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Abstract

Using an internal-variable formalism as a starting point, we describe the vis-

coelastic extension of a previously-developed viscoplasticity formulation of the com-

plete potential structure type. It is mainly motivated by experimental evidence for

the presence of rate/time effects in the so-called quasilinear, reversible, material re-

sponse range. Several possible generalizations are described, in the general format

of hereditary-integral representations for non-equilibrium, stress-type, state vari-

ables, both for isotropic as well as anisotropic materials. In particular, thorough

discussions are given on the important issues of thermodynamic admissibility re-

quirements for such general descriptions, resulting in a set of explicit mathematical

constraints on the associated kernel (relaxation and creep compliance) functions. In

addition, a number of explicit, integrated forms are derived, under stress and strain

control to facilitate the parametric and qualitative response characteristic studies

reported here, as well as to help identify critical factors in the actual experimental

characterizations from test data that will be reported in Part II.

Key'words: viscoelasticity, hereditary behavior, TIMETAL 21S, nonisothermal,

deformation, multiaxial, thermodynamics
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1 Introduction

A number of advanced material systems (for example metallic, polymer and ceramic

based systems) are currently being researched and evaluated for high temperature air

frame and propulsion system applications. As a result, numerous computational method-

ologies for predicting both deformation and life for these classes of materials are under

development. An integral part of these methodologies is an accurate and computation-

ally efficient constitutive model for the matrix constituent in such systems. Furthermore,

because of the proposed elevated operation temperatures for which these systems are

designed, the required constitutive models must account for both time-dependent and

time-independent deformations. For example considering that most aerospace engine

designs are typically limited to the quasilinear stress and strain regimes, the reversible

time-dependent response component becomes dominate in comparison to the irreversible

component. Alternatively, one can envision another extreme case (e.g., in polymer and

rubber based systems under varying temperatures) in which a purely reversible viscous

response is present. And lastly, an obvious natural extension for general applicability

is the middle ground in which a combined reversible and irreversible representation is

required.

To accomplish this we will extend a previously developed, complete potential based,

framework [1],[2] utilizing internal state variables [[3],[4]] which was put forth for the

derivation of timeAndependent reversible and time-dependent irreversible constitutive

equations. This framework, and consequently the resulting constitutive model, is termed

complete because the existence of the total (integrated) form of the Gibb's complemen-

tary free energy and complementary dissipation potentials are assumed a priori. In

outline form, expressions for the Gibb's thermodynamic and the complementary dissipa-

tion potential functions are assumed in terms of a number of state and internal variables

characterizing the changing internal structure of the material. For instance given the

Gibb's potential in the following form

¢ = _(ai,, a_, T, e_) (I)

and assuming a priori that the inelastic strain is an independent parameter (and

not an internal state variable), for example

(I, 19(o,.i, T ) '= - o,.j_,._+ H (a._,, T) - w(T - To), (2)

an expression for the total strain rate can be obtained by differentiating, that is,

as well as the rate of change of the conjugate internal variables (A_),

d (-0_.
u,.,_

(3)

(4)
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where

and

-c_ -o_E,(a_,T)

OaoOa,., Oa_Oa,.,

-o2¢ -a_ _ (_,T)
Qe_ = 8a_Oo. 7 Oa¢Oo. 7

are the external and internal compliance operators, respectively, and

(5)

(6)

-0 2¢ -0 2/4 (aT, T)

0¢ = Oa_0T = Oa_aT (7)

is the change in the conjugate internal variable (Ae) with temperature. Note the three

terms in eqn. (3) may then be identified from left to right as the elastic (time-independent

reversible), inelastic (irreversible), and thermal expansion components of the total strain

rate, respectively. Thus,

(8)
where

_.".= c,_,,_,, (9)
sj

and

with

_T = M_iT (10)
_J

] (,,)M,,= = t + ,,.,,...
and

t%

wt._ = w + _(T - To) (12)

denoting the instantaneous coefficient of thermal expansion, and d.t (the inelastic strain

rate) is defined separately using the concept of a complementary dissipation potential

_(ao, o_, T). Whereby, given an

(13)

and using the Clausius-Duhem inequality[5]; the flow law becomes

_j = o_ (la)

and the evolutionary laws for the thermodynamic conjugate internal state variables are:



(15)

Utilizing eqn. (4) the internal constitutive rate equations for the internal state variables

are obtained,

where

(16)

] -1 (17)
L.y_ = [QT_] -1 -- L0_ J

Thus, eqns. (14) and (15) represent the flow and evolutionary laws, for an assumed

----_(_j, aT, T), and eqn. (16) the internal constitutive rate equations, given a Gibb's

potential _, wherein both potentials are directly linked through the internal state vari-

ables a_. The specific forms selected thus far for both the Gibb's and complementary

dissipation potentials resulted in a fully associative, multiaxial, nonisothermal, unified

GVIPS (Generalized VIscoplasticity with Potential Structure) model with nonlinear

kinematic hardening [6], [7].

During the detailed experimental program to specify the required material functions

and characterize the associated material parameters for TIMETAL 21S 1, an advanced

titanium-based matrix commonly used in titanium matrix composites (TMCs), it was

discovered that TIMETAL 21S exhibited both a time and temperature dependent re-

versible (linear viscoelastic) and irreversible (viscoplastic) domain. These reversible and

irreversible domains are posited to be delineated by temperature dependent threshold

surfaces, as illustrated in Figure 1 for low, mid and high temperature regimes. In partic-

ular, as opposed to the purely time independent (elastic) behavior within the inner most

threshold surface of Fig. lb, two additional time dependent (reversible and irreversible

mechanisms) will be activated upon traversing the two threshold surfaces shown. As our

previous work has focused on the specification and characterization of the irreversible

domain (i.e., eqns. (13)-(17)) the primary objective of the present study will be to con-

struct, within the context of a complete potential structure, a multiaxial, nonisotherrnal

viscoelastic model to describe the reversible strain component, see eqn. (9), of the total

strain decomposition.

Clearly, this extension represents a very difficult problem [[8],[9]] in view of the multi-

tude of choices available through the general functional forms _ and n, and the complex

interaction between the newly desired reversible viscous response component and the

previous elasto-viscoplastic contributions. In particular, this involves the selection of

the type of additional internal state variables and/or parameters accounting for the new

mechanism, and their corresponding implied partitioning format of the stress and strain

variables (further elaborated on in the following perspective section), within the context

1TIMETAL 21S is a registered trademark of TIMET, Titanium Metals Corporation, Toronto, OH.
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of multiaxial stressstates and in conformity with any thermodynamic admissability
requirements (seeSection 5 and references[[8],[9]] for many pertinent controversial

issues).

The specificmodel construction has been motivated by experimental observations as

discussed in detail in Part II [10] of this report. As an example see Fig. 2 which illus-

trates the rate dependence of the uniaxially obtained Young's Modulus as a function of

temperature. Clearly at elevated temperature the Young's Modulus becomes increasingly

rate dependent, thus indicating a need to include some type of viscoelastic influence into

the deformation model at these temperatures. Another important observation, as shown

in Fig. 2 of Part II [10], is the purely transient time dependent behavior of TIMETAL

21S with no steady state behavior being exhibited within the reversible strain domain

of this material.

Other observations of a similar nature as above, i.e., marked rate and time-dependency

in the so-called quasiHnear range (at relatively low stress levels) have also been made by

other investigators, motivating a number of extensions in constitutive theories. For ex-

ample, these include distinctive static and dynamic moduli, reflecting the load-frequency-

dependent behavior [11]-[12], and the use of an "initial" primary creep response compo-

nent as extension of the well-known model of viscoplasticity theory based on overstress[13].

