
NASA-IVV-97-017

NASA IV&V Facility, Fairmont, West Virginia

An Automated Method for Identifying Inconsistencies within

Diagrammatic Software Requirements Specifications

Zhong Zhang

November 10, 1997

This technical report is a product of the National Aeronautics and Space Administration

(NASA) Software Program, an agency wide program to promote continual improvement

of software engineering within NASA. The goals and strategies of this program are

documented in the NASA software strategic plan, July 13, 1995.

Additional information is available from the NASA Software IV&V Facility on the

World Wide Web site htto:/lwww.ivv,nasa,govl.

This research was funded under cooperative Agreement #NCC 2-979 at the NASA/WVU

Software Research Laboratory.

https://ntrs.nasa.gov/search.jsp?R=19980017623 2020-06-16T00:57:29+00:00Z

An Automated Method for Identifying
Inconsistencies within Diagrammatic Software

Requirements Specifications

THESIS

Submitted to the Eberly College of Arts and Sciences
of

West Virginia University

In Partial Fulfillment of the Requirements for
The degree of Master of Science

By
Zhong Zhang

Department of Computer Science and Electrical Engineering
West Virginia University

Morgantown, West Virginia 26505

This research was supported by NASA-IV&V Cooperative Research Project agreement,

NASA-IV&V Facility at Fairmont, WV.

Acknowledgements

First and foremost I would like to express my gratitude to my supervisors Dr. Steve

Easterbrook and Dr. John Callahan. In particular, I wish to thank Dr. Callahan for his

granting me a chance to join Software Research Laboratory (SRL) at NASA/WVU. And I

wish to thank Dr. Easterbrook for his guidance, patience, and most important for his

giving me freedom to pick up the subject that I am interested in. Dr. Easterbrook and Dr.

Callahan always refer some good papers and books to me, and provide me chances to

attend conferences. Their continuous advice and guidance make this thesis possible. I am

indebted to them.

It is one of the happiest periods in my life during staying with SRL. I enjoyed two years

peaceful, fruitful, fun, exciting time in Morgantown. My thanks to Dr. Swam Dhaliwal,

my teammate, for his sharing Java knowledge during the TCM translation process. Many

thanks go to Ms. Reshma Khatsuriya, my officemate, and Mr. Mani Kancherla for their

kind help and valuable discussion. I thank Mr. Todd Montgomery and Mr. Nicholay

Gradetsky for their helps and suggestions in solving problems in my research. Many

thanks to Dr. Wu Wen, Dr. Frank Schneider, Dr. Ralph "Butch" Neal, and Mr. Edward

Addy for their interest in my various presentations and their useful discussions and

insights. Also, I would like to thank Ms. Vivian Jenab for her help whenever I needed.

Many thanks go to the faculty members of CSEE for their instruction and providing

friendly environments to grow my knowledge. Especially, I want to thank Dr. Frances

VanScoy, my graduate study committee member, for her comments on drafts of my

thesis and valuable advice. Also, my thanks go to Dr. Frank Dehne at Vrije Universiteit at

Amsterdam, the Netherlands, for his generous providing C++ source code of TCM and
his comments on TCMJAVA.

Many thanks to my roommates and friends, Mr. Daming Li, Mr. Jesse Wang, Ms. Haijing

Wang and Ms. Lei Xu for their helps and friendly companionship. My thanks to the

friends in CSEE and the friends residing in the building on Willey Street for their helps.

Finally, my gratitude goes to my parents for their love and consistent support. I am very

grateful to my girl friend Wei, for her continuous encouragement and support.

To____

III

Abstract

The development of large-scale, composite software in a geographically

distributed environment is an evolutionary process. Often, in such evolving systems,

striving for consistency is complicated by many factors, because development

participants have various locations, skills, responsibilities, roles, opinions, languages,

terminology and different degrees of abstraction they employ. This naturally leads to

many partial specifications or viewpoints. These multiple views on the system being

developed usually overlap. From another aspect, these multiple views give rise to the

potential for inconsistency. Existing CASE tools do not efficiently manage

inconsistencies in distributed development environment for a large-scale project. Based

on the ViewPoints framework the WHERE (Web-Based Hypertext Environment for

requirements Evolution) toolkit aims to tackle inconsistency management issues within

geographically distributed software development projects. Consequently, WHERE

project helps make more robust software and support software assurance process.

The long term goal of WHERE tools aims to the inconsistency analysis and

management in requirements specifications. A framework based on Graph Grammar

theory and TCMJAVA toolkit is proposed to detect inconsistencies among viewpoints.

This systematic approach uses three basic operations (UNION, DIFFERENCE,

INTERSECTION) to study the static behaviors of graphic and tabular notations. From

these operations, subgraphs Query, Selection, Merge, Replacement operations can be

derived. This approach uses graph PRODUCTIONS (rewriting rules) to study the

dynamic transformations of graphs. We discuss the feasibility of implementation these

operations. Also, We present the process of porting original TCM ffoolkit for

Conceptual Modeling) project from C++ to Java programming language in this thesis. A

scenario based on NASA International Space Station Specification is discussed to show

the applicability of our approach. Finally, conclusion and future work about

inconsistency management issues in WHERE project will be summarized.

iv

Chapter One

Chapter Two
2.1
2.2

2.3

2.3.1
2.3.2

2.3.3
2.3.4

2.3.5

Introduction ... 3

The Necessity for Inconsistency Management. .. 7
The WHERE Project Overview .. 8
What is Inconsistency? ... 10

An Inconsistency Scenario ... 11
Force .. 12

A Consistent State: .. 13

Concurrent Editing .. 13
Establishing Overlaps .. 14

Building Consistency Rules ... 15
2.3.6 Different Strategies for Inconsistency Management .. 16

2.4 Summary of Inconsistency Management .. 19

Chapter Three Literature Review .. 20
3.1 Case Tools ... 21
3.2 ViewPoints Framework .. 23

3.2.1 What is a ViewPoint? .. 24

3.2.2 ViewPoints Framework Supports Requirements Engineering 25

3.2.3 The Granularity of Consistency Rule .. 27

3.3 Different Approaches for Inconsistency Handling ... 28
3.3.1 A Logic Based Approach to Inconsistency Handling: ... 29
3.3.2 Reconciliation Approach to Interference Management ... 30
3.3.3 Meta-model .. 32

3.4 Graph Grammar .. 34
3.5 Quasi-classical (QC) Logic .. 36

3.6 Summary .. 38

Chapter Four An Approach for Inconsistency Management Based on Graph Rewriting System ...39
4.1 The Relationships Between ViewPoints ... 40

4.2 An Overview of our Approach ... 42
4.3 Visiting Shape class in TCMJAVA .. 45

4.4 Graph query and replacement ... 47

4.5 Graph Module ... 48
4.6 The Application of Graph Rewriting Rules .. 49

4.7 Evaluation of Approach .. 51
4.8 Summary .. 52

Chapter Five Case Study - International Space Station Specification ... 53
5.1 International Space Station Specification ... 54
5.2 What is Verification and Validation? ... 55

5.2.1 Independent Verification and Validation Process .. 55
5.2.2 The Characteristics of IV&V Process .. 56

5.2.3 Methods and tools in IV&V process: .. 57
5.2.4 The Documentation Problem ... 59

5.3 Scenario: International Space Station Requirements Specification 59

5.4 Recapitulation of Inconsistency Checking Approach ... 62
5.5 The Applicability of Our Approach .. 62

5.6 Recapitulation ... 68

Chapter Six The WHERE Editing Toolkit: TCMJAVA .. 70
6.1 The Architecture of the WHERE Project ... 71

6.2 The Implementation of the WHERE Project .. 72
6.3 Introduction of the TCM Project ... 73

6.3.1 What is the TCM Project? ... 73

6.3.2 The Design of TCMJava .. 75
6.4 The Difference Between C++ and Java .. 77

6.4.1 Features Omitted from C++ in Java ... 77
6.4.2 Java New Features ... 82

6.4.3 System Information ... 83
6.5 X Window / Motif and Java AWT Package ... 84

6.6 EventHandling...85
6.6.1 XMotifEvent-DrivenSolution...85
6.6.2 EventDelegationModelinJava..86

6.7 SummaryandFutureWork..87
Chapter Seven Conclusions and Future Work .. 90

7.1 Summary of Achievement .. 91
7.2 Discussion .. 94

7.3 Future Work ... 94

Bibliography .. 96

Chapter One Introduction

The WHERE (Web-Based Hypertext Environment for Requirements Evolution)

project is concerned with the communication and coordination problems faced on large,

geographically distributed projects. It aims to support the process of collaborative

development of requirements specifications with tools to manage incremental changes to

large specifications [1]. The WHERE project is based on the ViewPoints framework. It

strives for: annotating and tracing the relationships between different pieces of

requirements specifications; managing inconsistency in requirements specifications in

distributed environments; and supporting group collaboration via the WWW. This thesis

is one part of an effort to tackle "inconsistency management" issues in the WHERE

project. In this thesis the motivation behind the WHERE project is described. Also, a

framework based on graph grammar theory for inconsistency management is delineated,

and a port of an implementation based on this framework is described. Finally, a case

study of the valid space station modes and state transitions requirements from the NASA

space station specification is presented with application of our inconsistency-checking

engine.

The long-term goal of the WHERE project is to tackle the "inconsistency

management" problems. Large specifications are likely inconsistent for most of their

lifetimes, because the development of large-scale composite software in a geographically

distributed environment is an evolutionary process. Often, in such evolving systems,

striving for consistency is complicated by many factors, because development

participants have various locations, skills, responsibilities, roles, opinions, languages,

terminology and different degrees of abstraction they deploy. This naturally leads to

many partial specifications or viewpoints, which are usually overlapped. From another

aspect, these multiple views give rise to the potential for inconsistency. The problem of

inconsistency management is to detect inconsistencies, to keep track of them, and to

manage them, rather than to prevent or avoid inconsistencies [2]. None of existing CASE

tools could efficiently manage inconsistencies in a distributed development environment.

The delivery of the WHERE project greatly helps information acquisition, group

communication and error finding in the software development process. Also, the

performance of inconsistency management supports innovative thinking and exploration

4

of alternatives.Consequently,theWHEREprojecthelpsmakemorerobust softwareand

supportsoftwareassuranceprocess.

The detectionof inconsistencyneedsan editing CASE tool to handledifferent

notationsencounteredin requirementsspecifications.An editing toolkit calledTCMJava

hasbeendevelopedin this group in order to meet the needof WHERE project. The

exploringof inconsistencyissuesin this thesisisbasedonTCMJavatoolkit. In thecourse

of investigationof differentapproachesfor inconsistencydetectionandmanagement,we

find that Quasi-classicallogic [3] is difficult to implementbasedon the TCMJAVA

implementation,while the applicationof graph grammars[4] in implementationsis

feasible.In this thesisaframeworkbasedongraphgrammarsfor inconsistencydetection

is established.

In the complexsystemdevelopmentprocess,requirementsspecificationsusually

areexpressedby variousgraphicalnotations.Theinternalrepresentationof most software

documents is a directed attributed graph. Sometimeseven the same piece of a

specification documentcan be representedusing different graphical notations. Our

approachfocuseson graphicalrequirementsspecifications.The encodingof a pieceof

diagrammaticor tabularspecificationinto a graphsystemis explicit anddirect. After the

conversionof specificationsfrom graphicalnotationsto graphsystems,a userdefines

mappingfunctionsto detectif thereexistsagraphhomomorphismbetweenthetwo graph

systems.The finding of homomorphismhelpsdetectionand analysisof inconsistencies.

The subgraphqueriesand mappingsmakeuseof the basicoperatorsINTERSECTION,

UNION, DIFFERENCE,andSELECTION.In our implementation,methodusersdefine

mappingfunctionsvia userfriendly GUIs.

In this thesis, the application of graph transformation in inconsistency

managementis also investigated.Graph rewriting rules store the information of a

specification evolving process.The recording of all graph rewriting rules helps

backtrackingto a previousstatein developmentprocess,supportsthe exploration of

alternatives,andsuppliesvaluablehelp in searchingfor an inconsistencyresolution.As a

data type, rules arestoredand manipulatedin our approach.In the searchingfor and

replacingof subgraphsfor thewriting rules,theestablishedstaticoperationsareusedfor

queriesandreplacements.

5

In order to support group coordination and communication work we adopt the

networking programming language Java as the implementation language and CORBA as

the information access and communication infrastructure. Before experimenting with our

approach, we need a set of diagrammatic and tabular notation editing tools to build

graphical specifications. We translated a graphical conceptual modeling toolkit called the

Toolkit for Conceptual Modeling (TCM) [5] from C++ into the Java programming

language. The difficulties encountered in the translation process are described as a part of

the thesis work, and the graphical shape data structure is discussed in detail in order to

map a shape class in TCM to a graph system in graph grammar theory.

We experiment with our approach by applying our TCMJAVA and inconsistency-

checking engine on the valid space station modes and state transitions requirements from

NASA space station specification as a part of the Independent Verification and

Validation (IV&V) process [6]. First, in order to help readers to understand this example,

the IV&V process is briefly outlined. The piece of NASA space station specifications in

this case study is represented using a state transition diagram and a state transition table

in the original document. We described how to use our inconsistency-checking engine in

the detection of inconsistencies between those graphical notations.

We conclude that the implementation TCMJAVA fits well a graph grammar system.

Our approach is intuitive and feasible. Overlap and inconsistency are inevitable and

acceptable in distributed composite system development environment. We have to learn

to live with them and learn from them. Our framework is the first implementation of

graph grammars on inconsistency management for requirements specification. From

empirical study, our framework helps solve the inconsistency management problems.

Chapter Two The Necessity for Inconsistency
Management

This chapter describes the problems the WHERE project face. First, from a broad

perspective the goals of the WHERE are described. Later, we focus on inconsistency

management issues in this thesis. The motivation of pursuing inconsistency management

in requirements specifications is delineated. Before describing what is inconsistency

management, we introduce the concepts of overlap and inconsistency in section 2.2. At

first glance, it is difficult to see the need for inconsistency management. Therefore, in

section 2.3, a scenario [7] is described to elaborate how inconsistencies are generated and

how different inconsistency handling actions are used to mange inconsistencies [2]. In

section 2.4, we summary the problems with inconsistency management, and enforce the

argument that the principal mechanisms used for preventing or avoiding overlap and

inconsistency are impractical, inconsistency (and perhaps overlap) is managed rather than

simply prevented could lead to more robust specification.

2.1 The WHERE Project Overview.

The development of large-scale composite software system is an evolutionary

process. The WHERE project concerns the group coordination and communication

problems in such a system [1]. Basically three goals are pursued in the WHERE project:

the requirements traceability and annotation to support group coordination in evolving

development processes, information access and communication among group

collaboration work, and inconsistency management in an evolving development process.

We describe each of these goals first, and later focus on the inconsistency management

issues in this chapter. We start with the first goal of the WHERE.

