) (1.5)

in Eq. (1.3), then it can similarly be shown that Eq. (1.2) is the differential form of Eq.

(1.3), again under suitable smoothness assumptions on u. In both cases, Eq. (1.3) is the

more fundamental and more general expression of the physical conservation law.

At this juncture, note that the conservation law Eq. (1.3) appears in a form in which

space and time are unified and treated on the same footing. Th/s unity of space and time

is a key characteristic that distinguishes the current method from most of the traditional
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methods. It provides flexibility in the shape of the discrete elements over which conservation

is enforced. Also, it is the conservation of space-time fluz that is enforced, rather than

the traditional conservation of spatial flux with time evolution possibly being outside the

conservation framework.

As mentioned above, the implicit and explicit solvers developed in this paper contain the

explicit a scheme for the pure convection equation as a special case. An understanding of

the latter scheme is the best route to understanding the properties of the new implicit and

explicit solvers. Hence, we review the a scheme in the next section. In Section 3, we develop

the discrete conservation equations for the implicit solvers. The solution procedure for each

implicit solver is presented in Section 4. The stability of the implicit schemes is discussed in

Section 5. The consistency and truncation errors of the implicit schemes are investigated in

Section 6. A modification of the initial conditions to improve solution accuracy is described

in Section 7. We develop and analyse the new explicit scheme in Section 8. Some numerical

examples demonstrating the properties of the new schemes are displayed in Section 9, and

we end with a summary of the paper.

2 Review of an Explicit Scheme

In this section, we review the a scheme, which is the inviscid version of the explicit a-#

scheme [6, 4]. The a scheme is a nondissipative solver for the pure convection equation,

Eq. (1.1). To achieve consistency of the notations used in this section and the sections that

follow, the notations used here will be slightly different from those used in [6, 4].

Let f_l denote the set of mesh points (j, n) in E2 (dots in Fig. 3) where n = 0, 4-1, ±2, =t=3,...,

and, for each n, j = n,n 4- 2, n 4- 4,, .... Note that only a finite portion of this unbounded

space-time mesh is seen in Fig. 3. We select a numerical representation of the solution that

is piecewise linear in the (x, t) coordinates. There is a solution element (SE) associated with

each (j, n) E f]l. Let the solution element SE(j, n) be the space-time region bounded by

the dashed curve depicted in Fig. 4. It includes a horizontal line segment, a vertical line

segment, and their immediate neighborhood. The exact size and shape of the neighborhood

is immaterial to our purpose.

For any (x, t) E SE(j, n), u(z, t), and h(x, t), respectively, are approximated by u'(x, t ;j, n)

and f_*(x, t ; j, n) which we shall define shortly. Let

u*(x,t;j,n) def= + - + (2.1)

where (i) u], (ux)], and (ut)2 are constants in SE(j, n), and (ii) (x3,t '_) are the coordinates

of the mesh point (j, n). Note that

u*(xj,t'_;j,n) = uj,n" Ou*(x,t;j,n)ox = (ux)2; Ou*(x,t;j,n)Ot = (ut)2. (2.2)

Moreover, if we identify u_, (u_)2, and (ut)], respectively, with the values of u, Ou/Ox,

and Ou/Ot at (xj, t'_), the expression on the right side of Eq. (2.1) becomes the first-order



Taylor's expansionof u(x,t) at (x_, tn). Thus, u_, (ux)_', and (ut)_' are respectively the

numerical analogues of the values of u, Ou/Ox, and 0u/0t at (xj, tn). We mention here that

the choice of basis functions for the linear approximation is both convenient and meaningful,

because the conservative variable u and its gradient arise naturally in the statement of

the conservation law. Numerical solution of an initial value problem for Eq. (1.1) then

reduces to determining the three unknown constants in Eq. (2.1) associated with each mesh

point (j, n). This will be done by specifying that the numerical approximation satisfy three

equations associated with each mesh point. These three equations each model the governing

conservation law.

To begin with, we shtl require that u = u*(x, t ;j, n) satisfy the differential form of the

conservation law, Eq. (1.1), within SE(j,n), i.e.,

U n( t)3 -a(u_)_ (2.3)

We note in passing that, since u* is a hnear approximation, Eq. (2.3) can alternatively be

arrived at by requiring u" to satisfy the integral form of the conservation law, Eq. (1.3),

within SE(j, n). Combining Eqs. (2.1) and (2.3), one has

u'(z,t;j,n)=u']+(u_)_[(x-xj)-a(t-t=)], (z,t) ESE(j,n). (2.4)

From Eq. (1.4), f_ = (au, u). We therefore define

h*(x,t;j,?7,) d e_f (azt*(x,?_;j, TI.), u*(x,t;j,n)). (2.5)

Let E2 be divided into nonoverlapping rectangular regions (see Fig. 3) referred to as

conservation elements (CEs). As depicted in Figs. 5(a) and 5(b), the CE with its top-

right (top-left) vertex being the mesh point (j,n) E _1 is denoted by CE_(j, n) (CE+(j,n)).

Obviously the boundary of CE_(j, n) (CE+(j, n)) is formed by subsets of SE(j, n) and SE(j-

1, n- 1) (SE(j + 1, n- 1)). The numerical approximation u* is now determined by requiring it

to satisfy the integral conservation law applied to the CEs. This requirement yields the other

two equations associated with each mesh point. The current approximation of Eq. (1.3) is

F+(j,n) de_ iS h*. d_'= 0, (2.6)
(CE+ (j,n))

for all (j, n) E f_l- In other words, the tott flux leaving the bolmdary of any CE is zero.

Note that the flux at any interface separating two neighboring CEs is calculated using the

information from a single SE. As an example, the interface AD depicted in Figs. 5(a) and

5(b) is a subset of SE(j, n). Thus the flux at this interface is calculated using the information

associated with SE(j, n).

Because (i) The CEs associated with _1 can fill any space-time region, and (ii) the sur-

face integration across any interface separating two neighboring CEs is evaluated using the

information from a single SE, the locl conservation condition Eq. (2.6) leads to a global

conservation relation, i.e., the total flux leaving the boundary of any space-time region that

is the union of any combination of CEs will also vanish.



With the aid of Eqs. (2.4)-(2.6), it can be shown that (see [6, 4])

= _ + .-1 (1 //) (2.7)F+(j,n)/Ax ±(1 u 2) [(u+)_ + (Us)y+1 ] + =t= _ ,-1

+ n
where // = aAt/Az is the Courant number, and (U_)y = (Ax/2)(us)_. Note that here

Ax and At, respectively, represent the same mesh interval and time-step size which were

denoted by Ax/2 and At/2 in [6, 4]. EQ. (2.6) or EQ. (2.7) represents two equations, one

corresponding to the upper signs, and the other to the lower. This convention will also be
n + rt

used at other places in this report. Using Eqs. (2.6) and (2.7), uj and (u,)3, which are

considered as independent unknowns at the mesh point (j, n), can be solved for in terms of

n-1 (_ +_n-1 //2Uj.4_1 and _,_ j j+l if 1 - _ 0. It is shown in [6, 4] that, for all (j, n) C _,

q_(j,n)=Q+g(j-l,n-1)+Q_q(j+l,n-1), (1- v2 # 0). (2.8)

(u s )j, and (ii)Here (i) _'(j,n) is the column matrix formed by uj and + "

Q+d_f(1/2)(liv-- q:l ±(1-u2))-1±// " (2.9)

Eq. (2.8) defines a marching scheme. Because this scheme models Eq. (1.1) which is charac-

terized by the parameter a, it is referred to as the a scheme. It is also shown in [6, 4] that

the a scheme is stable provided that //2 < 1, i.e., provided the CFL criterion is satisfied.
n -[- n

Given uj and (u_)y at each point on a segment of some initial line of constant n, Eq. (2.8)

may be used to find the numerical solution at points (j, n), at a later time. Because of the

stability limit, such points must lie within the region of influence of the initial line segment.

This stability requirement is reflective of the character of Eq. (1.1).
7l

Because the local condition Eq. (2.3) explicitly allows us to easily eliminate (ut)j in favor
n n + n n

of (us)j, the other flux conditions (2.7) are written in terms of u i and (u_)j. Thus (ut)j
n ._- n

does not need to be stored, and uj and (u s )j can be considered to be the basic marching

variables that are marched via Eq. (2.8).

The a scheme is in many ways an ideal solver for Eq. (1.1). The property of the a scheme

of greatest significance for the construction of an implicit solver for Eq. (1.2) is its non-

dissipative nature. The a scheme is the only two-level explicit solver of Eq. (1.1) known

to the authors to be neutrally stable, i.e., free from numerical dissipation. It also has the

simplest stencil, i.e., a triangle with a vertex at the given time level and the other two vertices

at the previous time level. Because the flux at an interface separating two neighboring CEs

is evaluated using information of a single SE, no interpolation or extrapolation is required.

Moreover, the a scheme is a two-way marching scheme, i.e., a backward marching scheme in

which _'(j, n) is determined in terms of ( (j - 1, n + 1) and ( (j + 1, n + 1) can also be derived

from Eq. (2.7). This is entirely in keeping with the invariance under time-reversal displayed

by Eq. (1.1). The backward marching scheme may be used to find the numerical solution at

points (j, n), at an earlier time. Such points must lie within the region of influence of a given

initial line segment. These and other nontraditional features of the a scheme are discussed

in depth in [6, 4].



In the above construction of the a scheme, we use the SEs and CEs of the mesh points

marked by dots in Fig. 3 and Fig. 6. A similar construction can be performed by using the

mesh points marked by triangles in Fig. 6. Let f_2 denote the set of mesh points (j, n) in E2

(triangles in Fig. 6) where n =0, 4-1, 4-2, +3,..., and, for each n, j =n + 1, n + 3, n + 5, ....

Let the SEs and CEs of fl2 be defined by using Figs. 4 and 5(a)-(b), with dots replaced

by triangles. Obviously (i) the CEs of fl2 also fill any space-time region, and (ii) the a

scheme can also be constructed using the SEs and CEs of t22. This new scheme is defined

by EQ. (2.8) with (j,n) E f_2.

We remark on what may appear paradoxical about the overlapping of SEs and CEs

associated with t21 and t22. Let (j,n) E fll. Then (i) (j + 1,n) E f12, (ii) SE(j,n) and

SE(j + 1, n) overlap each other, and (iii) as depicted in Fig. 7, CE+(j, n) and CE_(j + 1, n)

represent the same rectangle in E2. However, because the function h* used in the evaluation

of F+(j, n) is tied to a pair of SEs associated with _1, while that used in the evaluation of

F_(j+I, n) istied to another pair of SEs associated with f'12, F+(j, n) = 0 and F_(j+I, n) = 0

represent two completely independent flux conservation conditions.

To prepare for the development of the implicit solvers to be described in the next section,

we shall combine the above two independent schemes into a single scheme. The new scheme,

referred to as the a(2) scheme, is defined by Eq. (2.8) with (j, n) E _ where fl _f t21 tJ _2.

