@ https://ntrs.nasa.gov/search.jsp?R=19980017623 2020-06-16T00:57:29+00:00Z

NASA-IVV-97-017

NASA IV&V Facility, Fairmont, West Virginia

An Automated Method for Identifying Inconsistencies within
Diagrammatic Software Requirements Specifications

Zhong Zhang

November 10, 1997

This technical report is a product of the National Aeronautics and Space Administration
(NASA) Software Program, an agency wide program to promote continual improvement
of software engineering within NASA. The goals and strategies of this program are
documented in the NASA software strategic plan, July 13, 1995.

Additional information is available from the NASA Software IV&V Facility on the
World Wide Web site hitp://www.ivv.nasa.gov/

This research was funded under cooperative Agreement #NCC 2-979 at the NASA/WVU
Software Research Laboratory.

An Automated Method for Identifying
Inconsistencies within Diagrammatic Software
Requirements Specifications

THESIS

Submitted to the Eberly College of Arts and Sciences
of
West Virginia University

In Partial Fulfillment of the Requirements for
The degree of Master of Science

By
Zhong Zhang
Department of Computer Science and Electrical Engineering
West Virginia University
Morgantown, West Virginia 26505

This research was supported by NASA-IV&V Cooperative Research Project agreement,
NASA-IV&V Facility at Fairmont, WV.

Acknowledgements

First and foremost I would like to express my gratitude to my supervisors Dr. Steve
Easterbrook and Dr. John Callahan. In particular, I wish to thank Dr. Callahan for his
granting me a chance to join Software Research Laboratory (SRL) at NASA/WVU. And I
wish to thank Dr. Easterbrook for his guidance, patience, and most important for his
giving me freedom to pick up the subject that I am interested in. Dr. Easterbrook and Dr.
Callahan always refer some good papers and books to me, and provide me chances to
attend conferences. Their continuous advice and guidance make this thesis possible. I am
indebted to them.

It is one of the happiest periods in my life during staying with SRL. I enjoyed two years
peaceful, fruitful, fun, exciting time in Morgantown. My thanks to Dr. Swarn Dhaliwal,
my teammate, for his sharing Java knowledge during the TCM translation process. Many
thanks go to Ms. Reshma Khatsuriya, my officemate, and Mr. Mani Kancherla for their
kind help and valuable discussion. I thank Mr. Todd Montgomery and Mr. Nicholay
Gradetsky for their helps and suggestions in solving problems in my research. Many
thanks to Dr. Wu Wen, Dr. Frank Schneider, Dr. Ralph "Butch" Neal, and Mr. Edward
Addy for their interest in my various presentations and their useful discussions and
insights. Also, I would like to thank Ms. Vivian Jenab for her help whenever I needed.

Many thanks go to the faculty members of CSEE for their instruction and providing
friendly environments to grow my knowledge. Especially, I want to thank Dr. Frances
VanScoy, my graduate study committee member, for her comments on drafts of my
thesis and valuable advice. Also, my thanks go to Dr. Frank Dehne at Vrije Universiteit at
Amsterdam, the Netherlands, for his generous providing C++ source code of TCM and
his comments on TCMJAVA.

Many thanks to my roommates and friends, Mr. Daming Li, Mr. Jesse Wang, Ms. Haijing
Wang and Ms. Lei Xu for their helps and friendly companionship. My thanks to the
friends in CSEE and the friends residing in the building on Willey Street for their helps.

Finally, my gratitude goes to my parents for their love and consistent support. I am very
grateful to my girl friend Wei, for her continuous encouragement and support.

ii

iii

Abstract

The development of large-scale, composite software in a geographically
distributed environment is an evolutionary process. Often, in such evolving systems,
striving for consistency is complicated by many factors, because development
participants have various locations, skills, responsibilities, roles, opinions, languages,
terminology and different degrees of abstraction they employ. This naturally leads to
many partial specifications or viewpoints. These multiple views on the system being
developed usually overlap. From another aspect, these multiple views give rise to the
potential for inconsistency. Existing CASE tools do not efficiently manage
inconsistencies in distributed development environment for a large-scale project. Based
on the ViewPoints framework the WHERE (Web-Based Hypertext Environment for
requirements Evolution) toolkit aims to tackle inconsistency management issues within
geographically distributed software development projects. Consequently, WHERE
project helps make more robust software and support software assurance process.

The long term goal of WHERE tools aims to the inconsistency analysis and
management in requirements specifications. A framework based on Graph Grammar
theory and TCMJAVA toolkit is proposed to detect inconsistencies among viewpoints.
This systematic approach uses three basic operations (UNION, DIFFERENCE,
INTERSECTION) to study the static behaviors of graphic and tabular notations. From
these operations, subgraphs Query, Selection, Merge, Replacement operations can be
derived. This approach uses graph PRODUCTIONS (rewriting rules) to study the
dynamic transformations of graphs. We discuss the feasibility of implementation these
operations. Also, We present the process of porting original TCM (Toolkit for
Conceptual Modeling) project from C++ to Java programming language in this thesis. A
scenario based on NASA International Space Station Specification is discussed to show
the applicability of our approach. Finally, conclusion and future work about

inconsistency management issues in WHERE project will be summarized.

iv

Chapter One Introduction 3
Chapter Two The Necessity for Inconsistency Management 7
2.1 The WHERE Project OVEIVIEW. .c..cceerercrimnminiciiesiminssrsnsssssssnmmesmssss s sra s sasesssssssesssanss 8

2.2 What i InCONSISTENCY 7 .rvvvieiiiiirinniiineisisristrnie ettt a s st sn e 10

2.3 An INCONSISLENCY SCEMATIOvreirrrermeerercisrii it rerei v s s 11

2.3.1 FOTCE . cuuerurireerarrversserersreserstsssesseassessesstsasesteastusresasssarassvarasnsssarasesesesmsbr e s mns e s s e n s e s st st es 12

2.3.2 A CODNSIStENE SLALE: ..eevereeerrrrsrrrsrsrerererrestirmrssers e seesrsemas s s s se st s s e s e nane 13

2.3.3 Concurrent EAItNGccovrvrrvrvrercreesniininsnsee s sassrsasmssassesscmssnn s s e 13

2.3.4 Establishing OVErlapsccccoouieinrcciirnncrerrmsesenissssens st 14

2.3.5 Building Consistency Rules........occoveviniivnivnnnnsnm s 15

2.3.6 Different Strategies for Inconsistency Management..........c.covvvinimmrimarinninirenr e 16

2.4 Summary of Inconsistency Management........ccccuuveerinccmnrnrnnmmssmsmrmnss s 19

Chapter Three Literature Review 20
3.1 CASE TOOIS cvereeererererreirrvermererereesesersmssesses s esesesare e esessmssessevasraasasast s e s nsms s r e e s ms P n e PE T RO RS eT RS 21

3.2 ViewPoints FTAMEWOIK. ...ovveerrcerriieecniiiriiiniisre s rssnrsrssn s cssesssisnssness s s naenessacssrsssnssanes 23

3.2.1 What is @ VIEWPOINL? .cceeriecicrrrreresieiririsnsserarsnsssnas s s st sansns s s snesasessonne 24

3.2.2 ViewPoints Framework Supports Requirements Engin€ering.........cocovouremsesssmscsescncenenns 25

3.2.3 The Granularity of Consistency Rule.cocevvermrcnnienin e 27

3.3 Different Approaches for Inconsistency Handlingceeviiiivmeesminniinnninnees 28

3.3.1 A Logic Based Approach to Inconsistency Handling:cocovevusreriimmssscsmsrninsnecenes 29

3.3.2 Reconciliation Approach to Interference Management.c..ivviiriennnnnncninn. 30

3.3.3 Meta-TOGEL ..o e s 32

CICII G, =10 €] 21 111 1 O R RS BRI R 34

3.5 Quasi-classical (QC) LOZIC ...ccovererererermeesrermnninrsmnsninncssenerinssnns s s 36

I TNV 1115 o 2O PRSP SR SRR R LR R LI 38

Chapter Four An Approach for Inconsistency Management Based on Graph Rewriting System...39
4.1 The Relationships Between VIeWPOINES....c.cvveecivvrreornmenrsnnenssinssisnsnse s 40

42 An Overview of OUr APPrOACHecrvreereririmiriii et s seeas 42

4.3 Visiting Shape class in TCMIAVA ...t 45

4.4 Graph query and Teplacement.covvurrererrcsrrics s 47

4.5 Graph MOoQUIE......coiismierervrniinieeiie s s 48

4.6 The Application of Graph Rewriting RUIESccovveiemininniinri e 49

4.7 Evaluation of APProach.....cccenineiieiereitinnscreresermsersrsssisss i ssse s 51

B STV (1) 11 o OSSPSR RS TR R T IR R 52

Chapter Five Case Study - International Space Station Specification 53
5.1 International Space Station Specification.......c.coceevvrvrrerin 54

5.2 What is Verification and Validation?ccevvvevvivrnirinmrniniinm s 55

5.2.1 Independent Verification and Validation Process......ccocovvivrermiinninmniineiiennnne 55

5.2.2 The Characteristics Of IVE&V ProcCess.....cvveeereimrmrnieninr e 56

5.2.3 Methods and tools in IVE&V ProCess:cccverriverersrninncessrssenssmisensnne e resnenesens 57

5.2.4 The Documentation Probleml.......cccorerrsnimimrinnienmsinnnmnrrsenssnemsasssmansecs e 59

5.3 Scenario: International Space Station Requirements Specification..........ccccvvevenrressmniinnnnee 59

5.4 Recapitulation of Inconsistency Checking Approach........cecovevmmririmnicsinnnniinii 62

5.5 The Applicability of Our Approach.........ccovvvmmrsinn e, 62

5.6 ReCAPIUIALION. ...ceirrrmririererraiaseress s s rrerasass e se et s st 68

Chapter Six The WHERE Editing Toolkit: TCMJAVA 70
6.1 The Architecture of the WHERE Project.cccovvivnvnrinimmnentisinne e, 71

6.2 The Implementation of the WHERE PIOJect.ccorvvrrreennsneinmeneiinnsrniss e 72

6.3 Introduction of the TCM Project......c.ccccuvminmnerernerinirmrimmsrais st anens 73

6.3.1 What is the TCM Project?ccoucrivmrimiicriniirmiennssnsssssessssessssscsesisss s rasssessssssass 73

6.3.2 The Design of TCMJava.....ccooiercinniniirn st 75

6.4 The Difference Between C++ and Java........coccocevvmiievimmneminsiie s 77

6.4.1 Features Omitted from C++ in Java.....ccccoreiernniesioninnnissnisnce s 77

6.4.2 Java NeW FEalUresoovviiieiicrcriiiiiriencrereevrsesans e s s s s sess e 82

6.4.3 System InfOrmationcoeririemiiinnirnneininsninieeees s tser s s e s 83

6.5 X Window / Motif and Java AWT Packagecceeorvmirminnnnniinnnnnisoneiee. 84

6.6 Event HANAIING.........ccooiiiiireriecrierinive st sarss e sesssveresssessssensserssesssssssesasnn 85
6.6.1 X Motif EVent-DIiven SOIULIONceivievisieeeeererisesevesesesssersreseessessesessesssesesssasessessessesmenas 85

6.6.2 Event Delegation Model in JAVa.......cccccccucrrevereeincrereensnesreseesesseresssesassresssssssesssesens 86

6.7 Summary and FUtUTe WOTK ...ccc.occoirrererorininierernierrressssnsnssssssssessssssnesssensnsssssasessossssses 87

Chapter Seven Conclusions and Future Work 90

7.1 Summary of ACRIEVEIMNENL.cccvrvriererirniirireerererereriniee s re s ssssasasssasesssreeseses 91

7.2 DISCUSSION Lvivuieririnisirisisistsie s serereeststssesearessssssrassssssessseresnesisessasasassresessasesarestsssmssetssons 94

7.3 FUtUIe WOTK ..ocveriiiiicrcnitiiiice s sereresere s st sssasbsssrese s sensesessvevavesesssanes 94
Bibliography | 1

Chapter One Introduction

The WHERE (Web-Based Hypertext Environment for Requirements Evolution)
project is concerned with the communication and coordination problems faced on large,
geographically distributed projects. It aims to support the process of collaborative
development of requirements specifications with tools to manage incremental changes to
large specifications [1]. The WHERE project is based on the ViewPoints framework. It
strives for: annotating and tracing the relationships between different pieces of
requirements specifications; managing inconsistency in requirements specifications in
distributed environments; and supporting group collaboration via the WWW. This thesis
is one part of an effort to tackle "inconsistency management” issues in the WHERE
project. In this thesis the motivation behind the WHERE project is described. Also, a
framework based on graph grammar theory for inconsistency management is delineated,
and a port of an implementation based on this framework is described. Finally, a case
study of the valid space station modes and state transitions requirements from the NASA
space station specification is presented with application of our inconsistency-checking
engine.