In a large-scale project development, managing an evolving requirements

specification is a significant problem, because any small changes to one part of the

specification may have impacts throughout the whole system specification

documentation. These impacts are often difficult to track and reason. Therefore, it is

difficult to know that all implications resulted from a small change. Based on the

ViewPoints framework, the WHERE project aims to solve these problems with the

support of annotation methods [8]. Dr. A1-Rawas discussed how multiple-perspectives of

softwarerequirementsareannotatedandwhat the communicationchannelsin multiple-

perspectivesenvironmentsarein hisPh.D. dissertation.We will not discusstheseissues

in this thesis.

World Wide Web (WWW) hasemergedin recentyearsas an effective way to

provide accessto information in a uniform and standardizedmanner. One of the

cornerstonesfor settingup a collaborativeinfrastructureis providingthe ability for any

member of a geographicallydistributed team to accessinformation. Therefore, the

WWW is theidealcandidatefor groupcollaboration.TheWHEREis implementedusing

the networking programminglanguageJava,and the communicationand information

access infrastructure is constructed on CORBA (common object request broker

architecture).Thesupportof groupcollaborationvia WWW from theWHERE project is

discussedin reference[9].

The developmentof a compositesystemis anevolving process.In sucha system

striving for consistency is complicated by many factors. Because development

participantshavevariousskills, responsibilities,roles,opinions,languages,terminology

and different degreesof abstractionthey deploy, this naturally leadsto many partial

specificationsor ViewPoints. Thesemultiple views on the systembeingdevelopedare

usually overlapped,by which we meanthey refer to commonaspectsof the system

domainunderdevelopment.From anotheraspect,thesemultiple views give rise to the

potentialfor inconsistency[2]. ViewPointsareinconsistentwhentheyassertpropertiesof

theseaspectsthat conflict.Therefore,asaconsequenceof multipleperspectives,overlap

is inevitable; inconsistencyis acceptable,becauseinconsistencysupports innovative

thinking, defermentof commitments,andexplorationof alternatives[2][10].In anycase

theprincipal mechanismsusedfor preventingor avoidingoverlapand inconsistencyare

impractical,andarenotcost-effective.For "global" repositoriesand"universal" schemas,

they aredifficult to design,difficult to extend,leadto centralizedarchitectures,and are

not scaleable[11]. The consequenceis that inconsistency(and perhapsoverlap) is

"managed" rather than simply prevented or avoided. The idea of "managing

inconsistency"helpsinformationacquisitionanderror finding [2][10]. The goal of using

the ViewPoints framework is to pursue partial consistency, and inconsistency

management,evenin "the final product" andevenin thedevelopmentof "safety critical

systems".Beforedescribingthe inconsistencymanagement,we first introducewhat is

inconsistency.

2.2 What is Inconsistency?

Figure 1 shows the "interference" relationships between overlap, consistency

rules, and inconsistency [12]. Overlap is self-explained, which means ontological

overlap. We employ the following definition for inconsistency [13].

"An inconsistency is any situation in which two sets of objects do not obey some

relationship that should hold between them."

Overlap

Precondition

for

Reflected in

Inconsistency

Consistency

Breach of

Figure 1. Overlap with Inconsistency.

The objects may be any of the artifacts generated during the system development

process, including specifications, models, code, test cases, user documents, process

definitions, development plans, process and product metrics, and so on.

The relationships may refer to both syntactic and semantic properties of the

objects. Of course, we can not detect inconsistencies unless the relevant relationships

have been identified. Therefore, the quality of any inconsistency analysis exercise

depends on how well the consistency relationships have been defined. These relationships

are expressed as consistency rules, and they are discussed in the next section.

We described the goals of the WHERE project and the concepts of overlap and

inconsistency. This thesis focuses on the inconsistency management issues in the

WHERE project. In following section we present a scenario to explain how conflicts or

inconsistencies happen and what the strategies to handle inconsistencies are. This

10

scenario describes a hierarchically-related development process [14], in which tasks are

delegated to separate members of a team to develop.

2.3 An Inconsistency Scenario

This section skips the details about how to define roles, and the notations about

rules. The example described below gives an overview about inconsistency management

issues in the ViewPoints framework. This example attempts to summary all of the issues

regarding inconsistency management, not just a rephrasing of paper [14]. Data flow

diagrams (DFDs) is used as the example notation. A node in a graph represents a process,

and may be decomposed in a separate diagram. When this happens, the set of inputs and

outputs to that process should be shown on the decomposition.

As described in Figure 2, Anne has created a ViewPoint for a top-level data flow

diagram of the system. Two processes have been created, process A and process B.

Process B is selected for decomposition, and its state is changed to a non-primitive type.

Then the job is delivered to Bob, as represented by Activation Policy in Figure 2.

T (Anne, Top)
d2

dl

d3

Activation

Figure 2. Creation of a New Viewpoint

11

2.3.1 Force

In Figure 3, Bob creates a new ViewPoint to represent the decomposition. He

gives the new ViewPoint a suitable name (B) to indicate it is a decomposition of process

B. Bob takes the input flow (d3) and output flows (d2, d4) connected to process A in the

parent, and then adds them to the decomposition as its context. His definition of the

processes that comprise the decomposition has to be restricted to have the same input and

output flows as in the parent regardless of the flows between the sub-processes generated.

T (Anne, Top)

dl

A "-

d2

d3

¸!¸i¸71,¸¸!¸¸¸i!¸ !

B

..,, d4 ¢, ",b ,,,,, %

" % l

d3 ,.__ _ !_

Figure 3. Constraints in Creation of New ViewPoints

12

2.3.2 A Consistent State:

In Figure 4, we assume that at a certain stage of the development, the

specification, which consists of the data flow diagrams, reaches a consistent state.

Diagram B is a decomposition of node B in diagram T, and it has the same input and

output flows as the node B in its parent diagram.

T (Anne, Top)

dl

A

d2

d3

.f i?i!_B ¸¸"̧!'ili¸¸

B (Bob, Process)

d3 ,.(1 d5 --f D
vL C J r L

Figure 4. ViewPoint T is Consistent with the Decomposition.

2.3.3 Concurrent Editing

In Figure 5, Anne now does some more work on the parent. In the process of

delegating decomposition of other processes, she realizes that one of the outputs of

process B is missing, and so she adds it (d7). Meanwhile, Bob has noticed the omission,

and adds it too, but using a different label (d6). An inconsistency is generated because of

13

usingdifferent labelnames(d7vs. d6). In following sections,we describethe strategies

for inconsistencydetectionandmanagementin ahigh levelof view.

T (Anne, Too)

d2

JA J
dl "L d3

edit

d7

5"L

B (Bob, Process)

"L "L

d3 41' d2

D

edit

d4 ._

Figure 5. The Situation of Current Editing.

2.3.4 Establishing Overlaps

The requirement for inconsistency management varies. In certain cases it might be

loose, that is simply identifying ontological overlaps and inconsistency, in other cases it

might be tight, involving the integration of the specification and the resolution of their

inconsistencies. Sometimes a meta-method is needed which lies between loose and tight

inconsistency management. We will discuss them separately; in any case the detection of

ontological overlaps is a prerequisite for detecting inconsistencies.

In Figure 6, inconsistencies have arisen by using different name labels. Overlaps

have been identified by underlining the labels, process B and data flows d2, d3, d4, d6,

d7 are labeled to indicate that they are the overlap parts in two DFD diagrams. Different

approaches can be employed to detect overlaps. We will discuss these issues in following

sections.

14

T

A

d2

d3

d7
m

m

"L J

d.__2 _ d.._..6

V

Figure 6. Establishing Overlaps

2.3.5 Building Consistency Rules

Overlaps have been identified; consistency rules can be defined to check the

consistencies between the development objects. The relationships between development

objects should be completely understood before rules are derived. In our approach, we

are looking for a method that does not require a lot of effort to encode a specification in

formal logic. Rules should be readable and easy to define, and method users should have

the privilege to enforce and remove rules. Also, the method should be automated at some

points. We will look at two promising approaches, Quasi-classical and graph grammars in

more detail in next section.

15

T

B

dl d2

d3

d7

rE c J "[J
d4

Figure 7. Building Consistency Rules.

2.3.6 Different Strategies for Inconsistency Management.

Different strategies can be employed to manage inconsistencies [10]. We will talk

about them respectively in the following sections. Apply analysis and diagnosis of

inconsistencies, then solve them locally; tolerate inconsistencies, ignore inconsistencies

or circumvent them; trace inconsistencies, postpone resolving inconsistencies; ameliorate

and rectify inconsistencies for increasing possibilities of future resolution. The question

of which inconsistencies should be resolved at any point is an engineering question

involving an assessment of resource availability and risk. Figure 8 and Figure 9 illustrate

these different approaches for manage inconsistencies.

16

T (Ann, Top)
d2

® race

formation_

/

c)
J

®

d3

r L d4
__,|

frace

_ _at_nJinformation

Iw

Figure 8. Different strategies in inconsistency management.

Analysis and diagnosis usually is the pre-requirement of inconsistency

management. In this step, the sources resulted into inconsistencies are reasoned, and the

priorities of inconsistencies are evaluated.

One of the strategies for inconsistency toleration is ignoring inconsistencies

completely and continuing development regardless. This may be appropriate in certain

circumstances where the inconsistency is isolated and does not affect further

development, or prevent it from taking place.

Circumventing the inconsistency and continuing development is the other of the

strategies for inconsistency toleration. This may be achieved by marking inconsistent

portions of the system or by continuing development in certain directions depending on

17

thekind of inconsistencyidentified.It is appropriatein situationswhereit is desirablefor

the inconsistencyto beavoidedand/orits removaldeferred.

Resolvingthe inconsistencyaltogetherby correctingany mistakesor resolving

conflicts is anothermethod of inconsistencymanagement.This dependson a clear

identification of the inconsistencyand assumesthat the actionsrequiredto fix it are

known. Achieving consistencycompletelymaybedifficult, andis quiteoften impossible

to automatecompletelywithout humanintervention.

Ameliorating and rectifying inconsistenciesis an approachfor inconsistency

management.This approachperformsactionsthat improveandincreasethepossibility of

future resolution (this may involve ignoring or circumventinginconsistencies).This

approachis attractive in situationswherecompleteand immediateresolution is not

possible (perhapsbecausefurther information is required from anotherdevelopment

participant),but wheresomestepscanbe taken to fix part or someof the inconsistent

information.This approachhoweverrequirestechniquesfor analysisandreasoningin the

presenceof inconsistency.

T (Ann, Top)

d3 _ d4

a]_ amelioration

B (Bob, Process)

rectification

03 ,51!
_-- C d4 "

_ d2 _[r d6

Figure 9. Rational and Resolution.

18

2.4 Summary of Inconsistency Management

In this chapter we describe the problems we face. In a large-scale composite

software development process, participants have various locations, skills, responsibilities,

roles, opinions, and languages. This naturally leads to many partial specifications or

ViewPoints. Communication and coordination between participants are big problems.

This thesis explores inconsistency management issues in such a system. Multiple views

from participants are likely overlapped, and also give rise to the potential for

inconsistency. We argue that the principal mechanisms used for preventing or avoiding

overlap or inconsistency are impractical. Overlap and inconsistency are inevitable and

acceptable. We have to learn to live with it and learn from it. Also, we describe the

inconsistency handling actions. First, overlaps have to be identified. A clear

understanding of relationships between objects helps building consistency rules. After

inconsistencies are analyzed and diagnosed, different actions are adopted to manipulate

inconsistencies; toleration, tracking, resolution, enforcement, rational provision.

The management of inconsistency needs the ViewPoints framework to trace an

evolving development process, to support the communication of information, and to

annotate multiple partial specifications. The detection and analysis of inconsistencies

need a theory foundation based on a rules-based language or logic theorem. In the next

chapter we discuss various related work, ViewPoints framework, Quasi-classical logic,

Graph Grammar, WHERE project implementation language Java, Various CASE tools,

and various approaches for inconsistency management.

19

Chapter Three Literature Review

2O

This chapter contains various topics, all of which are the background introduction

and theoretical foundation of the WHERE project. The WHERE project is concerned

with large systems that display a complex structure and with many interlocking

constraints on their construction and behavior [1]. Working with such systems

necessitates multiple ViewPoints for complexity. Therefore, the WHERE project is based

on ViewPoints framework. During the analysis and design of such systems, the multiple

ViewPoints naturally arise out of differences of opinion, varying goals and mistakes or

errors. Working on ViewPoints has commonly been linked to work on requirements

engineering. The problem is especially acute during the early stages of development

(particularly elicitation where many diverse client views are prevalent). In section 3.1 we

give an overview of the existing CASE tools, and further explain that a tool like WHERE

is highly desirable. In section 3.2 we describe what is the ViewPoints framework, and

how it works for inconsistency management. In section 3.3, we briefly introduce existing

models for inconsistency management. In section 3.4 and section 3.5, we discuss the two

different approaches for inconsistency detection and reasoning: Quasi-classical logic and

graph grammar. They are the foundations for our approach introduced in next two

chapters.

In next section we discuss some existing Computer-Aided Software Engineering

(CASE) tools, and outline their lack of support for the requirements engineering

processes.

3.1 Case Tools

Two kind of CASE tools are discussed in this section, requirements traceability

tools and visualization editing CASE tools. We point out the deficiencies of these

existing tools, and enforce the argument of the need for the creation a tool such as

WHERE.

Requirements traceability tools DOORS [15] and CORE [16] help to some extent

by recording links between requirements at different levels, and between requirements

and test cases, design objects, and so on. However, existing traceability tools only record

21

links, they do not recordany other information about the relationship expressed by the

link. Such tools encode a simple process model based on flow down of requirements

through different levels. They do not capture any knowledge about the methods and

notations being used, and hence do not provide any active support for the development

and evolution of specifications. Also, CASE tools for design and analysis requirements

are short of the relationship tracking between different pieces of requirements

specifications. Because there are a lot of similarities between Rational Rose [17] and the

WHERE editing toolkit, e.g. both support the visualization of graphical editing, we

describe this tool in more detail.

Rational Rose is a Computer Aided Software Engineering (CASE) tool that

supports the design and implementation of object oriented systems by supporting the

Object Modeling Technique (OMT) and Booch methods. The Booch method is

documented in "Object-Oriented Analysis And Design With Applications" [18], was

developed by Grady Booch, a Rational Chief scientist. The OMT methodology,

documented in "Object Modeling And Design" [19] was developed by James Rumbaugh,

also a Rational fellow. For both, Rational Rose supports multiple views of the underlying

model, including object and class diagrams and scenario diagrams for object-oriented

development.

The main purpose of Rational Rose is to aid in the design and implementation

stages of a piece of software. In broad terms, Rational Rose achieves this by enabling the

user to construct a representation of the system being developed using one of the two

supported methodologies and then generating the outline for an implementation (in C++)

based on the design. Rational Rose allows a user to analyze, design and implement

systems in a way that makes them easy to visualize and communicate.