An outline of the remainder of the paper is as follows: In section 2 we discuss the

significance of deciding a priori how one will partition the required stress and strain

components and how this selection will influence our overall objective. In section 3 a

specific multiaxial, nonisothermal, linear viscoelastic model of the internal-state-variable

type is developed and then reduced and analyzed in section 4. In sections 5 and 6

numerous generalizations pertaining to both the theoretical foundation and numerical

implementation are discussed. Lastly in section 7 a parametric study is conducted using

the simplification (section 4) of the specific model developed in section 3 to illustrate the

importance of a key assumption (i.e., equality of the Poisson's ratio's) and to identify

important factorsin the actual characterizationof the specific-modelput forth.

2 Perspective

Traditionally,for the small-deformation problems considered here, the total strainhas

been partitionedinto an elastic(reversible),an inelastic(irreversible)and thermal (re-

versible)straincomponent, that is:

eij =_ _m ET (18)

where the inelastic strain corresponds to such physical phenomena as time-independent

plastic strain or time-dependent viscoplastic strain (sometimes referred to as creep strain).

Whether a material's phenomenological behavior is simple or complex, a mechanical

model is often of great help in the visualization of that behavior. Here we want to

discuss four such one-dimensional mechanical representations so as to put into perspective



previous work and motivate the construction of the present viscoelastic model. To this

end, as shown in Fig. 3, a viscous element is shown pictorially by a dashpot whereas a

linear-elastic element is pictured as a spring. For each element of the mechanical model,

change in length represents strain in the material and force represents stress.

Let us begin with a uniaxial mechanical model that is representative of numerous in-

ternal state variable viscoplastic models available in the literature (e.g.,[4]), in particular

the recent unified GVIPS model put forth by the authors[J6], [7]]. Fig. 3a presents a

generalized nonlinear four element model (a spring in series with a nonlinear Maxwell

element in parallel with a nonlinear dashpot) in which the strain is partitioned into an

elastic and inelastic strain component; wherein implicit in the inelastic strain component

is a partitioning of the stress into an internal stress (a) and effective stress (a - a) com-

ponent. The resulting system of differential equations (total strain, flow, and evolution

laws) are also shown in Fig. 3a, where it is clear that the flow and evolutionary laws are

identical in structure (provided that the material parameters (e.g., El, _2) are appropri-

ately modified to become state dependent) to the GVIPS form, e.g., in the evolutionary

law a competitive mechanism between hardening and thermal recovery is present.

Conversely, if we examine the classical four element (non)linear viscoelastic model

[[14],[11]], as illustrated in Fig. 3b, which is capable of producing a similar elastic, primary

and secondary creep history, we see that the resulting form of the flow and evolution

laws are quite different. This difference is predicated upon the further partitioning of

the inelastic strain component into a primary and secondary component, achieved by

placing a Kelvin model in series with a dashpot, thus resulting in a more complex flow

law and restrictive evolution law. Comparing the resulting equations of Fig. 3b with

that of Fig. 3a, it is immediately apparent that one should not assume (as is often

done) that commonly employed unified viscoplastic formulations (of which Fig. 3a is

representative) are merely extensions of this classical four element configuration to the
irreversible domain.

As the emphasis in this study will be on developing a transient viscoelastic model,

let us compare two three element configurations that give the same "classical ''_- uniaxial

behavior in both creep and relaxation. The first can be immediately obtained from a

truncation of the four element model presented in Fig. 3b. This truncation is obtained

by setting 7/4 to infinity and results, as before, in a partitioning of the applied strain into

an elastic and primary creep regime. Alternatively, one can construct a complementary

configuration in which the stress (instead of the strain) is partitioned into an elastic and

viscous part. This model is known as the standard linear (n = 1) solid model[ll] and

is shown in Fig. 4a along with the pertinent one-dimensional governing equations. The

one dimensional solution to the governing systems of equations for Figs. 3b and 4a,

for the special case of linear (n = 1) viscoelasticity, is illustrated in Fig. 4b for both

models and will be subsequently used to validate the one dimensional simplification of

2By classical we mean, in conformity with the classical rheological model we interpret the uniaxial

results to imply complete neglection of the strain component interactions (i.e., no Poisson's effect and a

truly one-dimensional response)
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the proposed multiaxial theory. Clearly, both approaches (i.e.,partitioningof the stress

or strain)are capable of producing the desired uniaxial response (seethe table in Fig.

4b); however, with an eye toward integratingthe resultingviscoelastictheory with the

author's previously proposed GVIPS model, the partitioningof the stress (standard

linearmodel) approach ispreferred.

This preference isobvious when one recallsthe four element model of Fig. 3a, the

decomposition of the total straininto reversibleand irreversiblecomponents, and our

desireto maintain the current GVIPS representationforthe irreversiblecomponent of

strain.Consequently, we willmerely replacethe singlespringelement in Fig. 3a with the

standard linearmodel of Fig. 4a, as illustratedin Fig. 5. Mathematically thisisaccom-

plished by employing an additivedecomposition for the two underlying thermodynamic

potentials(i.e.,complementary energy/Gibb's (seeeqn. 1) and dissipationfunctions(see

eqn.. 13) intoreversibleand irreversibleparts,that is• = _g + _xR and _ = _R + _xR;

where @IR = -ai#e_#- H (0b, T ) and f_s = _(cri#, oh, T) are defined as before in eqns.

(2) and (13). Henceforth, we will concentrate only on the construction of the multiax-

ial, nonisothermal, linear viscoelastic representation of the now (time-dependent) viscous

reversible strain component, i.e., _ and fir.

3 Multiaxial Nonisothermal Theory

Here we willrestrictour discussionto the reversibleviscouspart,where the corresponding

hmctions @R and f/R are assumed a priori to be in conformity with Fig. 4a. Further-

more, for concisenessthe discussionislimited to a case involvingsmall deformations (in

which the initialstate isassumed to be stressfree)and a linear viscous element (which

isin accordance with the experimental evidence described in Part II).A Cartesian coor-

dinate referenceframe and index notation are utilized(repeated Roman subscriptsimply

summation).

The reversible contribution to the Gibb's potential takes the following partitioned

form

1 , 1 1 m- 1 m O'_k "_

= m s = -- aij _ij ;3Cn CR(a_j,a_i,T) -_a_iE_,,_,-gaoM_,.,a;, ,, ,z a_w(T-To) (19)

where the firstterm represents the stored energy in the spring element, the second,

the stored energy in the Maxwell element, and the third,the energy dissipatedby the

dashpot within the Maxwell element. The equations of state for the conjugate strains

(i.e.,strains in the spring and Maxwell elements) can be obtained by differentiating
rn s -ova and

with respect to the associated variables,a_j and aij, respectively;i.e.,eij= oa$#

e_=_ In rateform,
_ •

d -o_a
•s = E_,._a,.° + Oi_T (20)



•_ d(-OCR I -1 ._, ._ _"
eq = dr" cOaT " = M_oa;. + eq + Oq T

with

M M-1 ]
-0 q,, _,_

(21)

(22)

(23)

(12)), andwhere w_ denotes the instantaneous coefficient of thermal expansion (see eqn.

g_j (the dashpot strain rate) is defined separately using the concept of a complementary

viscoelastic dissipation potential _R(a_,T).
Given

1 m-1 m

--o_R -1

oaT = %,.,a;:,

(21) and making use of the fact that

(25)

the flow law for the dashpot becomes

(25) into eqn.Thus substituting eqn.

a_ = aq - a_# (26)

due to the partitioning of the stress, eqn. (21) becomes,

•_ -I • ._ -I M" (27)eq = Mq,°(a,o - a;o) + _lq,o(a,. - _o) + 0q T

As a kinematic compatibility constraint, the total strain is equivalent to the strain in the

spring and in the Maxwell element, i.e.,

eq = e_ - ei_

the evolution of the internal stress(aZi ) can be derived.