The long-term goal of the WHERE project is to tackle the “inconsistency
management” problems. Large specifications are likely inconsistent for most of their
lifetimes, because the development of large-scale composite software in a geographically
distributed environment is an evolutionary process. Often, in such evolving systems,
striving for consistency is complicated by many factors, because development
participants have various locations, skills, responsibilities, roles, opinions, languages,
terminology and different degrees of abstraction they deploy. This naturally leads to
many partial specifications or viewpoints, which are usually overlapped. From another
aspect, these multiple views give rise to the potential for inconsistency. The problem of
inconsistency management is to detect inconsistencies, to keep track of them, and to
manage them, rather than to prevent or avoid inconsistencies [2]. None of existing CASE
tools could efficiently manage inconsistencies in a distributed development environment.
The delivery of the WHERE project greatly helps information acquisition, group
communication and error finding in the software development process. Also, the

performance of inconsistency management supports innovative thinking and exploration

of alternatives. Consequently, the WHERE project helps make more robust software and
support software assurance process.

The detection of inconsistency needs an editing CASE tool to handle different
notations encountered in requirements specifications. An editing toolkit called TCMJava
has been developed in this group in order to meet the need of WHERE project. The
exploring of inconsistency issues in this thesis is based on TCMJava toolkit. In the course
of investigation of different approaches for inconsistency detection and management, we
find that Quasi-classical logic [3] is difficult to implement based on the TCMJAVA
implementation, while the application of graph grammars [4] in implementations is
feasible. In this thesis a framework based on graph grammars for inconsistency detection
is established.

In the complex system development process, requirements specifications usually
are expressed by various graphical notations. The internal representation of most software
documents is a directed attributed graph. Sometimes even the same piece of a
specification document can be represented using different graphical notations. Our
approach focuses on graphical requirements specifications. The encoding of a piece of
diagrammatic or tabular specification into a graph system is explicit and direct. After the
conversion of specifications from graphical notations to graph systems, a user defines
mapping functions to detect if there exists a graph homomorphism between the two graph
systems. The finding of homomorphism helps detection and analysis of inconsistencies.
The subgraph queries and mappings make use of the basic operators INTERSECTION,
UNION, DIFFERENCE, and SELECTION. In our implementation, method users define
mapping functions via user friendly GUIs.

In this thesis, the application of graph transformation in inconsistency
management is also investigated. Graph rewriting rules store the information of a
specification evolving process. The recording of all graph rewriting rules helps
backtracking to a previous state in development process, supports the exploration of
alternatives, and supplies valuable help in searching for an inconsistency resolution. As a
data type, rules are stored and manipulated in our approach. In the searching for and
replacing of subgraphs for the writing rules, the established static operations are used for

queries and replacements.

In order to support group coordination and communication work we adopt the
networking programming language Java as the implementation language and CORBA as
the information access and communication infrastructure. Before experimenting with our
approach, we need a set of diagrammatic and tabular notation editing tools to build
graphical specifications. We translated a graphical conceptual modeling toolkit called the
Toolkit for Conceptual Modeling (TCM) [5] from C++ into the Java programming
language. The difficulties encountered in the translation process are described as a part of
the thesis work, and the graphical shape data structure is discussed in detail in order to
map a shape class in TCM to a graph system in graph grammar theory.

We experiment with our approach by applying our TCMJAVA and inconsistency-
checking engine on the valid space station modes and state transitions requirements from
NASA space station specification as a part of the Independent Verification and
Validation (IV&V) process [6]. First, in order to help readers to understand this example,
the IV&V process is briefly outlined. The piece of NASA space station specifications in
this case study is represented using a state transition diagram and a state transition table
in the original document. We described how to use our inconsistency-checking engine in
the detection of inconsistencies between those graphical notations.

We conclude that the implementation TCMJAVA fits well a graph grammar system.
Our approach is intuitive and feasible. Overlap and inconsistency are inevitable and
acceptable in distributed composite system development environment. We have to learn
to live with them and learn from them. Our framework is the first implementation of
graph grammars on inconsistency management for requirements specification. From

empirical study, our framework helps solve the inconsistency management problems.

Chapter Two The Necessity for Inconsistency
Management

This chapter describes the problems the WHERE project face. First, from a broad
perspective the goals of the WHERE are described. Later, we focus on inconsistency
management issues in this thesis. The motivation of pursuing inconsistency management
in requirements specifications is delincated. Before describing what is inconsistency
management, we introduce the concepts of overlap and inconsistency in section 2.2. At
first glance, it is difficult to see the need for inconsistency management. Therefore, in
section 2.3, a scenario [7] is described to elaborate how inconsistencies are generated and
how different inconsistency handling actions are used to mange inconsistencies [2]. In
section 2.4, we summary the problems with inconsistency management, and enforce the
argument that the principal mechanisms used for preventing or avoiding overlap and
inconsistency are impractical, inconsistency (and perhaps overlap) is managed rather than

simply prevented could lead to more robust specification.

21 The WHERE Project Overview.

The development of large-scale composite software system is an evolutionary
process. The WHERE project concerns the group coordination and communication
problems in such a system [1]. Basically three goals are pursued in the WHERE project:
the requirements traceability and annotation to support group coordination in evolving
development processes, information access and communication among group
collaboration work, and inconsistency management in an evolving development process.
We describe each of these goals first, and later focus on the inconsistency management
issues in this chapter. We start with the first goal of the WHERE.

In a large-scale project development, managing an evolving requirements
specification is a significant problem, because any small changes to one part of the
specification may have impacts throughout the whole system specification
documentation. These impacts are often difficult to track and reason. Therefore, it is
difficult to know that all implications resulted from a small change. Based on the
ViewPoints framework, the WHERE project aims to solve these problems with the

support of annotation methods [8]. Dr. Al-Rawas discussed how multiple-perspectives of

software requirements are annotated and what the communication channels in multiple-
perspectives environments are in his Ph .D. dissertation. We will not discuss these issues
in this thesis.

World Wide Web (WWW) has emerged in recent years as an effective way to
provide access to information in a uniform and standardized manner. One of the
cornerstones for setting up a collaborative infrastructure is providing the ability for any
member of a geographically distributed team to access information. Therefore, the
WWW is the ideal candidate for group collaboration. The WHERE is implemented using
the networking programming language Java, and the communication and information
access infrastructure is constructed on CORBA (common object request broker
architecture). The support of group collaboration via WWW from the WHERE project is
discussed in reference [9].

The development of a composite system is an evolving process. In such a system
striving for consistency is complicated by many factors. Because development
participants have various skills, responsibilities, roles, opinions, languages, terminology
and different degrees of abstraction they deploy, this naturally leads to many partial
specifications or ViewPoints. These multiple views on the system being developed are
usually overlapped, by which we mean they refer to common aspects of the system
domain under development. From another aspect, these multiple views give rise to the
potential for inconsistency [2]. ViewPoints are inconsistent when they assert properties of
these aspects that conflict. Therefore, as a consequence of multiple perspectives, overlap
is inevitable; inconsistency is acceptable, because inconsistency supports innovative
thinking, deferment of commitments, and exploration of alternatives [2][10]. In any case
the principal mechanisms used for preventing or avoiding overlap and inconsistency are
impractical, and are not cost-effective. For “global” repositories and “universal” schemas,
they are difficult to design, difficult to extend, lead to centralized architectures, and are
not scaleable [11]. The consequence is that inconsistency (and perhaps overlap) is
“managed” rather than simply prevented or avoided. The idea of “managing
inconsistency” helps information acquisition and error finding [2]{10]. The goal of using
the ViewPoints framework is to pursue partial consistency, and inconsistency

management, even in “the final product” and even in the development of “safety critical

systems”. Before describing the inconsistency management, we first introduce what is

inconsistency.

2.2 What is Inconsistency?

Figure 1 shows the “interference” relationships between overlap, consistency
rules, and inconsistency [12]. Overlap is self-explained, which means ontological
overlap. We employ the following definition for inconsistency [13].

“An inconsistency is any situation in which two sets of objects do not obey some

relationship that should hold between them.”

ted in

Reflec

Consistency

i

. Breach o
Precondition f

Jor

Figure 1. Overlap with Inconsistency.

The objects may be any of the artifacts generated during the system development
process, including specifications, models, code, test cases, user documents, process
definitions, development plans, process and product metrics, and so on.

The relationships may refer to both syntactic and semantic properties of the
objects. Of course, we can not detect inconsistencies unless the relevant relationships
have been identified. Therefore, the quality of any inconsistency analysis exercise
depends on how well the consistency relationships have been defined. These relationships
are expressed as consistency rules, and they are discussed in the next section.

We described the goals of the WHERE project and the concepts of overlap and
inconsistency. This thesis focuses on the inconsistency management issues in the
WHERE project. In following section we present a scenario to explain how conflicts or

inconsistencies happen and what the strategies to handle inconsistencies are. This

10

scenario describes a hierarchically-related development process [14], in which tasks are

delegated to separate members of a team to develop.

2.3 An Inconsistency Scenario

This section skips the details about how to define rules, and the notations about
rules. The example described below gives an overview about inconsistency management
issues in the ViewPoints framework. This example attempts to summary all of the issues
regarding inconsistency management, not just a rephrasing of paper [14]. Data flow
diagrams (DFDs) is used as the example notation. A node in a graph represents a process,
and may be decomposed in a separate diagram. When this happens, the set of inputs and
outputs to that process should be shown on the decomposition.

As described in Figure 2, Anne has created a ViewPoint for a top-level data flow
diagram of the system. Two processes have been created, process A and process B.
Process B is selected for decomposition, and its state is changed to a non-primitive type.

Then the job is delivered to Bob, as represented by Activation Policy in Figure 2.

T (Anne, Top)

Activation Policy

Figure 2. Creation of a New Viewpoint

11

2.3.1 Force

In Figure 3, Bob creates a new ViewPoint to represent the decomposition. He
gives the new ViewPoint a suitable name (B) to indicate it is a decomposition of process
B. Bob takes the input flow (d3) and output flows (d2, d4) connected to process A in the
parent, and then adds them to the decomposition as its context. His definition of the
processes that comprise the decomposition has to be restricted to have the same input and

output flows as in the parent regardless of the flows between the sub-processes generated.

T (Anne, Top)

Figure 3. Constraints in Creation of New ViewPoints

12

2.3.2 A Consistent State:

In Figure 4, we assume that at a certain stage of the development, the
specification, which consists of the data flow diagrams, reaches a consistent state.

Diagram B is a decomposition of node B in diagram T, and it has the same input and

output flows as the node B in its parent diagram.

T (Anne, Top)

B (Bob, Process)

d3 ds d4
C

d2

Figure 4. ViewPoint T is Consistent with the Decomposition.

2.3.3 Concurrent Editing

In Figure 5, Anne now does some more work on the parent. In the process of
delegating decomposition of other processes, she realizes that one of the outputs of
process B is missing, and so she adds it (d7). Meanwhile, Bob has noticed the omission,

and adds it too, but using a different label (d6). An inconsistency is generated because of

13

using different label names (d7 vs. d6). In following sections, we describe the strategies

for inconsistency detection and management in a high level of view.

T (Anne, Top) edit
d2 d7
BT e
d1 ds3

d4

edit
B (Bob, Process)
I

Figure 5. The Situation of Current Editing.