Rational Rose provides a method-based environment where the software

development method may be either Booch or OMT. As such, Rational Rose supports

these methods by provides a collection of representation notations (such as the module

and process diagrams) and a strategy/heuristics for using them. As with many CASE

tools, Rational Rose goes about translating the method to the users desktop by providing

a number of graphical editors - a collection of editors which facilitate drawing and object

annotation (i.e. relation specification). But, Rational Rose does not support group

22

coordination development process, and it does not have inter-notations consistency

checking functions.

There are also some freeware or commercial CASE tools for graphical editing.

For example, the MetaEdit [20] Toolkit. But, none of these tools supports consistency

checking between notations or methods. The WHERE project aims to realize these

features. We will explore the inter-notations consistency checking issues in next two

Chapters. After the survey of existing CASE tools, we conclude:

o The existing requirements traceability tools do not capture all of the information in an

evolving development process.

o None of the existing CASE tools supports the consistency and completeness checking

for a same piece of specification in different notations.

The ViewPoints framework [21] may give us the solution for these problems. In

the next section, we introduce the ViewPoints framework, and show that the ViewPoints

framework supports requirements traceability and inconsistency management.

3.2 ViewPoints Framework.

The WHERE project builds upon the ViewPoints framework. An outline

description for a ViewPoint can be considered as a set of chunks of a specification [21].

Each chunk has a specific owner and representational style. The idea is that each

ViewPoint implicitly is a self-contained specification-editing tool for one particular

notation, and is complete with knowledge about how the contents of the ViewPoint are

related to other ViewPoints. The editing tool on its own can be thought of as a ViewPoint

template. Because a ViewPoint template can be defined for any notation, the framework

is independent of any particular method. In fact, different methods can be implemented in

the framework by constructing an appropriate set of templates. Most importantly, the

framework supports inconsistency management. Each ViewPoint template includes a set

of rules for checking consistency with other ViewPoints, together with guidance for

resolving inconsistencies. As responsibility for consistency is devolved to the individual

ViewPoints, local decisions can be made about whether to ignore or tolerate various

inconsistencies.

23

3.2.1 What is a ViewPoint?

There are various definitions for ViewPoint. In this thesis the definition by

Finkelstein in his The ViewPoints FAQ is used [21].

"The combination of the agent and the view that the agent holds is termed a

ViewPoint. "

Here, agent means participant or actor involved in the construction of a complex

description or model. Agents hold different perspectives or views of the artifact or system

they are trying to describe or model because of different responsibilities or roles assigned

to the agents. A ViewPoint can be thought of as a combination of the idea of an actor,

knowledge source, role or agent in the development process, and the idea of a view or

perspective that an actor maintains. In software terms, ViewPoints are loosely coupled,

locally managed, coarse-grained objects which encapsulate partial knowledge about the

system and domain; ViewPoints are specified in a particular, suitable representation

scheme, and encode partial knowledge of the process of development. The study of

ViewPoints includes the investigation of relations between views, between views and

agents, and between agents. We will focus on the relations between views in Chapter

Three. As Figure 3 shows, each ViewPoint consists of five slots according to the

framework of ViewPoints [2] [11]:

o the st_Ly__leslot, the scheme and notation of the ViewPoint representation is described,

[] the work plan slot, the set of development actions, process and strategy of the

ViewPoint are included,

Q the domain slot, the area of concern of the ViewPoint with respect to the overall

system under development is defined,

[] the specification slot, which specifies the ViewPoint domain, and is developed using

the strategy described in the work plan slot,

[] the work record slot, which contains an annotated history of actions performed on the

ViewPoint. It is the vehicle by which traceability may be achieved, and some form of

development rationale may be recorded.

24

/'II(LE (notaiion) "' _

_VORK PLAN

development actions, strategy, process)

Knowledge

Development
Procless Knowledge

DOMIN (area of concern)

SPECIFICATION .. _ Specification ._

Cpartial system description)

WORK RECORD (development history)

Figure 1. The five slots of a ViewPoint.

The development participant associated with any particular ViewPoint is known

as the ViewPoint owner. The owner is responsible for developing a ViewPoint

specification using the notation defined in the style slot, following the strategy defined by

the work plan, for a particular problem domain. A development history is maintained in

the work record.

After introducing the concept of a ViewPoint, we will briefly discuss why the

ViewPoints framework supports requirements traceability and inconsistency

management. Examples will be given in Chapter five of the thesis.

3.2.2 ViewPoints Framework Supports Requirements Engineering.

Conventional system development methods do not recognize the existence of

ViewPoints as user-definable entities. Instead they provide rigid structuring schemes and

strict control on both the diversity of ViewPoints and the relations between them. By

contrast, ViewPoint-oriented methods make ViewPoints first class objects so they can be

defined by method users, the relationship between them can be established. The objective

of ViewPoint-oriented methods is to strike a balance between preservation of multiple

perspectives during system development, and the demands for consistency and coherence

arising out of group work. As ViewPoints allow you to collect system information from

multiple perspectives, you will inevitably collect a lot of information that must be

managed. This is both a strength and a weakness of the approach. It is a strength because

you are much less likely to miss information that is critical to the success of the system; it

25

is a weaknessbecausesomehowyou have to managethis information and eliminate

redundancyfrom it.

The essentialproblemthat ViewPointspresentis of consistencyor coherence

[10]. Given that ViewPointsmayoverlapif the agentshavea sharedgoal or their goals

arepotentially interfering, theconsistencyof theirViewPointsmustbeestablished.This

consistencyneedonly bepartial, i.e. sufficient to achievethe goals.Consistencycanbe

achievedby integratingthe ViewPoints,or by locally resolvinginconsistenciesasthey

arise.

The ViewPoint framework toleratesinconsistency,with no requirement for

changesto one ViewPoint to be consistentwith otherViewPoints Finkelstein,et al.,

[2][10][11]. Consistencycheckingis performedthrougha set of inter-ViewPoint rules,

defined by the method, which expressthe relationshipsthat should hold between

particular ViewPoints. These rules define partial consistencyrelations between the

different representationschemes.This allows consistencyto be checkedincrementally

betweenViewPointsat particularstagesratherthanbeingenforcedasamatterof course.

A protocol is provided for applyingconsistencychecksbetweenViewPoints, with the

checking process being initiated by either ViewPoints owner. A fine-grained

decentralizedprocess driven model in each ViewPoint provides guidance for the

resolutionof inconsistenciesasshownin Figure2 [22].

artiai I ecifi I_[p i sp " cation

ilI w°rkrecord iii

I.....chec :. i
process

IlOl_>

lDO

m mm .

partial specification

!i" 1
.... .T

checks I

__] process

[_ _ model

J

Figure 2. Decentralized Process driven Consistency Checking.

26

One important factor in the success of inconsistency management is consistency

rule defining. We try to granulate consistency rules. They are shown in next section.

3.2.3 The Granularity of Consistency Rule.

Basically we can categorize consistency from three different levels. From the

aspect of ViewPoint we can say there are two kinds of consistency checking [14]

[]

[]

In-ViewPoint checking is concerned that a ViewPoint specification is locally

(syntactically) consistent. Such syntactic checks partially define the semantics

of a ViewPoint's representation. The work on SCR [23] is an example of such

an activity.

Inter-ViewPoint checking is concerned with the consistency between

overlapping or interacting specifications residing in different ViewPoints. The

relationships between such ViewPoints are described by inter-ViewPoint

rules. In some software design methods, for example, Booch method, every

method uses several notations such as Entity Relationship Diagram, Class

Diagram and so on. Every notation can be considered as one ViewPoint, and

the relationships between two different notations can be expressed as inter-

ViewPoint rules. Also, a piece of specification can be expressed by different

methodologies from different aspects, for example, the requirements for Fault

Detection Isolation and Recovery on the space station can be tested by SCR

method or Spin method [23]. These two different methods can be considered

as two individual ViewPoints. When those two methods are used, the

specification has to be translated into method dependent logical objects and

relationships. This translation process is non-trivial, and failure of a proof

does not necessarily help to precisely characterize the specification. If we

could define some relationships to check the consistency between two

different methods, this will increase the credence of the translation process.

The relationships between two different methods can be thought of as inter-

27

ViewPoint rules. Usually these relationships between different methods are

very difficult to reason about.

o Handling global consistency is a problem in a fully distributed environment,

in which there is no central database. In the ViewPoints framework, global

consistency checking can be performed by transforming global checks into in-

and inter-ViewPoint checks. For example, if a particular method requires that

some consistency conditions hold for all ViewPoints, the method designer

might define a ViewPoint to contain a representation of all the other

ViewPoints. The global check then becomes an in-ViewPoint check for this

new ViewPoint.

It should be noticed that at the inter-ViewPoint level all the rules at the in-

ViewPoint level do not necessarily hold. There may be some circumstances under which

a user may wish to perform an inter-ViewPoint check, without resolving local

inconsistencies. One example is in a hierarchical decomposition of ViewPoints with

parent and children [14]. It is not always necessary to apply the in-ViewPoints rules to

children, then apply the inter-ViewPoints rules to parent and children. Sometimes, just

inter-ViewPoint checking does make sense.

We described the concept of ViewPoints, categorized consistency rules. Due to

the interest in requirements specification from multiple ViewPoints, the detection of

ontological overlap and the resolution of the inconsistencies are big concerns in

requirements engineering research. Several models have been proposed to manage

inconsistency based on ViewPoints frameworks. Some of the approaches focus on the

detection of particular types of inconsistencies between specifications expressed in

specific representation models, while others are concerned with inconsistency in general.

We briefly describe several popular models in the next section.

3.3 Different Approaches for Inconsistency Handling

In this section, we introduce several approaches for inconsistency handling. This

section does not cover all of the approaches regarding inconsistency management.

However, these approaches are the most popular ones in Requirements engineering

28

researcharea.As apart of relatedwork of this thesis,this sectiondescribesthreekindsof

approaches:logic based approach, reconciliation approach,and meta-modelbased

approach.

3.3.1 A Logic Based Approach to Inconsistency Handling:

In this approach rules that specify how to act in the presence of inconsistency are

explicitly specified. This approach includes following procedures [2]:

ta Partial specification knowledge in each ViewPoint is translated to first order classical

logic;

ta Logical inconsistencies are identified;

ra Temporal logic (meta-level) rules are combined with the inconsistencies identified to

specify inconsistency handling actions.

In this approach classical logic is used to detect and identify inconsistencies. After

the identification of inconsistencies, the meta-level axioms specify how to act according

to the context of the inconsistency (Figure 3). This context will include the history behind

the inconsistent data being put into the ViewPoint specification- as recorded in the

ViewPoint work record-and the history of previous actions to handle the inconsistency.

The meta-level axioms will also include implicit and explicit background information on

the nature of certain kinds of inconsistencies, and how to deal with them. Action-based

meta-language is based on linear-time temporal logic. We will not discuss them here.

29

identificationof inconsistency

Figure 3. A logic basedapproachfor Inconsistencyhandlingin theViewPoints

Framework.

Researchon the detectionand resolutionof logical inconsistenciesusually takes

for grantedthe detectionof ontologicaloverlap[24]. Therehasbeensomework on the

detection of ontological overlap based either on the generation of canonical

representationsof specificationsin a commonunderlying languageor on elaborating

analogiesbetweenspecifications.Suchelaborationhasbeenpossibleeither by matching

specificationswith classesof requirementsengineeringproblemsor by heuristically

identifying analogiesfrom theannotationof specificationswith termsin domain-specific

dictionaries.Thereconciliationapproachis suchakind of modelasdescribedin thenext

section.

3.3.2 Reconciliation Approach to Interference Management.

Reconciliation was proposed by Spanoudaskis and Finkelstein [24]. It lies

between loose and tight inconsistency management (Figure 4). It supports the detection,

verification and tracking of ontological overlaps. It is amenable to the application of

heuristic techniques, for example, inexact-matching mechanisms and models of

30

computer-supportednegotiation, while inconsistencydetectionmay require theorem

proving and sophisticatedformal frameworks.It usesa meta-modelto computethe

similarities betweenViewPoints. Suchprocessneedsto translatethe knowledgeof

ViewPoints into a non-trivial domain-independentmeta-modelbasedon Telos objects

[25] asdescribedin nextsection.

This approachincludes two basic stages;analysisand revision. Ontological

overlapsaredetectedusing a computationalmodel of similarity and a classificationof

specificationcomponentswith respectto ameta-modelof domain-independent,semantic

modelingproperties-analysis[25].

It alsosupportstheremodelingof specificationcomponents,sothat theresultsof

similarity analysisandViewPointownerassessmentof overlapsis a convergentrevision.

The goalof this processis to ensurethatthemodelingof specificationsis consistentwith

the humanassessmentof ontologicaloverlapsbetweenthem and to establisha shared

understandingamongspecificationownersof thepotentialfor inconsistency.

In theanalysisstage,aspecificationis treatedasanaggregationof "specification

components", classified using a meta-model, which expressesgeneral, domain

independent,semanticmodelingproperties.Both this meta-modelandthe specifications

aredescribedin Telos,anobject-orientedknowledgerepresentationlanguage,supporting

thesemanticmodelingabstractionsof classification,generalizationandattribution.

overlap identified

I I ared
understanding

specifications coverage assessment

analysis heuristic[-_s

_ remodeling <_

II IIII IIIII

Figure 4. Reconciliation Approach to Interference Management.

31

The similarities betweenViewPoints can be computedby meta-model.We

discussmeta-modelin nextsection.

3.3.3 Meta-model

The meta-model [26] consists of a kernel and a set of extensions. The kernel

provides the key, domain-independent, properties of semantic modeling schemes,

whereas the extensions provide additional properties for modeling established

specification languages.

meta-model

similarity

mapping by
viewpoint
owners

Figure 5. The Illustration of Meta-Model.

The kernel part is organized as a generalization of taxonomy of classes, with

specification components classified by the properties they possess. In particular,

components are distinguished into those representing entities and those representing

32

relations. Entity representing components are further specialized into natural, nominal,

place, event, activity, state, agent and physical quantity components. Components

representing relations are initially distinguished by their arity. Binary relationships are

further specialized according to: cardinality constraints (for example 1:1, N:M, total and

onto relations); mathematical properties of relations (for example symmetric, transitive

and set-inclusion relations); existential dependencies between related items or other

constraints between them, including their temporal coexistence, physical separability and

substance homogeneity.

The extensions to the meta-model comprise classes of additional properties for

modeling established specification languages.

In essence, the meta-model enables the enrichment of the semantic content of

specifications by asserting domain-independent properties about them and supports their

representation with respect to a common set of structuring constructs.

The similarity analysis of two specifications results in

[] their classification, generalization, attribution and overall distance measures

[] a graph isomorphically mapping semantically homogeneous components at the

successive levels of the structural closures of two specifications;

[] a list with their common and non common classes, each weighted by its importance;

[] a list with their common and non common superclass, each weighted by its

importance.