O'_l -1 • -I 0ij? }= EMl,,ij{M_,.oa,.o + r/q,.o(a,.o - a,."o) +

where

(28)

(29)

and

-I -I
EMk,o = {E_-l_# -{- M_,q}

-oE, OM&

(30)

(31)

Finally,using eqns. (20) and (29) we obtain the desired multiaxialnonisothermal vis-

coelasticstress-strainexpression,



with the evolution of internal stress given by eqn. (29).

Now assuming an isotropic material, the general form for the isotropic material

tensor (in terms of the bulk modulus K and shear modulus G) is as follows:

2

C,j_z = (gc - -_Gc)6,j6k, + 2Gc(_fe$_l + 6,,6ik) (33)

where the subscript on the bulk and shear modulus (i.e., C) will always be indicative of

the particular material tensor being replaced (e.g., C_i,z ). Similarly, one can write the

general isotropic stress-strain relations as follows:

1 1 "a_ 1
or

(34)

(35)

Utilizing these above relations and performing a number of algebraic manipulations on

eqn. (32) the desired isotropic, multiaxial, nonisothermal, viscoelastic stress-strain ex-

pressions can be obtained, that is

KEdhk6i# + 2GE (di/ 1 1 [KEM GEM] GEMd.
- ]dkk&i) = 5 [ _ _MMJ akk6_#+ _ # + (36)

1 [ gEM GEM 1 GEM s
i _ C_ J (_ - _';)_'_+ -55 (_'_- _J) +

G G G _ G s G

where the notation for the derivative with respect to temperature of the bulk and shear

modulus is defined as

C_, G_E' M (T) (38)
M _ _GE, M(T)

8T

such that if K and G are temperature independent, i.e., _ = 0, /_E,/_M and G_E, G_M

are infinity and thus the temperature rate term ([/') will vanish.

I_' M (T) (37)
K_E,M --- OK_, _(T)

8T



4 Subspace Simplification

If we consider a triaxial (principle) state of stress and isothermal conditions (T=0), eqns.

(36) can be transformed into the following system

Y = DX (39)

:X+AX = AL+._,

with (') denoting the time derivative and

(e11)x L( 11)Y = e= , = = °22 (40)

e33 _33

D

3KE + GE

9GEKE

b

A= a

a

_ (SKE--2GE) ]

1 2(SK_+GE)
_ (SK_-2c_) _ (SK_-2CE)

2(3KE+GE ) 2(3KE +GE )

_ (SK_- 2CE)
2(SKE+CE) 1

a a

b a ,

a b

(ah )a&

-- (3KE--2GE )

2(3KE+GB)

1

_ (SUE-2UE)
2(SKs+_s)

a

$,---- a

a

a

(41)

(42)

where

1 [gEM

1 [KEM
_= 31-_

GEM]

G. J'

GEM]

GM J '

b=31. g,., + G,.,.!

b= 3 / g,,, + GM-/

(43)

(44)

Now as the matrix A is real, symmetric and positive definite, then we know that

1) its eigenvalues ()h, A2, ...) are all real and positive, 2) its eigenvectors can be chosen

orthonormal and 3) A -- NAN-lwhere A is a diagonal matrix containing the eigenvalues

of A. Consequently, if we let

Z = N-Ix, 2; = N-I:X (45)

eqn. (39) can be rewritten as

+ AZ = N-I(AL + _.l'_) (46)

and solving for Z we obtain
Z = Ce -At -{-Z part_'ular (47)

10



where the form of 7_2'_ti_a_will depend upon the applied loading vector L.

transforming back to the real space X, we obtain the desired general solution

X = NCe -At + X p=_'_'"

with

Y = DNCe -^t + DX _'_i_a=_

Finally,

(48)

4.1 Creep History

As an example, let us examine the case when the applied load is linear in time, i.e.,

L = fit+L"
L=fl

wherein the (3xl) vectors/9 and L" are prescribed time invariant constants; thus eqn.

(46) maybe rewritten as

+ AZ = N-I[A/_t + Aft + AL*]. (49)

Solving for the particular solution of eqn. (49) we obtain

Zp = A -I [(tI- A -I) N-1Afl + N-I(._ + AL')]

and transforming back to X we obtain

X p = fit - A-I_- A_] + L*

(50)

(51)

so that in this case

X = Ne-_C + fit- A-I_- ._/_] + L ° (52)

where the coefficient vector C must still be solved for, given a set of initial conditions.

For instance assuming that we start at zero stress and apply a constant load rate and

then at time equal to hold the load constant (i.e., a typical stress controlled creep test)

we would obtain the following, that is for: L* = 0 and X = 0, _ _ 0 at t ----0 we get

C = N-IA-I [fl- .Aft]

and

X = (Ne-^tN -1- I) A -1 [fl- -_fl] + fit;

and for t _> to, (fl = 0 and L* _ O) we get

C = [Ne-At°] -1 [Xt0 - L']

and

X=Ne-At{[Ne-"_]-Z[Xto-L*]}+L*;

(53)

0 < t < to (54)

(55)

t _ to (56)

11



where

with

Xto -- (Ne -At°N-1 - I) A -1 [/3- ,A3] +/3to (57)

Y = DX

as before. Or alternatively,we could assume the classiccreep case involvingan instanta-

neous load-up to a constant stressvalue L* _ 0 at to= 0 and thereforeaftertaking the

appropriate limitsas to approaches zero (i.e.,liraXto = A/3*) eqn. (55) becomes

and eqn. (56)

C = N-I[AIg*-L *]

X = Ne-^tN-I[A,8*-L *] + L*

X = {Ne-^tN-I[A - I]+ I}L*

and if_*= L* :

(58)

(59)

(60)

4.1.1 Uniaxial Simplification

Now if we further restrict ourselves to a purely uniaxial creep loading (e.g., L] = (711 ---_ U*

& bn = fit = _; a22 = a_ =dm = d33 = 0) case and make use of the symmetry resulting
from the previous assumption of an isotropic material (i.e., o_m = oJ33, _ = _3), the

various matrices and vectors take on the following reduced forms:

A [b2°] 2K  61)a a+b =-3 K'-G* 2K*+G*

A-' 1 [ G'+ 2K" -2(K'-G*) ] (62)
- 3G'K* [ -(K*-(7") 2G* + K* J

where

K* 0 ]A= 0 G*

_=

S --

1
N=

_ 2aa a+_

3= to 0

_1_-_ , N-l=__
-'_

1 [ R'+2G* 2R* - 2(_" ]--3 R*-G" 2R*+0*

{1}, if=L* =a" 0

GEM K* = gEM O* -- GEM

G_ ' KM ' G_

(64)

(65)

(66)

12



So that

i[ -K.t+2e-o. 2 _ ].Ne-AtN -1 = _ e_K.t _ e_G.t 2e-K't + e-G t
(67)