2.3.4 Establishing Overlaps

The requirement for inconsistency management varies. In certain cases it might be
loose, that is simply identifying ontological overlaps and inconsistency, in other cases it
might be tight, involving the integration of the specification and the resolution of their
inconsistencies. Sometimes a meta-method is needed which lies between loose and tight
inconsistency management. We will discuss them separately; in any case the detection of
ontological overlaps is a prerequisite for detecting inconsistencies.

In Figure 6, inconsistencies have arisen by using different name labels. Overlaps
have been identified by underlining the labels, process B and data flows d2, d3, d4, d6,
d7 are labeled to indicate that they are the overlap parts in two DFD diagrams. Different

approaches can be employed to detect overlaps. We will discuss these issues in following

sections.

14

— d5 d4

Figure 6. Establishing Overlaps

2.3.5 Building Consistency Rules

Overlaps have been identified; consistency rules can be defined to check the
consistencies between the development objects. The relationships between development
objects should be completely understood before rules are derived. In our approach, we
are looking for a method that does not require a lot of effort to encode a specification in
formal logic. Rules should be readable and easy to define, and method users should have
the privilege to enforce and remove rules. Also, the method should be automated at some
points. We will look at two promising approaches, Quasi-classical and graph grammars in

more detail in next section.

15

TRB

Figure 7. Building Consistency Rules.

2.3.6 Different Strategies for Inconsistency Management.

Different strategies can be employed to manage inconsistencies [10]. We will talk
about them respectively in the following sections. Apply analysis and diagnosis of
inconsistencies, then solve them locally; tolerate inconsistencies, ignore inconsistencies
or circumvent them; trace inconsistencies, postpone resolving inconsistencies; ameliorate
and rectify inconsistencies for increasing possibilities of future resolution. The question
of which inconsistencies should be resolved at any point is an engineering question
involving an assessment of resource availability and risk. Figure 8 and Figure 9 illustrate

these different approaches for manage inconsistencies.

16

trace
®
Information

T (Ann, Top)

Toleration
Q ignoring
Q circumvent

B (Bob, Process)

trace
information

Figure 8. Different strategies in inconsistency management.

Analysis and diagnosis usually is the pre-requirement of inconsistency

management. In this step, the sources resulted into inconsistencies are reasoned, and the

priorities of inconsistencies are evaluated.

One of the strategies for inconsistency toleration is ignoring inconsistencies

completely and continuing development regardless. This may be appropriate in certain

circumstances where the inconsistency is isolated and does not affect further

development, or prevent it from taking place.

Circumventing the inconsistency and continuing development is the other of the

strategies for inconsistency toleration. This may be achieved by marking inconsistent

portions of the system or by continuing development in certain directions depending on

17

the kind of inconsistency identified. It is appropriate in situations where it is desirable for
the inconsistency to be avoided and/or its removal deferred.

Resolving the inconsistency altogether by correcting any mistakes or resolving
conflicts is another method of inconsistency management. This depends on a clear
identification of the inconsistency and assumes that the actions required to fix it are
known. Achieving consistency completely may be difficult, and is quite often impossible
to automate completely without human intervention.

Ameliorating and rectifying inconsistencies is an approach for inconsistency
management. This approach performs actions that improve and increase the possibility of
future resolution (this may involve ignoring or circumventing inconsistencies). This
approach is attractive in situations where complete and immediate resolution is not
possible (perhaps because further information is required from another development
participant), but where some steps can be taken to fix part or some of the inconsistent
information. This approach however requires techniques for analysis and reasoning in the

presence of inconsistency.

T (Ann, Top)

d3 i da
|
rational amelioration \/l . .

resoluti

(?\ rectification

et

B (Bob, Process)
d3

Figure 9. Rational and Resolution.

18

24 Summary of Inconsistency Management

In this chapter we describe the problems we face. In a large-scale composite
software development process, participants have various locations, skills, responsibilities,
roles, opinions, and languages. This naturally leads to many partial specifications or
ViewPoints. Communication and coordination between participants are big problems.
This thesis explores inconsistency management issues in such a system. Multiple views
from participants are likely overlapped, and also give rise to the potential for
inconsistency. We argue that the principal mechanisms used for preventing or avoiding
overlap or inconsistency are impractical. Overlap and inconsistency are inevitable and
acceptable. We have to learn to live with it and learn from it. Also, we describe the
inconsistency handling actions. First, overlaps have to be identified. A clear
understanding of relationships between objects helps building consistency rules. After
inconsistencies are analyzed and diagnosed, different actions are adopted to manipulate
inconsistencies; toleration, tracking, resolution, enforcement, rational provision.

The management of inconsistency needs the ViewPoints framework to trace an
evolving development process, to support the communication of information, and to
annotate multiple partial specifications. The detection and analysis of inconsistencies
need a theory foundation based on a rules-based language or logic theorem. In the next
chapter we discuss various related work, ViewPoints framework, Quasi-classical logic,
Graph Grammar, WHERE project implementation language Java, Various CASE tools,

and various approaches for inconsistency management.

19

Chapter Three Literature Review

20

This chapter contains various topics, all of which are the background introduction
and theoretical foundation of the WHERE project. The WHERE project is concerned
with large systems that display a complex structure and with many interlocking
constraints on their construction and behavior [1]. Working with such systems
necessitates multiple ViewPoints for complexity. Therefore, the WHERE project is based
on ViewPoints framework. During the analysis and design of such systems, the multiple
ViewPoints naturally arise out of differences of opinion, varying goals and mistakes or
errors. Working on ViewPoints has commonly been linked to work on requirements
engineering. The problem is especially acute during the early stages of development
(particularly elicitation where many diverse client views are prevalent). In section 3.1 we
give an overview of the existing CASE tools, and further explain that a tool like WHERE
is highly desirable. In section 3.2 we describe what is the ViewPoints framework, and
how it works for inconsistency management. In section 3.3, we briefly introduce existing
models for inconsistency management. In section 3.4 and section 3.5, we discuss the two
different approaches for inconsistency detection and reasoning: Quasi-classical logic and
graph grammar. They are the foundations for our approach introduced in next two
chapters.

In next section we discuss some existing Computer-Aided Software Engineering
(CASE) tools, and outline their lack of support for the requirements engineering

processes.

3.1 Case Tools

Two kind of CASE tools are discussed in this section, requirements traceability
tools and visualization editing CASE tools. We point out the deficiencies of these
existing tools, and enforce the argument of the need for the creation a tool such as
WHERE.

Requirements traceability tools DOORS [15] and CORE [16] help to some extent
by recording links between requirements at different levels, and between requirements

and test cases, design objects, and so on. However, existing traceability tools only record

21

links, they do not record any other information about the relationship expressed by the
link. Such tools encode a simple process model based on flow down of requirements
through different levels. They do not capture any knowledge about the methods and
notations being used, and hence do not provide any active support for the development
and evolution of specifications. Also, CASE tools for design and analysis requirements
are short of the relationship tracking between different pieces of requirements
specifications. Because there are a lot of similarities between Rational Rose [17] and the
WHERE editing toolkit, e.g. both support the visualization of graphical editing, we
describe this tool in more detail.

Rational Rose is a Computer Aided Software Engineering (CASE) tool that
supports the design and implementation of object oriented systems by supporting the
Object Modeling Technique (OMT) and Booch methods. The Booch method is
documented in "Object-Oriented Analysis And Design With Applications" [18], was
developed by Grady Booch, a Rational Chief scientist. The OMT methodology,
documented in "Object Modeling And Design" [19] was developed by James Rumbaugh,
also a Rational fellow. For both, Rational Rose supports multiple views of the underlying
model, including object and class diagrams and scenario diagrams for object-oriented
development.

The main purpose of Rational Rose is to aid in the design and implementation
stages of a piece of software. In broad terms, Rational Rose achieves this by enabling the
user to construct a representation of the system being developed using one of the two
supported methodologies and then generating the outline for an implementation (in C++)
based on the design. Rational Rose allows a user to analyze, design and implement
systems in a way that makes them easy to visualize and communicate.

Rational Rose provides a method-based environment where the software
development method may be either Booch or OMT. As such, Rational Rose supports
these methods by provides a collection of representation notations (such as the module
and process diagrams) and a strategy/heuristics for using them. As with many CASE
tools, Rational Rose goes about translating the method to the users desktop by providing
a number of graphical editors — a collection of editors which facilitate drawing and object

annotation (i.e. relation specification). But, Rational Rose does not support group

22

coordination development process, and it does not have inter-notations consistency
checking functions.
There are also some freeware or commercial CASE tools for graphical editing.
For example, the MetaEdit [20] Toolkit. But, none of these tools supports consistency
checking between notations or methods. The WHERE project aims to realize these
features. We will explore the inter-notations consistency checking issues in next two
Chapters. After the survey of existing CASE tools, we conclude:
0 The existing requirements traceability tools do not capture all of the information in an
evolving development process.
o None of the existing CASE tools supports the consistency and completeness checking
for a same piece of specification in different notations.
The ViewPoints framework [21] may give us the solution for these problems. In
the next section, we introduce the ViewPoints framework, and show that the ViewPoints

framework supports requirements traceability and inconsistency management.

3.2 ViewPoints Framework.

The WHERE project builds upon the ViewPoints framework. An outline
description for a ViewPoint can be considered as a set of chunks of a specification [21].
Each chunk has a specific owner and representational style. The idea is that each
ViewPoint implicitly is a self-contained specification-editing tool for one particular
notation, and is complete with knowledge about how the contents of the ViewPoint are
related to other ViewPoints. The editing tool on its own can be thought of as a ViewPoint
template. Because a ViewPoint template can be defined for any notation, the framework
is independent of any particular method. In fact, different methods can be implemented in
the framework by constructing an appropriate set of templates. Most importantly, the
framework supports inconsistency management. Each ViewPoint template includes a set
of rules for checking consistency with other ViewPoints, together with guidance for
resolving inconsistencies. As responsibility for consistency is devolved to the individual
ViewPoints, local decisions can be made about whether to ignore or tolerate various

inconsistencies.

23

3.2.1 Whatis a ViewPoint?

There are various definitions for ViewPoint. In this thesis the definition by
Finkelstein in his The ViewPoints FAQ is used [21].

“The combination of the agent and the view that the agent holds is termed a

ViewPoint, ”’

Here, agent means participant or actor involved in the construction of a complex
description or model. Agents hold different perspectives or views of the artifact or system
they are trying to describe or model because of different responsibilities or roles assigned
to the agents. A ViewPoint can be thought of as a combination of the idea of an actor,
knowledge source, role or agent in the development process, and the idea of a view or
perspective that an actor maintains. In software terms, ViewPoints are loosely coupled,
locally managed, coarse-grained objects which encapsulate partial knowledge about the
system and domain; ViewPoints are specified in a particular, suitable representation
scheme, and encode partial knowledge of the process of development. The study of
ViewPoints includes the investigation of relations between views, between views and
agents, and between agents. We will focus on the relations between views in Chapter
Three. As Figure 3 shows, each ViewPoint consists of five slots according to the
framework of ViewPoints [2][11]:

Q the style slot, the scheme and notation of the ViewPoint representation is described,
0 the work plan slot, the set of development actions, process and strategy of the

ViewPoint are included,

a the domain slot, the area of concern of the ViewPoint with respect to the overall
system under development is defined,

a the specification slot, which specifies the ViewPoint domain, and is developed using
the strategy described in the work plan slot,

0 the work record slot, which contains an annotated history of actions performed on the

ViewPoint. It is the vehicle by which traceability may be achieved, and some form of

development rationale may be recorded.

24

/STYLE (notation) ¢ :'Represéniatiot_t R

. oo Knowledge
WORK PLAN
i Development = .
(development actions, strategy, process) 4——Pr ocess Knowledge
IDOMIN (area of concern)
SPECIFICATION <. Specification

(partial system description) Knowledge .

QVORK RECORD (development history) e -

Figure 1. The five slots of a ViewPoint.

The development participant associated with any particular ViewPoint is known
as the ViewPoint owner. The owner is responsible for developing a ViewPoint
specification using the notation defined in the style slot, following the strategy defined by
the work plan, for a particular problem domain. A development history is maintained in
the work record.

