
NASA/TMm1998-206629

Stability of Capillary Surfaces in Rectangular

Containers: The Right Square Cylinder

M. M. Weislogel and K.C. Hsieh

Lewis Research Center, Cleveland, Ohio

National Aeronautics and

Space Administration

Lewis Research Center

January 1998

https://ntrs.nasa.gov/search.jsp?R=19980017316 2020-06-16T01:00:18+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42771907?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


This report contains preliminary
findings, subject to revision as

analysis proceeds.

Trade names or manufacturers' names are used in this report for
identification only. This usage does not constitute an official

endorsement, either expressed or implied, by the National

Aeronautics and Space Administration.

NASA Center for Aerospace Information

800 Elkridge Landing Road

Linthicum Heights, MD 21090-2934
Price Code: A03

Available from

National Technical Information Service

5287 Port Royal Road
Springfield, VA 22100

Price Code: A03



STABILITY OF CAPILLARY SURFACES

IN RECTANGULAR CONTAINERS:

THE RIGHT SQUARE CYLINDER

Mark M. Weislogel and K.C. I-Isieh

NASA Lewis Research Center M.S. 500/102

Cleveland, OH 44135

Abstract

The linearized governing equations for an ideal fluid are presented for numerical analysis

for the stability of free capillary surfaces in rectangular containers against unfavorable

disturbances (accelerations, i.e. P_yleigh-Taylor instability). The equations are solved for

the case of the right square cylinder. The results are expressed graphically in terms of a

critical Bond number as a function of system contact angle. A critical wetting phenomena

in the corners is shown to significantly alter the region of stability for such containers in

contrast to simpler geometries such as the right circular cylinder or the infinite rectangular

slot. Such computational results provide additional constraints for the design of fluids
systems for space-based applications.

INTRODUCTION

Particularly since the inception of space flight a number of studies have been conducted

to identify the stability limits of capillary surfaces to unfavorable disturbances (accelera-

tions). The motivation for such investigations is generally to obtain design characteristics

and performance limitations for in-space fluids management systems. For example, it is

essential to understand the potentially destabilizing effects of a thruster firing on the liq-

uid fuel in a partially-filled tank. In this paper a brief review of interfacial stability of

the Rayleigh-Taylor-type will be provided which focuses on the restricted set of container

geometries for which solutions are offered in the literature. In light of the growing need

for design specific solutions for an ever increasing number of fluids systems applications,

i.e. fluids experiments in space (Singh 1996), a new problem is outlined and solved for

the stability of capillary surfaces in containers of rectangular cross-section. The results of
this investigation, presented in terms of a critical Bond number as a function of contact

angle and easily extendable to include container aspect ratio, may be readily added to the

repertoire of the space systems designer.

Review

Surface tension forces dominate fluid interface behavior for low Bond number systems,
B << 1, where
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cl c2
0 0.81 2.59

0.1 1.30 1.99

0.25 1.83 0.83

0.5 0.22 1.39

0.75 0.28 1.01

1.0 0.74 0.41

Table 1: Correlation constants for eq. 3.

where p is the density difference across the interface, a is the surface or interfaclal tension, R

is a characteristic dimension of the container, and g is the acceleration field strength. As B

approaches O(1), however, a critical balance is reached and, depending on the orientation

of the acceleration field, further increases in g can cause destabilization of the interface

and reorientation of the fluid to a perhaps undesirable location within the container. The

precise value of B at which such a "reorientation" might occur (= Bcr) is an important

design parameter for any capillarity-controlled fluid system and is particularly significant
for fluids management processes in space.