A_l[f___./_]_ a" [ [1-([f'+2G'.)](2K'+G')+2(K'-G°)(k'-(_') 1_._._0t-t_-/_.+_._](_.-_._-¢_"+_'_'- _'_
(6s)

and in the classic creep case (i.e., eqn. (60))

a° 3 + ([<* - l)e -K't -- 2(1 - (_')e -u't) 1

(K" - 1)e -K't -I- (1 - C_.°)e-u't ] (69)X = -_- (/T/* - 1)e -K't + (I - Gr)e-G't

and

1+ ](1- 2_,)(_"- l)e-_":_(_+ _)(1- O'_)e?_'_..]a__:_* --us + 1(1 -- 2vs)(K" - 1)e -Kt + _(1 + us)(1 -G')e -_'" j (70)Y= Es --us + _(1 -- 2vs)(/_" -- 1)e -K't + _(1 + v,)(1 -G')e -c't

where

K °=E*u, G °=E.v*, [<.=_*p, _'=_,*p* (71)

EM ( EMEs )1 EM Es (72)
E* - -_ = \ E'-M -+ Tgs . -_ ' E° - E M E M + E s

(1 - 2vn) (1 + vn) EMVs + EsvM (73)
V = V* -_- VEM =

(1- z_)' (1+ _)'
(1 - 2VM) (1 + VM)

P = p* __
(1- 2UEM) ' (1 + UEM)

and D was taken to be

111D = _ --Us 1 --Us
--U, --U_ 1

Es + EM

(74)

(75)

Now in order to recover the "classical"one-dimensional linearviscoelasticsolution

for an instantaneously (step-function)applied creep load, see Fig.4b, allPoisson's ratios

must be taken to be zero (i.e., us = um = u_ = 0, leading to a=0 and K* = G* =

E °, /T/° = G* = E*). Consequently, eqn. (70) reduces directly to the simple expression

given in Fig. 4b, that is

1- (_"- 1)e-E'']

_" 0 j (76)Y = -_s 0

13



where E ° (i.e., 1) and E° are defined in eqn.(72). Alternatively, we can rewrite eqn.

(70) in terms of individual Poisson's ratios and element stittnesses, to obtain the initial

or instantaneous response (that is at t=O):

0 + _) - (1+ 2vm)C_m+ _vo)-- 2_o[(_m+ _°) -- _m(1+ _)]
Y = Co (_ + _,)(1 + 2_o) + (1+ _)[Vo(_ - 1)- _l (77)

where

Co _ 0"*

Es[(1 + a) - 2(v= + aVo)][(1 + a) + (v,_ + exv°)]

Then if we assume v° _ v,_, but a = 1 then,

o.
-v,(l + urn)(1- 2v,n) + --v..,(l+ I.,,)(1- 2Vo)

Y = 2Es[(2 - (v,_ + v°) - (vrn + v.) 2] -v,(1 + v,n)(1 - 2urn) +-urn(1 + v.)(1 - 2v°)

(r8)
or ifwe take uo ----u_.= u,but cz_ 1 then,

(i} {i}Cr* (7 °

Y = E,(1 + c_) -v -- -v (79)-v E° + E,_ -v

Consequently, the above expressions provide us with an alternative means (instead of

direct experimental measurement) to determine the proper assumption for the Poisson's

ratios, given the experimentally measurable dynamic modulus. It is interesting to note

that if the assumption of constant and equal Poisson's ratios is accurate then eqn. (79)

proves that the dynamic modulus is equal to the summation of Ea and E_,, i.e., E0 --

Eo + E._.

4.2 Relaxation History

Alternatively, considering a triaxial (principle) state of strain and isothermal conditions,

a similar set of expressions as those shown in eqns. (39)-(60) can be obtained. That is,

where

X = D-1y (80)

I_,+BL = I_+BD-1y
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and As--- N_IBNs with Ns being the eigenvector matrix of B . Then assuming the

applied strain field is linear in time, i.e.,

Y = _t+Y*

=¢

we obtain the counterparts to eqns. (54), (56), and (60), respectively:

L = (NBe-^StN_ 1 - I) B -1 [D-1¢ - 13¢] + D-let; 0 < t < to (81)

L = N,e -^B' { [N,e-^St°] -1 [Lt0 - D-1Y *] } + D-1Y'; t _ to (82)

and

L = (NBe-ABtN_I[]3 -- D -1] + D-1}Y'; if to -- 0 (83)

The above general triaxial forms will prove very useful in conducting parametric

studies under multiaxial states of stress and in providing insight into identifying the

most discriminating experimental validation test conditions. In fact, all the results to be

given later are generated using these principle field expressions.

5 General Characteristics and Equivalent Hereditary

Integral Representation

Largely motivated by the experimental observations alluded to earlier (see Fig. 2 and Part

II) we have elected to focus our attention on a single internal dissipative mode in the above

derivations. However, the underlying thermodynamic formalism [[5],[9]] is su/Bciently

general to provide for a number of possible extensions. Several such generalizations are

described below, together with the exploitation of their "equivalent" integral forms within

the modern theories of materials with memory; i.e._ hereditary integral representations,

e.g. [9]. In particular , a difficult question concerns here the proper conditions to be

imposed on the kernels associated with general hereditary integrals, and in this connection

the distinct advantages offered by the present formulation will become apparent.

5.1 Limiting and Equilibrium States

As a simple theological interpretation the assumed structure of the (complementary)

free energy, eqn.(19), leads to a local additive decomposition of the stress tensor into

an equilibrium stress, o_, and a non-equilibrium stress, a m, see chapter 2 of [15]

and Kremple formulation in [13]. The non-equilibrium stress is governed by a linear,

dissipative, evolution equation exhibiting the well known fading memory phenomenon..

This is characterized by a viscous-like environment in which microstructural changes

take place within a temperature dependent quasi-linear regime, as illustrated in Fig. 1.
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In particular, for arbitrary deformations, from eqns. (26) and (29), the condition for

thermodynamic equilibrium is when

o-" o (84)

This in turn results in _j [t...,oo= 0 and hence the vanishing of the dissipation at equilib-

rium, i.e., _R It--.oo= O. This is in conformity with the thermoelastic (time independent

reversible) limit put forth by Truesdell and NoU [5] wherein the thermodynamic process

becomes reversible, and the material reacts fully thermoelastically. This limit is depicted

schematically in Fig. 6 by the _lid line, and the following one-dimensional expression ,

that is ,

e_,,l = EolaTz(T) + E_o 1 (a - aT, iT)) (85)

where E0 is the initial (instantaneous or dynamic) stillness modulus, Eoo is the stiffness

modulus at in_finite time (Es), arz is the upper stress limit delineating time independent

reversible behavior from time dependent, and () denote Macauley bracket.

5.2 Model Generalizations

For simplicity, and without loss of generality, only the isothermal conditions are consid-

ered in the following discussions. Furthermore, for the case of isotropy (see also Remark

2) we assume all the fourth-order tensors of moduli E, M, 17 to be coaxial. This, to-

gether with the linear structure of eqns. (27) and (29), enables us to express the internal

variable, a m, in terms of a simple convolution integral:

t -('-°) d-_[err" = e---_ 17*E-ltr]ds (86)

or

jr0t -_ d . (87)an= e e]ds

where EM = _ = _*, M = _r/1 = r/*are assumed with _- and p as the positive relaxation
times.