After introducing the concept of a ViewPoint, we will briefly discuss why the
ViewPoints framework supports requirements traceability and inconsistency

management. Examples will be given in Chapter five of the thesis.

3.2.2 ViewPoints Framework Supports Requirements Engineering.

Conventional system development methods do not recognize the existence of
ViewPoints as user-definable entities. Instead they provide rigid structuring schemes and
strict control on both the diversity of ViewPoints and the relations between them. By
contrast, ViewPoint-oriented methods make ViewPoints first class objects so they can be
defined by method users, the relationship between them can be established. The objective
of ViewPoint-oriented methods is to strike a balance between preservation of multiple
perspectives during system development, and the demands for consistency and coherence
arising out of group work. As ViewPoints allow you to collect system information from
multiple perspectives, you will inevitably collect a lot of information that must be
managed. This is both a strength and a weakness of the approach. It is a strength because

you are much less likely to miss information that is critical to the success of the system; it

25

is a weakness because somehow you have to manage this information and eliminate
redundancy from it.

The essential problem that ViewPoints present is of consistency or coherence
[10]. Given that ViewPoints may overlap if the agents have a shared goal or their goals
are potentially interfering, the consistency of their ViewPoints must be established. This
consistency need only be partial, i.e. sufficient to achieve the goals. Consistency can be
achieved by integrating the ViewPoints, or by locally resolving inconsistencies as they
arise.

The ViewPoint framework tolerates inconsistency, with no requirement for
changes to one ViewPoint to be consistent with other ViewPoints Finkelstein, et al.,
[2][10][11]. Consistency checking is performed through a set of inter-ViewPoint rules,
defined by the method, which express the relationships that should hold between
particular ViewPoints. These rules define partial consistency relations between the
different representation schemes. This allows consistency to be checked incrementally
between ViewPoints at particular stages rather than being enforced as a matter of course.
A protocol is provided for applying consistency checks between ViewPoints, with the
checking process being initiated by either ViewPoints owner. A fine-grained
decentralized process driven model in each ViewPoint provides guidance for the

resolution of inconsistencies as shown in Figure 2 [22].

(partial speciﬁcation\ / partial specification)
~ work record work record
. checks - — —
— ——. oo Checks

= | |Fas

Figure 2. Decentralized Process driven Consistency Checking.

(74

26

One important factor in the success of inconsistency management is consistency

rule defining. We try to granulate consistency rules. They are shown in next section.

3.2.3 The Granularity of Consistency Rule.

Basically we can categorize consistency from three different levels. From the

aspect of ViewPoint we can say there are two kinds of consistency checking [14]

0 In-ViewPoint checking is concerned that a ViewPoint specification is locally
(syntactically) consistent. Such syntactic checks partially define the semantics
of a ViewPoint’s representation. The work on SCR [23] is an example of such
an activity.

0 Inter-ViewPoint checking is concerned with the consistency between
overlapping or interacting specifications residing in different ViewPoints. The
relationships between such ViewPoints are described by inter-ViewPoint
rules. In some software design methods, for example, Booch method, every
method uses several notations such as Entity Relationship Diagram, Class
Diagram and so on. Every notation can be considered as one ViewPoint, and
the relationships between two different notations can be expressed as inter-
ViewPoint rules. Also, a piece of specification can be expressed by different
methodologies from different aspects, for example, the requirements for Fault
Detection Isolation and Recovery on the space station can be tested by SCR
method or Spin method [23]. These two different methods can be considered
as two individual ViewPoints. When those two methods are used, the
specification has to be translated into method dependent logical objects and
relationships. This translation process is non-trivial, and failure of a proof
does not necessarily help to precisely characterize the specification. If we
could define some relationships to check the consistency between two
different methods, this will increase the credence of the translation process.

The relationships between two different methods can be thought of as inter-

27

ViewPoint rules. Usually these relationships between different methods are
very difficult to reason about.

0 Handling global consistency is a problem in a fully distributed environment,
in which there is no central database. In the ViewPoints framework, global
consistency checking can be performed by transforming global checks into in-
and inter-ViewPoint checks. For example, if a particular method requires that
some consistency conditions hold for all ViewPoints, the method designer
might define a ViewPoint to contain a representation of all the other
ViewPoints. The global check then becomes an in-ViewPoint check for this
new ViewPoint.

It should be noticed that at the inter-ViewPoint level all the rules at the in-
ViewPoint level do not necessarily hold. There may be some circumstances under which
a user may wish to perform an inter-ViewPoint check, without resolving local
inconsistencies. One example is in a hierarchical decomposition of ViewPoints with
parent and children [14]. It is not always necessary to apply the in-ViewPoints rules to
children, then apply the inter-ViewPoints rules to parent and children. Sometimes, just
inter-ViewPoint checking does make sense.

We described the concept of ViewPoints, categorized consistency rules. Due to
the interest in requirements specification from multiple ViewPoints, the detection of
ontological overlap and the resolution of the inconsistencies are big concerns in
requirements engineering research. Several models have been proposed to manage
inconsistency based on ViewPoints frameworks. Some of the approaches focus on the
detection of particular types of inconsistencies between specifications expressed in
specific representation models, while others are concerned with inconsistency in general.

We briefly describe several popular models in the next section.
3.3 Different Approaches for Inconsistency Handling

In this section, we introduce several approaches for inconsistency handling. This
section does not cover all of the approaches regarding inconsistency management.

However, these approaches are the most popular ones in Requirements engineering

28

research area. As a part of related work of this thesis, this section describes three kinds of
approaches: logic based approach, reconciliation approach, and meta-model based

approach.
3.3.1 A Logic Based Approach to Inconsistency Handling:

In this approach rules that specify how to act in the presence of inconsistency are

explicitly specified. This approach includes following procedures [2]:

o Partial specification knowledge in each ViewPoint is translated to first order classical
logic;

0 Logical inconsistencies are identified;

0 Temporal logic (meta-level) rules are combined with the inconsistencies identified to
specify inconsistency handling actions.

In this approach classical logic is used to detect and identify inconsistencies. After
the identification of inconsistencies, the meta-level axioms specify how to act according
to the context of the inconsistency (Figure 3). This context will include the history behind
the inconsistent data being put into the ViewPoint specification- as recorded in the
ViewPoint work record-and the history of previous actions to handle the inconsistency.
The meta-level axioms will also include implicit and explicit background information on
the nature of certain kinds of inconsistencies, and how to deal with them. Action-based

meta-language is based on linear-time temporal logic. We will not discuss them here.

29

Actions

T S Y

1 1 ¥
Meta level inconsistency Handling

o o

Inconsistent Data

identification of inconsistency

T

}lo’gical representation of ViewPoints and
ginter-ViewPoint specification information

Translation

check consistency

Figure 3. A logic based approach for Inconsistency handling in the ViewPoints
Framework.

Research on the detection and resolution of logical inconsistencies usually takes
for granted the detection of ontological overlap [24]. There has been some work on the
detection of ontological overlap based either on the generation of canonical
representations of specifications in a common underlying language or on elaborating
analogies between specifications. Such elaboration has been possible either by matching
specifications with classes of requirements engineering problems or by heuristically
identifying analogies from the annotation of specifications with terms in domain-specific
dictionaries. The reconciliation approach is such a kind of model as described in the next

section.

3.3.2 Reconciliation Approach to Interference Management.

Reconciliation was proposed by Spanoudaskis and Finkelstein [24]. Tt lies
between loose and tight inconsistency management (Figure 4). It supports the detection,
verification and tracking of ontological overlaps. It is amenable to the application of

heuristic techniques, for example, inexact-matching mechanisms and models of

30

computer-supported negotiation, while inconsistency detection may require theorem
proving and sophisticated formal frameworks. It uses a meta-model to compute the
similarities between ViewPoints. Such process needs to translate the knowledge of
ViewPoints into a non-trivial domain-independent meta-model based on Telos objects
[25] as described in next section.

This approach includes two basic stages; analysis and revision. Ontological
overlaps are detected using a computational model of similarity and a classification of
specification components with respect to a meta-model of domain-independent, semantic
modeling properties-analysis [25].

It also supports the remodeling of specification components, so that the results of
similarity analysis and ViewPoint owner assessment of overlaps is a convergent revision.
The goal of this process is to ensure that the modeling of specifications is consistent with
the human assessment of ontological overlaps between them and to establish a shared
understanding among specification owners of the potential for inconsistency.

In the analysis stage, a specification is treated as an aggregation of “specification
components”, classified using a meta-model, which expresses general, domain
independent, semantic modeling properties. Both this meta-model and the specifications
are described in Telos, an object-oriented knowledge representation language, supporting

the semantic modeling abstractions of classification, generalization and attribution.

overlap identified

shared
understanding

assessment %

heuristics

specifications coverage

imilarity analysis

remodeling

Figure 4. Reconciliation Approach to Interference Management.

31

The similarities between ViewPoints can be computed by meta-model. We

discuss meta-model in next section.

3.3.3 Meta-model

The meta-model [26] consists of a kernel and a set of extensions. The kernel
provides the key, domain-independent, properties of semantic modeling schemes,
whereas the extensions provide additional properties for modeling established

specification languages.

meta-model

similarity

mapping by
viewpoint

S2
owners

Figure 5. The Nlustration of Meta-Model.

The kernel part is organized as a generalization of taxonomy of classes, with
specification components classified by the properties they possess. In particular,

components are distinguished into those representing entities and those representing

32

relations. Entity representing components are further specialized into natural, nominal,
place, event, activity, state, agent and physical quantity components. Components
representing relations are initially distinguished by their arity. Binary relationships are
further specialized according to: cardinality constraints (for example 1:1, N:M, total and
onto relations); mathematical properties of relations (for example symmetric, transitive
and set-inclusion relations); existential dependencies between related items or other
constraints between them, including their temporal coexistence, physical separability and
substance homogeneity.
The extensions to the meta-model comprise classes of additional properties for
modeling established specification languages.
In essence, the meta-model enables the enrichment of the semantic content of
specifications by asserting domain-independent properties about them and supports their
representation with respect to a common set of structuring constructs.
The similarity analysis of two specifications results in
D their classification, generalization, attribution and overall distance measures
o a graph isomorphically mapping semantically homogeneous components at the
successive levels of the structural closures of two specifications;

o alist with their common and non common classes, each weighted by its importance;

o a list with their common and non common superclass, each weighted by its
importance.

The isomorphism between the components of two specifications is likely to
reflect their dntological overlaps. However, flaws, incompleteness or lack of an adequate
semantics in the modeling of specifications might force similarity analysis to generate a
mapping that is incorrect. In such cases, specification owners can propose a different
isomorphism between specification components, which in their opinion correctly reflects

these overlaps.

We described different process models for inconsistency management. In the next
two sections we describe two kinds of representations of partial specifications. The
encoding of requirements specifications into these representations allows us to identify,

analyze and manage inconsistencies between them. Let us start from graph grammars.

33

3.4 Graph Grammar

In this section we introduce the basic concept of a graph. Our framework for
inconsistency management is built on graph grammar [4]. The exploration of graph
grammars is explained in Chapter five. A graph is a universal data model to describe
static properties of objects and the structure of their relationships. It plays an important
role within many areas of applied computer science, and there exists an abundance of
visual languages and environments that have graphs as their underlying data model. Rule-
based languages and systems have proven to be well-suited for the description of
complex transformation or inference processes on complex data structures. Although
graphs and rule-based systems or grammars are quite popular among computer scientists,
their combination in the form of graph rewriting systems or graph grammars is more or
less unknown. One reason is, many people believe that modeling with graphs and graph
rewriting systems leads to inherently inefficient implementations due to the NP-
completeness of many graph algorithms. This situation changed gradually with the
appearance of the first graph rewriting system implementation like PAGG [27], GOOD
[28], and PROGRES (PROgramming Graph REwriting System) [29]. In our approach,
we use graph grammar as a framework to manipulate graph data rather than to explore
the NP-completeness problems in graph theory. The application of graph grammars is
performed as controlled rather than non-deterministically. As graphs are the basic data
model for our approach, we first introduce what is graph.