Critical Bond number analyses for confined geometries were performed indirectly as early

as Duprez (1854) and Maxwell (1890) for the stability of pinned interfaces in circular and

rectangular containers. These investigations are restricted to predominately flat surfaces

originating out of an assumption of either a 90 ° contact angle condition or a pinned contact

line. Treating the contact angle as a parameter and thus allowing significant curvature of

the interface, as is most common in capillary systems, solutions were obtained by Concus

(1968) for the right circular cylinder, Concus (1963) for the infinite slot, and Seebold et aL

(1967) for the circular annulus. The experimental works of Masica et aL (1964) and Masica

and Petrash (1965) concerning the cylinder and Labus (1969) concerning the annulus are

also noteworthy. Solutions for spherical containers are presented by Reynolds and Satterlee

(1966) and a number of solutions are reported for semi-bounded surfaces such as wall bound

drops and bubbles by Reynolds and Satterlee (1966), pedant drops by Wente (1980), and

liquid bridges by Coriell et aL (1977). Unbounded liquid layers are treated by Ylantsios
and Higgins (1989) with pertinent references contained therein.

Numerical correlations for B= as a function of the contact angle may be derived from

the work of Concus (1963 and 1968) and Seebold et al. (1967), respectively. For the infinite
rectangular slot one finds

B_ = 0.71 + 1.74 sin 8, (1)

where Bcr is defined using the slot half-width, and for the cylinder

B_ = 0.81 + 2.59 sin 8, (2)

where B_ is defined using the cylinder radius. Larger values B > Bcr lead to instability
and breakup of the interface. Similar results for the annulus may be obtained. However,

these depend heavily of the radius ratio Ri/P_, where Ri and P_ are the inner and outer

radii, respectively. In Fig. 1, correlations for B_ for free annular surfaces are plotted versus
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FIGURE 1. Correlations of Bcr with 0 for annular interfaces for a variety of radius ratios,

P_/Ro (numerical data of Seebold et al. (1967)).

contact angle for a variety of radius ratios. The curves are determined using the form

B_,. = Cx + C2 sin 0, (3)

and the correlation constants C1 and C2 are listed in Table 1. Note that Bc_ is again

defined on the outer radius, Ro, and that P_/Ro = 0 recovers the correct form of eq. 3 for

the circular cylinder, eq. 2. Observation of eqs. 1-3 and Fig. 1 reveals that Bcr is nonzero

and positive for all values of the contact angle 0. In addition, the solutions are symmetric
about 0 = 90 °.

The commonality between circular cylinders, slots, and annular containers are the
smooth continuous boundaries within which the fluids are confined. For the case of a

container with an interior comer, the situation is altered significantly. As mathematically

demonstrated by Concus and Finn (1969), when 0 < 90 ° -a (or 0 > 180 °- a), here-

after referred to as the Concus-Finn condition, a critical wetting condition is established

resulting in complete wetting of the comer by the fluid: the fluid is pumped into and along

the interior corners of the container by capillary forces, a is the corner half-angle. Such

surfaces are unconditionally unstable to adverse accelerations. Thus, for fluid-container

systems satisfying the Concus-Finn condition, Bc_ = 0. Therefore, for problems such as

the stability of a capillary surface in a rectangular container where (x = 45 °, nonzero values

for Bcr may only be obtained for contact angles in the range 45° < 0 < 135 °. A sketch of

the different interfacial regimes is provided in Fig. 2 for a container of square cross-section.

The condition of Fig. 2b (45 ° < 6 < 135 °) is investigated here since the cases of Fig. 2a
and 2c are unconditionally unstable for B > 0.

ANALYTICAL SOLUTION

Maxwell (1890) predicted the stability of an inverted capillary surface in a rectangular
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FIGURE 2. Sketch of wetting regimes in a square cross-sectioned container, liquid is shaded

(note: container is bisected across diagonal): a. 0 < 45 °, b. 45 ° < 0 < 135 °, c. 0 _> 135 °.

container of half-length a and half-width b. Fig. 3 depicts the geometry under discussion,

where the more dense fluid is below the interface and g acts positive in the positive z-

direction. Maxwell's solution is derived by minimizing the surface-plus-gravitational energy

and assumes a pinned, predominately fiat interface (0 _-, 90°). His result may be cast in
terms of B_ such that

-T 1+4 , (4)

where 0 _< b/a _< 1. This solution approach may be extended to the case of perfect slip at
the contact line where 0 is fixed at 90 °. The result is

B= = 1+ . (5)

As Is commonly observed in practice, comparison of eqs. 4 and 5 shows that stability is

significantly enhanced by the pinned condition. Note also from eq. 5 that for b/a---, O,

B_ _ lr_/4 which is equivalent to Concus' (1963) solution for the infinite slot for 0 = 90 °

(see eq. 1), as well as to the solution for unbounded liquid layers where the disturbance

wavelength )_ -- 4b, Yiantsios and Higgins (1989). No further analytical solutions are

possible which allow appreciable variation in 0.