Obviously, a solution of the a(2) scheme is formed by two decoupled solutions with each

being associated with a mesh that is staggered in time. Several classical schemes also have

this property. Among them are the Leapfrog, the DuFort-Frankel, and the Lax schemes [28].

We mention that the meshes _1 and _2 are duals of each other, in the sense used in the

literature of finite-volume methods or of finite-element methods. We term their union the

dual space-time mesh.

3 The implicit schemes

3.1 The a-#(I1) scheme

An implicit solver for Eq. (1.2), referred to as the a-#(I1) scheme, will be discussed in this

sub-section. Here "I" stands for "implicit", and "1" is the identification number. This

solver is the model for implicit time-dependent Navier-Stokes solvers under development. It

is constructed to meet two requirements given in the following discussion:

(a) With a few exceptions, numerical dissipation generally appears in a numerical solution

of a time-marching problem. In other words, the numerical solution dissipates faster than

the corresponding physical solution. For a nearly inviscid problem, e.g., flow at a large

Reynolds number, this could be a serious difficulty because numerical dissipation may over-

whelm physical dissipation and cause a complete distortion of solutions. To avoid such a

difficulty, the model solver is required to have the property that the numericaJ dissipation

shall approach zero as the physical dissipation approaches zero.



(b) The convection term and the diffusion term in Eq. (1.2) involve the spatial derivatives
of first order and second order, respectively. Thus, in a spatial region where a solution is

very smooth, the diffusion term is negligible when compared with the convection term. As

a result, the effective physical domain of dependence is more or less dictated by Eq. (1.1).

To prevent excessive contamination of the solution by extraneous information, the implicit

solver shall be required to become an explicit solver in the limiting case in which the diffusion

term vanishes.

On the basis of the remarks (a) and (b), an implicit solver for Eq. (1.2) should reduce to

an explicit nondissipative solver when p = 0. Because of these requirements, the implicit

solver will be constructed such that it reduces to the a(2) scheme if # = 0. The former differs

from the latter only in the extra modeling involving the diffusion-related terms. Note that

the presence of viscosity is felt through (i) the diffusion term --].tO2U/OX 2 in Eq. (1.2), and

(ii) the spatial diffusion flux component -#Ou/Ox in the flux vector in Eq. (1.5).

We now construct the a-tt(I1) scheme, to numerically solve initial/boundary value prob-

lems involving Eq. (1.2). Let the initial and boundary values be given as

u(x,O) = u,(x) for 0 < x < JAx, (3.1)

u(O,t) = uL(t) for t > 0, (3.2)

u(JAx, t) = uR(t) for t > 0, (3.3)

where ui(x), uL(t), and uR(t) are given functions, and J and Ax are defined next. Consider

the mesh depicted in Fig. 6 (J >_ 4), which is suitable for problems with stationary bound-

aries. There are J uniform spatial mesh intervals of size Ax. The temporal mesh intervals

are each of size At. The SEs and CEs are defined in the interior as they are for the a(2)

scheme, which was described in the previous section. It follows that, for the current case,

(i) Q1 and _ are restricted by the conditions n > 0 and J _> j > 0, (ii) CE±(j, n) are not

defined if n = 0, (iii) CE_(j,n) is not defined if j = 0, and (iv) CE+(j,n) is not defined

if j = J. Items (iii) and (iv) imply that only one conservation condition is associated with

a boundary mesh point. Boundary values will supply the additional information needed to

determine all discrete unknowns at a boundary mesh point. Obviously, the definition of

SE(j, n) also needs to be appropriately modified if j = 0, or j = J, or n = 0.

We seek to determine an approximation u* to the solution of the initial/boundary value

problem. As in the a(2) scheme, we specify that the approximant have a piecewise hnear

variation with space and time, i.e., Eq. (2.1) will still be assumed:

u* (x, t ; 2, n) de_ ,_• = uj + (u_)_(x -- xj) + (ut)_(t -- t _) , (x,t) e SE(j,n).

Numerical solution of the problem then reduces to determining the three unknown constants

in Eq. (2.1) associated with each mesh point (j, n). At each boundary mesh point (0, n)

or (J, n), the applicable boundary condition will be used to determine two of the three un-

knowns. At each mesh point (j, 0) on the initial line, the initial condition will be used to

9



determine two of the threeunknowns. Eachof the cornerpoints (0,0) and (J, 0) is simulta-
neouslya boundary point and a point on the initial line. At eachof thesecorner points, all
three constants in Eq. (2.1) are determinedfrom the initial and boundary conditions.

Three equations,eachrepresentinga balanceof space-timefluxes, will be developedat
each interior mesh point (j, n). As in the a scheme, these equations will be numerical

analogues of (a) the differential form of the conservation law evaluated at (j, n), (b) the

integral form for CE+(j,n), and (c) the integral form for CE_(j,n). Also, one of (a), (b)

and (c) will be written at each boundary or initial point which is not a corner point, thus

providing a third condition at each such point in addition to the two conditions coming from

initial or boundary values. Thus, the number of equations match the number of unknowns,

with three equations and three unknowns being associated with each mesh point.

We proceed to develop the numerical analogue of the differential form of the conservation

law at the point (j, n). We require the behavior of u* to model Eq. (1.2). Simply substituting

u = u* in Eq. (1.2), with u* given by Eq. (2.1), would lead to Eq: (2.3) of the inviscid a

scheme. Because the expansion in (2.1) is only linear, the second-derivative diffusion term

in Eq. (1.2) is not modeled in Eq. (2.3). Instead, in the present scheme, we replace Eq. (2.3)
with

#
J > j > 0,= + (3.4)

for all n _> 0. Eq. (3.4) is the numerical analogue of the differential condition Eq. (1.2). A

comparison between Eqs. (1.2) and (3.4) reveals that the diffusion term -#02u/Ox 2 at an

interior mesh point 6 _1 (_2) is modeled by a central-difference approximation involving

the values ofu_ at two neighboring mesh points 6 f12 (ill). Note that Eqs. (2.1) and (3.4)

imply that, for J > j > 0 and (x, t) E SE(j, n),

u*(x,t;j,n)

= + - xj) + (3.5)

Next, we develop the two remaining flux balance equations by requiting the numerical

space-time fluxes to satisfy the integral form of the conservation law for the CEs defined

in the previous section. To do this, first we form the numerical analogue of the flux vector

defined by Eq. (1.5). Eq. (2.5) is replaced by

h*(z,t;j,n) %f (au*(x,t;j,n)- #u*_(x,t;j,n), u*(x,t;j,n)), (3.6)

for (x, t) E SE(j, n). Here, the function u* in the diffusive flux is defined as follows. For

(x, t) 6 SE(j, n),

n -- n--1
U;(x,t;j,n) def W(_x)j + W(U_)j , if t _< tn; (3.7)

_ n ! n+l in.+ , ift>

where w and w' are weighting factorsto be specified.The notationsE de___fI--W and w--7de__fI--W'

have been used for compactness. Note that if w' = w, then u*(x,t ;j,n - 1) = u*_(x,t ;j,n)
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in the region of overlap of SE(j, n) and SE(j, n - 1), i.e., in this case u_ is uniquely defined

at any (x, t) where it is defined.

With the above modifications, the a-#(I1) scheme is defined by assuming Eq. (2.6). Note

that:

(a) At a mesh point E 12l(_t2), the diffusion-related terms in Eqs. (1.2) and (1.5) are modeled

using interpolations that may involve the numerical values of the mesh points E _t2(_l).

This contrasts sharply with the modeling of the convection-related terms which uses no

interpolation.

(b) In the a(2) scheme, the two sets of numerical variables associated with the individual

meshes _1 and _2 of the dual mesh are completely decoupled from each other. Contrarily,

they are glued together in the a-#(I1) scheme through the interpolations referred to in (a).

The conditions of flux conservation, Eq. (2.6) lead to the following equations, after

integration and some algebra. Flux conservation for the element CE+ (j, n), where the latter

[_;+(<_1_-[_,:1_(_._:__]_x
-{o[_;-(<_]-_I_(_,_;+_._;-11}

is defined, yields

At

+ a L _+1 + (u_)j+l
At

= 0. (3.8)

Flux conservation for the element CE_ (j, n), where the latter is defined, yields

[_ _._,_]_-[_, _-,7]uj_l + (ux)j_l /xz

= 0. (3.9)

It should be noted that during integration over the surface of CE+(j, n), only fF(x, t; j, n) and

fF(z, t ;j + 1,n- 1) are used, while for CE_(j,n), only h*(x,t;j,n) and h*(x,t;j- 1, n- 1)

are used. Another point of interest is that the flux integration is made simple by the fact

that the integral of a linearly varying flux over a straight line face of a CE is equal to the

product of the length of the face and the value of the normal component of the flux at the

midpoint of the face.

In the interests of compactness and clarity, symbols are now defined for groups of quan-

tities occurring frequently in the discretized conservation equations. Let

At At

u = a_x ; _ ----2#Ax2 ; (3.10)

11



• o = -y(u.)j ; (u_+ = -y(%. (3.11)
The magnitude of u will be recognized as the Courant number, while _ is a mesh-related

diffusion parameter that arises in computations involving diffusion equations. Eq. (3.4) can

be recast as

(u+); = -_ ,(u+'_'_ +"]j -4_[( _u+)j+l" - ( _u+)j-,]_ (3.12)

for J > j > 0 and n _> 0. Also, Eqs. (3.8) and (3.9) can be recast as

U+ n n--1

--V + n _ + n-ll

[_-, G,+_"-'l , +. .=7,+ .-_+. uj+, + \ t 23+, j - _ [w (u x )i+' ÷ w (u: )j+l ]

= 0, J>j>0, n>0, (3.13)

and

-_-lJ

--/]

---- 0,

_t + n[,.,y-( .)1]- Li-_ + ,, .,,i_1j

[,_-I {u+V_-ll , +,,"U'j--1 + 1_ t ] j--l J _- _ [W (?_x )j--1 "_-_-'7{u_n-llkx }j--l J

J>_j>O, n>0. (3.14)

Collecting terms in Eqs. (3.13) and (3.14), we obtain

(I- .)u}' +(I +w#) (u+)_ -w'_ (u+'_',-.i+_ +u(u+)]

= (i-r')ui_- (I - _-7_) '{u+_"-_']5+,-_{u+_'_-_-',:_]i r,\{u +'_'-'t15+,

and

(3.15)

(1+.)usn-(l+w_) u+') " (u+)__L- ( t )ju+ "( _ ,,j + w'_ _,

= (1+ _)'C: + (i-_) (_+_"-_"0-_ +w_ {u+_"-_ + _' G_+_"-_ . (3.16)x]i \ t 1i-1

We turn next to a consideration of the equations at the initial line and at the boundaries.