Definition (graph)

A (directed, labeled) graph is a 6-tuple containing system as Figure 6 shown. It is
represented as M=(V, E, s, t, |, m), where
(i) V is a finite set of nodes,

(ii) Eis afinite set of edges,
(iii) s, t:E >V are mappings assigning to each edge e € E a source s(e) and a target

t(e).

(iv) L V> Xy is a mapping, called the node labeling,
) m: E-> g is a mapping, called the edge labeling.

34

Note, we always assume that two alphabets Xy and Yg (of node and edge labels
respectively) are available.

Definition (graph match)

A graph match g from a definition graph N into an image graph M is a structure
preserving mapping between these graphs (Figure 6). It assures that the source and target
of each edge in graph N is mapped consistently onto nodes in the target graph M such
that the graph structure of N is mapped onto a proper subgraph of M (predicates gy, and
ge). Further, it may be checked if nodes and edges, respectively, match by comparing
their labels. This is done using attribute match predicates p, and pe for node and edge
labels, respectively.

If the mapping predicates g, gg, Pv, Pk eXist between graph M, N, then M and N are
called homomorphic and M->N is a homomorphism. If the underlying mappings are
bijections, M>N is said to be an isomorphism, and the graphs M and N are called

isomorphic.
Graph M Graph N

V: a set of Nodes Ev ’T a set of Nodes
E: a set of edges o E’: aset of edges
s(e): the source (€) P! s’(e’): the source (e)
t(e): the target (e) Pv. q t’(e’): the target (€)
1: node labeling PE P’: node labeling
m: edge labeling g m’: edge labeling

Figure 6. Graph match, g,, gg, pv. pe are defined by method users

Dynamic aspects can be represented by graph rewrite rules that identify a
subgraph in a source graph and replace it by a new subgraph. Types of graphs and rewrite

rules can be encapsulated in graph grammars and graph grammar modules.

35

Definition (graph rewrite rule)

A graph rewrite rule r = (L, R, K) is a triple of graphs, where graph L is left hand side of
the rule, graph R is right hand side of the rule and graph K is called gluing graph. K
ensures that no dangling edges appear in the new graph after applying r to the old graph,
hence, K identifies anchor elements which have to remain unchanged by the modification
and is subgraph of L and R as well.

Definition (modification of a graph)

A modification of a graph M into a new graph N by applying a graph rewrite rule r = (L,

R, K) is realized by the following two principal steps as in Figure 7 shown.

1. Search for a subgraph, termed redex, in a given host graph that matches the
rewriting rule’s left-hand side.

2. Replace the selected redex by a copy of its right-hand side, but preserve all
those nodes (and their context and attribute values) which are shared among its left-hand
and right-hand side.

The application of a graph rewrite rule r on a source graph M yielding the target
graph N is called a graph rewrite step and noted as M——~. N (Figure 7).

We introduced the basic concepts of a graph grammar. Based on graph match and
graph rewriting rules our approach is explained in Chapter five. In next section, we

introduce another representation of partial specifications Quasi-classical logical.
3.5 Quasi-classical (QC) Logic

Quasi-classical logic [3] is an adaptation of classical logic. It allows continued
reasoning in the presence of inconsistency. The adaptation is a weakening of classical
logic that prohibits all trivial derivations, but still allows all resolutions of assumptions to

be derived.

36

An inconsistency in logic results from the simultaneous assertion of a fact o and
its negation, —o.. Using this definition, translating software specifications into logic
facilitates detection of inconsistencies and allows us to concentrate on reasoning about
these inconsistencies. However, in practical reasoning, it is common that there is
inconsistent information in a specification (e.g., multiple contradictory requirements of a
system). Classical logic is trivialized because, by the definition of logic, any inference
follows from inconsistent information. For classical logic, trivialization renders the
specification useless, and therefore classical logic is obviously unsatisfactory for
handling inconsistent information. QC-logic weakens classical logic by prohibiting all
trivial derivations. A language called labeled QC logic is developed to record and track
assumptions used in reasoning. This allows each item of development information to be
identified, and each inference to be labeled. Labels can be used to differentiate different
types of development information and in particular they can indicate the source of the
information.

We covered various topics in this chapter. They are the foundation of
understanding our approach. We recapitulate our introduction and discussion in the next

section, and move to explanation of our approach.

37

3.6 Summary

This chapter extensively introduced several important concepts for our
inconsistency management framework. We surveyed existing CASE tools, and found that
none of them captures all of the information in an evolving development process, and
none of them supports the consistency and completeness checking for the same piece of
specification in different notations. We talk about the ViewPoints framework, which is
the theoretical foundation of the WHERE project. Also, we surveyed related work, the
ViewPoints based inconsistency management process models. In section 3.4 and section
3.5 we introduced two kinds of representations that could represent partial specifications,
graph grammars and QC-logic. We will explore these two kinds of representation in
chapter five further. From an application view of point, an ideal CASE tool based on
ViewPoints should have some similarities to the tool described below.

The tool can be used to provide complete support for the entire requirements
specification process, or as a partial aid to some aspects of it. The partial mode allows a
gradual introduction of the tool into existing projects. For example, existing specification
documents can be loaded into the ViewPoint reviewer, and annotated without much
effort. New ViewPoints can then be created using the ViewPoint editor, with defined
relationships to the existing documentation. A typical use of the tool would then be to
model a portion of an existing specification in a new notation, whilst explicitly recording
the relationships between the existing specification and the new model.

Some tools about the ViewPoints framework have been developed as research
prototypes. For example, a tool called viewer was developed at Imperial College, London
[11], but for inconsistency management the internal implementation is not available yet.
We do not know of any currently available commercial tools in this area. In next two
Chapters, we describe our approach for inconsistency management based graph grammar
and TCMJAVA infrastructure. In chapter four, we first describe our approach for

inconsistency management. Then we explain how our framework could be implemented.

38

Chapter Four An Approach for Inconsistency

Management Based on Graph Rewriting System

39

This Chapter describes our framework for inconsistency management. This
approach is based on graph rewriting rules system. Graph is a universal data model to
describe static properties of objects and the structure of their relationships. Dynamic
aspects can be represented by graph rewrite rules that identify subgraphs in a source
graph and replace it by a new graph. Our approach is described from two aspects, the
static graph manipulation and dynamic transformation. And the application of these two
aspects on inconsistency management is outlined. In section 4.1, we first describe
different relationships between ViewPoints in general. In section 4.2, we describe the
overview of our framework, and discuss the application domains of our approach. In
section 4.3, we revisit the data structure of shape object in TCMJAVA, in order to help
the explanation of our implementation for this framework. In section 4.4 we elaborate the
basic graph manipulation operations, UNION, DIFFERENCE, SELECTION,
INTERSECTION. And how we can query or manipulate graphs based on these basic
operations. In section 4.5, we explain the need for graph module. In section 4.6, we
describe graph transformation, and how graph production can be used in inconsistency
management. In section 4.7, we evaluate our approach, explain the deficiencies. In
section 4.8, we recapitulate our achievement. Our approach is an intuitive and easy to
implement, because the infrastructure for graph systems are already established. In next
section we first describe the different relationships that may exist between ViewPoints in

general.

4.1 The Relationships Between ViewPoints

There are four kinds of inter-ViewPoint relationships that may exist between
ViewPoints in general [11]. We give an overview of these different relationships, and
explain the application domain of our approach in next section.

As Figure 1 shown, the first kind of relationship (1.1) is two ViewPoints may be
completely independent. Two ViewPoints have no overlaps, and they are not related. For
example, a ViewPoint describes university faculty income; and another ViewPoint
describes the gardening facilities at that university. Those two ViewPoints may not have

any relationships. There exist some existential relationships between two different

40

ViewPoints in the second kind of case (1.2). The existence of one ViewPoint may depend
upon the other ViewPoint in some sense. For example, In a university community, a
ViewPoint describes the whole organization of this university. There is a separate
ViewPoint to describe every unit in the organization. The third case (1.3) is that two
ViewPoints may partially overlap. A partial specification in a ViewPoint is related to a
partial specification in the other ViewPoint. This kind of relationship may include the
case that one ViewPoint is a subset of the other ViewPoint. For example, a ViewPoint
describes the faculty publications at a university. The other Viewpoint describes the
graduate student publications at the university. The last case (1.4) is that two ViewPoints
may totally overlap. In another words, two ViewPoints describe the same domain or
system. In this case, two ViewPoints may use two different representations for the same
domain or scheme, or the two ViewPoints may be reqliired exact same, just from
different people; there should not have any conflicts, discrepancies or inconsistencies
existing between these ViewPoints.

We described the different relationships that may exist between two ViewPoints.
In next section we delineate our approach based on graph grammar, and discuss the

application scope that our approach can be applied.

ICDID o

14

Figure 1. Different Inter-ViewPoint relationships. Shaded areas represent overlaps

between ViewPoints.

41

4.2 An Overview of our Approach

Figure 2 summaries our experimental inconsistency handling approach. The steps
in this approach can be viewed as following,

o Partial specification knowledge in each ViewPoint is encoded into a separate graph.

g Overlaps are identified using graph grammar matching, or defined by method users.

0 Inconsistencies can be detected using graph match or Quasi-classical logic. The
adoption of method depends on the application domain or system. For graphical
notations, graph match is more likely to be employed. The overlap part are
represented by two partial specifications, if a homomorphism exists between those
two partial specifications, two ViewPoints (specifications) are inconsistent. And vice
versa. The seeking of homomorphism also supplies useful information for
inconsistencies.

0o For ViewPoints represented in graphical notations, graph rewriting rules are very
useful to express the transformations of graph systems. Transformation information is
recorded using graph rewriting rules. The reversing application of rewriting rules
supports “UNDO” operation, and consequently supports inconsistency management.

0 Temporal logic (meta-level) rules are combined with the inconsistencies identified
and human support to specify inconsistency handling actions.

Our approach has following characteristics.

0 This approach is intuitive for ViewPoints represented by graphical notations.

0 The detection of overlaps involves a fairly easy and straightforward process, and the
non-trivial translation from original specification into formal logic can be avoided for
ViewPoints represented by graphical notations.

0 In order to manage inconsistencies, the relationships between viewpoints need to be
clearly defined. This process is not trivial. Usually the success of defining
relationships determines the quality of inconsistency detection. Our approach reduces
the work of defining relationships. After an overlap between two ViewPoints has
been identified, we can focus on the relationships of the complement part of the

overlap part in a ViewPoint to the complement part of the overlap part in the other

42

ViewPoint, complement parts to overlap, and ignore the relationships inside of

overlaps.

Actions
I\ A oA
< Meta level inconsistency Handling)

, Inconsistent Data G

identification of inconsistency

!

raph grammar rewriting rules or classical
flogic is used to represent the relationships
of inter-Viewpoint specification information

A

Overlaps

Graph Grammar
Matching

Figure 2. Inconsistency handling in the Viewpoints framework. Each viewpoint is

translated into graph, different inconsistency detection methods can be used.

43

a Depends on the application domain, users have flexible to make selection of graph
grammar or quasi-classical logical.

0o The detection of inconsistencies can be realized by seeking the homomorphism
between two graph systems. Method user defines mapping functions between graph
systems using user friendly windows step by step.

0 TCMlJava already has a class called Shape which record all of the information about
graphical node or edge attributes, and a class called Cell which record all the
information of table cell. The translation of diagram or table into a graph will be a
selecting and reorganizing process. The infrastructure of graph system is already
available.

o The application of graph rewriting rules for ViewPoints repreSented by graphical
notations supports inconsistency management. The recording of graph rewriting rules
supports tracing information, ameliorating and rectifying inconsistencies, and helping

a seek an effective way to resolve inconsistencies.