NUMERICAL SOLUTION

The numerical solution to the idealized equations of fluid motion are overviewed below

in a like manner to Concus (1963), the dimensions of the problem being extended to analyze

the surface h = h(x, y, t). Conservation of mass leads to the 3-dimensional Laplace equation

for the velocity potential, ¢. The kinematic condition is applied at the free surface and the

pressure jump condition across the interface due to capillary forces is then incorporated into

Bernoulli's law for a transient, inviscid, incompressible, and irrotational fluid. The resulting
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FIGURE 3. Rectangular solutiondomain, a x b.

a

second order nonlinear partial differential equation is subject to the contact angle condition

along the container walls. At this point the equations are linearized and normal modes are

introduced for the velocity potential and for a small perturbation r/ix , y, t) to the leading

order static interface shape Hix, y; B). The numerical solution to the resulting governing

equation requires solution to the eigenvalue problem via the evaluation of the determinant

of the solution matrix for the disturbance r/. A negative (positive) determinant implies

growth of the disturbance and thus instability istability). Bc_ is determined by the zero
value.

The mathematical solution detail is provided below in dimensionless form. Lengths are

scaled such that x ,,, a, y ,-_ b, z ,., b and the surface height as measured from the x-y plane

is h _ b. Note that e = b/a and that 0 < e < 1. Time is scaled by (b/g) 1/_, pressure by a/b,

and the velocity potential by (gb3) 1/2. Subscript notation for differentiation is employed

throughout. The equations are posed for the full domain (Ixl _< 1, [yl -< 1).

Generalized Equations

Continuity of mass leads to

V2¢ = 0, i6)

subject to Cn = 0 on the container walls, where n is the normal to the wall. The kinematic

condition on the free surface is

e2¢xh_ + ¢_hz - ¢_ + ht = 0 (T)

on z = h(x, y, t). The pressure jump condition due to curvature of the free surface is given

by
Vh

-P = v. t. +II)'vh - ,oh, is)
where L: is an operator on h given by

£h -- (9)

The contact angle condition along the container walls is given by

n • k = cos O,



where k is the inward normal to the walls and n is the outward normal to the free surface

given by

and

k = (:F1,0, 0) along x = +l,

k = (0, q:l, 0) along y = 4-1,

n = (1 + e2h_ + h_)-l/2(-Eh=," -hv, 1),

respectively. Thus, the contact angle conditions at the boundary of the surface are

+ . .x 1/2 = cos 0 along x = +1
(1+ + .;)

and

(10)

4- h_ = cos0 along y = 4-1. (11)

Incorporating eq. 8 into Bernoulli's equation for a transient, ideal fluid yields

B Ct+_ Cy+ +£h=C,

which is applicable on z = h(x, y, t). C in the above equation is a constant, and in the most

general sense C = C(t) and is determined by the volume of fluid present in the container,

which is here assumed steady in time.

Linearized Governing Equations

(13)

Introducing the perturbation

h = g(x, y) + rl(x , y, t),

normal modes are selected for ¢ and r/such that

¢ = ¢'(x, _, z) cos(_,t), (14)

= _'(x, _) sin(_,O. (15)

Substituting eqs. 13-15 into eq. 12, neglecting nonlinear terms, and noting wi = 0 for

neutral stability, yields the simplified Bernoulli equation

B (g + rl) + £ (H + r/) = C, (16)

where the prime notation for r/has been dropped for clarity. Assuming rl/H << 1, the

zeroeth order solution for the interface shape H may be determined from eq. 16 to be

BH + £H = C, (17)
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where £H is the operation of eq. 9 on H. Eq. 17 is subject to

and

4-- eHz = cos 0 along x = 4-1

H_
4-

W2_ 1/2 - cos 0 along
(1 + e2H_ + --v,,,

The first order solution for the perturbation 7/is given by

Brl + £,7 = o,

subject to

0+ --0  ,ong
The operation£_/isdefinedby

y = 4-1.