Based upon the specification of the initial values, Eq. (3.1), we set

0
uj = uz(xj), 0 < j < J. (3.17)

The initial-value information is also utilized to specify the spatial derivative on the initial

line:

) _ Ax dui(u+ - _ _ (xj), 0<j<J. (3.18)

12



Similarly, basedupon the specificationof the boundary values,Eqs. (3.2) and (3.3), weset

u o_=uL(t _), n>0, (3.19)

= uR(t_), n > 0. (3.20)uj

The boundary information is also utilized to specify the temporal derivative on the boundary:

u - 2 dt (t_)' n > O, (3.21)

_ (t") n > o. (3.22)
J J 2 dt ' -

Eq. (3.12) and Eqs. (3.15)-(3.22) constitute three discretized equations per mesh point.

On any line of constant n, n > 0, one equation at each mesh point is given by Eq. (3.12) for

0 < j < J, by Eq. (3.21) for j = 0 and by Eq. (3.22) for j = J. These equations can be used

to eliminate (u+): from the other two equations at each mesh point, as is done shortly. On

the initial line n = 0, the two remaining discretized equations per mesh point are given by

Eqs. (3.17) and (3.18). On any line of constant n, with n > 0, the two remaining equations

associated with each mesh point are given by Eqs. (3.15) and (3.16) for 0 < j < J, by Eqs.

(3.15) and (3.19) for j = 0, and by Eqs. (3.16) and (3.20) for j = J.

We proceed to eliminate (u+): using one equation, from the other two equations at each

mesh point, in order to express t_e latter equations in terms of only the marching variables
n ._- n

uj and (u S )j. At the boundaries, we will also substitute the boundary values given by Eqs.
+ n

(3.19) and (3.20). It may be noted that the equations used to eliminate (ut)j, viz., Eqs.

(3.12), (3.21) and (3.22), are applicable for any n. > 0. Eqs. (3.17)-(3.20) do not involve

a temporal derivative, thus leaving only Eqs. (3.15) and (3.16) to be transformed. When

'_ and ( +_n-1
1 <_ j < J- 2, we may substitute for (u+)j kut ]j+l from Eq. (3.12) in Eq. (3.15) to
obtain

v_ (1 - v 2

= (1 -- /]) 7-tj+ 1 4 \ x/j+2 \ x Jj+l

+ -_ _\ _/j , 1 _j< J-2.

When 2 _ j _ J - 1, we may substitute for (u + and kut J j+l

(3.16) to obtain

- (1 +.) ,_-1 "¢ (u+_ _-_ (1 .2 _-7¢) {u+_ _-_
-- ?-tj-1 4 \ x ]j-2 2r -- -- \ x ]j-1

(4+ +_ _\ _/J , 2<j<_J-1.

from Eq.

(3.23)

(3.12) in Eq.

(3.24)
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When 2 _< j < J - 2, Eqs. (3.23) and (3.24) will constitute the interior equations of the

a-/_(I1) scheme.

At the left boundary j = 0, Eq. (3.19) is one equation associated with the mesh point.

(ut)j from Eq. (3.21),Substitution may be made in Eq. (3.15) for uj from Eq. (3.19), for + 4

( +_,,-i
and for \ut ]j+l from Eq. (3.12). This gives

) y At dUL(1--U) uL(t")+(l+w_)(u + --w'_(u+_ 4 +u (t 4)k = ]j+l 2 dt

= (1- u) Uj+ln-1 _ \(_+_n--lx]j+2 (1-/]2 _-'7_)\(u+_n-lz ]j+X

+ -w _k =]j ' j=0, (3.25)

as the second associated equation.

At the adjoining mesh point j = 1, one of the associated equations is Eq. (3.23). Substi-

tution may be made in Eq. (3.16) for (u+)2 from Eq. (3.12), for u4-1j-1from Eq. (3.19), and
[ +\4--1

for _,ut )j-1 from Eq. (3.21). This gives

(1 +v)u] - -_ (u_+);+1- (1- u2 +w_)(u+); + (4 +w') _(u+_"k x ]j--1

-
-- \ x ]j--1 \ x ]j

At dUL

u-_--_-- (t4-1) , j = 1, (3.26)

as the second associated equation.

At the other boundary mesh point j = J, one of the associated equations is Eq. (3.20).

Substitution may be made in Eq. (3.16) for uy from Eq. (3.20), for (ut+)] from Eq. (3.22),
/ +'_ n--1

and for _,ut )j-1 from Eq. (3.12). This gives

); 4 At dun(l+.)ua(t 4)-(l+w_)(u + +w'_(u+)___-u 2 dt (t")

4-I u_ (u+_.-1 (1 u 2 -_7_) (u+_ 4-I= (l+u) u3_ 1 4 k "]3-2 + - - \ =]3-1

)+ +_ (k _j_ , j=j, (3.27)

as the second associated equation.

Finally, at the adjoining mesh point j = J- 1, one of the associated equations is Eq.

(ut)j from Eq. (3.12), for Uy+l(3.24). Substitution may be made in Eq. (3.15) for + " 4-1 from

f +_4-1
Eq. (3.20), and for \ut ]j+l from Eq. (3.22). This gives

(i- u)u_ - _ (u+);_l + (I- u2 + w_) (u+); + (4 - w') _ (u+);+ '
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-- (l_v) uR(tn-1)-- (l--w-7_) (u+_n-i__(u+_ '_-1
-- \ x ]j+l \ x ]j

A_ dun
-'Y-E ' ¢= J - 1, (3.28)

as the second associated equation..

It should be noted that Eqs. (3.18), (3.21) and (3.22) assume differentiability of the

functions us, UL and un, respectively. This differentiability holds true for the numerical

examples tested in this paper. However, a more general discretization of the initial and

boundary conditions would be such that the discretized flux through the initial-line faces

and the boundary faces of the CEs bordering the initial line and the boundaries equals the

flux of the exact initial and boundary values, in an integral sense. For example, we would

set

1 _ j < J, (3.29)

and

u ° + u Ax = Us(X) dx, 0 _< j <__J- 1. (3.30)
Jxj

For 1 < j < J- 1, Eqs. (3.29) and (3.30), rather than Eqs. (3.17) and (3.18), would together
+ 0

0 and (u_)j. The values of u0° and u ° are obtained from Eq. (3.17), while (u+)_determine uj

is obtained from Eq. (3.30) and (u+) ° is obtained from Eq. (3.29). For the left boundary,

n j(t_ '_ +At[u_ + (U+)o ] At = un(t)dt, n >_ O. (3.32)

we would set

and

For n > 1, Eqs. (3.31) and (3.32), rather than Eqs. (3.19) and (3.21), would together

): of (ut ^ isThe value +): obtained from Eq. (3.32). The diffusive fluxdetermine U_
and

has not been accounted for in Eqs. (3.31) and (3.32), since it is not known from the exact

boundary values. The right boundary values would be discretized in an analogous fashion.

Such a general treatment would be valid even in the case in which the functions us, UL and

UR may be discontinuous. This completes the discussion of the treatment of the boundary

conditions.

Lastly, we express the interior equations, Eqs. (3.23) and (3.24), in matrix form with the

aid of the following definitions

-_ (j, n) d_/ u+j,
=

(3.33)

Qo_ d_S ( 0 -u_/4 ) (3.34)= o + w')

Q_l) d_/ (1--u 1-u2+w_ " ) (3.35)= l+u -(1-u 2+w_)

15



With the precedingdefinitions, the interior Eqs. (3.23)and (3.24)may be expressedas

Q_-_(j- l,n)+Q_)-_(J,n)+'_ uuJ+l,n)

= Q_)-_(j-2, n- 1) + Q(_2_-_(j - 1,n- 1)+Q(2)-_(j,n - 1)

+Q_2)-_ (j + 1, n - 1) + Q_2)--_ (j + 2, n - 1),

i.e.,

1 2
¢3(2)--2, / _

Q}l)_(j + l,n) = _ ,._ u ,j + l,n-1).
/=--1 1=-2

(3.42)

3.2 The a-#(I2) Scheme

This sub-section describes another implicit scheme, referred to as the a-#(I2) scheme. In its

specification, it differs from the a-#(I1) scheme only in one respect, viz., Eq. (3.4) is replaced

by
# _ _ - 2u_), J > j > 1. (3.43)= + ( j+l +  j-1

This involves an alternative representation of the diffusion term in the governing equation.

The flux conservation conditions for CE+ and CE_ are obtained as in the a-#(I1) scheme,

so that Eqs. (3.15) and (3.16) are also the other two equations associated with each interior

mesh point in the a-/_(I2) scheme. However, the expression for the time derivative occurring

in these equations is that arising from Eq. (3.43) rather than that from Eq. (3.4). It may

be noted at this point that in two special cases, the a-#(I1) and a-#(I2) schemes become

identical. The first case occurs when # = 0, when the viscous terms disappear, and the two

imphcit schemes become identical to each other and to the a scheme described in Section 2.

The second case occurs when a = 0. In the latter case, u = 0, and the time derivative terms
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occurring in Eqs. (3.15) and (3.16) vanish because of the factor t,. The two implicit schemes

are then identical.

Eq. (3.43) can be recast as

, n _ 2u_) J > j > 1 (3.44)(_+)_ = -.(ux)_ + _(_j+l + _j-1

On substituting for (u+)? from Eq. (3.44) in Eqs. (3.15) and (3.16), we obtain the interior

equations of the a-#(I2) scheme:

and

u]_ 1+ l-v- uj +---_uj+ 1

+(1- + °-
\ x ]j \ x ]j+l

\ =,l j+l \ x]j
(3.45)

4 uj+l + l + z_+ uj - u__ 1

- (1 - v 2 + w{) (u+_'_+ w'{ (u+'_ '_
\ x ]j \ x ]j--1

(= _2--_+ 1+ ,, - _j-1 +

\ _]a-I + _{ \ _]J " (3.46)

The boundary conditions are discretized in the same way as for the a-#(ll) scheme, i.e.,

Eqs. (3.17) through (3.22) are assumed. The conservation equations at or adjoining the

boundaries may by obtained from Eqs. (3.15) and (3.16) by substituting for (u+)_ from Eq.

(3.44) or from the known boundary values, in a manner similar to that used in the a-t*(ll)

scheme.

The interior equations (3.45) and (3.46) of the a-#(12) scheme may be expressed as Eq.