We described our approach for inconsistency detection. And in section 4.1 we
explained that there are four inter-ViewPoints relationships between two different
ViewPoints. A question is what is the application domain that our approach can be
applied to? Our approach can be utilized to detect the inconsistencies for the case 3 and
case 4 described in section 4.1 for ViewPoints represented in graphical notations. One
ViewPoint may be partially overlapping with another as Figure 1 case 3 shown. The
overlap can be detected by subgraph querying from the two ViewPoints, or can be
defined by method user. After the detection of overlap, if a homomorphism exists
between a partial specification in a ViewPoint and a partial specification in the other
ViewPoint, and those partial specifications refer to the overlap, then no conflicts or
inconsistencies should exist between those two ViewPoints. The querying of subgraph
from a graph system (ViewPoint) will be discussed in section 4.4. If two ViewPoints
describe the same domain as Figure case 4 shown, in this case, seeking a homomorphism
is the goal. If a homomorphism exists between these two ViewPoints, the two

specifications represented by those ViewPoints are consistent. And vice versa. Also, in

44

this case, the two ViewPoints is totally overlapping, the process of finding
homomorphism supplies useful information for the inconsistencies existing between the
two ViewPoints, and later helps resolve inconsistencies. Our case study described in
Chapter Six employs such an example to explain how our approach is utilized.

In next section, we revisit the implementation of TCMJAVA, especially Shape

class. This helps us understand the basic static manipulation of graph system.

4.3 Visiting Shape class in TCMJAVA

The Shape class in TCMJAVA is a very huge class. The class hierarchy is
complex, and partially described in Figure 3. Before talking about our implementation
for inconsistency management based on Graph Grammars, we should mention several
important attributes for the Shape class in the implementation of TCMJava. The Shape
class is characterized by; the type of the Shape class, e. g. BOX, CYCLE, LINE; two
positions; the topleft position and the central position of the Shape class; the name of the
Shape, e.g. “my node”. A node of a diagram in TCMJava is mapped to a node in a graph
system. A name of a node in TCMJava is mapped to a label of node in a graph system.
An edge of a diagram in TCMJava is mapped to an edge in a graph system. A name of an
edge in TCMJava is mapped to a label of edge in a graph system. Edge shape in
TCMIJAVA has two node shapes as its attributes. They represent the source and the target
of an edge shape. These two node attributes of an edge shape are mapped to the source
and the target node of an edge in a graph system. A diagram in TCMJava may include
more than one node or edge. Edge shape can not exist independently; there exist two
nodes associating with an edge in TCMJava. The storage of a group of shapes in
TCMJava is described in following paragraph.

In a diagram, all drawing shapes are stored in a Vector (java.util.Vector)
according to the sequence of drawing. Therefore, the manipulation of shapes in a diagram
is just operations on the Vector. For example, the delete operation on a subgraph selected
is just an operation that deletes several elements form a Vector. Java Vector class

supports enough methods on Vector manipulation, they are very useful in our study.

45

In a table of TCMJava, cell class records all the information about cell text, cell
position, cell height, cell width, etc. The mapping between a table to a graph system is
not very explicit. The mapping relationships may vary. Here we give an example for state
transition table, which will be used in chapter six. The cells in the first row or the first
column of a state transition table in TCMJava are mapped to the nodes of a graph system.
The texts of all cells in the first row or the first column are mapped to the labels of nodes
in a graph system. And all cells in the first row of a table should be same as all cells in
the first column of the table sequentially. For example, the text in cell (1, 2) should be
same as cell (2, 1). This constraint should be enforced inside of a ViewPoint by method

engineer. If a cellin a state transition table is empty, then there should not exista

T I e , SN Line
Box Triangle Ellipse | [Diamond | [TextShape
g N P _ 1 P , Nodel
o o _ I Node2
Subclasses Subclasses Subclasses ISubclasses | [Subclasses >
Node Shape & Labeling Classes Subclabses
Edge Shape
Classes

Figure 3. The class hierarchy of TCMJAVA Shape class

transition in the table, or an edge in a graph system. Transition cells are the cells that are
not empty and not the cells in the first row or column in a table. Transition cells in
TCMJava are mapped to edges in a graph system. Texts in cells are mapped to labels for

nodes or edges in a graph system. The “from” nodes and “to” nodes in a table are mapped

46

to source nodes and target nodes in a graph system respectively. CellVector class stores
all information in a row or a column in a table.

We described the data structure for shape class in TCMJava and the mapping
relationships between TCMJava shape or table class to a graph system. In next section we
will discuss the static aspects of graph system, and how they can be implemented based
on TCMJAVA.

4.4 Graph query and replacement

In this section we first introduce several basic operations for graph system
manipulation based on TCMJAVA implementation. Because graph-rewriting system is
also a rule based system, in rule-based systems complex operations are based on several
simple basic operations. Complex operations can be derived from the combination of
simple basic operations. This claim in rule-based system is sound. In our study, we
define four basic operations:

UNION (or): for two sets of shapes A and B, the performance of union operation
assumes the two set A and B is disjoint. This operation can be implemented by appending
one shapes List (Vector) to the other shapes List (Vector).

INTERSECTION (and): Two vectors store two sets of shapes. The utilization of
this operation should find the common shape objects in the two shape vectors. Java
programming language supports data persistence, two objects can be compared each
other. Then common shape objects can be obtained in a O(n?) running time.

DIFFERENCE (but not): This operation can be implemented as selecting all of
the shape objects in one list of shapes, but not in the other list of shapes. As a
complementary operation of INTERSECTION operation, the running time of this
operation is O(nz)i

SELECTION: This operation needs two parameters, a list of shapes, and a shape
object that need to be identified and selected from the list of shapes. A implementation
could be as following. For example, selecting of shapes with a specific shape name.

Define a new vector first, then compare every shape object in the list of shapes, if a shape

47

object is found same as the target shape, then put the shape object found in the new

vector, At last return the vector.

publlc Vector Selectlon (Strmg shapename Vector shapes) {
Vector p = new Vector();
for (mt I=0; I<shapes. 51ze() I++) {
if (shapes elementAt(l).1 narme. equals(shapename)
t = ‘p.addElement(shapes.elementAt(T));

return p;

The subgraph queries, replacement and other complex operations can be
implemented using these simple operations. For example, the Merge function can be

implemented as following:

- Vector setl = shapesl DIFFERENCE sh

aﬁesZ 7
" Vector set2 = shapes2 DIFFERENCE shapesl; '
... return (set]. UNION sct2'UNION (shapesl _INTERSECTION shapes))

The Merge function basically discards the common objects in two sets, then
unions all the objects. Therefore, the static manipulation on graph system is deterministic
and can be finished in polynomial running time. In next section, we describe the need for

graph module.
4.5 Graph Module

In a decomposition hierarchy based development process, top level task usually
decompose into small subtasks. Then assign those small subtasks to other people to
develop. One simple example is explained in chapter two (Figure 4 in chapter two). The
process Bob performs is a subtask in Ann’s process. In order to check the consistency
between this two ViewPoints, a graph module is needed to encapsulate the information in
Bob’s process, and check the consistency between Bob’s process (as graph module) to
Ann’s sub-process B. Based on the implementation of TCMJAVA, the implementation

for a graph module is practical. For example, for figure 4 in chapter 2, we can use

48

incidence or outgoing edges as attribute in graph module class, and use a Vector to store
other shapes inside the module. The graph match also can be performed on the checking
between a graph atomic unit and a graph module. In Figure 4, we show the different
comparison cases for ViewPoints, ViewPoint modules and atomic units in a graph
system. Case 1 shows a comparison between a graph node with a ViewPoint; Case 2
shows a comparison between two ViewPoints; Case 3 shows a comparison between two
ViewPoint modules; Case 4 shows a comparison between a ViewPoint and a ViewPoint
module. Graph module encapsulates non-deterministic as well as controlled graph
rewriting according to software engineering modularization techniques.

In next section we will discuss, the dynamic aspect of graph, graph rewriting rule,

or graph production to represent graph transformation mechanisms.

4.6 The Application of Graph Rewriting Rules

In previous sections we described graph static properties, and the basic operations
to manipulate graph. In this section we explain what is graph transformation, and how it

supports inconsistency management.

Graph node-ViewPoint 1 ViewPoint -ViewPoint
VP module - VP module 3 4 VP - VP module

VP modulel VP modulel

VP lﬁqdulg2 ‘ VP module2

49

Figure 4. Different comparison cases among ViewPoints, ViewPoint modules, and

atomic unit in a graph system. Showed areas represented domains in comparison.

Subgraph tests and queries are the main operations for inspecting already existing
graphs, whereas productions is their counterparts for creating and modifying graphs.
Productions have a left- and a rigt-hand side graph patterns as their main components as
described in chapter four. Dynamic aspects of graph can be represented by graph
rewriting rules. The application of graph rewriting rules keeps any graph transformation
information in the development process. Therefore, the reversing application of graph
rewriting rules can go back to previous steps in graph transformation process. This
supports “Undo” operation in development process. The employment of graph rewriting
rules supports method user to explore alternatives, and supplies help to a method user to
search for an inconsistency resolution. Hence, the application of graph rewriting rules
supports inconsistency reasoning, analysis, diagnosis, tracing information, resolution,
amelioration, rational. Therefore, our framework supports inconsistency management.
Figure 5 shows an example for the application of graph rewriting rules. There are two
graph rewriting rules rl and r2. The different sequence of applying rules results into
different graphs. But a method user can always go back to previous steps by applying
graph rewriting reversing rules (r1? and r27), in order to find a satisfied state (a
consistent state) for development process. The help from a method user in searching for a
resolution of an inconsistency can greatly reduce the running time
(O((number_of_rules)!)). The implementation issues are discussed in next paragraph.

The data structures of the WHERE and the characteristics of Java programming
language determine that the implementation of graph productions is feasible. Graph
rewriting rules as data objects can be stored in a Vector data structure (Figure 6). Then, a
graph rewriting rule as an element in the Vector can be retrieved and applied to a graph
system. The application of graph rewriting rule needs the basic operations as described in
the previous section. For example, a query operation is needed to find a the left-hand side
of a rewriting rule, then a replacement operation is needed to replace the left-hand side
subgraph with the right-hand side subgraph for a rewriting rule. All graph rewriting rules

employed for a graph system is stored in the work plan slot of a ViewPoint. In next

50

section we evaluate our approach for inconsistency detection and management based on

graph grammar.
2L, K, R)
r2
. Se——
r2] -1
rl(L,. K, R)

rulel | rule2 | rule3| ruled4| ruled4| rule5| rule6

Figure 6. The storage for graph rewriting rules applied to a graph system.
4.7 Evaluation of Approach

Our approach is explicit for ViewPoints represented in graphical notations. The
encoding from graphical notations into graph systems is straightforward. The
manipulation of graph systems is deterministic with the help of method users. If two
ViewPoints have no overlap, it does not make sense to check inconsistency. If two
ViewPoints have an existential relationship, our approach is difficult to be employed.
Also, if specifications are represented in mathematical notations or natural language, and
difficult to be converted into graph systems. Our approach is not applicable to these kinds
of systems. In our framework, we adopt meta-level rules for “inconsistency implies
action”, and emphasize that such inconsistency handling actions need not necessarily
remove inconsistencies. How does it combine with graph grammar approach is a
problem. In our framework, method user defines mapping functions in seeking
homomorphism between two graph systems by using a series of windows. Sometimes,

the definition of mapping functions are blur, the seeking of mapping functions is not very

51

easy. This is an engineering issue, also is an implementation issue. In next section we

summary our achievements.

4.8 Summary

In the complex system development process, requirements specifications usually
are expressed as various graphical notations. The internal representation of most software
documents is a directed attributed graph. Sometimes even for same piece of specification
document, it can be represented using different graphical notations. We discussed
different inter-ViewPoint relationships in this chapter, and explained that our approach
fits for two ViewPoints partially overlapped or totally overlapped. Our approach focuses
on graphical requirements specifications. The encoding of a piece of diagrammatic or
tabular specification into graph system is explicit and direct. After the conversion of
specifications from graphical notations to graph systems, method users define mapping
functions to detect if there exists graph homomorphism between two graph systems. The
finding of homomorphism helps detection and analysis of inconsistencies. The subgraph
queries and mappings make use of basic operators INTERSECTION, UNION,
DIFFERENCE, and SELECTION. In our implementation, method users define mapping
functions via user friendly wizard windows.

In this thesis the dynamic graph transformation in support of inconsistency
inanagement is also investigated. Graph rewriting rules store the information of evolving
process. The recording of all graph rewriting rules helps backtracking to previous state in
development process; supports the exploration of alternatives; and supplies valuable help
to search for an inconsistency resolution. As a data type, rules are stored and manipulated
in our approach. In the search of subgraphs for the writing rules, the established static
operators are used for queries and replacements. In next Chapter, we present the

applicability of our approach based on International Space Station Specification.