(18)

x=4-1

y=+l.

+2_2(_H=.H_ + _=/--/=H_- _H=H=_ - _=H_H=_)]

3£H (e2'qxH= + F&Hu) , (19)

and is determined by expanding £(H + rl) in powers of _ retaining only terms of O(r/). In
the limit ¢2 << 1,

Tlm, _ 3_I_HvH_

=('+'-C" ('
subject to the leading order boundary condition _ = 0 on y = 4-1, which recovers the

governing system of Concus (1963) for the infinite slot. It is important to note that for this

limiting case the first boundary condition to eq. 18 is O(e) and is ignored. The infinite slot

formulation is thus accurate to O(e) for a finite slot provided 0 _ 90 °.

Numerical Solution Detail

In the numerical solution procedure eq. 17 is discretized based on a fourth-order central-

differencing scheme. For the calculation of the static shape of the free surface H(x, y; B),
the Newton iteration method with successive under-relaxation is used to address the non-

linearity of the governing equation. In determining the eigenvalue, B = Be,., the same

discretization as that used for solving the static interface shape is used and can be ex-

pressed in the following form

[h + BI] _/= O. (20)
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FIGURE 4. Surfaces profiles across container diagonal of a square container for a variety
of contact angles and Bond numbers.

The determinant of the coefficient matrix in eq. 20 is zero at B = Bcr. Since the coefficient

matrix [A] is dependent on the static shape and thus B, the overall solution procedure

involves an iteration between eq. 20 via eq. 18 and the calculation of the static shape,

eq. 17. A bisection method is used to determine Bc_ in the iteration process. It should be
noted that the determination of the critical Bond number has to be based on the solution

from the full domain (i.e. all four solid boundaries included). This is due to the fact that

an asymmetric disturbance leads to the fundamental subharmonic mode instability.

As # decreases towards 45° (or increases towards 135°), the nonlinearity of the static eq.

17 increases dramatically, requiring a smaller relaxation factor for the Newton iterations.

Hence, the run time per case increases as the contact angle deviates from 90 °. For a 60 x 60

grid system, the typical run time per case on an SGI Indigo II with a single-processor is one

hour for contact angles in the vicinity of 90 ° . However, the run time becomes significantly

longer, reaching 24 hours, when the contact angle is close to 45 °. Expectedly, solutions for
Bc_ are found to be symmetric about 0 = 90 °.

RESULTS

In Fig. 4, surface profiles across the diagonal of a square cross-section container (e = 1)

are compared for a variety of Bond numbers for contact angles 86 ° and 60 °. The coordinates

for the figure are normalized by the diagonal of the container and are presented to scale. The

base-state interface shape H(x, y) for the case e = 1, 0 = 60 ° is presented 3-dimensionally

in Fig. 5 for Bcr = 3.0. Slight inflections of the interface near the corners are observed

which can also be discerned in Fig. 4, 0 = 60 °, Bc_ = 3.0. These appear to diminish with
decreasing 0.

8
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FIGURE 5. Surface shape H(x, y; Bcr) for # = 60 ° in a square cross-sectioned container,
_=1.

The numerical results for B_. are presented in Fig. 6 as a function of # for the aspect

ratio e = 1. The numerical results of Concus (1963) for the infinite slot and the right circular

cylinder are also provided via eqs. 1 and 2. The region of stability denoted by the area

below the curves is obviously altered for the rectangular section of this study when compared

to the infinite slot. This is attributable to the restricted range of contact angles allowing

for stable interfaces which cover the solution domain. Further "preliminary" calculations

show that the rapid decrease of B_ towards zero for _ < 48 ° reveals the sensitivity of the

surface to the critical contact angle condition which is satisfied for # < 45 °. This trend is

indicated on Fig. 6 by the dashed line extrapolations from the numerical solutions obtained

for 60 ° < # < 120 °. It is useful to note that for # > 48% B takes normally anticipated

values, O(1). The effect of contact angle hysteresis on such stability results is likely to
delay the instability while equilibrium conditions are established at the contact line. If

the disturbance has temporal periodicity, the effect of hysteresis could be to significantly

increase the stability of the interface, particularly for contact angles near 45 ° . However, as

found in recent space experiments by Concus et al. (1997), extended periods of thermal

and mechanical disturbances in the presence of a steady background acceleration such that

B >_ Bcr will ultimately bring about the predicted instability.