(3.42), with the use of the following definitions:

QO_ &f ( u_/4 0 ) (3.47)= -u_/4 w'{

Q(o1) &f (1- u- u_/2 1- u 2 + w{ ) (3.48)= l+u+_,_/2 -(1-u 2+w_)

Q_) d_s(= -t,{/4us;/4 -w's c)0 (3.49)
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=- l + v- v_/2 1- u 2 --_

Q(°2) def(-u_/4= v_/4 --w_)_ (3.52)

Q_:) aej (l--v+0 v_/2 -- (1-- v2-0 _-7¢) ) (3.53)

Q_2) d&y(--v_/40 00) (3.54)

4 Solution Procedure

We will first discuss the solution procedure for the a-#(I1) scheme. The 2(J + 1) equations

represented by Eqs. (3.19), (3.20) and (3.23)-(3.28) relate the 2(J + 1) marching variables
z +\n--1

,_ + _ n-1 and (u x )j atuj and (ux)j at the nth time level to the 2(J + 1) marching variables uj

the (n - 1)th time level. The equations thus define a time-marching scheme whereby the

marching variables at the nth time level can be computed if the marching variables at the

(n - 1)th time level are known. Given values of the marching variables on the initial line,

by Eqs. (3.17) and (3.18) for example, the scheme can be used to successively compute the

marching variables at n = 1, 2, 3, .... Next, we describe the solution of the implicit system of

equations at any time level n.

The flux conservation relations associated with CE+(j, n) , namely, Eqs. (3.25), (3.23)

and (3.28), can be rewritten as

(Eqs. (3.23) and (3.28))

)_-1= (S+ , l<j<J-1

and (Eq. (3.25))

(1+ °\ z ]j+l

At dun (tn)= (s+)_-l-(1-')_L(t_)-'2 _t '
where

\ x ]j+;

(4.1)

j =0, (4.2)

= (_- .) _-, .¢ (_+_-,_ (_-._-_) (_+_°-'
?-tj+l -- --4 \ x]j+2 \ x/j+l

(4 ) ('Lt+_ n-1+ -_ _, =/j , O<_j<_J-2 (4.3)
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and

is+l:.-_= (,_./_(_o-,)-(,-_)a+_ o-'\ z ]j+l

"JJ -,_ _ (t_-l), y=J-i. (4.4)

Similarly, the flux conservation relations associated with CE_ (j, n), namely, Eqs. (3.26),

(3.24) and (3.27), can be rewritten as

(Eqs. (3.26) and (3.24))

(1+ -(1-+
= (S_)_. -1, l_<j_<J-1

and (Eq. (3.27))

÷

where

-(1 +w_)(u+)_ +w'[ ('tt:)__ 1

At dun

= (S_)_-' - (1 + .) un (t _) + ---_----_- (t'_),

(4 + _'),_ (u+_"\ z ]j--1

(4.5)

and

j = J, (4.6)

- (i+.) o-' "_a+_"-' (1 ,,2 7_)a+_"-'
- uj_, 4 \ z ]j-2 ÷ -- -- \ x J j--1

+ +-_ _ _jj , 2<j<J

\ • ]j-1

(u+'_"-' _t,t,,L(t"-') j = 1.+_\ .]j +u 2 dt

(4.7)

(4.8)

In Eqs. (4.1), (4.2), (4.5) and (4.6), all terms whichare knownfrom either the n- I time
level or from the boundary conditions have been transferred to the right-hand side.

(4.1) and (4.5) are applicable. Linear combinations of

7l

(4.9)

When 1 <j _ J-l, bothEq.

these equations imply that

- [2 + (1- v')w'] _ (u+)__l +2 (1- _,2+ w,_)(u+);

= (1 + .)(S+)_- -1 - (1 - .)(S_)y -1

and

U+ n
2u']-w'_[(u+);+-( _)j_,] =(S+)_.-' +(S_)y-' (4.10)

It may be noted that the u_ at the nth time level do not appear in Eq. (4.9). Note also

that Eq. (4.10), obtained by adding corresponding sides of Eqs. (4.1) and (4.5), represents
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flux conservationfor the union of CE+(j, n) and CE_(j,n). Also, Eq. (4.10) implies that if

w r = 0, then

n 1 [(S+)__ 1 Jr-(S_)_._1] (4.11)
Uj =_

The equations (4.2), which is applicable at j = 0, (4.9), applicable for 1 < j <_ J- 1, and
+ n

(4.6), applicable at j = J, together form a complete system of linear equations for the (u x )j

from which the u_ at the nth time level are absent or are known from boundary values. After
-6 n n

the (u x )_ are computed by solving this system, the uj in the interior can be found from Eq.

(4.10). The u}' at the boundaries are known from Eqs. (3.19) and (3.20).
-6 n

The system of equations for the unknowns (u x )j , j = 0,..., J is cast in matrix form

with the aid of the following definitions •

defbo def l + w_ , co = --w'_ ,

/kt dUL

do de__/(S+)o_1 _ (1 - V) UL (t '_) -- v-_---_--(t") (4.12)

aj = -[_+(1-

des v)w, 1Cy = [2 -(1 + :

dj de=l(I+ v)(S+)] -1 -- (I - v)(S_)_. -1

j = 1,..., J- 1 (4.13)

def def
aj = w'_ , bj =-(l+w_) ,

At duR (t_)
djde=-I (S-)_-1- (1 +v)uR(t_)+v 2 dt (4.14)

vj = u , j=0,...,J (4.15)

The system may be written in matrix form as Av = d, where v is a vector of length J + 1

with ith entry v_, d is a vector of length J+ 1 with ith entry d_, and A is a (J+ 1) x (J+ 1)

tridiagonal matrix with subdiagonal, leading diagonal and supradiagonal formed with the

entries ai, b_ and ci respectively. Thus

a_ if j = i- 1
Aq = b_ if j = i (4.16)

ci if j = i + 1

0 otherwise

It should be noted that the row and column indices of A and the row indices of v and d run

from 0 to J.

We next show that the matrix A is diagonally dominant in rows and columns when certain

conditions are met. Let

l>v 2 , _>_0 (4.17)
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and

0.5<:w<1 , w'=l-w

Then Eqs. (4.12)-(4.14), the definitions of the entries of matrix A, imply that

Ibol= IbJI= 1+ w4 , I_ol= )aA= (1- w)4

(4.18)

(4.19)

tbjl= 2(1- .2+

[lajl (1 W) + 5(2_ - l) 4 _< (1- _)

)cjJ (1 W) g(2w - 1) _ _< (1 - _)

where j --- 1,..., J - 1. Thus

]b2]-)a31-]c3] > 2[(1-v2+w4)-(1-w)4-[_-(2w-1)4 ]

where j = 1,..., J - I. Obviously, we also have

Ibjl-laj+11-1c3_ll>0 , j=2,...,J-2

Also

Ibo]- Ico] = ]bj)- ]cj] = 1 + (2w- 1)4 > 0

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

Ibo{ - {al{ -> l + w4 - [(1- w) + _-(2w -1)] _

= 1 + (2w- 1) [1- _-J] 4 > 0

Ib.rl - lCz-11 -> l + w4- [(l - w) + _(2w-1)] 4

= 1+(2w- I) [i- _] 4 > 0

lhl-I_oI-la21> 2 (1 -.2 + _4) - (1- w)4- [(1- _) + _(2_- 1)]4

= 211--_+(2_-1)(1-_)_ 1 >0

(4.26)

(4.27)

(4.28)
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Ibj-1]- ]cj-2t- ]aj] > 2(1-_'2+w()-(1-w)(-[(1-w)+L_(2w-1)](

= 2[1-_'2+(2w-1)(1-_J)(] >0 (4.29)

The above equations (4.19)-(4.29) imply that the (J + 1) x (J + 1) tridiagonal matrix A

is strictly diagonally dominant in rows and columns. Thus the Thomas algorithm for solving

the system is stable under the assumptions.

If Eq. (4.17) is assumed to be true, and the assumptions of Eq. (4.18) are replaced by

w>l and w'=0 (4.30)

then the entries of the matrix A reduce to

Ibol=lbyl=l+w( , layt=lcol=O

Ibil = 2 (1 - v 2 + w_) [a3l=]c31=_C , j=l,...,J-1

From this, it can be shown that the matrix A is strictly diagonally dominant under the

assumptions (4.30), and that the Thomas algorithm can therefore be used to perform the

LU decomposition in a stable fashion.

The LU decomposition of the matrix A and solution of the system is performed via the

Thomas algorithm as follows. Let

/30 = bo (4.31)

_i=bi-aici-1 , i=l,...,J (4.32)

This Gaussian elimination performs the LU decomposition of the matrix A = LU. The

(J + 1) × (J + 1) bidiagonal matrix L has unity entries on the leading diagonal, and entries

c_i (i = 1,..., J) on the subdiagonal, where i is the row index, which goes from 0 to J. The

(J + 1) × (J + 1) bidiagonal matrix U has entries/3_ (i = 0,..., J) on the leading diagonal,

and entries ci (i = 0,..., J - 1) on the supradiagonal. The system Av = LUv = d is

transformed to Uv = L-ld = 6 by a similar forward elimination process. The entries of 6

are

60 = d0 (4.33)

6_=d_-aid__1 , i=l,...,J

The system Uv = 6 is then solved by a process of back-substitution

(4.34)

(4.35)
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and
1 (5_-civ_+l) i=J-1,.. ,0 (4.36)

Vi_// ' •

Finally, we mention that in the case of the a-#(I2) scheme, prior elimination of the u_ at

each mesh point to obtain a system for only the (u+)_ is not possible, as the conservation
n n

equations are implicit in both u_' and (u_)j. Hence, the resulting system for the uj and the
+ n

(u x )j must be solved by a block version of the Thomas algorithm described above. This

makes the a-#(I1) scheme computationally more efficient than the a-#(I2) scheme.

5 Stability Analysis

A rigorous discrete von Neumann stability analysis of the explicit 1D CE/SE schemes for

scalar conservation laws was carried out in [1]. In this section, we use the stability analysis

procedure to analyse the a-#(I1) and a-#(I2) schemes. For the rigorous development of the

procedure, see [1].

We replace the discrete unknown with its discrete Fourier representation in the interior

equation of the a-#(I1) scheme, Eq. (3.42). Then we use linearity of the interior equation

to isolate a single Fourier mode. This is equivalent to making the substitution

_(j,n)=q*(n,O)e _° (i-__, -Tr < 0 <_ lr) (5.1)

in Eq. (3.42), where 0 is the phase angle variation per unit Ax of a single Fourier mode.

Performing this substitution, we obtain

q(1)(_.,_,_, _',o) q-'(..,o) = q(2)(_.,_,_, w',o) ¢(.. - 1,o), (5.2)

where

Q(1)(_,,_, w, w', O)
1

l----1

(5.3)

and

Q(2)(v, _, w, w', O)
2

= E _,,°O}_)

= (l+_,)e -i° (l-L, 2-(1-w')_)e -i°- nee -2io+_(_+l_w) "
(5.4)
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We examinethe determinant of Q(1), to see when Q0) is invertible. We have

A (I)(u, _, w, w', 8)

= det [Q(1)(u,_,w, w',O)]

--_ -2[(1-_,2)+_(w-w'cosO)+i(1-w')u_sinO] .