52

Chapter Five Case Study — International Space

Station Specification

53

This chapter introduces the case study that was conducted to assess the
applicability of our inconsistency detection framework. The scenario introduced in this
chapter describes the verification and validation activities conducted by an IV&V term.
The findings of this case study confirmed that inconsistencies are inevitable, the use of
our framework will detect some of the inconsistencies experienced in large software
projects.

In section 5.1, we briefly describe the case study document about. In section 5.2,
we introduce the concept of Independent Verification and Validation (IV&V). We start
by describing traditional software verification and validation processes. Then we
introduce IV&V process and describe the roles of the parties involved. Having described
IV&YV process, section 5.2.3 and 5.2.4 describe the tools and methods of an IV&V term
uses, and the documents of an IV&V term faces. In section 5.3, the original valid Space
Station Mode and state transitions requirements for space station specification is
described. Section 5.4 explains the consistency checking process, and in section 5.5, step
by step a working process to apply our consistency-checking engine is described. Finally,
section 5.6 recapitulates the applicability of our approach to the International Space

Station Specifications.

5.1 International Space Station Specification

The International Space Station (ISS) is a co-operative project to establish an Earth
orbiting facility in which scientific experimentation is conducted. This project involves a
cooperation effort from six international partners. The piece of requirements specification
used in this case study is about automated station control requirements. The automated
control capability is intended to provide a structured, well-understood framework for
operator control of station activities and operations. To ensure the quality of the ISS
software system, NASA has an IV&V term to oversee the entire ISS software
development process. The need for verification and validation of software and the

concept of IV&V are discussed in next section.

54

5.2 Whatis Verification and Validation?

Verification and Validation are two commonly used terms in software
engineering. They mean two different types of analysis in the software
development process. According to their definitions from ANSI/IEEE:

Validation is the evaluation of software at the end of the software development
process to ensure compliance with the user requirements.

"Verification is the act of reviewing, inspecting, testing, checking, auditing, or
otherwise establishing and documenting whether or not items, processes, services or
documents conform to specified requirements (ANSI/ASQC A3-1978) [32][33].

In other words, validation answers such question “Are we building the correct
system?” and validation is ‘end-to-end’ verification." Verification answers question “Are
we building the system corréctly [6]?”

Different activities are involved in verification and validation process, verification
includes all the activities associated with the producing high quality software, such as
testing, inspection, and specification analysis. In comparison, validation includes the
activities to check how well the system proposed addresses a real-world need. For
example, activities like requirements modeling, prototyping and user evaluation. But in a
real world application, the distinction between these two analyses is not important. V&V
is now regarded as a coherent discipline: “Software V&V is a system engineering
discipline which evaluates the software in a system context, relative to all system

elements of hardware, users, and other software” [34].
5.2.1 Independent Verification and Validation Process

For independent verification and validation (IV&V) process, the customer hires a
separate contractor to analyze the products besides the software development contractors.
The system under development is usually high-cost and safety-critical. IV&V process is
used to overcome analysis bias and reduce development risk. This process is performed
in parallel with the development process throughout the software lifecycle, and is

independent of any inner V&V performed by the development contractors. The customer

55

relies on the IV&V contractor as an informed, unbiased advocate to assess the status of a
project’s schedule, cost, and the viability of its product during development. Following is
the definition of IV&V process from NASA “Software Assurance Guidebook” [35].
“IV&V is a process whereby the products of the software development life cycle
phases are independently reviewed, verified, and validated by an organization that is
neither the developer nor the acquirer of the software. The IV&V agent should have no

stake in the success or failure of the software.”

The analysis activities involved in IV&V process are various, they are relevant to
requirements, design, code, performance, schedule, cost, and testing.

The main purpose of IV&V process is to reduce risk, besides IV&V has other
benefits. For example, the earlier errors are found in the development process, the lower
the cost to get them fixed. The clearer the requirements specifications used to drive the
implementing and testing processes are, the less effort may be needed for error-removal
and re-testing. Empirical studies show that the application of IV&V makes significant
saving, and the delivered software have fewer defects [6].

Figure 1 shows the relationship between IV&V agent, developer and customer in
the ideal model for IV&V process. Different communication channels may exist in IV&V
processes. The IV&V agent might report to the program management office within the

customer, or directly to the development contractor [6].

S5.2.2 The Characteristics of IV&V Process.

In IV&V practice, different degrees of independence are possible. Roughly there
are three kinds independence: managerial, financial and technical. We are going to focus
on technical independence rather than managerial and financial independence here. We
say an IV&V agent is technically independent, we mean an IV&V team gains different
perspective with the using personal who are not involved in the development effort, and
the understanding of the software and its requirements from IV&V team is not influenced
by the development team. Usually the use of different tools or techniques with the V&V

team in developer contractor enhances the technical independence of an IV&V team. The

56

experimenting of the emerging tools and techniques should increase the credits of an
IV&YV team.

The depth and coverage of analysis performed by an IV&V agent may vary
depending on resources available, and the criticality of the software being developed. A
lightweight or partial specifications analysis on incomplete specifications is very valuable
[23].

5.2.3 Methods and tools in IV&YV process:

An important aspect of IV&V work is to choose the right methods and tools.
Ideally, an IV&V contractor will have access to all the tools and resources used by the
development contractor, including the ability to share all project databases. However, in
order to address any gaps or weaknesses in the coverage of the developer’s scope, the
IV&V contractor also needs additional methods and tools. These additional tools need to
complement the developer’s tools, so that interoperability does not become a problem.

The use of these additional tools is an important factor in ensuring that IV&V is truly

independent.
Requirements —
Reviews il Assessments
l ~ Customer ==
' Copies of
](?je]nverat:jles developer
ocs. code) deliverables
R e Drafts of deliverables A\
Developer &
Subcontractor i
EEE . IV&V Agent
(, : Draft assessments e

Figure 1: The relationships between IV&V agent, developer and customer.

57

After the tools and methods used by IV&V team are proved valuable in practice,
they are often adopted by developer team. If the developer team knows that their product
will be analyzed in a particular way, naturally they get interested in performing the same
analysis themselves before releasing their products. IV&V team has more scope for
experimenting with new techniques than the developer team [1], because IV&V team is
out of the critical path for the software development effort. Hence, in some ways IV&V
team plays a role to prove and test new techniques, as well as an agent of process
improvement.

The tools and methods employed by IV&V team examining a number of properties of
requirements specifications, including:
a Clarity (readability) - Are the semantics of the requirements defined clearly enough?
a Consistency-are they free of contradiction?
a Traceability- do requirements trace properly to higher level requirements, to the
design, to test cases?
Correctness — is the system built consistent with its spéciﬁcation?
Accuracy - do requirements correctly describe the needs for the customer?

Completeness- are all the modes and actions of requirements covered?

g 0o o o

Testability- is there a way to verify whether these requirements are met in the
implementation?

WHERE project focuses on inconsistency detection and management. For
existing tools, consistency analysis is conducted by translating the objects in
requirements into a suitable logic entity, encoding the consistency relationships between
objects as theorems, and attempting to prove these theorems hold. Unfortunately, this
approach involves a non-trivial effort to translate the objects into logic, and failure of a
proof does not necessarily help to precisely characterize the inconsistency [23].

The facing target of WHERE project is requirements specifications for NASA

projects, let us see what these specifications look like.

58

5.24 The Documentation Problem

Most of the requirements specifications are written in natural language, and
follow certain convention. For NASA space station specifications, various graphical,
tabular, textual, or mathematical notations are involved. But, just few of them can be
annotated by using existing CASE tools. Further more, existing CASE tools have some
drawbacks to make them hard fitting in with NASA requirements specifications. For
example, there is no any CASE tool we found, which has facility to check inter-notations
consistencies. For example, the consistency between Entity Relationship Diagram and
State Transition Diagram; the consistency between two different diagrams in same
notation. These features are imperative in distributed group collaboration projects.

Our approach uses graph grammar as the framework to detect consistency in
requirements. This approach has the advantage of removing the need for translation into
logic, and make easier to trace inconsistencies when they occur. In next several sections,
the applicability of our framework based on graph grammar to International Space

Station Specification is described.
5.3 Scenario: International Space Station Requirements Specification

This scenario is taken from International space station Alpha program vehicle
management description document. Station modes and state were developed to support
the basic mission objectives of payload support, assembly, reboost, external vehicle
rendezvous and departure, resupply, and maintenance. The valid Space Station Mode and
state transitions requirements specification is expressed as two different notations for
clarity; state transition diagram and state transition table. Figure 2 shows the state
transition diagram; while Figure 3 shows the state transition table. In Figure 3, ‘M’ stands
for Operator commanded mode transition; “MA” represents Operator commanded plus
automatic mode transition; ‘-* stands for Not applicable; blank cell stands for Not

allowed. In next section we revisit our approach for inconsistency checking.

59

Reboost

Microgravity

External

Operations .
Operations

Habitable State

Untended State
Reboost Proximity
Operations

e

Figure 2. The valid Space station Modes and state transitions requirements for space

External

Operations Microgravity

station specification in State Transition Diagram.

60

Perform Habitable Perform Untended
From Mode
Mission State Mission State
3 8,
Zz S & iy S &
> g o > g o
AR E R M
To Mode gég-z-;gjgggg%-;gg
. =l .)
«— SIEEEIFEEEIEEHE R
Standard| -|IM|M|M|M|M|[M|M)
A
Reboost | M| -|
% Microgravity | M -
S
n []
g Survival | M - M M
E AlA] A AlA| A
S
E Proximity Ops | M - —
ASCRIM|IM|IM(M|M| -|M
External Ops | M i
Standard | M - M M| M(IM(IM|M
Reboost , M| -
% Microgravity M -
s Survival M|M[M| -[M|M|M
-
g Al A A|lA| A
st
€ | Proximity Ops Y _
£ |
ASCR , ~IMM|M|M|M| -|M
External Ops | M | -
M

Figure 3. The valid Space station Mode and state transitions requirements for space

station specification in State Transition Table.

61

54 Recapitulation of Inconsistency Checking Approach

In last chapter we described our approach to inconsistency detection and
management. In the inconsistency checking for two pieces of requirements specification,
first requirements documents are translated into two graph systems. A set of functions for
graph mapping is defined by method user. Presumably, user defined the correct mapping
functions. If a homomorphism for two graphs is found, at this instance, the two pieces of
specification is consistency. If a homomorphism is not found, the two pieces of
requirements are conflict. Figure 4 shows how graph match is used to detect structural
correspondences. The extraction of homomorphism also reduces the number of
relationships between objects to be tracked or managed. Then method users may put
more effort to track the relationships outside the homomorphism domain. In this case
study, we omit the inconsistency handling actions. At this stage, we are still exploring the
meta-model for inconsistency handling. Next section shows slides for the application of

our inconsistency-checking engine on the NASA space station specification.

structural
correspondences

Figure 4. The application graph matching to detect structural correspondences

5.5 The Applicability of Our Approach.
This section describes how IV&V term uses WHERE project to detect

inconsistencies in a real requirements specification, and how method user defines

mapping functions in graph match. Presuming that developers already developed all of

62

the requirements specification using our WHERE tool. All documents are store in
databases, and shared by Customer (NASA), developer term (Contractor), and IV&V
term. IV&V term helps developer term to find error, missing information. In our story,
IV&V agent Bob opens the state transition table that was created by developer Anne, and
creates a new ViewPoint. He finds that a state transition diagram also expresses the same
piece specification. Redundancies at this circumstance helps clarification of specification,
" avoids losing information. The consistency checking between overlap assures the clarity
and correctness of specification. Bob decides to use WHERE inconsistency checking
engine to detect the potential inconsistencies. The process is described as following.
Method user Bob uses WHERE project editing toolkit (TCMJAVA) to open the
requirements specification in state transition table, and wants to check consistency with
the state transition diagram. Figure 5 and Figure 6 show the loaded diagram and table
using WHERE editing toolkit. WHERE supplies a series of interactive GUI to ask
method user to input user defined information. After Bob inputs the name of the
ViewPoints, WHERE inconsistency-checking engine extracts some key information
about two ViewPoints (here is the two graphical notations, STD, STT) as Figure 7
shown. Figure 8 shows how method users define mapping functions.