With this convolution representation many generalizations are possible once an

appropriate choice of its kernel is made. For example, several relaxation times may be

introduced by replacing the single exponential term in eqn. (86) with the discrete-

relaxation-spectrum kernel,
N -t

g(t) = (88)
j=l

The most general form, that is a continuous spectrum of relaxation times could al-

ways be used [[12],[8]] . Similarly _rm, in eqn. (86), maybe defined by convolution

forms involving fractional derivatives [[16],[17],[9]], or any power type of kernels,
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as in [[12],[9],[18]]. Furthermore, it has been demonstrated by Roscoe[19] that, as the

number of terms increases, the discrete-spectrum model can approximate any given re-

laxation/creep hmction with any desired accuracy, thus obviating the need to further

study more complex theologic models. In addition, very efficient general methods are

presently available [e.g., [12] and [20]] to determine simplified continuous spectra

(i.e., with small order or few terms that can very well approximate fairly complicated

formulae fitted to the experimental data (e.g., creep law's of the power or log-power

type) Hence, from both the physical (mechanical-analogs) as well as the computational

(i.e., recursive formulas with minimal storage requirements for numerical integration;

see section 6 for details) standpoints the differential models (and their correspond-

ing exponential-integral- forms, as in eqns. (86-88)), are certainly more appealing for

applications..

Remark 1 As a consequence of the assumed coaxiality of material-moduli tensors E,

M, and rl, the equivalent viscoelastic Poisson's ratio is rendered constant (i.e., time-

independent), thus leading to a neat separation of the characteristic relaxation/retardation

times p and T (see eqns. 86 and 87). Despite the lack of extensive experiments on

this specific aspect, there is indication supporting a very small (if any) time-dependent

change in Poisson's ratio. In addition, several other arguments in its favor have been

also made; e.g., in the solution of boundary-value problems [8]. On the other hand,

directly assuming a time-invariant Poisson's ratio is fully consistent with the important

theoretical requirement of "damping-extent ordering"; i.e., damping in pure shear is

larger than in extension, which in turn is larger than damping in bulk, a conclusion that

can be reached without any consideration of Poisson's ratio. This is a direct consequence

of the "compliance" nature of Poisson's ratio as a material parameter; e.g., implying

that the lateral contraction must lag behind the imposed sinusoidalIy oscillating strain in

experiments involving harmonic excitations. This is equivalent to the conclusion that the

imaginary part of the complex, frequency-dependent, Poisson's ratio must be negative;

an issue that has resulted in much controversy in the earlier literature on this subject;

e.g.,see[[iZ],[Zl]]

Remark 2 As a corollary to the above remark, one can also introduce material anisotropy;

i.e., by simply utilizing the same anisotropic forms for the three tensors E, M, and r I.

All other equations, particularly eqns. (86) and (87) remain unchanged. For example,

with transverse isotropy, we have (see [_2]) ,where

a 2 -
(89)

where

1- 1 6
P = I - _6 ® 6; I = Iijk, = _(6ik 5, + 6i_6_k) (89a)
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Q =Qilkl = l(De6_, + Da61_ + Di_6a + DI,6e) - 2DiiDk,
-/.

15 $®

(SOb)

(89e)

with D = d ® d; d =unit vector defining the "preferred direction" or normal to the plane

of isotropy and where c_,B,A,G,, and Gt are elastic moduli and the symbol ® represents

a tensor product.

Remark 3 For many materials, including metals and polymer-based compounds, per-

haps the most physically-appealing separation of relaxation mechanisms, according to eqn.

(88), is that for viscoelastic deviatoric and purely-elastic volumetric response; i.e., with

finite and infinite relaxation times, respectively (7- and p in separate "integral" equations

for each in eqns. 86 and 87).

Remark 4 With a view toward capturing a wider range of temperature a further gen-

eralization, providing flexibility for delineating a time dependent and time independent

regime (see Fig. 1), would be to explicitly take

1 m -1 m \

where the cut off value is taken as

no(T) = 1 TI -1 T1

(90)

The resulting implication would then be reflected by a distinct change in material modulus

within the now partitioned quasilinear regime as illustrated in Fig. 6 and eqn. (85).

Remark 5 It is interesting to note that the same format of additive-decomposition

of "equilibrium-plus-nonequilibrium" stresses and associated energy contributions (Eqns.

19) will remain, even under conditions of large viscoelastic deformations (using second

Piola Kirchhoff stresses). This is in conformity with the mathematically consistent and

(physically-motivated) approach of multiplicative split of deformations, that is the de-

formation gradient tensors (and related "right" Green deformation tensors). Note that

under conditions of small deformations, the latter (multiplicative) decomposition leads

directly to its present "linearized" form of eqn. 8. For example, see [_3] for applica-

tions to viscoelasticity; and [Y_J]for alternatives of strain partitioning under more general

conditions of large deformation elastoplasticity.
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5.3 Thermodynamic Admissibility; Work and Dissipation In-

equalities

When general forms of hereditary convolution representations are utilized, the question

of thermodynamic admissibility conditions becomes crucial. This subject has a long

standing history in the literature on viscoelasticity [e.g., [8], [9], [25]-[28]]. For example,

considering the one-dimensional case for simplicity (trivially generalized to the multi-

axial case), Rabotnov [9] and Breuer and Onat [25], have formulated the sufficient (but

not necessary) condition of positive work; wherein

/0 t
act ) = @(t- s)_(s)ds (91)

I'W = a(s)_/(s)ds >_ 0 (92)

and where a and "yare the one-component (non-equilibritun)stress(see eqn. (87)) and

strain field, respectively, and @(t) is a general relaxation kernel. Further conditions

involving the nonnegative definiteness and strict monotonicity and convexity of @(t)

have been also added:

@(s) _> O, @'(s)<O, (93)

@"(s) >_ O, for any s > 0 (94)

These are typically derived by considering step-loading strain functions. However, in

order to define a complete set of conditions on _(t) a more comprehensive set of conceived

loading programs should be utilized; i.e., a sequence of many constant-strain steps of

alternating signs, occurring at times t = 0, h, 2h, ..., nh in the limit h --* 0, thus leading

to the use of the theory of distributions [[29], [30]] for generalized/singularity loading

functions (delta, dipole, ... functions) x/,(s) = 6(") -- _ (see Fig. 7 for an illustration).

Together with the requirement of fading memory, it can be shown that this leads to

more conditions of the type

(-i) _ >_0, s > 0, n=0,1,2... (95)

The above condition is simply derived as follows. With _ = 6("),the first of eqn. (92)

gives a(t) = @(")(t), whose sign must then be matched to that dictated by the fading-

memory assumption. To this end, and depending on whether "n" is even (or odd), we

note that a strain-rate history X/(s) = 6('_)(s) is expected to give, for t > nh (in the limit

h --. 0), a nonnegative (nonpositive) stress response, in accordance with a fading memory

hypothesis for a strain-rate history having identical (in magnitude, but opposite signs)

changes, with the more recent being positive (or negative). In their present form, the

above conditions (eqns. (95)) define a completely monotonic function. Although this

excludes some of the nonstandard relaxation functions (e.g., used in instability studies of
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shockwave frontsin viscoelasticcomposites [[28],[31]]),the above conditionswilleliminate

any physicallyunrealisticrepresentations,such as "negative" viscosityin the equivalent

mechanical analog of seriesof springs/dashpots [27].Itisimportant to note that utilizing

the internal-variableformalism, i.e.,with the complementary energy and dissipationrate

functions discussed herein, allof the above conditions are automatically satisfiedonce

the positive-definitenessand non-negativeness of the elastic(Ei#k_,Mi#k_) and viscosity

(_}i#kz)moduli are ensured, respectively.