From the above equation, we note that AO) # 0 for -Tr < 0 < zr if

(5.5)

u 2<1, _>0, and w>w'. (5.6)

We assume that AO) # 0. Then [Q(1)] -1 exists, and we can multiply Eq. (5.2) from the left

by [Q(U]-I , to define the amplification matrix

(5.7)G(u,_,w,w',O) = [Q(1)(u,_,w,w',O)]-lQ(2)(u,_,w,w',8).

An eigenvalue A(u, _, w, w', 0) of G(u, _, w, w', O) is defined by

where ¢ is the corresponding (non-zero) eigenvector of G. Multiplying from the left by Q(1),

and using Eq. (5.7), we have

(5.8)

Thus, any eigenvalue A(u, _, w, w', 0) of G(u, _, w, w', 0) satisfies the condition

det [Q(2)(u, _, w, w', 0) - AQ(1)(u, _, w, w', e)] = o. (5.9)

Using the definitions Eqs. (5.3) and (5.4), Eq. (5.9) is equivalent to

A_ 2 -4- B/_ -k C -- 0, (5.10)

where

A=(1-ue)+_(w-w'cosO)+i(_-w')u_sinO,

S [1 - cos0 + (w'- w)(i + cosS) - u2sin 2 O]

and

(5.11)

(5.12)

(5.13)

(5.14)

C=-(1-u 2) +_[1-w'-(1-w)cosO]+i(2-w)u_sinO.

Thus, the eigenvalues of amplification matrix are given by

-B :l= x/B 2 - 4AC

A± = 2A
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These eigenvalues constitute the two amplification factors of the a-#(I1) scheme. Note that

there are two amplification factors rather than one, because there are two unknowns at each

mesh point. Let 0 = 0. Then we find from Eqs. (5.20)-(5.14) that

A+=I, and A_= (w-w')_-(l-u2)
(w - w')_ -I- (i - u 2)

(when 0 = 0).

Substituting 0 = 0 in Eqs. (5.3) and (5.4), and using the results in Eq. (5.8), we obtain

whence we find that the eigenvector

0 -2(1-u 2) ]0 2(1-. 2) 8=0,

of G corresponding to A+ = 1 is given by

[1]8(e=0, 0

where a is an arbitrary constant. Based upon these facts, we term A+ the principal am-

plification factor, because it is exhibits the principal effect of the scheme on a wave of zero

frequency. A_ is termed the spurious amplification factor.

For general 0, the behavior of the amplification factors must be investigated numerically.

Numerical experiments show that if either (i) 0.5 __ w __ 1 and w _ =- 1 - w, or (ii) w > 1

and (w, w _) lies between the lines w + w _ -- 1 and w - w _ -- 1 in the (w, w _) plane, then the

a-#(ll) scheme is stable provided

u 2 < 1 and _ > 0. (5.15)

This condition on the stability applies, in particular, to the special case w -- w' = 1/2.

Note that many other implicit solvers are unconditionally stable. However, the price paid

for this "desirable" property usually is excessive numerical dissipation. Moreover, the use

of a time-step size that is greater than that allowed by Eq. (5.15) generally results in a less

accurate time-dependent solution. Thus we do not consider the more restrictive stability

condition Eq. (5.15) to be a disadvantage of the a-#(I1) scheme.

We turn now to a closer examination of the amplification factors for the special case

w = w' = 1/2. In Section 6, where the consistency and truncation error of the current

implicit schemes are considered, it is shown that in this case, the a-/z(I1) scheme is second-

order accurate in space and time. In this case, Eqs. (5.20)-(5.22) become

(1 - cos0)
A= l-v2 +-_ (w = w'= 1/2)

B = _ [1 - cos0- u 2sin 20] + 2iu(1 - u2) sin0
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Then, corresponding to Eq. (5.10), we have

A+ = -Q 4- y/Q2 + (1 - v2) 2 - _2 (1 -cosO) 2/4 (5.16)
1 - v2 + _ (1 - cose)

where

Q-- i (1- cos0- v 2 sin 2 0) + iv(1- u2) sin0.

In particular, when a = 0, i.e., when the scheme becomes a second-order accurate solver for

the pure diffusion equation, then v -- 0, and Eq. (5.16) can be simplified to yield

1 - _sin2(0/2) A_ = -1 (w = w' = 1/2, v = 0)
A+ = 1 + _sin2(0/2) '

It is found that A+ is identical to the amplification factor of the Crank-Nicolson scheme ([28],

p. 112).

We next analyse the stability of the a-/_(I2) scheme, with the same procedure as was

used for the a-#(I1) scheme. The substitution (5.1) in Eq. (3.42), with the definitions

(3.47)-(3.54), lead to Eq. (5.2), where

Q(1)(v, _, w, w', O)
1

l.=-I

= [ _cosO+l-v-_ 1-v 2+w_-w'_d °-_cosO+ 1 +-+_ -(1-_ 2+_) +w'_e-'° ] (5.17)

and

Q(2)(v, _, w, w', 0)
2

= E e,,OQi:)
1=--2

[ -_+(1-v+g)d e-ge 2'e
= 2 4

+ (1 + v - _)e-i°2 + _e-2_°4
-(1-v 2-(1-w')_)e '°-(1-w)_ ] (5.18)(1--v2--(1-w')_)e -_°+(1-w)_

We examine the determinant of Q(1), to see when Q(1) is invertible. We have

A(1)(v,_,w,w',O)

= det [Q(1)(v,_,w,w',e)]

= -2[(l-u2)+_(w-w'cosO)-i(l+_sin2(_))w'u_sinO]. (5.19)

As in the case of the a-#(I1) scheme,

satisfied.

we find that A (1) # 0 for -7r < 0 _< _- if Eq. (5.6) is
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We assumethat A0) _ 0. Following the same logic as in the case of the a-#(I1) scheme,

we find that the eigenvahies of the amplification matrix for the a-#(I2) scheme satisfy Eq.

(5.9). This can be solved to yield the eigenvalues, as in Eq. (5.14), where Eqs. (5.20)-(5.22)

are replaced by

A=(1-L,2)+_(w-w'cosO)-i(l+_sin2(_))w'_sinO, (5.20)

and

B [1- cos0+ (w' - w)(1 + cos0)]

+i_ 2 (1 - ._) + (m+ _'- 1/_- y (1+ _-_') (1-cosO)] sinO (5.21)

C=-(1-r,2)+_[1-w'-(1-w)cosO]+i(1-_sin2(_)) (1 - w)_sin0.
(5.22)

Numerical evaluation of the amplification factors of the a-#(I2) scheme, shows that when

(i) w > 0.5 and (ii) w' -- w, the scheme is stable when Eq. (5.15) is satisfied. As pointed

out in Section 3, when _ = 0, the a-#(I1) scheme and the a-#(I2) scheme become identical.

Hence, the a-#(I2) scheme shares with the a-#(I1) scheme the property that when _ -- 0,

its principal amplification factor becomes identical to the amplification factor of the Crank-

Nicolson scheme.

6 Consistency and Truncation Error

In this section, we discuss the consistency and truncation error of, successively, the a-#(I1)

scheme and the a-#(I2) scheme. It will be indicated that, 1ruder certain conditions, the

interior discretized equations of the schemes are consistent with a pair of partial differential

equations (PDEs). One of these PDEs is Eq. (1.2). In the following analysis, the grid

point values of continuous functions of space and time are denoted by using grid indices as

superscripts and subscripts.

The flux conservation relation Eq. (3.24) is written for CE_(j + 1, n). This is symbolized

by

F_(j + 1,,.) = 0 (6.1)

Eqs. (3.23) and (6.1) are two distinct conservation equations, although the conservation

elements involved occupy the same physical region. The a-#(I1) scheme can obviously

alternatively be described by specifying these two equations. Linear combinations of these

equations are next examined, in order to investigate the consistency of the scheme. Adding

Eq. (3.23) and Eq. (6.1), and dividing throughout by 2/Nx At, results in

1

[FDEl(u, u_)]j+_ = 0 (6.2)
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with FDE1 as defined below. Also, subtracting Eq. (6.1) from Eq.

throughout by 2(1 - u 2) Ax 2, results in

[FDE2(u,u:_)] '_-½ =0
J+½

Here, FDE1 and FDE2 are defined as

(3.23), and dividing

[FDE1 (u, v =

o o _2At uj+l j+l + us - _'2 + _ uj+l - _j + _;;_ - _,';

# vj+ 1 -- vj + vj+ 1 -- v'}
2 /Xx

1- 2Ax + 4At

UP [ n--1 n--1 n n n n Vn--1 v;:ll ]J-S--'_X vj+2 -- Vj "J- Vj+ 1 -- Vj_ 1 V)+ 2 -_- V) j+l -}-

(6.3)

(6.4)

)]_+_doj[FDE2(u, v _ =

1[ . ,_-1 '1]4 v)_+l + vj + v3+ 1 + v_

V_ [ n n n n n--1 n--1 n--1 7--:]
-+8(1-u 2) vj+2-v) +vj+ 1-vj_ l+vj+ 2 -vj +vj+ 1 -v

1 [. _ .-a -I]2 (I- u2)Az u_+_- uj+ uj+I- u2

2 (1-u 2)/xx " -u3+1

2 (W(1----I]2)w')[_j%1- vn-l/+lj- vjn _ V;-I] (6.5)

Let _(x, t) and _(x, t) be smooth functions, and let

0_2 (6.6)d_j __ 0-7

Define, further, partial differential expressions PDE1 and PDE2 by

PDEI(u) d_f Ou Ou 02u (6.7)= o_ + _ - u-O_2

u_ Ax Op (6.8)
PDE2(p) d_ P + 1 - u 2 0x

_ ,_-½ _ ,,-½
[FDEI(5, v)]3+½ and [FDE2(_, v)]j+½ may be considered to be discrete approximations

1 1

to [PDEI(_2)];+_ and [PDE2('_)];+_, respectively. Then the errors ER1 and ER2 in these
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approximationsare definedby

[ER1]_+_d_f[FDEI(1],- '_-½ _ n-½= v)]j+½ -[PDEI(u)]3+½

[ER2] 1 d_f [FDE2(1],v)]3+½ - [PDE2(p)]3+½

With the aid of Taylor expansions, it may be shown that

1

[ER1]j+_

029 c9_1] Ax 2 031] At 2

0/5 1) O--_ At cOx20t 8 Ot 3 24= -_Oxx- #(w'+w- + +

031] Ax 2 031] At 2 039 Ax 2 039 At 2

+aox3 24 +a-_xOt2 8 tt0x3 24 #_xx0t 2 8

1 029 [a2At2 - Ax2] 039 At 2Jr soxOt -a#cgx20t 4 +O(A3)

It may similarly be shown that

1

[ER2]jU 

829 Ax 2 029 At 2

(1-v 2) Ox 2 8 Ot2 8

v_ Ax [ 039 2 0_9 2"

+24(1 -_2) [7-_x3AX + 3_At

1 [031] 2 031] - 2

24(1 v 2) [_xTx3Ax +3_-_z_t

Jr

P At r 031] 2 031] - 2 ]

o o(A9
(l-v 2) (A3) (1 -v 2)O(A 3)- (1-v 2) Ax

(6.9)

(6.10)

(6.11)

(6.12)

In Eqs. (6.11) and (6.12), all derivatives are evaluated at ((j + 1/2) Ax, (n - 1/2) At). Each

symbol O (A 3) represents an infinite sum of terms, in which derivatives of fi or 9, and the

quantities a, tt and Ax_At TM occur only as factors in the numerator of each term, with

l,m > 0 and l + m > 3.