The isomorphism between the components of two specifications is likely to

reflect their Ontological overlaps. However, flaws, incompleteness or lack of an adequate

semantics in the modeling of specifications might force similarity analysis to generate a

mapping that is incorrect. In such cases, specification owners can propose a different

isomorphism between specification components, which in their opinion correctly reflects

these overlaps.

We described different process models for inconsistency management. In the next

two sections we describe two kinds of representations of partial specifications. The

encoding of requirements specifications into these representations allows us to identify,

analyze and manage inconsistencies between them. Let us start from graph grammars.

33

3.4 Graph Grammar

In this section we introduce the basic concept of a graph. Our framework for

inconsistency management is built on graph grammar [4]. The exploration of graph

grammars is explained in Chapter five. A graph is a universal data model to describe

static properties of objects and the structure of their relationships. It plays an important

role within many areas of applied computer science, and there exists an abundance of

visual languages and environments that have graphs as their underlying data model. Rule-

based languages and systems have proven to be well-suited for the description of

complex transformation or inference processes on complex data structures. Although

graphs and rule-based systems or grammars are quite popular among computer scientists,

their combination in the form of graph rewriting systems or graph grammars is more or

less unknown. One reason is, many people believe that modeling with graphs and graph

rewriting systems leads to inherently inefficient implementations due to the NP-

completeness of many graph algorithms. This situation changed gradually with the

appearance of the first graph rewriting system implementation like PAGG [27], GOOD

[28], and PROGRES (PROgramming Graph REwriting System) [29]. In our approach,

we use graph grammar as a framework to manipulate graph data rather than to explore

the NP-completeness problems in graph theory. The application of graph grammars is

performed as controlled rather than non-deterministicaUy. As graphs are the basic data

model for our approach, we first introduce what is graph.

Definition (graoh)

A (directed, labeled) graph is a 6-tuple containing system as Figure 6 shown. It is

represented as M=(V, E, s, t, I, m), where

(i)

(ii)

(iii)

(iv)

(v)

V is a finite set of nodes,

E is a finite set of edges,

s, t : E --) V are mappings assigning to each edge e _ E a source s(e) and a target

t(e).

I: V--) _v is a mapping, called the node labeling,

m: E--) _E is a mapping, called the edge labeling.

34

Note, we always assume that two alphabets]_v and _E (of node and edge labels

respectively) are available.

Definition (graph match)

A graph match g from a definition graph N into an image graph M is a structure

preserving mapping between these graphs (Figure 6). It assures that the source and target

of each edge in graph N is mapped consistently onto nodes in the target graph M such

that the graph structure of N is mapped onto a proper subgraph of M (predicates gv, and

ge). Further, it may be checked if nodes and edges, respectively, match by comparing

their labels. This is done using attribute match predicates Pv and PE for node and edge

labels, respectively.

If the mapping predicates gv, gE, Pv, PE exist between graph M, N, then M and N are

called homomorphic and M->N is a homomorphism. If the underlying mappings are

bijections, M-->N is said to be an isomorphism, and the graphs M and N are called

isomorphic.

il
GraphM , Graph N I

V: a set of Nodes gv _- V,. a set of Nodes •I
E: a set of edges gF. E : a set of edges 1

I

s(e): the source (e) _-- s'(e'): the source (e) I
,,

t(e): the target (e) pv _,. t (e): the target (e) •
I

h node labeling PE _ 1': node labeling I

Figure 6. Graph match, gv, gE, Pv, PE are defined by method users

Dynamic aspects can be represented by graph rewrite rules that identify a

subgraph in a source graph and replace it by a new subgraph. Types of graphs and rewrite

rules can be encapsulated in graph grammars and graph grammar modules.

35

Definition (graph rewrite rule)

A graph rewrite rule r = (L, R, K) is a triple of graphs, where graph L is left hand side of

the rule, graph R is right hand side of the rule and graph K is called gluing graph. K

ensures that no dangling edges appear in the new graph after applying r to the old graph,

hence, K identifies anchor elements which have to remain unchanged by the modification

and is subgraph of L and R as well.

Definition (modification of a graph)

A modification of a graph M into a new graph N by applying a graph rewrite rule r = (L,

R, K) is realized by the following two principal steps as in Figure 7 shown.

1. Search for a subgraph, termed redex, in a given host graph that matches the

rewriting rule's left-hand side.

2. Replace the selected redex by a copy of its right-hand side, but preserve all

those nodes (and their context and attribute values) which are shared among its left-hand

and right-hand side.

The application of a graph rewrite rule r on a source graph M yielding the target

graph N is called a graph rewrite step and noted as M r _> N (Figure 7).

We introduced the basic concepts of a graph grammar. Based on graph match and

graph rewriting rules our approach is explained in Chapter five. In next section, we

introduce another representation of partial specifications Quasi-classical logical.

3.5 Quasi-classical (QC) Logic

Quasi-classical logic [3] is an adaptation of classical logic. It allows continued

reasoning in the presence of inconsistency. The adaptation is a weakening of classical

logic that prohibits all trivial derivations, but still allows all resolutions of assumptions to

be derived.

36

I. K

(

Figure 7. The application of graph rewriting rule

An inconsistency in logic results from the simultaneous assertion of a fact o_ and

its negation, _tx. Using this definition, translating software specifications into logic

facilitates detection of inconsistencies and allows us to concentrate on reasoning about

these inconsistencies. However, in practical reasoning, it is common that there is

inconsistent information in a specification (e.g., multiple contradictory requirements of a

system). Classical logic is trivialized because, by the definition of logic, any inference

follows from inconsistent information. For classical logic, trivialization renders the

specification useless, and therefore classical logic is obviously unsatisfactory for

handling inconsistent information. QC-logic weakens classical logic by prohibiting all

trivial derivations. A language called labeled QC logic is developed to record and track

assumptions used in reasoning. This allows each item of development information to be

identified, and each inference to be labeled. Labels can be used to differentiate different

types of development information and in particular they can indicate the source of the

information.

We covered various topics in this chapter. They are the foundation of

understanding our approach. We recapitulate our introduction and discussion in the next

section, and move to explanation of our approach.

37

3.6 Summary

This chapter extensively introduced several important concepts for our

inconsistency management framework. We surveyed existing CASE tools, and found that

none of them captures all of the information in an evolving development process, and

none of them supports the consistency and completeness checking for the same piece of

specification in different notations. We talk about the ViewPoints framework, which is

the theoretical foundation of the WHERE project. Also, we surveyed related work, the

ViewPoints based inconsistency management process models. In section 3.4 and section

3.5 we introduced two kinds of representations that could represent partial specifications,

graph grammars and QC-logic. We will explore these two kinds of representation in

chapter five further. From an application view of point, an ideal CASE tool based on

ViewPoints should have some similarities to the tool described below.

The tool can be used to provide complete support for the entire requirements

specification process, or as a partial aid to some aspects of it. The partial mode allows a

gradual introduction of the tool into existing projects. For example, existing specification

documents can be loaded into the ViewPoint reviewer, and annotated without much

effort. New ViewPoints can then be created using the ViewPoint editor, with defined

relationships to the existing documentation. A typical use of the tool would then be to

model a portion of an existing specification in a new notation, whilst explicitly recording

the relationships between the existing specification and the new model.

Some tools about the ViewPoints framework have been developed as research

prototypes. For example, a tool called viewer was developed at Imperial College, London

[11], but for inconsistency management the internal implementation is not available yet.

We do not know of any currently available commercial tools in this area. In next two

Chapters, we describe our approach for inconsistency management based graph grammar

and TCMJAVA infrastructure. In chapter four, we first describe our approach for

inconsistency management. Then we explain how our framework could be implemented.

38

Chapter Four An Approach for Inconsistency

Management Based on Graph Rewriting System

39

This Chapter describes our framework for inconsistency management. This

approach is based on graph rewriting rules system. Graph is a universal data model to

describe static properties of objects and the structure of their relationships. Dynamic

aspects can be represented by graph rewrite rules that identify subgraphs in a source

graph and replace it by a new graph. Our approach is described from two aspects, the

static graph manipulation and dynamic transformation. And the application of these two

aspects on inconsistency management is outlined. In section 4.1, we first describe

different relationships between ViewPoints in general. In section 4.2, we describe the

overview of our framework, and discuss the application domains of our approach. In

section 4.3, we revisit the data structure of shape object in TCMJAVA, in order to help

the explanation of our implementation for this framework. In section 4.4 we elaborate the

basic graph manipulation operations, UNION, DIFFERENCE, SELECTION,

INTERSECTION. And how we can query or manipulate graphs based on these basic

operations. In section 4.5, we explain the need for graph module. In section 4.6, we

describe graph transformation, and how graph production can be used in inconsistency

management. In section 4.7, we evaluate our approach, explain the deficiencies. In

section 4.8, we recapitulate our achievement. Our approach is an intuitive and easy to

implement, because the infrastructure for graph systems are already established. In next

section we first describe the different relationships that may exist between ViewPoints in

general.

4.1 The Relationships Between ViewPoints

There are four kinds of inter-ViewPoint relationships that may exist between

ViewPoints in general [11]. We give an overview of these different relationships, and

explain the application domain of our approach in next section.

As Figure 1 shown, the first kind of relationship (1.1) is two ViewPoints may be

completely independent. Two ViewPoints have no overlaps, and they are not related. For

example, a ViewPoint describes university faculty income; and another ViewPoint

describes the gardening facilities at that university. Those two ViewPoints may not have

any relationships. There exist some existential relationships between two different

40

ViewPointsin thesecondkind of case(1.2).Theexistenceof oneViewPoint maydepend

upon the otherViewPoint in somesense.For example,In a university community, a

ViewPoint describesthe whole organizationof this university. There is a separate

ViewPoint to describeeveryunit in the organization.The third case(1.3) is that two

ViewPoints may partially overlap. A partial specification in a ViewPoint is related to a

partial specification in the other ViewPoint. This kind of relationship may include the

case that one ViewPoint is a subset of the other ViewPoint. For example, a ViewPoint

describes the faculty publications at a university. The other Viewpoint describes the

graduate student publications at the university. The last case (1.4) is that two ViewPoints

may totally overlap. In another words, two ViewPoints describe the same domain or

system. In this case, two ViewPoints may use two different representations for the same

domain or scheme, or the two ViewPoints may be required exact same, just from

different people; there should not have any conflicts, discrepancies or inconsistencies

existing between these ViewPoints.

We described the different relationships that may exist between two ViewPoints.

In next section we delineate our approach based on graph grammar, and discuss the

application scope that our approach can be applied.

1.1 1.2

1.4

Figure 1. Different Inter-ViewPoint relationships. Shaded areas represent overlaps

between ViewPoints.

41

4.2 An Overview of our Approach

Figure 2 summaries our experimental inconsistency handling approach. The steps

in this approach can be viewed as following,

n Partial specification knowledge in each ViewPoint is encoded into a separate graph.

Q Overlaps are identified using graph grammar matching, or defined by method users.

[] Inconsistencies can be detected using graph match or Quasi-classical logic. The

adoption of method depends on the application domain or system. For graphical

notations, graph match is more likely to be employed. The overlap part are

represented by two partial specifications, if a homomorphism exists between those

two partial specifications, two ViewPoints (specifications) are inconsistent. And vice

versa. The seeking of homomorphism also supplies useful information for

inconsistencies.

[] For ViewPoints represented in graphical notations, graph rewriting rules are very

useful to express the transformations of graph systems. Transformation information is

recorded using graph rewriting rules. The reversing application of rewriting rules

supports "UNDO" operation, and consequently supports inconsistency management.

[] Temporal logic (meta-level) rules are combined with the inconsistencies identified

and human support to specify inconsistency handling actions.

Our approach has following characteristics.

[] This approach is intuitive for ViewPoints represented by graphical notations.

o The detection of overlaps involves a fairly easy and straightforward process, and the

non-trivial translation from original specification into formal logic can be avoided for

ViewPoints represented by graphical notations.

o In order to manage inconsistencies, the relationships between viewpoints need to be

clearly defined. This process is not trivial. Usually the success of defining

relationships determines the quality of inconsistency detection. Our approach reduces

the work of defining relationships. After an overlap between two ViewPoints has

been identified, we can focus on the relationships of the complement part of the

overlap part in a ViewPoint to the complement part of the overlap part in the other

42

ViewPoint, complement parts to overlap, and ignore the relationships inside of

overlaps.

Actions

identification of inconsistency

t
Graph grammar rewriting rules or classical

[logic is used to represent the relationships

_nter-V!ewpoint specific_ation in.. fomaati_on

T
I Overlaps [

Graphl Graph2

Graph Grammar
Matching

Figure 2. Inconsistency handling in the Viewpoints framework. Each viewpoint is

translated into graph, different inconsistency detection methods can be used.

43

o Depends on the application domain, users have flexible to make selection of graph

grammar or quasi-classical logical.

o The detection of inconsistencies can be realized by seeking the homomorphism

between two graph systems. Method user defines mapping functions between graph

systems using user friendly windows step by step.

[] TCMJava already has a class called Shape which record all of the information about

graphical node or edge attributes, and a class called Cell which record all the

information of table cell. The translation of diagram or table into a graph will be a

selecting and reorganizing process. The infrastructure of graph system is already

available.

[] The application of graph rewriting rules for ViewPoints represented by graphical

notations supports inconsistency management. The recording of graph rewriting rules

supports tracing information, ameliorating and rectifying inconsistencies, and helping

a seek an effective way to resolve inconsistencies.

We described our approach for inconsistency detection. And in section 4.1 we

explained that there are four inter-ViewPoints relationships between two different

ViewPoints. A question is what is the application domain that our approach can be

applied to? Our approach can be utilized to detect the inconsistencies for the case 3 and

case 4 described in section 4.1 for ViewPoints represented in graphical notations. One

ViewPoint may be partially overlapping with another as Figure 1 case 3 shown. The

overlap can be detected by subgraph querying from the two ViewPoints, or can be

defined by method user. After the detection of overlap, if a homomorphism exists

between a partial specification in a ViewPoint and a partial specification in the other

ViewPoint, and those partial specifications refer to the overlap, then no conflicts or

inconsistencies should exist between those two ViewPoints. The querying of subgraph

from a graph system (ViewPoint) will be discussed in section 4.4. If two ViewPoints

describe the same domain as Figure case 4 shown, in this case, seeking a homomorphism

is the goal. If a homomorphism exists between these two ViewPoints, the two

specifications represented by those ViewPoints are consistent. And vice versa. Also, in

44

this case, the two ViewPoints is totally overlapping, the process of finding

homomorphism supplies useful information for the inconsistencies existing between the

two ViewPoints, and later helps resolve inconsistencies. Our case study described in

Chapter Six employs such an example to explain how our approach is utilized.

In next section, we revisit the implementation of TCMJAVA, especially Shape

class. This helps us understand the basic static manipulation of graph system.