As an alternativeto the above derivation,a more rigorous mathematical approach

can be utilizedhere. Itsformal settingisthat for functionalanalysisof the problem of

evolution with linearoperators using the semigroup theory (e.g.,[32]).For the present

case,the semigroup corresponds to the convolution operator,Tc+s --T¢ o To for mapping

composition,with {Tt_/----(_._)(t)},t _> 0,where "," indicatesconvolution,and subscript

and argument "t" indicatethe parameter forthisone-parameter family {} of continuous

linearoperators. Aside from a number of technicalconditions that are standard in the

literatureof semigroup theory,there are two important conditions here. The firststems

from the existence of the natural, nonnegative, semi-norm induced by the associated

inner product; i.e.,here thiscorresponds to the positive work condition in eqn. (92)

I'
Using the history "_(s) = _5('_)(s), and carefully accounting for the singularity d 6(n)(s)

in calculating the inner product, we use (cr(s) -- _("))

w =< _,q >= (_(")•q)(0)

or

w = (_¢")• $¢"))(0)= (-I)_"_(_(0) _>0 (97)

where _(s) = _(-s) = 6(s) = reflexivemapping of Dirac's distributionor 6- function,

and (0) indicatesfunctions evaluated at t=0. Generalizationfrom initial(zero)to any

fixed (time a) time istrivial,through the convolution translationrule (_ • 6)(s - a) =

(_(s) • 6(s - a)).Thus we get from (97),for any general time t,

(-1)2"_(_)(t) _>0 t > 0 (98)

Following a similar procedure, the second condition, pertaining to the dissipativity

(contractivity)of the associated infinitesimalgenerator [32], here reduced simply to the

dissipation inequality, e.g.,see fly,in eqn. (9):

_'_V = -- < "7, DtTt'_ >

= -(_, _)(o)
d_

= _(_c.), __, _c-))(0)
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or using convolution-time-shift properties

_'_V = --1I/(2n+1)(t) _> 0 (99)

for any t >_ 0.

The above conditions in (98) and (99) were obtained under very general conditions;

they are applicable irrespective of the extent or type of material memory implied by the

use of general kernels in eqns. (86) and (87). Remarkably, they have combined to give

exactly the same conditions of the nonnegative (or nonpositive) characteristics for even

(or odd) order time derivatives of the kernel functions.

Remark 6 Starting from the additive decomposition for stress in eqn. (26), one

can then adopt any general kernel in the equation defining the integral form of the

nonequilibrium stress, a m (see eqn. (87)), and proceed to use the constraint eqns.

(98) and (99), with a" and e replacing a and $, respectively, as formal definitions

for the stored energy (the complementary Gibb's function follows through a con-

ventional Legendre transformation) and viscous dissipation function, respectively.

This has two main advantages. Firstly, the direct definition, specially for the stored

energy, will alleviate the well-known difficulties that may arise in attempting to de-

rive them using alternative approaches (often wish further assumptions), e.g., see

[[8],[9]]. Secondly, satisfying the shown inequalities in eqns. (98) and (99) will also

automatically ensure thermodynamic admissibility.

Remark 7 In conjunction with the previous remark, and generalizing to multiaxial

cases, i.e., with e( s) = 6('O (S)eo where eo is the fixed "strain-direction" tensors. We

further need the positive (semi) definiteness of tensors E, M, r/ (in addition to eqns.

(98) and (99)) for full compliance with the thermodynamic admissibility conditions.

6 Recursive Algorithm For Numerical Integration

Considering the internal variables, the key aspect in the formulation of discrete time

stepping procedures concerns the evaluation of the convolution integral in eqn.(86). In

the present context, and utilizing the strain-driven form in eqn.(87), as typical in finite-

element computations, the crucial observation is that the following recursive relation

holds, for advancing the solution from step t, to t.+l with At = t_+i - t_ :

t.+a _._+at-.) d .O'nm'+l = e P  ]ds

fo"= e [_*e]ds + J_,

21



or

o7+ = . ,,7 + ,7"Z e (100)
where Ae = e_+l - _ is the given strain increment in the step. In the second term of

eqn.(100), the midpoint rule, known for its second-order accuracy[ [33],[34]] has been

used to linearly approximate the derivative.

Note that the above algorithm requires the values of cr_ as the only historical data

to be stored. Also, that this scheme provides for unconditionally stable[J33],[34],[35]]

time stepping as well as the correct limits for large and vanishingly small times.

7 Parametric Study

Here we will utilize eqns.(54) and (56) to conduct creep parametric studies to study

the influence of the various material parameters with an eye toward providing guidance

and insight into the experimental characterization of the proposed model. Basically six

material parameters will be assessed, i.e., E,,F__,F__, v,, v_, and v_; however, in keeping

with our previous discussion (see eqns. (86) and (87)) F_ and F__ will be studied in the

context of their respective material time clocks (i.e., relaxation and creep (retardation)

times) pI---- M-I_/and rI----- EM-I_/, respectively, and their ratio c_I- (_-1)I-- E-1M.

Such a reduction can be accomplished only if we assume all Poisson's ratios to be equal,

i.e., v ----vs -----v,_ = v_, and then take the ratio of the various moduli tensors as indicated

above. In this way, eqns. (69) and (70) are reduced, such that in the case of uniaxial

creep X and Y become:

i]x = o (1 - (7)e-;)

a* ap , 1 ]Y = _(1- (v)e-;) _-

(101)

(102)

and the parametric study is reduced to the investigation of only four independent para-

meters, that is, E° (or E), r, p, and v. In all creep test simulations the load (stress) was

applied along the 11 direction, at a rate of 0.5 ksi/sec, to a constant level of 1 ksi and than

held fixed for a given duration of typically 10r. The parametric study begins with the

influence of one's choice for the various Poisson's ratios and is then followed by the effect

of the infinite elastic stiffness (Ee), the influence of the stiffness of the dashpot (viscous)

element relative to the nonviscous stif]_nesses (i.e., r), and then lastly the influence of the

viscous to the nonviscous stiffness within the Maxwell element itself (i.e., p). Note that

the variations of these parameters can be interpreted as simulating the behavior of the

model over a given temperature range, as this would be a mechanism that could cause

such a perturbation in the various moduli and Poisson's ratios.
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7.1 Effect of Poisson's Ratios

It is important to note that even with the restrictions to isotropy and uniaxial loading

there remain in the general forms of eqns. (70) significant triaxiality and interaction

effects among the various internal stress and strain components for nonzero and distinct

Poisson's ratios of the different elastic and viscous elements. To investigate this interac-

tion behavior, we examined the seven cases given in Table 1, where the stillness values

were fixed at base line values (assumed based on Fig. 2b of Part II [10]) while the values

of the Poisson's ratios were changed.

Case

1

2

3

4

5

6

7

Table 1 Mate_Ll

E. (k i)
mmmeCera reed for relml_ genersted in Fip. 8-18.

p (sec) F_ (ksi-sec)
2833475. 666.78500. 8500. 333.35

,, _, ,,

,, ,, _, ,, ,_

v, v,n v n
0 0 0

0.2 0.2 0.2

0.3 0.3 0.3

0.4 0.4 0.4

0.49 0.3 0.3

0.3 0.3 0.49

0.3 0.49 0.49

The creep results for cases 1 through 4 are shown in Figs. 8-12, where Fig. 8 shows the

stress versus strain, Figs. 9 and 10 the 11- and 22-strain versus time history, Figs. 11

the equilibrium stress (stress in the spring element) in the 11 direction versus time, and

finally Fig. 12 the effective overall Poisson's ratio versus time. Examining these figures

and eqns. (101) and (102), it is clear that when the individual Poisson's ratios are all

equal:

The stress versus strain behavior is unaffected, irrespective of the value of Poisson's

ratio taken, as is the strain in the 11 direction and the equilibrium stress in all

directions.