Let 1] and 9 be a solution of the system of PDEs formed by PDEI(1]) = 0 and/5 = 0.
1 1

Then [FDEI(1],9)]_+_ and [FDE2(1],- _-__ v)]j+½ are by definition the truncation errors of the

discrete equations (6.2) and (6.3) satisfied by a solution of the a-#(I1) scheme. Also, now

[PDEI(_)]___= o and - _-_ = 0 Hence,[FOE1(1],-_-_ = JERk] and

[FDE2(1], v)]j+½ = [ER2] . Also, the first term on the right hand side of each of Eqs.

(6.11) and (6.12) is zero. Assume v 2 _ 1. Let the rule of mesh refinement be such that
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A-Aremainsbounded as /Xx --. 0 and /_t ---, 0. This implies that v and _/Xx also remain
/xz

bounded. Examination of ER1 and ER2 shows that the discrete equations (6.2) and (6.3)

are in general consistent with only the stationary forms of PDEI(_) = 0 and PDE2(_) -- O.

The second term on the right hand side of Eq. (6.12) represents a time-inconsistency, which

makes the scheme only first-order accurate for u_. If w = w', the a-#(I1) scheme is time-

consistent, but is in general only first-order accurate in time because of the second term

on the right hand side of Eq. (6.11). If, additionally, w + w' = 1, i.e. w = w' = 1/2,

then the discrete equations of the a-_(I1) scheme are consistent with PDEI(_) = 0 and

PDE2(_) = 0, and the scheme is second-order accurate in space and time.

We turn next to a similar analysis of the a-#(I2) scheme. Manipulations similar to those

leading to Eqs. (6.2) and (6.3) are performed on the interior equations (3.45) and (3.46) of

the a-#(I2) scheme. This yields the equations
1

[FDE3(u,u=)]3+½
1

[FDE4(u, _x)]j÷½
Here FDE3 and FDE4 are defined as

n- 1 def
2

[FDE3(u,v)]j+½

= 0 (6.13)

= 0 (6.14)

a n un.- 1
2/_t uj _ - uj j+l

[n n v_-I -1]# vj+ 1-vj + j+l -v'}
2/Xx

- 2Ax +4/Xt -, vj+ 1-vj j+l +v2 -1

up
_ _j+l - 2u] 1+ u_-l) -

(6.15)

n -1 def2

[FDE4(u,v)]j+½ =

1[. ,, ,,_, _1]4 vj+l + vj + vj+ 1 + v'_

v_ 2_j+1+ u_-1) + - +

(_jn+2- 2U]+ 1 -I-_) Jr- (_jn÷l- 2U_ Jr-U__ 1)]

1 [o o _,]2 (1-u 2) Ax uJ+l-uJ +uj+ 1-u]

v [_ ,,-1 . -_]2 (1-v 2)/xz uJ+l-uJ+l +uj-u']

- o-
2 (1 - u 2) j+l + vj

(6.16)

3O
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As before, let '5(x, t) and {)(x, t) be smooth functions, and let/5 be defined by Eq. (6.6)1.
1 _ rt--_

Then the errors ER3 and ER4 in the approximation of [PDEI('5)]']+____ and [PDE2(p)]#+½

_ n-½ _ _-½
by [FOE3('5,v)]_+½and [FOE4('5,v)]_+_arede_nedby

= v)]j+½ -[PDEI(u)]j+½

[ER4]_+_ d_j [FDE4('5,- n-½ _ - "-3_)]j+_ [PVE2(p)]_+l

With the aid of Taylor expansions, it may be shown that

02{) 03,5 /hx 2 03,5/Xt 2

0/5 i)--_-x_At Ox20t 8 24= -u_ z u(w'+w- + +0t3
03'5/_x 2 03,5 /Xt 2 03{) /_X 2 03{) At 2

+aox3 24 +a_ 8 #0x a 24 #-OxOt 2 8

1 02{) [a2At2 _ Ax2] 04'5 At 2sOxat - a' g-T +O(ZX3)

1

[ER3]j+_

It may similarly be shown that

(6.17)

(6.18)

(6.19)

1

[ER4]j+_

-. At [o_ 0"5 o2_1 _ (w- w,)o{)At
= (1--v_kx [-_-+a_xx-tt_x2] - (1-"9-) at

(w - w') 0 °z{) Ax2 02{) At2
(-1 "- _-_ (/_3) .+. OX 2 8 2r Ot 2 8

v_Ax [ 04'5- 2 a4fi - 23

+24(1-_2 ) [5_z4Ax +3_AtJ

1 [03'5 03'5 2 -]

24(1 - v 2) [Ox 3Ax2 + 30--X--_5/_t ]

v At [ 03'5 " 2 03'5 2 ]

-24(l_v2) Ax kaa---_Ax +-_At j +o(A3)

g_Ax 1 vat 0 (/_3) (6.20)+(1- _
In Eqs. (6.19) and (6.20), all derivatives are evaluated at ((j + 1/2) Ax, (n - 1/2) At).

It is seen that the expressions for ER3 and ER4 are very similar to those for ER1 and

ER2. The same remarks made regarding the consistency and truncation error of the a-#(I1)

scheme are applicable to the a-#(I2) scheme.

The main conclusion of this section is that if (i) v2 # 1, (ii) the rule of mesh refinement

At w' 1/2, thenis such that _ remains bounded as /hx ---+ 0 and At -_ 0, and (iii) w = =
the interior discrete equations of the a-#(I1) and a-#(I2) schemes are consistent with the

advection-diffusion equation PDEI('5) = 0 and with PDE2(f) = 0, and the schemes are

second-order accurate in space and time.
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7 Filtering of the Initial Conditions

The accuracy of the solution may be improved by a modification of given initial conditions.

This modification represents a filtering out of spurious components from the numerical rep-

resentation of given initial conditions.

Let At ----0, i.e., v = _ = 0. Then Eqs. (4.9) and (4.10) of the a-#(I1) scheme become,

for j= l,...,J-1,

and

1 [ __: (_+V-: ._: (_+/_-1]
x ]j = -2 LUj+l -- \ x ]j+l -- UJ--1 -- \ x ]j_:j

. 1 [ _-1 {u+h"-:Uj = _ Uj+ 1 -- \ x]j+:

Eqs. (7.1) and (7.2) can be rewritten as

and

+ uj-1 + _. x]j_:j

I [ ,__, _ (u+_ '_-'= # _j+:-_)':::+2_ xjj -_ .jj+:-_ xj__:j

2

1 [ --1 .-1 .-1= _ uj+: +uj_ 1 +2uj -- \ x/j+: + \ =]j-lJ

(7.1)

(7.2)

(7.3)

(7.4)

where the terms on the right hand sides of Eqs. (7.1)-(7.4) are all known from the initial

time level, given by Eqs. (3.17) and (3.18).

Corresponding to Eqs. (7.3) and (7.4), the conservation equations (3.15) and (3.16) at

the boundaries can be written as

and

1[( 1[ ._, -u+)"+_,x/yxj J=2 uJ+i-uJ +_, =]j -_, "/3+1J , j:0 (7.5)

= - u3_: + - j = J (7.6)

where the right hand sides of Eqs. (7.5) and (7.6) are known from the initial time level or

the boundary values.

Eqs. (7.1), (7.2), (3.19), (3.20), (7.5) and (7.6) serve to determine 'filtered' initial val-

ues. The von Neumann stability analysis of the interior filtering 'scheme' is performed as

previously, with the substitution of Eq. (5.1) to obtain the form of Eq. (5.2) where

and Q(2)= [ ee -e'°]e_iO e_iO (7.7)
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Thus [Q(1)]
is given by

-1

= ½Q(1) and therefore the amplification matrix of the interior filtering scheme

I cOS°s o0  sin°1-cos0

8 The Dual-Mesh Explicit a-# Scheme

In this section, we present an explicit numerical scheme to solve Eq. (1.2). It differs from

the explicit a-# scheme presented in [1, 6] in that the diffusion term in Eq. (1.2) is better

modeled in the current explicit scheme, and the diffusion flux in Eq. (3.6) is modeled more

flexibly. These differences both introduce a coupling between the meshes fit1 and f_2. This is

in contrast to the explicit a-# scheme of [1, 6], which is formulated on f_l (or f_2) exclusively.

Hence, the present explicit scheme will be termed the dual-mesh explicit a-# scheme.

The explicit scheme will be presented by indicating the modifications to the a-#(I1)

scheme to change it to an explicit scheme. The dual space-time mesh, the SEs, and the CEs

are defined as for the a-#(I1) scheme. The numerical representation defined in Eq. (2.1)

is also assumed. We continue to take advantage of the notation defined in Eqs. (3.10) and

(3.11). Instead of using Eq. (3.4), the diffusion term in that equation will be lagged. Thus,

instead of using Eq. (3.12), the unknown (u+)_ at the time step n will be expressed as

u+ _= 5[\ _]j+l -K _/j-lJ ' 0<j<J. (8.1)

the known quantity (u+): -' at the time level n -1 continues to be calculated fromHowever,

+ n--1
Eq. (3.12), rather than from Eq. (8.1). Calculation of (u t ]. from Eq. (8.1) would result

\ /.7

in a three-time-level scheme, which would require additional computer memory and would

require knowledge of the solution at n = 1 in addition to the initial condition at n = 0.
The definition of the diffusion flux is also altered by setting w' = 0 in Eq. (3.7), so that

for (x, e) • SE(j, n),

def _ W(Ux)_ -]- W(Ux)_ -1 , if t _ t_;
u*_(x, t "j, n)

' = _ (u_)_, ift>t ".
(8.2)

where w is a weighting factor to be specified, and _ de___/1 -- w. This definition is used to

complete the definition of the numerical space-time flux in Eq. (3.6). The numerical flux

analogue is required to satisfy conservation over the CEs. Thus, Eqs. (2.6) are required to
be satisfied. With the modifications described above, this leads to Eqs. (3.13) and (3.14)

being replaced by
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-. [u;- ÷ +
[u.-1 fu+_"-ll + .-,

-_-L¢ L j+l _- _ t ]j+l] -- _(ux )j+'

= 0 , O<_j<J (8.3)

and

u+" --I _.+5"-'I÷,  3_1j

--l] ?.tj_ 1 --_- \ t ]j_lJ -+'_, x)j-1

= 0 , o<j<J. (8.4)

As with the implicit schemes, the discretized initial and boundary information required by

the scheme will be assumed to be given by Eqs. (3.17)-(3.22). However, the same remarks

as before apply more general treatment of the initial and boundary conditions. Collecting

terms in Eqs. (8.3) and (8.4), we obtain

° );(i-- L,)u; -+-(1 + va_) (u+)j -I- _'(u +

(1 .-1 (_+_.-_ _ _ (_+_.-1 (_+_.-, (8.5)= -u) uj+: -(1-:)\ x/j+: \ ,_/j -u\ t]j+:

and

(1 + v)u2 -(1 + w_)(u+): -v (u+):

(1 + v) ,-1 {u+_ "-1 (u+_ "-1 (u+_ "-1= _j__ + (1 - _) _. jj__ + _ _ .jj +. _ _}j__ (8.6)

Eq. (8.5) is valid for 0 <_ j < J. Together with the boundary condition Eq. (3.19), it

supplies one equation per mesh point (j, n), 0 < j < J. Eq. (8.6) is valid for 0 < j < J

at the time level n. Together with the boundary condition Eq. (3.20), it also supplies one
/ +\n--1 { +_.--1

equation per mesh point (j,n), 0 _< j _< J. The quantities (ut),_1 and kut }j+l appearing

in Eqs. (8.5) and (8.6) are known from the previous time level n - 1, through Eq. (3.12),

the boundary data Eqs. (3.21) and (3.22). The quantities (u+): at the currentor from

time-level n will be eliminated from Eqs. (8.5) and (8.6) as follows.