4.3 Visiting Shape class in TCMJAVA

The Shape class in TCMJAVA is a very huge class. The class hierarchy is

complex, and partially described in Figure 3. Before talking about our implementation

for inconsistency management based on Graph Grammars, we should mention several

important attributes for the Shape class in the implementation of TCMJava. The Shape

class is characterized by; the type of the Shape class, e. g. BOX, CYCLE, LINE; two

positions; the topleft position and the central position of the Shape class; the name of the

Shape, e.g. "my node". A node of a diagram in TCMJava is mapped to a node in a graph

system. A name of a node in TCMJava is mapped to a label of node in a graph system.

An edge of a diagram in TCMJava is mapped to an edge in a graph system. A name of an

edge in TCMJava is mapped to a label of edge in a graph system. Edge shape in

TCMJAVA has two node shapes as its attributes. They represent the source and the target

of an edge shape. These two node attributes of an edge shape are mapped to the source

and the target node of an edge in a graph system. A diagram !n TCMJava may include

more than one node or edge. Edge shape can not exist independently; there exist two

nodes associating with an edge in TCMJava. The storage of a group of shapes in

TCMJava is described in following paragraph.

In a diagram, all drawing shapes are stored in a Vector (java.util.Vector)

according to the sequence of drawing. Therefore, the manipulation of shapes in a diagram

is just operations on the Vector. For example, the delete operation on a subgraph selected

is just an operation that deletes several elements form a Vector. Java Vector class

supports enough methods on Vector manipulation, they are very useful in our study.

45

In a tableof TCMJava,cell classrecordsall the informationaboutcell text, cell

position, cell height,cell width, etc.The mappingbetweena table to a graph systemis

notvery explicit. Themappingrelationshipsmayvary. Herewe give anexamplefor state

transitiontable,which will be usedin chaptersix. The cells in the first row or the first

columnof a statetransitiontablein TCMJavaaremappedto thenodesof a graphsystem.

Thetextsof all cells in thefirst row or thefirst columnaremappedto the labelsof nodes

in a graphsystem. And all cellsin the first row of a table shouldbe sameasall cells in

the first column of the table sequentially.For example,the text in cell (1, 2) shouldbe

sameascell (2, 1).This constraintshouldbeenforcedinsideof a ViewPoint by method

engineer.If a cell in a statetransition table is empty, then there should not exista

Line

Nodel

Node2

Edge Shape

Classes

J

Figure 3. The class hierarchy of TCMJAVA Shape class

transition in the table, or an edge in a graph system. Transition cells are the cells that are

not empty and not the cells in the first row or column in a table. Transition cells in

TCMJava are mapped to edges in a graph system. Texts in cells are mapped to labels for

nodes or edges in a graph system. The "from" nodes and "to" nodes in a table are mapped

46

to source nodes and target nodes in a graph system respectively. CellVector class stores

all information in a row or a column in a table.

We described the data structure for shape class in TCMJava and the mapping

relationships between TCMJava shape or table class to a graph system. In next section we

will discuss the static aspects of graph system, and how they can be implemented based

on TCMJAVA.

4.4 Graph query and replacement

In this section we first introduce several basic operations for graph system

manipulation based on TCMJAVA implementation. Because graph-rewriting system is

also a rule based system, in rule-based systems complex operations are based on several

simple basic operations. Complex operations can be derived from the combination of

simple basic operations. This claim in rule-based system is sound. In our study, we

define four basic operations:

UNION (or): for two sets of shapes A and B, the performance of union operation

assumes the two set A and B is disjoint. This operation can be implemented by appending

one shapes List (Vector) to the other shapes List (Vector).

INTERSECTION (and): Two vectors store two sets of shapes. The utilization of

this operation should find the common shape objects in the two shape vectors. Java

programming language supports data persistence, two objects can be compared each

other. Then common shape objects can be obtained in a O(n 2) running time.

DIFFERENCE (but not): This operation can be implemented as selecting all of

the shape objects in one list of shapes, but not in the other list of shapes. As a

complementary operation of INTERSECTION operation, the running time of this

operation is O(n2).

SELECTION: This operation needs two parameters, a list of shapes, and a shape

object that need to be identified and selected from the list of shapes. A implementation

could be as following. For example, selecting of shapes with a specific shape name.

Define a new vector first, then compare every shape object in the list of shapes, if a shape

47

object is found sameasthe targetshape,thenput the shapeobject found in the new

vector, At last return the vector.

public Vector Selection (string Stiapename,Vector Shapesy {
Vector p = newvect0i_0; • -. :_ _

for (int I=0; I<shapes.size0; I++) {
if (shapes.elementAt(I).name.equals(shapename)

} p.addElement(shapes., elementAt(I)); i"

return p; - - " .i:
...... 22 2 - 25: -_122. .

The subgraph queries, replacement and other complex operations can be

implemented using these simple operations. For example, the Merge function can be

implemented as following:

publie veCtOrMerge:Wecf6r sfia_esl;Vectdfghapes2){ :_

The Merge function basically discards the common objects in two sets, then

unions all the objects. Therefore, the static manipulation on graph system is deterministic

and can be finished in polynomial running time. In next section, we describe the need for

graph module.

4.5 Graph Module

In a decomposition hierarchy based development process, top level task usually

decompose into small subtasks. Then assign those small subtasks to other people to

develop. One simple example is explained in chapter two (Figure 4 in chapter two). The

process Bob performs is a subtask in Ann's process. In order to check the consistency

between this two ViewPoints, a graph module is needed to encapsulate the information in

Bob's process, and check the consistency between Bob's process (as graph module) to

Ann's sub-process B. Based on the implementation of TCMJAVA, the implementation

for a graph module is practical. For example, for figure 4 in chapter 2, we can use

48

incidenceor outgoingedgesasattributein graphmoduleclass,andusea Vector to store

othershapesinsidethe module.Thegraphmatchalsocanbeperformedon the checking

betweena graph atomicunit and a graphmodule.In Figure 4, we show the different

comparisoncasesfor ViewPoints, ViewPoint modulesand atomic units in a graph

system.Case1 showsa comparisonbetweena graphnodewith a ViewPoint; Case2

showsa comparisonbetweentwo ViewPoints;Case3 showsa comparisonbetweentwo

ViewPointmodules;Case4 showsa comparisonbetweena ViewPoint anda ViewPoint

module. Graph module encapsulatesnon-deterministicas well as controlled graph

rewritingaccordingto softwareengineeringmodularizationtechniques.

In nextsectionwewill discuss,thedynamicaspectof graph,graphrewriting rule,

or graphproductionto representgraphtransformationmechanisms.

4.6 The Application of Graph Rewriting Rules

In previous sections we described graph static properties, and the basic operations

to manipulate graph. In this section we explain what is graph transformation, and how it

supports nconsistency management.

Graph node-ViewPoint

VP module - VP module

ViewPoint -ViewPoint 2

3 4 vP - vP mo ule

49

Figure 4. Different comparison cases among ViewPoints, ViewPoint modules, and

atomic unit in a graph system. Showed areas represented domains in comparison.

Subgraph tests and queries are the main operations for inspecting already existing

graphs, whereas productions is their counterparts for creating and modifying graphs.

Productions have a left- and a rigt-hand side graph patterns as their main components as

described in chapter four. Dynamic aspects of graph can be represented by graph

rewriting rules. The application of graph rewriting rules keeps any graph transformation

information in the development process. Therefore, the reversing application of graph

rewriting rules can go back to previous steps in graph transformation process. This

supports "Undo" operation in development process. The employment of graph rewriting

rules supports method user to explore alternatives, and supplies help to a method user to

search for an inconsistency resolution. Hence, the application of graph rewriting rules

supports inconsistency reasoning, analysis, diagnosis, tracing information, resolution,

amelioration, rational. Therefore, our framework supports inconsistency management.

Figure 5 shows an example for the application of graph rewriting rules. There are two

graph rewriting rules r l and r2. The different sequence of applying rules results into

different graphs. But a method user can always go back to previous steps by applying

graph rewriting reversing rules (rl "1 and r2"1), in order to find a satisfied state (a

consistent state) for development process. The help from a method user in searching for a

resolution of an inconsistency can greatly reduce the running time

(O((number of rules)!)). The implementation issues are discussed in next paragraph.

The data structures of the WHERE and the characteristics of Java programming

language determine that the implementation of graph productions is feasible. Graph

rewriting rules as data objects can be stored in a Vector data structure (Figure 6). Then, a

graph rewriting rule as an element in the Vector can be retrieved and applied to a graph

system. The application of graph rewriting rule needs the basic operations as described in

the previous section. For example, a query operation is needed to find a the left-hand side

of a rewriting rule, then a replacement operation is needed to replace the left-hand side

subgraph with the right-hand side subgraph for a rewriting rule. All graph rewriting rules

employed for a graph system is stored in the work plan slot of a ViewPoint. In next

5O

sectionwe evaluateour approachfor inconsistencydetectionandmanagementbasedon

graphgrammar.

r2(L, K, R)

 lell Ie21 le31 'e41role41 Ie51 le61...

4.7

Figure 6. The storage for graph rewriting rules applied to a graph system.

Evaluation of Approach

Our approach is explicit for ViewPoints represented in graphical notations. The

encoding from graphical notations into graph systems is straightforward. The

manipulation of graph systems is deterministic with the help of method users. If two

ViewPoints have no overlap, it does not make sense to check inconsistency. If two

ViewPoints have an existential relationship, our approach is difficult to be employed.

Also, if specifications are represented in mathematical notations or natural language, and

difficult to be converted into graph systems. Our approach is not applicable to these kinds

of systems. In our framework, we adopt meta-level rules for "inconsistency implies

action", and emphasize that such inconsistency handling actions need not necessarily

remove inconsistencies. How does it combine with graph grammar approach is a

problem. In our framework, method user defines mapping functions in seeking

homomorphism between two graph systems by using a series of windows. Sometimes,

the definition of mapping functions are blur, the seeking of mapping functions is not very

51

easy. This is an engineering issue, also is an implementation issue. In next section we

summary our achievements.

4.8 Summary

In the complex system development process, requirements specifications usually

are expressed as various graphical notations. The internal representation of most software

documents is a directed attributed graph. Sometimes even for same piece of specification

document, it can be represented using different graphical notations. We discussed

different inter-ViewPoint relationships in this chapter, and explained that our approach

fits for two ViewPoints partially overlapped or totally overlapped. Our approach focuses

on graphical requirements specifications. The encoding of a piece of diagrammatic or

tabular specification into graph system is explicit and direct. After the conversion of

specifications from graphical notations to graph systems, method users define mapping

functions to detect if there exists graph homomorphism between two graph systems. The

finding of homomorphism helps detection and analysis of inconsistencies. The subgraph

queries and mappings make use of basic operators INTERSECTION, UNION,

DIFFERENCE, and SELECTION. In our implementation, method users define mapping

functions via user friendly wizard windows.

In this thesis the dynamic graph transformation in support of inconsistency

management is also investigated. Graph rewriting rules store the information of evolving

process. The recording of all graph rewriting rules helps backtracking to previous state in

development process; supports the exploration of altematives; and supplies valuable help

to search for an inconsistency resolution. As a data type, rules are stored and manipulated

in our approach. In the search of subgraphs for the writing rules, the established static

operators are used for queries and replacements. In next Chapter, we present the

applicability of our approach based on International Space Station Specification.

52

Chapter Five Case Study- International Space

Station Specification

53

This chapter introduces the case study that was conducted to assess the

applicability of our inconsistency detection framework. The scenario introduced in this

chapter describes the verification and validation activities conducted by an IV&V term.

The findings of this case study confirmed that inconsistencies are inevitable, the use of

our framework will detect some of the inconsistencies experienced in large software

projects.

In section 5.1, we briefly describe the case study document about. In section 5.2,

we introduce the concept of Independent Verification and Validation (IV&V). We start

by describing traditional software verification and validation processes. Then we

introduce IV&V process and describe the roles of the parties involved. Having described

IV&V process, section 5.2.3 and 5.2.4 describe the tools and methods of an IV&V term

uses, and the documents of an IV&V term faces. In section 5.3, the original valid Space

Station Mode and state transitions requirements for space station specification is

described. Section 5.4 explains the consistency checking process, and in section 5.5, step

by step a working process to apply our consistency-checking engine is described. Finally,

section 5.6 recapitulates the applicability of our approach to the International Space

Station Specifications.

5.1 International Space Station Specification

The International Space Station (ISS) is a co-operative project to establish an Earth

orbiting facility in which scientific experimentation is conducted. This project involves a

cooperation effort from six international partners. The piece of requirements specification

used in this case study is about automated station control requirements. The automated

control capability is intended to provide a structured, well-understood framework for

operator control of station activities and operations. To ensure the quality of the ISS

software system, NASA has an IV&V term to oversee the entire ISS software

development process. The need for verification and validation of software and the

concept of IV&V are discussed in next section.

54

5.2 What is Verification and Validation?

Verification and Validation are two commonly used terms in software

engineering. They mean two different types of analysis in the software

deveIopment process. According to their definitions from ANSI/IEEE:

Validation is the evaluation of software at the end of the software development

process to ensure compliance with the user requirements.

"Verification is the act of reviewing, inspecting, testing, checking, auditing, or

otherwise establishing and documenting whether or not items, processes, services or

documents conform to specified requirements (ANSI/ASQC A3-1978) [32] [33].

In other words, validation answers such question "Are we building the correct

system?" and validation is 'end-to-end' verification." Verification answers question "Are

we building the system correctly [6]?"

Different activities are involved in verification and validation process, verification

includes all the activities associated with the producing high quality software, such as

testing, inspection, and specification analysis. In comparison, validation includes the

activities to check how well the system proposed addresses a real-world need. For

example, activities like requirements modeling, prototyping and user evaluation. But in a

real world application, the distinction between these two analyses is not important. V&V

is now regarded as a coherent discipline: "Software V&V is a system engineering

discipline which evaluates the software in a system context, relative to all system

elements of hardware, users, and other software" [34].

5.2.1 Independent Verification and Validation Process

For independent verification and validation (IV&V) process, the customer hires a

separate contractor to analyze the products besides the software development contractors.

The system under development is usually high-cost and safety-critical. IV&V process is

used to overcome analysis bias and reduce development risk. This process is performed

in parallel with the development process throughout the software lifecycle, and is

independent of any inner V&V performed by the development contractors. The customer

55

relieson theIV&V contractorasaninformed,unbiasedadvocateto assessthestatusof a

project's schedule,cost, andtheviability of its productduringdevelopment.Following is

thedefinition of IV&V processfrom NASA "SoftwareAssuranceGuidebook"[35].

"IV&V is aprocesswherebytheproductsof thesoftwaredevelopmentlife cycle

phasesareindependentlyreviewed,verified,andvalidatedby anorganizationthatis

neitherthedevelopernor theacquirerof thesoftware.TheIV&V agentshouldhaveno

stakein thesuccessor failure of thesoftware."

The analysisactivitiesinvolved in IV&V processarevarious,they arerelevantto

requirements,design,code,performance,schedule,cost,andtesting.