• The 22 (shown here) and 33 strain component is, as expected, highly influenced by
the value of the Poisson's ratio chosen.

Only primary creep response is generated, with this transient period ending after

approximately 7T, when the equilibrium stress in the loading direction becomes

equal to the applied stress in that direction, i.e., the elastic limit of the material is

reached.

The equilibrium stress in the transverse directions are zero, as expected given that

the material is homogenous and the applied stress in those directions are zero.

The effective Poisson's ratio is independent of time and equal to the Poisson's

ratios of the individual elements.
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Considering three additional cases (i.e., cases 5, 6,and 7, respectively) in which, 1)

the single spring element is taken to be purely deviatoric, 2) the viscous element in the

Maxwell element is deviatoric and 3) the entire Maxwell element is taken to be purely

deviatoric (i.e., vm = v_ _ 0.5). Note that in these cases the material is, in essence,

implicitly assumed to be inhomogeneous. Consequently, the specialized uniaxial forms

in eqns. (101) and (102) are not applicable and the more complex but general eqns.(69)

and (70) must be used. The results for cases 1, 5, 6 and 7 of Table 1 are shown in Figs.

13 through 18. Examining these figures one immediately sees that if the Poisson's ratios

are not all taken equal to one another:

The initial effective stiffness can be increased (see Fig. 13).

The time required to reach the elastic limit can increase to as much as 100r, as

there is likely to be more than a single internal dock present (see G* and K*).

Although the total accumulated 11 strain, and 11 and 22 equilibrium stress com-

ponents are the same as before, the transient portions are highly influenced by the

assumed value of the various Poisson's ratios. In particular note the difference in

the sign of the equilibrium stress in the 22 direction for case 5 as compared with

cases 6 and 7. (see Figs. 14, 16 and 17)

The effective Poisson's ratio becomes time dependent for the cases when the indi-
vidual element Poisson's ratios are not the same. With the initial effective ratio

being equal to that given in eqn. (78) and the final being that of the single spring

element (i.e., va). This observation provides us with insight into the needed critical

test to characterize, as well as validate, the present model construction. (see Fig.

18)

Obviously, this demonstrates the rather limited usefulness of one-dimensional mod-

eling and fitting in realistic representations for general applications. In fact, any ad-hoc

extrapolation assumptions made [e.g., [11] or [36]] can lead to rather erratic history pre-

dictions of the implied Poisson's-effect history (i.e., time intervals of alternating negative

and positive Poisson's ratios). Apparently the difficulty stems from the complex depen-

dency of both the transverse as well as the axial strain components on the three coupled

Poisson's factors, thus rendering it extremely difficult to define a simple operator form

(creep compliance/ relaxation modulus) for their ratios as would be the case in these

simple ad-hoc extrapolation schemes. Such diftlculties and anomalous predictions can of

course be completely by-passed provided the coaxiality of all elastic moduli tensors are

imposed and the conventional engineering material parameter bounds, i.e., positive mod-

uli and 0 < vi _< 0.5 are adhered to in our general formulation (ensuring the convexity

of the two complementary potentials under study). This coaxiality assumption appears

to be experimentally justifiable at this time, as preliminary measurements (see Part II,

[10]) have indicated that the effective Poisson's ratio is time independent.
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7.2 Effect of Infinite Elastic Stiffness, E8

Next, four cases were examined in which the infinite elastic stiffness (i.e•, that of the lone

spring element, in Fig. 4a) was varied from 2000 to 12500 ksi as identified in Table 2.

Note that in these cases, as in the previous seven, the spring stiffness (Eo) is taken equal

to that of the spring stii_ess within the Maxwell element (i.e., F__), that is the ratio

c_ = 1. Results are presented in Figs• 19, and 20, where the resulting stress versus strain

history and strain versus

Case

1

2

3

4

Table 2 Material pmrametem mind foe results in Figj. 19-20.

E° (ksi) (k i)p (sec)
2000. 2000. 333.35

4500 4500 "

8500 8500 "

12500 12500 "

E, ksi-sec)

666700.

(sec)
666.7

1500075. "

2833475. "

4166875. "

Uo um v_

0.3 0.3 0.3

0.3 0.3 0.3

0.3 0.3 0.3

0.3 0.3 0.3

time history are shown. Figures 19 and 20 clearlyindicate,as one might expect from

eqn. (102), that the effective load-up stiffness is strongly influenced (increased) and the

accumulation of time-dependent strain is also highly influenced (decreased) by increasing

the assumed value of E°. Such a resultisnecessitatedby our insistenceupon maintaining

a constant p,I"and czratio.Similarly,the resultingequilibrium stressversus time history

and effectivePoisson'sratiohistoryare identicalwith those described in Figs. 11 and 12,

respectively,and the totalaccumulated transversestrainsare clearlyjustthe opposite of

those shown in Fig. 20 with the magnitude being scaled by the Poisson'sratio (seeeqn.

(102)). As an aside,the trends observed in Figs. 19 and 20 are in keeping with those

one might expect as they decreased the temperature of the material.

7.3 Effect of Varying the Characteristic Creep (Retardation)

Time, _"

Now we consider four cases which illustrate the influence of _- on the creep response of

the material, wherein all other parameters are fixed at the base line values. As r is a

ratm (EM t7) and we desire that p remain constant, Era, must therefore be modified.

The four sets of material parameters used are given in Table 3. Note-that by necessity c_

is equal to 0.1, 1, 2, and 5 for cases 1, 2, 3, and 4, respectively.

Case

1

2

3

4

Table 3 Material'

E° (ksi) (k i)
m=_metem used for results in Fip. 21-22.

p(sec)
8500. 850. 333.35

8500 8500 "

8500

8500

17000

42500

E_ ksi-sec)
283347.5

(sec)
366.7

2833475. 666.7

5666350.' 1000.

14167375. 2000.

u_ em un
0.3 0.3 0.3

0.3 0.3 0.3

0.3 0.3 0.3

0.3 0.3 0.3
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The resultingstress-strainand strain-time(andequilibriumstress(X, am) versustime)

response histories are shown in Figs. 21 and 22, respectively. Examining eqn. (102)

and Fig. 21, it is dear that the effective load-up modulus is once again increased as E,_

(or correspondingly _) and 7- are increased, however, this time the total accumulated
strain remains the same in all cases; as the elastic limit strain °"(_,) remains fixed, i.e.,
E, = 8500 ksi. This is opposite to the cases in Fig. 19, where E, is continuously being

increased and thus the elastic limit strain is being reduced in each case. Consequently,

one has su2_cient freedom in this model to modify the effective load-up modulus without

correspondingly reducing the total amount of strain accumulation. Figure 22 and eqn.
(102) again, clearly indicate another influence of increasing r, that is, to increase the

duration of the primary (transient) zone of the time-dependent straining. Note that in all
cases the primary zone is complete (with respect to the external clock) by approximately
7 times the associated internal clock (i.e., r). This fact can be extremely helpful in
characterizing the proposed model, in that we can deduce the internal clock from the

experimentally observed saturation time (external clock). Similarly, if we experimentally
observe that the saturation time of primary creep is independent of temperature, one
would conclude that 7- should also be taken to be temperature independent. Lastly, as the

individual Poisson's ratios are all equal, the effective Poisson's ratio is time independent

(see Fig. 12) and the 22 and 33 components of total strain are simply appropriately
modified mirror images of the 11 component, and the 22 and 33 equilibrium stresses ere

zero (see eqn. (102)).