It is important to note that the rectangular geometry of this investigation is funda-

mentally different from the infinite rectangular slot as seen by the limiting case of e _ 0.

One might expect the solution to agree in this limit, however, the presence of the corners

dramatically alters the base state surface profile for # x,_ 45 o, or # 7 135°-

It is also of interest to note that an inflection point appears in the static interface

9
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FIGURE 6. Bet versus 0 for e = 1; • numerical results, -- eqs. 1 and 2 for the infinite

rectangular slot and right circular cylinder, and V and o are eqs. 4 and 5 for the case

= 1, 0 -- 90 °, respectively. Dashed line is extrapolation of numerical results.

shape as a result of the additional space dimension in the solution of the problem in x

and y. Such inflections are not found in the cases of the slot and the cylinder which are

1-dimensional problems where the onset of any inflection of the surface actually signals the

onset of instability, Concus (1964).

The fact that B_ determined numerically agrees with eq. 5 (_7 on Fig. 6) in the limit

0 _ 90 ° is expected and serves in part as a verification of the numerical results. The code

was also "checked" using 90 ° contact angle conditions on opposing faces of the containers

while varying 8 on the other opposing faces. The results from these runs recovers the infinite

slot results of Concus (1963) for all values of the contact angle. For the full numerical

problem, however, for contact angles lower than _ 60 °, the numerical approach employed

experiences convergence difficulties. What is observed is that for 0 < 60 ° (0 > 120 °)

the L2 norm (= I[/-/n+l - Hn[[) of the base state eq. 17 decreases to a minimum and

then proceeds to increase after excessive iterations without achieving machine zero. It is

taken for granted that the steepening of the interface in the corner as the contact angle

decreases, typified by the angle of the interface in the corner measured along the corner

bisector 0e = cos-l(vr2cos0), leads to increased grid resolution uncertainties, increased

nonlinearities in the governing equations, and thus increased run time and roundoff errors.

But these effects should not be appreciable for say 0 _. 55 °, where 0c = 41 °. Since a slight

variation tn Bcr was also detected when 0 < 60 ° for different values of the relaxation factor,

it is our suspicion that the Newton iteration method with under-relaxation may not be the

most robust technique for the system of equations solved herein. As a recourse, a time-

marching scheme is presently being developed to further investigate the numerical issues, l

Regardless, the qualitative nature of the computational results will remain unchanged as

those presented In Fig. 6. With the numerical issues resolved, calculations for Bet will be

XThe dashed line extrapolations of Fig. 6 are actually numerical solution curves deemed "pre-
liminarf in that these experience convergence difficulties.
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completed fora range ofaspectratios,e.

CONCLUSION

The governingequationsand boundary conditionsforthe determinationofthe dynamic

stabilityof capillarysurfacesin rectangularcontainersare extended to 3-dimensionsand

presentedfor numericalsolution.Calculationsfor a square cross-sectionedcontainerare

performed which serveasa model forcontainerspossessinginteriorcorners.Such container-

types are commonly employed in fluidsmanagement systems in space. The resultsreveal

that,though stabilityiscomparable to the circularcylinderforlargecontactangles near

90°,the range of contact anglesyieldingpositivevaluesfor the criticalBond number is

slgnificantlyreduced due to a corner wetting phenomena governed by the Concus-Flnn

condition.Bcr isdetermined tobe O(1) for48° < 0 < 132°,but diminishesrapidlyto zero

as 0 approaches 45° from above,or 135° from below. Computations addressingthe effects

of containeraspectratioe are currentlyunderway.
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