The main purposeof IV&V processis to reducerisk, besidesIV&V has other

benefits.For example,theearliererrorsarefound in thedevelopmentprocess,the lower

the cost to get them fixed. The clearertherequirementsspecificationsusedto drive the

implementingandtestingprocessesare,the lesseffort maybeneededfor error-removal

and re-testing.Empirical studiesshow that the applicationof IV&V makessignificant

saving,andthedeliveredsoftwarehavefewerdefects[6].

Figure 1 showstherelationshipbetweenIV&V agent,developerandcustomerin

the idealmodelfor IV&V process.Different communicationchannelsmayexist in IV&V

processes.The IV&V agentmight reportto the programmanagementoffice within the

customer,or directlyto thedevelopmentcontractor[6].

5.2.2 The Characteristics of IV&V Process.

In IV&V practice, different degrees of independence are possible. Roughly there

are three kinds independence: managerial, financial and technical. We are going to focus

on technical independence rather than managerial and financial independence here. We

say an IV&V agent is technically independent, we mean an IV&V team gains different

perspective with the using personal who are not involved in the development effort, and

the understanding of the software and its requirements from IV&V team is not influenced

by the development team. Usually the use of different tools or techniques with the V&V

team in developer contractor enhances the technical independence of an IV&V team. The

56

experimentingof the emergingtools andtechniquesshould increasethe credits of an

IV&V team.

The depth and coverageof analysisperformedby an IV&V agent may vary

dependingon resourcesavailable,andthecriticality of the softwarebeingdeveloped.A

lightweightor partialspecificationsanalysisonincompletespecificationsis very valuable

[23].

5.2.3 Methods and tools in IV&V process:

An important aspect of IV&V work is to choose the right methods and tools.

Ideally, an IV&V contractor will have access to all the tools and resources used by the

development contractor, including the ability to share all project databases. However, in

order to address any gaps or weaknesses in the coverage of the developer's scope, the

IV&V contractor also needs additional methods and tools. These additional tools need to

complement the developer's tools, so that interoperability does not become a problem.

The use of these additional tools is an important factor in ensuring that IV&V is truly

independent.

Requirements

Reviews j Cust0ifier S:...................]Assessments

Copies of
Deliverables developer
(docs. code) deliverables

?

Drafts of deliverables

Jl ivav AgeniDraft assessments _

Figure 1: The relationships between IV&V agent, developer and customer.

57

After the tools and methods used by IV&V team are proved valuable in practice,

they are often adopted by developer team. If the developer team knows that their product

will be analyzed in a particular way, naturally they get interested in performing the same

analysis themselves before releasing their products. IV&V team has more scope for

experimenting with new techniques than the developer team [1], because IV&V team is

out of the critical path for the software development effort. Hence, in some ways IV&V

team plays a role to prove and test new techniques, as well as an agent of process

improvement.

The tools and methods employed by IV&V team examining a number of properties of

requirements specifications, including:

ca Clarity (readability) - Are the semantics of the requirements defined clearly enough?

ta Consistency-are they free of contradiction?

r_ Traceability- do requirements trace properly to higher level requirements, to the

design, to test cases?

n Correctness - is the system built consistent with its specification?

o Accuracy - do requirements correctly describe the needs for the customer?

[] Completeness- are all the modes and actions of requirements covered?

[] Testability- is there a way to verify whether these requirements are met in the

implementation?

WHERE project focuses on inconsistency detection and management. For

existing tools, consistency analysis is conducted by translating the objects in

requirements into a suitable logic entity, encoding the consistency relationships between

objects as theorems, and attempting to prove these theorems hold. Unfortunately, this

approach involves a non-trivial effort to translate the objects into logic, and failure of a

proof does not necessarily help to precisely characterize the inconsistency [23].

The facing target of WHERE project is requirements specifications for NASA

projects, let us see what these specifications look like.

58

5.2.4 The Documentation Problem

Most of the requirements specifications are written in natural language, and

follow certain convention. For NASA space station specifications, various graphical,

tabular, textual, or mathematical notations are involved. But, just few of them can be

annotated by using existing CASE tools. Further more, existing CASE tools have some

drawbacks to make them hard fitting in with NASA requirements specifications. For

example, there is no any CASE tool we found, which has facility to check inter-notations

consistencies. For example, the consistency between Entity Relationship Diagram and

State Transition Diagram; the consistency between two different diagrams in same

notation. These features are imperative in distributed group collaboration projects.

Our approach uses graph grammar as the framework to detect consistency in

requirements. This approach has the advantage of removing the need for translation into

logic, and make easier to trace inconsistencies when they occur. In next several sections,

the applicability of our framework based on graph grammar to International Space

Station Specification is described.

5.3 Scenario: International Space Station Requirements Specification

This scenario is taken from International space station Alpha program vehicle

management description document. Station modes and state were developed to support

the basic mission objectives of payload support, assembly, reboost, external vehicle

rendezvous and departure, resupply, and maintenance. The valid Space Station Mode and

state transitions requirements specification is expressed as two different notations for

clarity; state transition diagram and state transition table. Figure 2 shows the state

transition diagram; while Figure 3 shows the state transition table. In Figure 3, 'M' stands

for Operator commanded mode transition; "MA" represents Operator commanded plus

automatic mode transition; '-' stands for Not applicable; blank cell stands for Not

allowed. In next section we revisit our approach for inconsistency checking.

59

Survival ASCR

Reboost Proximity External
Operations

Operations

Microgravity

Habitable State

Untended State

Standard

Reboost Proximity External

Operations Operations Microgravity

Survival ASCR

Figure 2. The valid Space station Modes and state transitions requirements for space

station specification in State Transition Diagram.

60

From Mode Perform Habitable Perform UntendedMission State Mission State
i

Standard - M M M M M M M

A

Reboost M

Microgravity M .

Survival M M M - M M M

A A A A A A

Proximity Ops M _ .

ASCR M M M M M - M

External Ops M

Standard M

Reboost

Microgravity :?_

Survival

Proximity Ops

ASCR

External Ops

M

M

M M M M M M

A

M _

M

M M M M M M

A A A A A

M M M M M - M

Figure 3. The valid Space station Mode and state transitions requirements for space

station specification in State Transition Table.

61

5.4 Recapitulation of Inconsistency Checking Approach

In last chapter we described our approach to inconsistency detection and

management. In the inconsistency checking for two pieces of requirements specification,

first requirements documents are translated into two graph systems. A set of functions for

graph mapping is defined by method user. Presumably, user defined the correct mapping

functions. If a homomorphism for two graphs is found, at this instance, the two pieces of

specification is consistency. If a homomorphism is not found, the two pieces of

requirements are conflict. Figure 4 shows how graph match is used to detect structural

correspondences. The extraction of homomorphism also reduces the number of

relationships between objects to be tracked or managed. Then method users may put

more effort to track the relationships outside the homomorphism domain. In this case

study, we omit the inconsistency handling actions. At this stage, we are still exploring the

meta-model for inconsistency handling. Next section shows slides for the application of

our inconsistency-checking engine on the NASA space station specification.

s r _

correspondences

Figure 4. The application graph matching to detect structural correspondences

5.5 The Applicability of Our Approach.

This section describes how IV&V term uses WHERE project to detect

inconsistencies in a real requirements specification, and how method user defines

mapping functions in graph match. Presuming that developers already developed all of

62

the requirementsspecificationusing our WHERE tool. All documentsare store in

databases,and sharedby Customer(NASA), developerterm (Contractor), and IV&V

term. IV&V term helpsdeveloperterm to find error, missing information. In our story,

IV&V agentBobopensthe statetransitiontablethat wascreatedby developerAnne,and

createsanewViewPoint.He finds thata statetransitiondiagramalsoexpressesthesame

piecespecification.Redundanciesatthis circumstancehelpsclarification of specification,

avoids losing information.Theconsistencycheckingbetweenoverlapassurestheclarity

and correctnessof specification.Bob decidesto use WHERE inconsistencychecking

engineto detectthepotentialinconsistencies.Theprocessis describedasfollowing.

Method user Bob uses WHERE project editing toolkit (TCMJAVA) to open the

requirementsspecificationin statetransitiontable,andwantsto checkconsistencywith

the statetransitiondiagram.Figure 5 and Figure 6 show the loadeddiagramand table

using WHERE editing toolkit. WHERE supplies a seriesof interactive GUI to ask

method user to input user defined information. After Bob inputs the name of the

ViewPoints, WHERE inconsistency-checkingengine extracts some key information

about two ViewPoints (here is the two graphical notations,STD, STT) as Figure 7

shown.Figure8 showshow methodusersdefinemappingfunctions.

In this CASE study, STD hasjust one type of nodeEllipse and two types of

transitionedges,double-arrowandarrow to expressthe direction of the transition.The

edgelabelingis anemptysetin STD.STT hasonetype of nodeCell, onekind of edge

type Cell, two kind of edgelabeling 'M' and "MA". Method usercan define mapping

functionsusingChoicebox asshownin Figure8. The seekingof mappingfunctionsmay

beaheuristicprocess.

63

standard Reboost

Standard -- M

Reboost M

Microgravity M

Sur'dval IdA

Pro-oper M

ASCR M M

Ext-Oper M

MicrogravitySurvival Pro-Oper ASCR

MA M M M

MA -- MA

M M M

MA MA

Ext-Oper

M

M

Figure 5. The State Transition Table for Allowable Space Station Mode Transitions from

NASA Space Station Specification in TCMJAVA.

64

Figure 6. The State Transition Diagram for Allowable Space Station Mode Transitions

from NASA Space Station Specification in TCMJAVA.

65

i_ " You have following ViewPoint Information /

Figure 7. The import attributes summary from two ViewPoints in Comparison.

66

ELLIPSEcorrespondsto CELL
DOUBLEARROWcorrespondsto twotransitions from source to target, andfrom target to source

ARROWcorrespondsto a transitionfromsouse to target.

Figure 8, The interactive environment to define mapping functions for graph match.

After graph match mapping functions are defined, WHERE inconsistency

checking engine tries to match the two ViewPoints in different graphical notations. If a

homomorphism is found, then these ViewPoints are consistency. Otherwise, the

difference between two graphs is shown in the Inconsistency information display window

as Figure 9 shown.

67

ii !ili!_!ii "=:_!i_!i¸¸_¸ ;_ii_l_i _i_i_iS_i_!_=::!!=:¸ IL; ,_ _LBt of Broken Rules

• The Edge label from ASCR to Survlval.

!.The Edge label from Microgravi_to Standard

3. The Edge from Microgravilyto Survival

4. The Edge from Ext-oper to Survival

5. The Edge from Pro-oper to Survival

6. The Edge from Reboost to Survival

7. The Edge from Standard to Survival

Figure 9. The inconsistency information display window.

Surprisingly, in our CASE study, the valid space station mode and state

transitions requirements in different graphical notation is not consistent. There are seven

places are conflict. From another aspect of view, some information in STT is missing in

STD. The end of the walking-through leads to the last section of this Chapter, summary.

5.6 Recapitulation

In order to assess the applicability of the framework described in this thesis, we

conducted a case study that coves a real, large software project that is most likely to have

inconsistencies in its life cycle. This is a good case study, because ISS project is a

complex project with participants having different languages and opinions. From the

aspect of IV&V term, our framework is applied to detected inconsistencies. The study

68

indicated our framework helps inconsistency detection in the tackling of inconsistency

management problems.

Our CASE study is drawn from the Valid Space Station Mode and State

Transition requirements for space station specification, represented by a state transition

diagram and a state transition table. The method allows us to treat each notation as a

separate ViewPoint, the union of the ViewPoints clearly describes all of the modes and

state transitions. Such a redundant description is powerful tool to clarify any ambiguities

in a requirements specification, especially in a critical section the prevention of any

ambiguities is imperative comparing with the trade off redundancy.

We have implemented a prototype tool to check the inter-ViewPoint consistency.

We consider two different editors as the frame of two different ViewPoints. The

consistency checking between two different notations in TCM method is a kind of

activity of checking the consistency of different notations. Our implementation is based

on the framework of graph grammar. Method user defines the mapping functions

between two graph systems. Then homomorphism seeking is performed. If a

homomorphism is found, the two partial specifications are consistent. Otherwise,

inconsistencies are shown to tell method user the source of inconsistency. At this stage,

how to accomplish inconsistency handling still requires further work. We plan to

incorporate many of the conflict resolution strategies and actions within the WHERE,

while tolerating inconsistency.

In order to abide by the rule, requirements engineering tools should maximize the

ability of automation. We also implemented the parts of the automatic generation of a

state transition diagram from a state transition table, and vise versa.

We presented our approach in last two chapters, the implementation of our

inconsistency checker is based on TCMJava. In next chapter, we describe the process of

porting TCM (Toolkit Conceptual Modeling, from Vrije University at Amsterdam, The

Netherlands) project from C++ to Java, and make it being our WHERE project

ViewPoints editor.

69

Chapter Six The WHERE Editing Toolkit:

TCMJAVA

7O

This Chapter describes the process of translating TCM (Toolkit for conceptual

modeling) project from C++ to Java. The Java port of TCM is called TCMJava. This

work was conducted jointly by Zhong Zhang and Swam D. Dhaliwal. In the initial

translating process, C++ files were translated by term members at will. At last stage,

Zhong Zhang finished the integration work on TCMJava. This chapter summarizes the

experiences we leaned from this translating process. First, in section 6.1, from a broad

perspective we describe the architecture of the WHERE project, and in section 6.2 we

explain why we choose Java as implementation language. Later, In sections 6.3-6.6, we

focus on the difficulties encountered rather than a detail description of the difference of

C++ with Java. Also, we talk about the design of TCM project. In future work

description, we delineate that the conversion of TCMJAVA to JavaBeans increases the

reusability of the TCMJava. We already discussed the goals of the WHERE project,

corresponding to these goals the architecture of the WHERE project has been established.

In nexf section, we give a brief description of the architecture of the WHERE project.

6.1 The Architecture of the WHERE Project.

From the functionality aspects, the proposed architecture of WHERE comprises

three parts [1], the ViewPoint editor, the ViewPoint reviewer, and the consistency

checker. TCMJava provides the basis for the ViewPoint editor, whilst the ViewPoint

reviewer and consistency checker are not built yet.

The ViewPoint Editor

The initial design of this tool includes the functionality for editing graphical,

tabular, textual and mathematical notations. It is composed of a set of editors. Each editor

provides basic syntax and type checking. One editor is not necessary to be able to

generate an entire specification. Usually one piece of specification can be broken down

into individual ViewPoints. For example, if a specification method calls for three

different notations, each notation represents a different ViewPoint, and three different

ViewPoint editors are needed, one for each notation.

The ViewPoint Reviewer

71

This tool allows a user to browser and annotate ViewPoints created by other

people. If a ViewPoint to be loaded was developed outside the WHERE environment, the

Reviewer provides a very rudimentary parsing of the ViewPoint, so that annotations can

be attached to different parts of its structure. The Reviewer does not allow a user to edit

the ViewPoint, but it stores any annotations and meta-ViewPoint data as a separate 'view'

of the ViewPoint.