For j = 0, the known boundary data from Eqs. (3.19) and (3.21) are used in Eq. (8.5) to

yield

(,+_)(_:)_=(s+);.-',3.=o, (_._)
where

(S+)] -I (1 L,) "-1-(l-()(u+_-l-_((u+_ "-I
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Eq. (8.7) and the boundary condition Eq. (3;19) constitute two equations at j = 0.

For 1 < j < J- 1, we substitute for (u+)j from Eq. (8.1) in Eq. (8.5) to obtain

where

(1- v)u'_ + (1- v 2 + w() (u+_ '' = (S+)'_ -1\ x]j

Similarly, for l _< j _< J- 1, we substitute for (u+);

where

Eqs.

(8.8)

from Eq. (8.1) in Eq. (8.5) to obtain

(l+u)uj- (i u2+w:) ut_ _" - ( _,2 = (S_)_-' (8.9)

= us_: + 1-_- \ xjj_:+Ef_ _]j

.._ (u+'_"-: fu+'f'-:+ k z/j+1 +uk t )j-:

(8.8) and (8.9) constitute two equations at each mesh point (j, n) such that 1 _< j _<
J- 1.

Finally, at j = J, the known boundary data from Eqs. (3.20) and (3.22) are used in Eq.

(8.6) to yield

-(1 + w()(u+); = (S_)_-', j : J, (8.10)

where

(S_)_ -1 (1 .-t-/]) n--1 (,.U+'_ n-1 (,.U+_ n-1 /,.U+'_ n-I= _j_:+ (1- ¢) _ _j__:+ :_ + _,\ _:]j \ t )j-1

n ?'I'+ n-(: + +,,,(, ),
Eq. (8.10) and the boundary condition Eq. (3.20) constitute two equations at a boundary

mesh point with j = J.

All mesh variables on the right-hand sides of Eqs. (8.7), (8.8), (8.9) and (8.10) are known

from the marching variables at the previous time level or from boundary values. The system

of equations described above, with two equations per mesh point, enable a marching step in

which the solution u] and (u+)] at the current time level n can be determined by explicit

solution. The explicit solution process will now be discussed. At the left boundary j = 0, u}_
+ n

is known from the boundary condition, Eq. (3.19), while (u s )j is obtained from Eq. (8.7)
as

(u_+);= (S+)_'-'/ (1+w_) (8.11)
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At the right boundary j = J, u_' is known from the boundary condition, Eq. (3.20), while
+ n

(u_)j is obtained from Eq. (8.10) as

+'l '_= -(S_)_.-* / (1 + w_) (8.12)
z/j

n + n
At a mesh point (j, n) with 1 _< j _< J - 1, u3 and (%)3 are obtained by solving Eqs. (8.8)

and (8.9) simultaneously to yield

o 1ltj =2
(8.13)

and

u+) _ = 1
_/J 2(1_u2+w_) [( )( "bn ( )( )_ ]pl+u,,S+,a-1- 1-u S_,j-lj

(8.14)

Thus the solution at the new time level can be explicitly calculated. Note that Eq. (8.13),
+ n

which does not involve (%)j, is obtained by simply adding together the conservation equa-

tions (8.8) and (8.9). It represents flux conservation for CE(j, n), the union of CE+(ff, n) and

CE_(j,n).

The following important facts should be noted. The boundary information is used in the

dual-mesh explicit scheme in the same way as it is used in the a-#(I1) scheme, i.e., the

boundary equations of the two schemes are the same. If the conditions

ujn = u,_-I ; (u +)_ = \(u+_ '_-l_/j (8.15)

hold for 0 < j < J and some n = N, then the remaining equations of the dual-mesh

explicit a-# scheme written at the time level N become identical with those of the a-#(I1)

scheme written at the same time level. Specifically, Eqs. (8.1) and (3.12) become identical,

Eqs. (8.2) and (3.7) become identical, and therefore the integral conservation relations Eqs.

(8.5) and (8.6) of the dual-mesh explicit scheme become identical with those of the a-#(I1)

scheme, Eqs. (3.15) and (3.16), respectively. Hence, solution time-slices u_ and u_ -a that

satisfy the condition (8.15) and the discretized equations of the dual-mesh explicit scheme,

will also satisfy the discretized equations of the a-#(I1) scheme.

Next, the stability of the dual-mesh explicit scheme will be discussed. For 1 < j < J - 1,
{U+, _ n--1 (U+) n-1

we substitute for --.(u+)7 from Eq. (8.1) and for _ t/j_1 and V t I,+1 from Eq. (3.12)in
n -4- n

Eqs. (8.5) and (8.6) to obtain the interior equations of the scheme in terms of u3 and (%)j,

i.e.,

(1- u)u_ + (1- u'+ w:) (u+'_ n\ z/j

= (1 -- LP)?-£ n-1 -- -- -- ('l.$ +_n-1

2,, +V' (8.16)
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and

= uJ-1 4 \ x ]j-2 + 1 - v 2 - _ 1 --_ k x ]j-1

+(4+@_\ _,, +-g\ x,j÷, (8.17)

Let 1 - u 2 + w_ =fi 0. Then, as is shown by Eqs. (8.13) and (8.14), the interior equations
n -6 n _ -

(8.16) and (8.17) can be solved for uj and (u x )j. Let q (3, n) be given defined by Eq. (3.33).

Then this solution is written in the form

_(/,n)
= Q_2-_(j-2, n- 1)+Q_2-_(j-2, n- 1)+Qo-_(j,n- 1)

QI_(j + 1,n- 1)+ Q2--_(j+ 2,n- 1)

i.e.

where

2

-_(j,n) = _ Q{-_(j + l,n- 1) (8.18)
/=-2

Q2de i(o= _,_(1_4v) (8.19)

--_ ( __._ _ _(_-_)-(_-_)(1-._) (8.2o)
-- \ 1-v2+w(] 1-v2+w(

= 2_ (w--l+-_-) (8.21)
0 i-v2+w_

Ql d_f l ( 1- u -(1-v2-_) )= _ ___ _(_+_)_(_+_)(___) (8.22)
1-_'2+w_

Q2def 1 ( 0 --_-'_ )= __(_+.) (8.23)

The stability analysis procedure is the same as that used in Section 5 for the implicit

schemes. When the substitution of Eq. (5.1) is made in Eq. (8.18), the result is

0"*(.,,o) = Q(_,,4,_,o) ¢*(., - _,o). (8.24)

Here,

2 [ ]Q(_,,_,w,O)= E eil°Ql= Qll Q12 (8.25)
I=-2 Q_I Q:2
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where

Qll = cos0 - iusinO (8.26)

(1 v_ _)sin0] (8.27)Q12 = _[v_sin 20-2i - -

Q21 = i(1-u 2) sinO/ (1-v 2+w_) (8.28)

= 2(1-u 2+w )

-2 (1- u 2- _)cos0 +i Ivy- 2u (1- v2)] sin0} (8.29)

Examination of Eq. (8.24) shows that Q(u, _, w, O) is the amplification matrix for the interior

scheme. The eigenvNues of Q are the amplification factors. An eigenvNue A of Q satisfies

Eq. (5.10) with

A=2(1- + (8.30)

B -_ [2(1 + w)cos 0 + u2 sin20 + 2(w- 1)]

-ivsinO [(1 - 2w)_-4 (1 - u 2) - _cos0] (8.31)

C = 2(w- 1)_cosO-_u2sin20-2(1-v 2 +w_)

+iv_ sin0(1 - 2w - cos 0) (8.32)

The eigenvalues A+ have been evaluated numerically for a range of values of v, _, w and 0.

These numerical experiments show that if

w > 2 (8.33)

then the duN-mesh explicit scheme is stable provided only that Eq. (5.15) holds, i.e., if

u 2 < 1 andS_>0.

We note the unusual fact that if Eq. (8.33) is satisfied, the magnitude of the viscosity has

no influence on the stability condition of the duN-mesh explicit scheme. A similar statement

can be made about the explicit a-# scheme of [6]. This is in contrast to most explicit

schemes for diffusion equations, for which the value of _ is limited by stability constraints.

This fact, together with the remarks made earlier concerning the condition (8.15), points to

an important possibility for the dual-mesh explicit scheme. The duN-mesh explicit scheme

can be used to obtain 'steady-state' time-asymptotic limits of solutions to the convection-

diffusion equation in an efficient manner. Time steps as large as those used with the a-#(I1)

scheme, and limited only by the CFL criterion, can be used. At each time level, fewer

airthmetic operations are required for the explicit scheme than for the a-#(I1) scheme. This

computational advantage would be even greater when multidimensional extensions of the

algorithms are considered. The steady-state solution time-slice will be the same as that

obtained with the a-#(I1) scheme, and thus be second-order accurate in space.
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9 Numerical Results

Three test problems will be used to evaluate the accuracy of the implicit a-# schemes. The

weighting factors for the viscous fluxes are taken to be w -- w' = 0.5 for all the computations

run with the implicit schemes. Unless stated otherwise, the a-#(I1) scheme was used for the

computations in subsections 9.1 through 9.3.

9.1 Decaying Traveling Sine Wave

In the first problem, we consider a special case of Eq. (1.2) (a = 1 and # = 0.01) with

0 _ x __ 1 and t _ 0. The initial and boundary condition functions uI(x), UL(t) and uR(t)

are defined such that they are consistent with a special solution to Eq. (1.2), i.e.,

u = ue(x,t) de_ exp(_41r2ttt)sin [2n(x -- at)] (9.1)

At any time t -- t °, let

LI(u) dej i J-I

(j_ 1) exp(_4_r2#t_ ) _ luy - ue(x_,t_)l
5=1

(9.2)

Ll(u) is an error norm (per mesh point) which is normalized by the decay factor of u_(x, t).