7.4 Effect of Varying the Characteristic Relaxation Time, p

Finally, we will consider four cases which illustrate the influence of p on the creep response

of the material, wherein all other parameters are fixed at the base line values. Once again,

as p is a ratio (M-iv/) and we desire that 7. and a remain the same as in the previous
cases, i.e., 7. = 666.7 and a = 0.1,1, 2, and 5 ; 71, must therefore be modified. The four

sets of material parameters used to generate Fig. 23 are given in Table 4.

Case

1

2

3

4

• _ble 4 Material parameters used for results in Fip. 23-26.

Eo (ksi)
8500.

E,_ (ksi)
850.

p (sec)
606.09

!

t,_ (ksi-sec)
515176.5

7.(sec)
666.7

8500 8500 333.35 2833475. "

8500 17000 222.23 3777910. "

8500 42500 111.12 4722600. "

vs vm vn
0.3 0.3 0.3

0.3 0.3 0.3

0.3 0.3 0.3

0.3 0.3 0.3

Here the resulting stress-strain history is identical to that of Fig. 21, as both Eo and

F__ are the same as in the previous cases. The strain-time and equilibrium stress versus

time histories are influenced however, as one might suspect, for example see Fig. 23.

Comparing Figs. 23 to 22, we see no influence of p on the duration of the primary creep

regime, as one would expect given eqn. (102). However, the rate of accumulation is
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slightly influenced, given the same value of a, as seen in Fig. 23. Clearly, in relaxation

p would now have a significant influence on the duration of stress relaxation.

Revisiting the influence of the individual Poisson's ratios, we re-examine the cases in

Table 4, but this time we take v, -_- 0.1 while v,n = v_ = 0.3. Again, the stress-strain

history is identical and the 11 component histories of the total strain and equilibrium

stress are very similar, the duration of" the transient zone just being extended. The 22

components, however, become highly time dependent as does the effective Poisson's ratio

of the material model. These response histories are illustrated in Figs. 24-26, respectively.

Note that the behavior of the components transverse to the load are quite complex, and

again the only sure way to validate the model assumptions is to collect experimental data

in those directions.

8 Conclusions

Traditionally, the total strain has been partitioned into elastic (time-independent re-

versible), inelastic (irreversible) and thermal (reversible) strain components, where the in-

elastic strain corresponds to such physical phenomena as time-independent plastic strain

or time-dependent viscoplastic strain (sometimes referred to as creep strain). In this

paper alternative forms for the hereditary integrated representations of the viscoelastic

response were discussed to account for the time/rate dependent reversibility typically

observed in experiments on materials exhibiting quasilinear domains. This discussion

was in the context of a general framework for the viscoelastoplastic material modeling

of the internal-state-variable type. It was shown that such a potential based framework

necessitated the specific partitioning of both the strain (reversible and irreversible) and

stress(equilibriumand non-equilibrium) statevariables.Important key issues,pertaining

to both the theoreticalfoundation (e.g.,thermodynamic admissibility)as wellas the nu-

merical implementation (e.g.,recursiveintegralforms) of these general descriptionswere

discussed. In particular,explicitconstraintson the underlying kernel functions were

given. Furthermore, even though numerous multiaxial formulations have been noted in

the literaturein theirsymbolic form, itwas demonstrated here that without the asSuml>-

tion of equal Poisson's ratios (coaxiality of the various moduli tensors) the uniaxial

reduction to the classicallinearsolidelement, is not possible given the startingview-

point of internal state variables,defined through eitherthe differentialor convolution

integralapproach. Of course,as implied by classicalforms, taking allPoisson'sratiosto

be zero ismerely a special case of thisequality condition.

Several parametric studies and qualitativeresponse assessments were made to help

identifyimportant factorsin the actualcharacterizationof the specific-formof the model

studied for the titanium alloy,TIMETAL 21S, as discussed in Part II [10].The more

important, with respect to characterization,parametric resultsare itemized as follows:

• If the experimentally observed effectivePoisson's ratio is independent of time

then all individual mechanical elements' Poisson's ratios can be assumed equal
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to that of the measured one, thereby significantly reducing the complexity of the

required reversible constitutive model. Several other considerations (e.g., damping-

extent ordering) were also found to favorably support this assumption.

Only primary creep response is generated, with this transient period ending after

approximately 77- (given the assumption of equal Poisson's ratios), when the

equilibrium stress in the loading direction becomes equal to the applied stress in

that direction, i.e., the elastic limit of the material is reached. Consequently, T, the

internal material clock, can be immediately obtained by dividing the experimentally

observed saturation time by seven. However, this is not the case when different

Poisson's ratios are assumed wherein the period now intricately depends upon these

ratios (and the "implied" number of internal docks are increased).

The effective load-up stiffness is strongly influenced (increased) and the accumu-

lation of time-dependent strain is also highly influenced (decreased) by increasing

the assumed value of Ea. Consequently, variation with temperature of E8 should

be a key factor under nonisothermal conditions.

If the assumption of constant Poisson's ratios is accurate, than eqn. (79) proves

that the dynamic modulus is equal to the sum of Eo and E,_, i.e., E0 = Es + E,,,,

and E,n can be deduced from directly measurable quantities.

One has sufficient freedom in this model to modify the effective load-up modulus

without correspondingly reducing the total amount of strain accumulation. Increas-

ing T increases the duration of the primary (transient) zone of the time-dependent

straining. Similarly, if we experimentally observe that the saturation time of pri-

mary creep is independent of temperature, this would than imply that _- should

also be taken to be temperature independent.

Armed with these insights, and assuming the validating of a time-independent ef-

fective Poisson's ratio the characterization of the. proposed multiaxial reversible model

is straight forward. Alternatively, if the effective Poisson's ratios are time dependent,

then one may need the assistance of an automated material parameter estimator, [37],

as would be necessarily the case for a wider relaxation mechanism spectrum (greater

frequency-dependency of the moduli) calling for several internal state variables. The

companion paper (see Part II [10]) will focus on the actual characterization and compar-

ison with test results for a model material, i.e., TIMETAL 21S, over a wide range of

temperatures (i.e., 23 to 650 °C).

Finally, given the host of viscous effects present in structural applications at elevated

temperatures, the practical utility of such a generalized hereditary form as presented

herein is significant. For example considering that most aerospace engine designs are

typically limited to the quasilinear stress and strain regimes, as in this case the reversible

time-dependent response component becomes dominate in comparison to the irreversible

component. Alternatively, one can envision another extreme case (e.g., in polymer and
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rubber based systems under varying temperatures) in which a purely reversible viscous

response is present, thus necessitating the use of such a theory. And lastly, an obvious

natural extension for general applicability is the middle ground in which a combined

reversible and irreversible representation is required. Here the inclusion of a reversible

time-dependent response as that discussed in this paper will extend the applicable pre-

dictive stress and/or temperature window of application.
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(a) High temperature.

(b) Mid temperature.

(c) Low temperature.

Time independentreversible region

Time dependentreversible region

IR Irreversible

(quasilinear) region

Fig 1 ._Reversible and irreversible
threshold surfaces.
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Partitioning the stress
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Fig 4.--Three element mechanical model and corresponding creep and

relaxation response history.
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history in the I direction, see Table 2.
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