The Consistency Checker

This tool defines the relationships between one ViewPoint (source ViewPoint)

and other ViewPoints that are included in the developing specification. Each ViewPoint

can have three types of relationship with other ViewPoints: method-defined (defined by

method engineers), method user-defined, and automatic. The method-defined

relationships are laid down as part of the method, and define the relationships that should

hold between two ViewPoints of a particular type. User-defined relationships are entered

by users in order to record and track non-standard relationships between particular

ViewPoints. Automatic relationships are recorded as the result of certain actions on

ViewPoints, where the action reveals that a relationship must exist. The consistency

checker contains rules for checking the integrity of these relationships.

We decided that use Java networking programming language to implement the

WHERE project, because the WHERE supports the group communications and

coordination in a large-scale composite system development process. Other than that, we

have following good reasons to choose Java as the WHERE implementation language.

6.2 The Implementation of the WHERE Project.

Java as a powerful networking programming language, has being extensively used

by many industry companies and academic institutes. With the increasing functionality

and applause form industry, Java provides solutions for distributing networking

environment computing. In the next year, networking personal computer which will be

infused with JavaOS and will based on 100% pure Java will give networking computing

market a strike.

72

The two current networking computing competitors, Sun Microsystemsand

Microsoft supply different strategies and solutions for networking computing.

Correspondingto Microsoft's MFC, ActiveX, DCOM, SunreleasedJFC,JavaBeans,and

RMI respectively.Thesetwo solutionsusedifferentmethodologies.It is difficult tojudge

which oneis better.The decisiondependson what kind of systemunderdevelopment,

what kind of platform thesystemdevelopedwill beusedandsoon. AlthoughMicrosoft

solution has a lot advantagesover Javasolution currently, Javasolution distinguishes

itself from two aspects,andthosetwo aspectsarevery difficult for Microsoft solutionto

catchup. One characteristicsof Javais platform neutral,with the applicationJavaOne

Javacanbe programmingonce,runseverywhere.The otherdistinguishedcharacteristic

of Javais securityempowered.The Javasecuritymodel includesintrinsic securitythat

protectstheuserfrom errorsthatcanresultfrom incorrecttypecastingor illegal memory

accesses.This provides both safety and security. In addition, a Security Manager

providesresource-levelsecuritythat restrictsa Javaprogram'saccessto the disk, to the

network,andso forth. As anenterprisecomputingsolution,Javais favoredby moreand

moredevelopers.

The WHERE project facesthe communicationand collaborationproblemsof

distributed projects.Security and platform independentare the main concernsin this

project. Javanetworking solution will help us at thesepoints with the tradeoff speed.

ThereforetheWHERE project will be implementedin 100%pureJava.In next section

we introduceTCM project,which is theoriginalport of theWHERE projectediting tool

TCMJAVA.

6.3 Introduction of the TCM Project

6.3.1 What is the TCM Project?

The TCM project is a suite of editing tools and it aims to support the

conceptualizations of the software product in requirements definition and design phase

[5]. TCM stands for "Toolkit for Conceptual Modeling". The functionality includes

graphical and tabular editors to represent visually the different views of product

requirements and product designs. TCM toolkit is composed of 16 editing tools, and

73

implementedin Unix C++ and X/Motif. The hierarchy is showedin Figure !. TCM

project wasdevelopedat the Vrije Universiteit at Amsterdam.For use in the WHERE

project, theauthorandhis teammemberSwamD. Dhaliwal translatedtheoriginal TCM

from C++ into Javaprogramminglanguage.Even thoughthe designof GUI parts was

changedconsiderablyin the translatingprocess,the designof applicationpartswasnot

changed.Thedesignof TCMJavais describedin nextsection.

Figure 1. Thefunctionaldecompositionof TCMJava

74

6.3.2 The Design of TCMJava

In this section, we discuss the design of TCM project. We try to decompose

TCMJava into some subsystems. This decomposition is different with original TCM

project because of the different language features of Java with C++. But for the classes

except those about GUI classes, such as Shape, Document, we abide by the original

design.

We can first decompose TCMJava into Subject area and Graphical User Interface

Area, as shown in Figure 2. Note the decomposition does not stand for the inheritance

relationships. Also, the organization of source code is shown in Figure 3.

The source code of TCMJava is physical split over several subdirectories, and

each subdirectory forms a package. This is done according to the following criteria:

[] All code that is global and that is not part of the other areas is collected in the

directory gl. This directory is complied into a package called tcmJava.gl. This

includes classes like List, string, and some utility classes.

[] All code that lies in the editor area but not in one of the subareas, is collected in the

directory ed. this code is bundled into a package called tcrnJava.ed. This includes

classes that are used in all editors and startup tool such as, MainWindow,

EditWindow, Viewer, DrawingArea, Grafport, and Startup classes Tcm and

TcmDialog.

TCMJav

I

Subject Environment Graphical User Interface

I I I I I I
Subject Document Graph Viewer Grafport WindowShape Command

I I
Others

Figure 2. The decomposition of TCMJava into Subsystems.

75

ta All code that lies in the diagramarea and that is not part of a specific diagram

subareas,is collected in directory dg. This code is bundledinto a packagecalled

tcmJava.dg.This includesclasseslike Graph,Node,Edge,differentgraphicalshapes

andmostof thediagramedit commands.Thispackageis usedby anydiagrameditor.

ta All codethat lies in the tableareais collectedin directorytb. This codeis bundled

into a package called tcmJava.tb.This includes classes like TableWindow,

TableViewerandTable.Also, mostof thetool specificconstraintsareimplemented

in thesespecifictableclasses.

o All codethatis specificfor thedifferentdiagrameditors,is collectedin thedirectory

sd. This codeis bundleda packagecalledtcrnJava.sd.Eachspecificdiagrameditor is

a distinctexecutable.

o All imagesthat areusedin ImageBuutonand logo. TheseGIF files areconverted

from bitmapsinheritedfrom originalTCM project.

cmJava

/gl (tcrnJava.gl package)

led (tcrrdava.ed package)

/dg (tcmjava.dg package)

/images (all of the images files)

,/tb (tcmJava.tb package)

/sd (tcmJava.sd package)

Figure 3. The source organization illusration.

A complete and accurate overview of all classes and their attributes, actions and

specialization relationships can be generated automatically by using Javadoc as explained

at web site:

http://atlantis.ivv.nasa.gov/projectslWHERE/TCMJava

Overall, the TCM project is well designed. Moreover, the design of TCM intends to

avoid some pitfalls of C++ programming language.

76

e inheritance is avoided. We will discuss the drawbacks of multiple

Lnce in next section.

_e place used template. Also the translation problem of template will be

ed in next section.

_ext section we describe some differences between C++ and Java programming

Although the birth of Java benefits a lot from C++, still the differences should

Difference Between C++ and Java

-+ is a large language that is growing larger with its standardization. Part of this

the fact that C++ has grown being extensions from C into being a whole

anguage. The draft standard just released by the C++ standards committee has

_tandard library leap from just Isotreams and the C standard library into ten

ibraries. In a word, the C++ standard library is now huge.

;ing large is not a big problem, especially in the sense of library routines.

, the C++ language has also grown increasingly complex. Features like operator

ng, multiple inheritance, and templates can generate very complex code that can

enhanced or maintained by the person who created it. If that person leaves

_,the code becomes particularly difficult to maintain.

astly, not only did C++ inherit certain flaws and dangers from C, such as the

ssor and pointers, but added its own dangers and redundancies such as multiple

ce and references. And all the features to be discussed here do not cover all the

ures and ambiguities that are not included in TCM.

?he following C++ features were intentionally omitted from Java.

lie

,'le

_a

gS

3r

'd

le

_',

te

n

1,

c

a

_eatures Omitted from C++ in Java

_structors. The Java language has changed the concept of an object's destruction

its finalization. The reason for this is that object destruction is most often

sociated with the explicit freeing of dynamic memory allocated for the object.

S

J

f

1

)

77

a pointer. Much of the requirements of a pointer can be fulfilled with uninstantiated

object. Java has no way of implementing two current pointer functions:

1. Pass by reference. Although arrays and objects are passed by reference, a local

copy is made in the called function. The need for this is minimized through the

use of objects and object-oriented design whereby most methods act on the

objects data members and do not need to modify variables in the caller. If it is

necessary to modify a caller's variable, the method's return value can be used.

2. Function pointer. Although very useful as callbacks in GUI functions and in

parser dispatch tables, some of the benefit of function pointers can be gained

through using virtual functions and inheritance. As for the function dispatcher,

this can be achieved by using an uninstantiated variable of class Object and run-

time type identification.

........................ __ _: -y_-_.:-----:-:_-;- -:.7_--- .--:.!-,7---_ - i

C++ pointer _. " " " Java references

Point *point; Point Point;

point = new point(); point = new Point0;
.....]

point--)x = O; point.x =0;

*point = *other; Point =.new point(other);

Poin t point;

_a References. The reference is a feature that has two purposes: first, to eliminate the

need for pointers, and second, to make operator overloading work. Considering the

fact that good reasons have been put forth for eliminating both pointers and operator

overloading, reference become clearly unnecessary.

o Friend Classes. A feature that allows one class to have access to protected and

private data members and methods of another class. This feature is implemented

through packages. In a Java package, when you do not explicitly put in an access

80

o

Q

specifier, the default access specifier is "friendly", which means that all classes and

methods within the package have access to friendly methods and data.

Sizeof in C, a compile-time operator that returned the size, in bytes, of its argument

(a data type or variable). Since the Java language precisely specifies the size of all

basic types, there is no need for the sizeof operator.

extern in C. A data type modifier that tells the compiler that the definition of the

global variable or function is found in another compilation unit. In Java, there are

no global variables and all external classes are loaded dynamically by the runtime

interpreter. In TCMJava we collected some extern variables, and put them in one

class file (GlobalName.java) so that all of the classes can access them.

aublic final class Gi0b_iName _xtendsObject{ ...

public static Vector._e_H_elperVector = new_¥ector(20); //Type of He!per
public static Helper theHelper; : " "......... . : _ -- : _...H.::;__

........ : " i; 22; _, _i_ ._ i ;2_ i -; 2-. _ ., _,_...:-, .i..2_. _;;_..

!11t[! _-- r. : Z " .--. * .

o The C preprocessor processes a C source file before it is passed to the compiler. It

generally provides two capabilities: text replacement and conditional compilation. It

is important to understand that the functions the preprocessor performs have been

criticized as not truly being benefits at all [30]. The primary problem with the a

preprocessor can be summed up with the expression, "seeing is not believing." That

means that C source code can not be trusted until all header files have been read and

all macros expanded. This chore becomes impractical in very large programming

projects. The use of interface can partially function as C preprocessor.

n In C++, a virtual function in a base class is dynamically bound at run time based on

the pointer value. If the pointer value points to a subclass, the subclass function

with the same name will be called. If the function was not declared virtual, no run

time checking of the type would occur and whatever type the pointer was declared

(i.e., the base class) that is the function that would be run. In Java, all functions of

the same name in both the base and derived classes are virtual.

81

6.4.2

Q

Java New Features

Basic Types in Java. The treatment of basic types is special in Java, and compiler

and runtime system (i.e. VM), are aware of these special types. Variables of type int

can not be passed to a method expecting a real object, such as when creating a hash

table, where the key and contents are both subclasses of java.lang.Object. In order

to allow users to create hash tables with a key based on an integer value, classes like

java.lang.Integer have been invented. By definition, all objects are passed by

reference. Methods that receive an object instance can change its state, assuming

appropriate methods are defined. In contrast, variables of basic types, like int, are

passed by value. In TCMJava, in order to perform the same functionality in C

passing by reference (int &), we made a wrapper class which is similar to Integer

class, but much simpler.

t:l

mblic fiiifil class IntRef extends Objert{'?? .. -_--:-...............

private int value; _ .:.-
public IntRef0{ ----............. =:==: :--=-: -

this.value=0; _ _ :..

public IntRef(int value)[_i_"_._
this.value = yalue; ...

}

.,,,,. _

n other classes, for example, in Box class =: =g_:__:i:i_L :- : _:i_:=..._ :--

?ublic point GiveSnp(p0int to, int order, int count, !ntRef code) {........

An interface is a list of static variables and method signatures. Classes that

implement a given signature basically promise to implement each of these methods.

The compiler checks to see if these methods are really implemented in the class

definition. Interfaces allow the Java developer to inherit a specification, yet no

implemented behavior is inherited. An interface works as a type in the language.

For instance, an interface could be used as the type of formal parameter in a given

method. In TCMJava we used several interfaces to define constants, and classes that

use those constants in an interface implement the interface. In such way the binding

82

of the constants with class files can be finished in compilation time rather than

runtime.

mblic abstract interface Ic-6iiCode_s{_-::_:_:_ :_ - ":_ :_:_: _ _:_:_:......
//

public static final int BOX - 0, ELL!PSE- 1; DOT -2, COMMENT = 3, _..... _.

• _

mblic class GDIcon.s exte_t_a_.!¢_o_ implements !conCodes - {

/* BOX can be directly used rather than-using IconCodes.BOX */

} - - - __ -. 5L

i--i

17

In Java, a package is primarily used for managing namespaces; however, Java does

allow default "friendliness" among all classes inside a package. A Java package can

be thought of as a container for related classes and interfaces.

Communicating through static variables. When classes are loaded into a VM, all the

class variables are initialized. When a second application (editor) wants to load the

same class, and the VM determines that the class is already loaded, or is still cached

in memory, it will not reload the class and also not initialize the class variables.

This causes applications that have nothing to do with one another to share the same

static variables. In TCMJava, each editor uses several global variables to

communicate among classes. If those variables can not be restored at some stages

later, when the second editor is activated, the first editor dies, because the global

variables of first editor such as theDocoment, theHelper, thePrinter, were

overwritten by the second editor. In order to get around the effect, we used separate

Vectors to store each global variable, and assign every editor opened a unique

number, in this way we can restore global variables successfully.

6.4.3 System Information

This category classes provides both information form the operating system and

access to some operating system services. This is important to realize platform-

independent.

83

[] Classloader. This is an abstract class that can be extended to allow the loading of

classes either from a file or over a network. This mechanism will allow true dynamic

distribution of objects to any machine on the network that has a Java run time. We

use Classloader class to load the images for logos and imagebuttons.

[] System properties can be obtained by using System.getProperty(key) function in

System class, key can be user.name, user.dir, os.name, and etc.

The implementation of GUI part of TCMJAVA and original TCM is complete

different. In next section, we describe the some language aspects of X Motif and Java

AWT for GUI implementation.

6.5 X Window / Motif and Java AWT Package

The original TCM X/Motif user interface is restricted to that part of the source

(classes and functions) that directly uses the Motif, Xt and Xlib libraries. The typical

X/Motif application structure is shown in Figure 4.