Let J = 80 (i.e., Ax = 1/80) and _ = 0.8 (i.e., At = 0.01). Then Ll(u) = 0.1641 × 10 -3

at t = 4 (i.e., n = 400). Through numerical experiments, it has been shown that L_(u) at a

given time t is reduced by a factor of 4 if both Ax and At are reduced by half, confirming

the second-order accurate nature of the scheme.

Fig. 8 shows a comparison of the computed solution at t -- 4 with the exact solution. It

also shows the error u_(xj, t _) - uy scaled by the peak magnitude of the exact solution at
that time level. It is seen that the maximum error is less than 0.3% of the peak magnitude.

The peak magnitude is seen to be just over 0.2.

Fig. 9 shows a comparison of the errors in the solutions obtained with the a-tt(I1) scheme

and the implicit MacCormack scheme ([28]). Both schemes were applied with the same

parameters and mesh as described above. It is seen that the current scheme is considerably

more accurate than the implicit MacCormack scheme. Refinement of the grid keeping v

constant would actually make the comparison even more favorable. This is because the

implicit MacCormack scheme is second-order accurate in space and time only if _ is held

constant and v _ 0 when refining the grid.

9.2 Pure Diffusion

We consider a special case of the convection-diffusion equation with a = 0 and/_t -- 1, in

the domain 0 < x _< 1 and t >_ 0. The initial/boundary conditions completing the problem

specification are (i) u(O,t) = u(1,t) = 0 for t > 0, (ii) u(x,0) = 2x for 0 <: x _ 0.5, and

(iii) u(x, 0) = 2(1 - x) for 0.5 < x _< 1. The solution u(x, t) exhibits the diffusive decay

of the initial sawtooth shape. An exact series solution is available, see for e.g.p.15 of [29].

For the CE/SE computation, uniform mesh intervals Ax = 0.02 and At = 0.005 are used.
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Fig. 10showsthe time-sliceat t -- 0.05, comparing numerical and exact solutions, and also

showing the error scaled with the peak exact value at that time level. The maximum error

magnitude is seen to be about 0.5% of the peak solution value. At t = 1 (not shown), when

the peak solution value has dwindled to about 4 x 10 -5, the maximum error magnitude is

about 0.15% of the peak solution value.

The same problem on the same mesh was solved with the Crank-Nicolson scheme, which

is probably the best traditional scheme for the parabolic pure diffusion equation. Fig. 11

shows a comparison between the current scheme and the Crank-Nicolson scheme, at t = 0.05.

The schemes are seen to be of similar accuracy, as is to be expected from the identity of the

amplification factors. The current scheme is seen to be slightly more accurate for this case.

9.3 Steady State Boundary Layer

We next consider the problem defined for the convection-diffusion equation in the domain

0 < x < 1 an(i t > 0 by the conditions (i) u(0, t) = 0 for t _ 0, (ii) u(1, t) = 1 for t > 0, and

(iii) u(x, O) = x for 0 < x < 1. The 'steady-state' or time-asymptotic limit of the solution is

u(x, oz) = [exp(ax/#)- 1]/ [exp(a/#)- 1].

The case a = 1, # = 1 (i.e., 'Reynolds' number Re -- a/It = 1) is first considered. Fig. 12

shows the steady-state limit of the numerical solution, compared with the exact steady-state

limit. With only three interior mesh points, the numerical solution has a maximum error of

about 0.001.

In Fig. 13, we compare the errors in the a-#(I1) and a-/_(I2) solutions for the same

problem, but with _ = 0.1, so that Re = 10, which leads to a steady-state boundary layer

at x = 1. Mesh spacing Ax = 0.05 was used. The two schemes yield very similar results.

The final case considered is the same problem, but with # -- 0.01, so that Re = 100.

This leads to the formation of a fairly sharp boundary layer, because the thickness of the

layer scales as the inverse of the Reynolds number. Uniform mesh intervals Ax ---- 0.0025

and At = 0.002 are used, so that the Courant number is 0.8. Fig. 14 shows the computed

and exact steady-state limits, together with the error. The boundary layer is seen to be well

resolved, with the maximum magnitude of the error being about 1% of the solution peak.

9.4 Calculations with the Dual-Mesh Explicit Scheme

In this subsection, we examine results obtained with the dual-mesh explicit a-# scheme for

the same problems as in subsections 9.1 and 9.3. The value of the weighting factor w in the

dual-mesh explicit scheme was always taken to be 2.

Fig. 15 shows the solution time-slice at t = 4, computed with the dual-mesh explicit

scheme, for the same problem as considered in subsection 9.1. The same spatial and temporal

mesh intervals were used as in subsection 9.1, so that Fig. 15 can be compared with Fig. 8.

It is seen that the a-#(I1) scheme is considerably more accurate than the dual-mesh explicit

scheme, owing to the latter being only first-order accurate in time. The peak error in Fig.

15 is just over 7% of the solution peak, as compared to only about 0.2% in Fig. 8. The result

obtained for the same problem with the same mesh parameters, using the explicit a-#(I1)

scheme of [6] is shown in Fig. 16. The error plotted in Fig. 16 is very similar to that in Fig.
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15. This showsthat the error is dominatedby that arising from the first-order-time-accurate
modelingof the viscousfluxesin the integral conservationequationsin both explicit schemes.
Fig. 17showsthe solution time-sliceat t = 4, computed with the dual-mesh explicit scheme,

but using a time step that is four times smaller than that used for Fig. 15, while keeping the

spatial mesh intervals the same. The error is smaller by about a factor of ten than that in

Fig. 15. Numerical experiments show that the numerical space-time solution can be made

to approach the exact solution as closely as desired by refining the mesh with a refinement

rule that holds _ constant rather than v, so that At is reduced proportionally to Ax 2 rather

than to Ax. The same is true of the explicit a-#(I1) scheme of [6]. For multidimensional

flows, the explicit schemes could have an advantage over the implicit a-#(I1) and a-#(I2)

schemes, with regard to computational cost to achieve a given level of accuracy.

The dual-mesh explicit scheme was also applied to the 'boundary layer' problem of sub-

section 9.3. Fig. 18 shows the 'steady-state' limiting behavior of the numerical solution, at

t = 3. The computation was performed with the same values of Ax, At, v, and _ as were

used for the a-p(I1) scheme in subsection 9.3. The same initial and boundary conditions

were used. From Figs. 14 and 18, and from an examination of the computer printout of

the values, the steady-state limit reached by the a-#(I1) and dual-mesh explicit schemes are

the same. This is to be expected, on the basis of the remarks at the end of Section 8. Fig.

19 shows the 'steady-state' solution time-slice obtained with the explicit a-# scheme of [6],

using the same conditions as for the other schemes. There is seen to be a considerable error

in the steady-state limit, owing to the lack of modeling of physical diffusion in the discretized
differential form of the conservation law. This error can be reduced to match the error level

in Fig. 18, at the cost of increased computation, by reducing At and perhaps reducing Ax.

For multiple spatial dimensions, the computational cost of an implicit time-step is gener-

ally much higher than that of an explicit time-step. The analysis of the dual-mesh explicit

scheme, confirmed by the numerical results, shows that the scheme can be used to obtain the

same steady-state limit as with the a-#(I1) scheme. It is expected that for most steady-state

results, the steady state can be reached in approximately the same number of time steps by

the two schemes. Hence, when generalized to multidimensional flows, use of the dual-mesh

explicit scheme may be the more efficient way to obtain the steady state with a desired level

of accuracy.

10 Summary and Conclusions

In the explicit a-p scheme [6, 4], the diffusion term in Eq. (1.2) is not modeled, i.e., Eq. (2.3)

is assumed. Also the diffusion term in Eq. (1.5) is modeled with no interpolation or extrap-

olation, with a resulting reduction of time-accuracy. Obviously, such a solver can be used

only when the diffusion term is small compared with the convection term. Contrarily, the

diffusion terms in both Eqs. (1.2) and (1.5) are modeled in the current implicit solvers. The

diffusion term in Eq. (1.2) is also modeled in the present dual-mesh explicit a-# scheme,

although it remains first order accurate in time because of the explicit nature of the modeling
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of the diffusion ttuxesin Eq. (1.5).
The current implicit and explicit solversare carefully constructed so that they become

identical to the explicit a scheme for the pure convection equation, when the viscosity coef-

ficient vanishes. Because the a scheme is nondissipative, this construction ensures that the

physical dissipation is never overwhelmed by numerical dissipation in the present implicit

and explicit solvers.

The implicit schemes have been shown to be stable provided the Courant number does not

exceed unity in magnitude, for certain ranges of the weighting parameters w and w'. In these

cases, there is no dependence of the stability of the schemes on the viscosity parameter. This

is true, in particular, for the case w = w' = 1/2. Similar remarks concerning the stability

are true for the dual-mesh explicit a-# scheme, for values w > 2. Stability analysis reveals

the remarkable facts that (i) if/z -- 0, the amplification factors of the dual-mesh implicit

and explicit a-# schemes reduce to those of the classical Leapfrog scheme, and (ii) if a -- 0,

one of the amplification factors of the implicit a-# schemes reduces to that of the classical

Crank-Nicolson scheme, while one of the amplification factors of the dual-mesh explicit a-#

scheme reduces to that of the DuFort-Frankel scheme.

The truncation error analysis of the discretized equations of the implicit schemes shows

that in general they are consistent with the convection-diffusion equation, and are first-order

accurate in time. For the case w = w' -= 1/2, which will be the case used in practice, the

scheme is second-order accurate in time and space provided the Courant number remains

bounded when refining the space-time mesh. Although a truncation error analysis of the

dual-mesh explicit a-# scheme was not performed, it is evident that the scheme is second-

order accurate in space and first-order accurate in time.

Numerical examples have borne out the conclusions of the stability and truncation error

analysis. The a-/z(I1) and a-/_(I2) schemes have been shown to be similar to each other in

their properties and performance. The current implicit schemes were seen from the numerical

examples to enable stable accurate computations over the whole viscosity range, from the

pure diffusion case to convection dominated problems. The dual-mesh explicit a-/z scheme

was shown to be useful for the same range of problems, though needing a smaller time step

to achieve comparable accuracy in the time-dependent problems. In the problems where

only a steady-state limit is of interest, the dual-mesh explicit a-# scheme yields the same

spatial accuracy as the implicit a-#(I1) scheme, with potentially much lower computational

cost when extended to problems in multiple spatial dimensions.

The analysis and results noted in this study indicate that the development of the dual-

mesh implicit and explicit solvers along similar lines for the time-dependent compressible

Navier-Stokes equations may prove equally fruitful.
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