Dther
Libraries

Application

User Interface

Motif Library

Xt Intrinsics

Xlib (X Window System)

Unix Operating System

The Java AWT uses three concepts to implement common functionality/platform-

unique look and feel: abstract objects, toolkits, and peers. Every GUI element

supported by the AWT package has a class. The AWT GUI objects are platform-

84

independent abstractions of a native GUI, just as Java bytecodes are platform

independent assembly language instructions for a virtual machine, AWT objects are

platform-independent GUI elements for a virtual operating system display. The toolkit is

the platform-specific implementation of all the GUI elements supported by the AWT.

Each toolkit implements the platform-specific GUI elements by creating a GUI "peer". A

peer is an individual platform-specific GUI element. Since every AWT GUI object is

derived from the generic AWT object called a component, every component has a peer.

The peer implements the platform specific behavior of the AWT component. The peer is

added to the generic AWT object when the object is added to a container that has a peer.

The fact is that peers are separate from the AWT object. An AWT object contains a peer.

It was implemented using the idea of containment. The peer is not created until there is a

physical screen representation (i.e. associated with the setVisible0 method).

In the process of porting, because of the irrelevant relationships between X/Motif

and Java AWT package, we had to isolate the parts about user interface from source

code. Then implemented the GUI parts separately in Java. A lot of classes are related

with GUI implementation in TCMJava, such as DrawingArea, DialogManager,

EditWindow, and Menu. The X/Motif GUI implementation was ignored, and Java

implementation has to be written from scratch.

The most difficult part in the translation process is event handling. Java uses event

delegation model to solve the problem; while X Motif uses a lot of callback functions to

solve the problem. In next section we describe those two kinds of event handling models.

6.6 Event Handling

Event Handling mechanisms in Java programming language is different with that

in X Window Motif. In this section, we describe how C++/X Motif and Java handle

events.

6.6.1 X Motif Event-Driven Solution

Programming graphical user interfaces introduced a new style of programming

called "event-driven' programming. Although the terminology differs between X

85

Windows, MS Windows, and the Mac OS, the methodology for event-driven

programming is the same.Event-drivenprogrammingdescribesa new paradigm for

control flow of a program.In theevent-drivenparadigm,yourprogrambecomesa setof

event handlers that are invoked by a user-triggeredevent. On Macintosh and MS

Windows, anapplicationprogrammeractuallywrites the small function to retrieveand

dispatchevents.This main function is the infamous"event loop". In X Windows and

Java AWT, the event loop is hidden from you. In X Windows, an application

programmerregistersfunction pointersto eventhandlingroutines(calledcallbacks)and

thencalls afunction calledXtAppMainLoop0. In theJavaAWT eventsareretrievedand

dispatchedby Javaruntime.Let usseetheTCM implementationin moredetails.

a CreatetheWidgets.

a Registertheeventhandlingfor thesewidgets.

ca Go into themaineventloop(which isbuilt-in, hidden).

ca Activate the appropriateevent handler when specific event occurs on a specific

widget.

ca Returnto themaineventloopwhendone.

Whena TCM tool is startedthewidgets that form themain window arecreated.

The class EditWindow and its specialization contain the functions to create the

constituent parts of the main window. Thesewidgets have one or more call-back

functions.The Widget reactsto a certainsetof X events(That setis built-in) andwhen

suchaneventoccursauser-suppliedactionis called.

6.6.2 Event DelegationModel in Java

In Javaeventdelegationmodel, eventsare generatedby event sources.One or

more listeners can register to be notified about eventsof a particular kind from a

particular source.Sinceit allowstheprogrammerto delegateauthorityfor eventhandling

to any object that implementsthe appropriatelistener interface.The new AWT event

model letsyoubothhandleandgenerateAWT events.Eventhandlerscanbe instancesof

any class.As long as a classimplementsanevent listener interface,its instancescan

handleevents.

86

In our approachof porting,aftertheGUI partshavebeenimplemented,theywere

registeredfor somespecificeventlisteners.Then,in theclassesregisteredcorresponding

eventswerehandled.

6.7 Summary and Future Work

In this chapter, we discussed the difference of C++ and Java programming

languages and the difficulties we encountered during the porting process. An approach of

porting process is summarized as following in Figure 5. And the current version of

TCMJava can be obtained from SRL web site at

http://research.ivv.nas a.gov/projects/WHERE/TCMJava/index.html

In the future, the WHERE project editing toolkit should be capable of dealing

with various notations, including mathematical notations (e.g. PVS) and natural language

notations. And user could check the consistencies between different notations. In current

version of TCMJava, most editing functions are available, such as copy, cut, paste, zoom

in, zoom out, save file, load file and more. However, in future version of TCMJava more

features are expected as listed below.

[] Multiple steps undo-redo functionality.

[] User can customize the background color, and foreground color.

[] User can change fonts.

[] User can customize different colors for different shapes.

[] Printing and Postscript support.

87

C++ Source Code

nalysis

/
UI Independent
ode

(Could be automated)

I

GUI dependent Code

(have to be rewritten)

[Java Cod_ /_rEf_p_elcalln__ackt[JavaCode] "1- EvmP_ietntnSers to

Vorking Iava program

Figure 5. The porting process summary.

With the increasing power and stability of Java programming language, the

implementation of these wishes could get more feasible. JavaBeans is a reuse component

solution for Java programming language, the conversion of every editor of TCMJAVA

into a JavaBeans, will improve the applicability and reusability of TCMJAVA. Other

users can use drag and drop mechanism to use any of our editors in a jar file, and tailor

with his (her) application to make a new application. The conversion each of 16 editors is

also imperative.

88

In the next chapter we present a summary of the thesis and give an evaluation of

its achievements. We discuss remaining problems which this thesis does not address, and

outline future work.

89

Chapter Seven Conclusions and Future Work

9O

In the translation process, we had to redesign and rebuild the GUI parts, event

handling parts, and graphics enabling functions from scratch. GUI handling part of Java

language is completely different with that in X Motif C++. Fortunately, several classes in

the TCM such as shape, subject, document can be reused, still we had to change many

places because of the difference of programming languages. We summarized our

empirical approach for future projects that need translate C++ into Java in chapter four. A

clean separation of GUI parts with underlying functionality implementation is essential.

Tossing away the GUI implementation in C++, writing new coding from scratch. Even

the coding about GUI parts can be finished beforehand of the translation, just from the

appearance of the project translated. Java makes the connection between GUI and

application coding easy. Java event delegation model is easy to grasp and simple to

implement. The callback features in X motif C++ implementation can be replaced by

static stubs functions which use various Java eventlistener classes in our port of

TCMJAVA. The translation process of application code (GUI independent) might be

automated.

Our translation effort succeeded with the release of beta version of TCMJAVA

1.4. It includes 16 graphical and tabular editors, with 10 diagram editors: "Generic

Diagrams", "Entity Relationship Diagrams",

"Class Relationship Diagrams", "Static Object Diagrams",

"State Transition Diagrams", "Process Structure Diagrams",

"Recursive Process Graphs", "Data Flow Diagrams",

"Data and Control Flow Diagrams", "System Network Diagrams",

Four table editors: "Generic Tables", "Transaction Decomposition Tables",

"Transaction Use Tables", "Function Entity type Tables",

And two tree diagram editors: "Generic Textual Trees", "Function Decomposition Trees".

All 16 editors support basic editing functionality, such as copy, cut, paste;

viewing functionality, such as zoom in, zoom out, home view; data saving/loading

functionality, such as save file, load file, insert file; help facilities, such as help,

document info; grid facilities, such as show grid, hide grid. Furthermore, TCMJAVA

supply an attractive and user friendly GUI. For more details, please refer to web page at,

http://research.ivv.nasa.gov/proj ects/WHERE/TCMJava/index.html

92

The finishing of TCMJAVA gives us a chance to experimentour inconsistency

managementframework.

Our inconsistencymanagementframeworkis basedupon graphrewriting rules

system,ViewPoints framework,and the internal data implementationof TCMJAVA.

Graph is a universaldatamodel to describestaticpropertiesof objectsandthe structure

of their relationships.It is feasible to encodethe diagrammaticor tabular objects in

TCMJAVA into graphsystem,which hassix attributes.Becausethegraphinfrastructure

is already there, the encoding processjust is a graph attribute recognizing and

redistributing process.The inconsistencycheckingbetweentwo partial specifications

(ViewPoints) canbe accomplishedto seekif thereis a homomorphismbetweenthetwo

graph systems,which correspondto the two partial specifications(ViewPoints).The

finding of homomorphism reduces the effort to track relationships inside the

homomorphicpart of thegraphs.The seekingof homomorphismneedsquery subgraphs

in asupergraph.Fourbasicoperationsareestablishedin this frameworkfor graphqueries

and replacements,UNION, INTERSECTION,DIFFERENCE,SELECTION.The non-

determinedsequencecombinationof the four basicoperationscanderivea lot complex

operationson graph.The implementationof thesefour operationsis basedthe List data

structurein TCMJAVA, which storesall the shapeor tablecell objectsin a diagramor

table respectively.Dynamic aspectsof graphsystemsare representedby graphrewrite

rules.The applicationof graphrewriting ruleskeepsany informationin thedevelopment

process. Therefore, the recording of graph rewriting rules can reverse graph

transformation,supportsUndo operationsin developmentprocess,supportsmethoduser

to explore alternatives,and supplies active help to the developerto searchfor an

inconsistencyresolution. Hence, the application of graph rewriting rules supports

inconsistency reasoning, analysis, diagnosis, tracing information, resolution,

amelioration,rational.Therefore,our frameworksupportsinconsistencymanagement.In

orderto checkthe applicabilityof our framework,weappliedour frameworkon a large-

scalerealproject,InternationalSpaceStationproject.

In thetomesof NASA SpaceStationSpecification,variousnotationsusedmake

all existingCASE toolsnot enoughto checkthe consistencyof inner-notationor inter-

notations. For the valid space station modesand state transitions requirementsin

93

InternationalSpaceStationSpecification,thereare two different notationsto represent

the samerequirements,statetransitiondiagramandstatetransitiontable.We appliedthe

WHERE to this piece of requirementsspecification.After method user defines the

mappingfunctionsin seekinghomomorphismprocess,inconsistenciesaredetectedand

displayed.We found that thereareoften manyinconsistenciesevenfor a simple partial

specification.This supportstheargument;inconsistencyis inevitable.In next sectionwe

discussthelimitation of our framework,andwhatshouldbedonein thefuture.

7.2 Discussion

We described our framework in previous section and Chapter four. It is a

preliminary research work. There should be a lot of places that need to be improved or

reconstructed. We outline several deficiencies of the framework; they may not cover all

of the holes in this framework.

In our framework, we emphasize that inconsistency handling actions need not

necessarily remove the inconsistency. How does meta-level inconsistency handling

actions combine with graph grammar approach is still a problem. In our framework,

method user defines mapping functions in seeking a homomorphism between two graph

systems by using wizard window. Sometimes, the definition of mapping functions are

blur, the seeking of mapping functions is not very easy. This is an engineering issue, also

is an implementation issue. In next section we will describe what makes a good CASE

tool, and a wish list for the WHERE.

7.3 Future Work

In today's webbed world, with using of distributed technology and decentralized

control, managing overlap and inconsistency in a software system under development is a

big consideration, and is replacing the concern for rigidly enforcing consistency and

removing redundancy. The delivery a tool like the WHERE is imperative. However,

Before put into a real large-scale project, following implementation needs to be finished.

94

A granulatedanalysisand clarification is neededbetweenthe relationshipsof

relatednotations,in orderto useour frameworkbetter.For example,the staticaspectof a

partialspecificationcanbe representedusingER diagram,andthedynamicaspectcanbe

representedin State transitiondiagram.A fined analysisof the relationshipsbetween

thesenotationsis needed.

Theautomaticconversionbetweentwo different relatednotationsis expected,this

will greatly unload human effort from tedious work, and concentrateon the creative

activity. For example,a statetransitiondiagramcanbeautomaticallygeneratedfrom an

ER diagram.

In a long-term,wepursuethe computationalsupportfor our the WHERE project

to support the full spectrumof inconsistencymanagementcovering specifications

expressedin different languages,with different degreesof abstraction,granularity and

formality, deployingdifferent terminologyandbeingat different stagesof development

or elaboration.We believethat to copewith the diversity of the inconsistencyproblem,

theWHEREprojectshouldsupportmultiple reasoningmechanismsand/ormethodswith

different application domains; including Quasi-classical logic based consistency

management,graphrewriting rulesbasedconsistencymanagement.And thecombination

of QC-logic and graph rewriting rules may give rise to a potential better solution for

inconsistencymanagement.Theresearchin this areais expected.

95

Bibliography

[1] S. Easterbrook and J. Callahan, "Independent Validation of Specifications: A

coordination headache," IEEE Fifth Workshops on Enabling Technologies:

Infrastructure for Collaborative Enterprises (WETICE'96) - Workshop on

Requirements Engineering in and for Networked Enterprises, Stanford, CA, Jun 19-

21, 1996.

[2] Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh, "Inconsistency

Handling In Multi-Perspective Specifications", IEEE Transactions on Software

Engineering, Vol.20, pp. 569-578, August 1994.

[3] Hunter and B. Nuseibeh, "Managing Inconsistent Specifications: Reasoning,

Analysis and Action", Department of Computing Technical Report Number 95/15,

Imperial College, London, UK, October 1995.

[4] H. J. Kreoswki, and G. Rozenberg, "On structured Graph Grammar r', Journal of

Information Sciences, Vol.52, pp. 185-210. 1990A; "On structured Graph Grammar

IF', Journal of Information Sciences, Voi.52, pp. 211-246. 1990B.

[5] TCM homepage http://www.cs.vu.nl/-tcrn/project.html.

[6] S. M. Easterbrook, "The Role of Independent V&V in Upstream Software

Development Processes," Second World Conference on Integrated Design and

Process Technology (IDPT-96), Austin, 'IX, December 1996.

[7] S. Easterbrook, A. Finkelstein, J. Kramer, and B. Nuseibeh, "Coordinating

Distributed ViewPoints: The Anatomy of a Consistency Check", International

Journal on Concurrent Engineering: Research & Applications, Vol. 2, pp. 209-222,
March 1994.

[8] A. A1-Rawas, "A framework for the communication and organization of requirements

perspectives", Ph.D. Thesis, University of Sussex, 1996.

[9] S. Dhaliwal, "Providing the Persistent Data Storage in a Software Engineering

Environment Using Java/CORBA and a DBMS", MS Thesis, West Virginia

University, 1997.

[10] S. Easterbrook and B. Nuseibeh, "Using ViewPoints for Inconsistency

Management,"Software Engineering Journal, Vol. 11, (1), 1996.

[11] B. Nuseibeh, J. Kramer, and A. Finkelstein, "A Framework for Expressing the

Relationships Between Multiple Views in Requirements Specification", IEEE

Transactions on Software Engineering, Vol. 20, pp. 760-773, October 1994.

96