In this CASE study, STD has just one type of node Ellipse and two types of
transition edges, double-arrow and arrow to express the direction of the transition. The
edge labeling is an empty set in STD. STT has one type of node Cell, one kind of edge
type Cell, two kind of edge labeling 'M' and "MA”. Method user can define mapping
functions using Choice box as shown in Figure 8. The seeking of mapping functions may

be a heuristic process.

63

standard |Reboost | Microgravity Pro-Oper
Standard — M MA M

Reboost

M
Microgravity| M
Survival MA

M

Pro-oper
ASCR
Ext-Oper

HIHHHULHULHT T

Figure S. The State Transition Table for Allowable Space Station Mode Transitions from
NASA Space Station Specification in TCMJAVA.

Figure 6. The State Transition Diagram for Allowable Space Station Mode Transitions
from NASA Space Station Specification in TCMJAVA.

65

Figure 7. The import attributes summary from two ViewPoints in Comparison.

66

4Inter-ViewPaint Inconsistency Handler

Please find the corresponding relationships

_for nodes, make your bijection relaotionship by using choices -

ARROW corresponds to a transition from source io target.

Figure 8. The interactive environment to define mapping functions for graph match.

After graph match mapping functions are defined, WHERE inconsistency
checking engine tries to match the two ViewPoints in different graphical notations. If a
homomorphism is found, then these ViewPoints are consistency. Otherwise, the
difference between two graphs is shown in the Inconsistency information display window

as Figure 9 shown.

67

3
i

B g 2. The Edge label from Microgravily to Standard

]
i 3. The Edge from Microgravity to Survival

4. The Edge from Ext-oper to Survival
§. The Edge from Pro-oper to Survival
6. The Edge from Reboost to Survival

. | 7. The Edge from Standard to Survival

Figure 9. The inconsistency information display window.

Surprisingly, in our CASE study, the valid space station mode and state
transitions requirements in different graphical notation is not consistent. There are seven
places are conflict. From another aspect of view, some information in STT is missing in

STD. The end of the walking-through leads to the last section of this Chapter, summary.

5.6 Recapitulation

In order to assess the applicability of the framework described in this thesis, we
conducted a case study that coves a real, large software project that is most likely to have
inconsistencies in its life cycle. This is a good case study, because ISS project is a
complex project with participants having different languages and opinions. From the

aspect of IV&V term, our framework is applied to detected inconsistencies. The study

68

indicated our framework helps inconsistency detection in the tackling of inconsistency
management problems.

Our CASE study is drawn from the Valid Space Station- Mode and State
Transition requirements for space station specification, represented by a state transition
diagram and a state transition table. The method allows us to treat each notation as a
separate ViewPoint, the union of the ViewPoints clearly describes all of the modes and
state transitions. Such a redundant description is powerful tool to clarify any ambiguities
in a requirements specification, especially in a critical section the prevention of any
ambiguities is imperative comparing with the trade off redundancy.

We have implemented a prototype tool to check the inter-ViewPoint consistency.
We consider two different editors as the frame of two different ViewPoints. The
consistency checking between two different notations in TCM method is a kind of
activity of checking the consistency of different notations. Our implementation is based
on the framework of graph grammar. Method user defines the mapping functions
between two graph systems. Then homomorphism seeking is performed. If a
homomorphism is found, the two partial specifications are consistent. Otherwise,
inconsistencies are shown to tell method user the source of inconsistency. At this stage,
how to accomplish inconsistency handling still requires further work. We plan to
incorporate many of the conflict resolution strategies and actions within the WHERE,
while tolerating inconsistency.

In order to abide by the rule, requirements engineering tools should maximize the
ability of automation. We also implemented the parts of the automatic generation of a
state transition diagram from a state transition table, and vise versa.

We presented our approach in last two chapters, the implementation of our
inconsistency checker is based on TCMJava. In next chapter, we describe the process of
porting TCM (Toolkit Conceptual Modeling, from Vrije University at Amsterdam, The
Netherlands) project from C++ to Java, and make it being our WHERE project

ViewPoints editor.

69

Chapter Six The WHERE Editing Toolkit:
TCMJAVA

70

This Chapter describes the process of translating TCM (Toolkit for conceptual
modeling) project from C++ to Java. The Java port of TCM is called TCMJava. This
work was conducted jointly by Zhong Zhang and Swarn D. Dhaliwal. In the initial
translating process, C++ files were translated by term members at will. At last stage,
Zhong Zhang finished the integration work on TCMJava. This chapter summarizes the
experiences we leaned from this translating process. First, in section 6.1, from a broad
perspective we describe the architecture of the WHERE project, and in section 6.2 we
explain why we choose Java as implementation language. Later, In sections 6.3-6.6, we
focus on the difficulties encountered rather than a detail description of the difference of
C++ with Java. Also, we talk about the design of TCM project. In future work
description, we delineate that the conversion of TCMJAVA to JavaBeans increases the
reusability of the TCMJava. We already discussed the goals of the WHERE project,
corresponding to these goals the architecture of the WHERE project has been established.

In next section, we give a brief description of the architecture of the WHERE project.

6.1 The Architecture of the WHERE Project.

From the functionality aspects, the proposed architecture of WHERE comprises
three parts [1], the ViewPoint editor, the ViewPoint reviewer, and the consistency
checker. TCMJava provides the basis for the ViewPoint editor, whilst the ViewPoint
reviewer and consistency checker are not built yet.

The ViewPoint Editor

The initial design of this tool includes the functionality for editing graphical,
tabular, textual and mathematical notations. It is composed of a set of editors. Each editor
provides basic syntax and type checking. One editor is not necessary to be able to
generate an entire specification. Usually one piece of specification can be broken down
into individual ViewPoints. For example, if a specification method calls for three
different notations, each notation represents a different ViewPoint, and three different
ViewPoint editors are needed, one for each notation.

The ViewPoint Reviewer

71

This tool allows a user to browser and annotate ViewPoints created by other
people. If a ViewPoint to be loaded was developed outside the WHERE environment, the
Reviewer provides a very rudimentary parsing of the ViewPoint, so that annotations can
be attached to different parts of its structure. The Reviewer does not allow a user to edit
the ViewPoint, but it stores any annotations and meta-ViewPoint data as a separate ‘view’

of the ViewPoint.

The Consistency Checker

This tool defines the relationships between one ViewPoint (source ViewPoint)
and other ViewPoints that are included in the developing specification. Each ViewPoint
can have three types of relationship with other ViewPoints: method-defined (defined by
method engineers), method user-defined, and automatic. The method-defined
relationships are laid down as part of the method, and define the relationships that should
hold between two ViewPoints of a particular type. User-defined relationships are entered
by users in order to record and track non-standard relationships between particular
ViewPoints. Automatic relationships are recorded as the result of certain actions on
ViewPoints, where the action reveals that a relationship must exist. The consistency
checker contains rules for checking the integrity of these relationships.

We decided that use Java networking programming language to implement the
WHERE project, because the WHERE supports the group communications and
coordination in a large-scale composite system development process. Other than that, we

have following good reasons to choose Java as the WHERE implementation language.
6.2 The Implementation of the WHERE Project.

Java as a powerful networking programming language, has being extensively used
by many industry companies and academic institutes. With the increasing functionality
and applause form industry, Java provides solutions for distributing networking
environment computing. In the next year, networking personal computer which will be
infused with JavaOS and will based on 100% pure Java will give networking computing

market a strike.

72

The two current networking computing competitors, Sun Microsystems and
Microsoft supply different strategies and solutions for networking computing.
Corresponding to Microsoft’s MFC, ActiveX, DCOM, Sun released JFC, Java Beans, and
RMI respectively. These two solutions use different methodologies. It is difficult to judge
which one is better. The decision depends on what kind of system under development,
what kind of platform the system developed will be used and so on. Although Microsoft
solution has a lot advantages over Java solution currently, Java solution distinguishes
itself from two aspects, and those two aspects are very difficult for Microsoft solution to
catch up. One characteristics of Java is platform neutral, with the application JavaOne
Java can be programming once, runs everywhere. The other distinguished characteristic
of Java is security empowered. The Java security model includes intrinsic security that
protects the user from errors that can result from incorrect type casting or illegal memory
accesses. This provides both safety and security. In addition, a Security Manager
provides resource-level security that restricts a Java program’s access to the disk, to the
network, and so forth. As an enterprise computing solution, Java is favored by more and
more developers. .

The WHERE project faces the communication and collaboration problems of
distributed projects. Security and platform independent are the main concerns in this
project. Java networking solution will help us at these points with the trade off speed.
Therefore the WHERE project will be implemented in 100% pure Java. In next section
we introduce TCM project, which is the original port of the WHERE project editing tool
TCMJAVA.

6.3 Introduction of the TCM Project
6.3.1 What is the TCM Project?

The TCM project is a suite of editing tools and it aims to support the
conceptualizations of the software product in requirements definition and design phase
[5]. TCM stands for “Toolkit for Conceptual Modeling”. The functionality includes
graphical and tabular editors to represent visually the different views of product

requirements and product designs. TCM toolkit is composed of 16 editing tools, and

73

implemented in Unix C++ and X/Motif. The hierarchy is showed in Figure 1. TCM
project was developed at the Vrije Universiteit at Amsterdam. For use in the WHERE
project, the author and his team member Swarn D. Dhaliwal translated the original TCM
from C++ into Java programming language. Even though the design of GUI parts was
changed considerably in the translating process, the design of application parts was not

changed. The design of TCMJava is described in next section.

eouisive Process Graph3

Figure 1. The functional decomposition of TCMJava

74

6.3.2 The Design of TCMJava

In this section, we discuss the design of TCM project. We try to decompose
TCMJava into some subsystems. This decomposition is different with original TCM
project because of the different language features of Java with C++. But for the classes
except those about GUI classes, such as Shape, Document, we abide by the original
design.

We can first decompose TCMJava into Subject area and Graphical User Interface
Area, as shown in Figure 2. Note the decomposition does not stand for the inheritance
relationships. Also, the organization of source code is shown in Figure 3.

The source code of TCMJava is physical split over several subdirectories, and
each subdirectory forms a package. This is done according to the following criteria:

o All code that is global and that is not part of the other areas is collected in the
directory gl. This directory is complied into a package called tcmJava.gl. This
includes classes like List, string, and some utility classes.

a All code that lies in the editor area but not in one of the subareas, is collected in the
directory ed. this code is bundled into a package called tcmJava.ed. This includes
classes that are used in all editors and startup tool such as, MainWindow,
EditWindow, Viewer, DrawingArea, Grafport, and Startup classes Tcm and
TcmDialog.

TCMlJav

Subject Environment Graphical User Interface

Shape Subject Document Graph Viewer Grafport Window Command Others

Figure 2. The decomposition of TCMJava into Subsystems.

75

All code that lies in the diagram area and that is not part of a specific diagram
subareas, is collected in directory dg. This code is bundled into a package called
tcmJava.dg. This includes classes like Graph, Node, Edge, different graphical shapes
and most of the diagram edit commands. This package is used by any diagram editor.
All code that lies in the table area is collected in directory tb. This code is bundled
into a package called tcmJava.tb. This includes classes like TableWindow,
TableViewer and Table. Also, most of the tool specific constraints are implemented
in these specific table classes.

All code that is specific for the different diagram editors, is collected in the directory
sd. This code is bundled a package called tcmJava.sd. Each specific diagram editor is
a distinct executable.

All images that are used in ImageBuuton and logo. These GIF files are converted

from bitmaps inherited from original TCM project.

/gl (tcmJava.gl package)

/ed (tcmJava.ed package)

cmJava /dg (tcmjava.dg package)

/images (all of the images files)
/tb (tcmJava.tb package)

/sd (tcmJava.sd package)

Figure 3. The source organization illusration.

A complete and accurate overview of all classes and their attributes, actions and

specialization relationships can be generated automatically by using Javadoc as explained

at web site:

http://atlantis.ivv.nasa.gov/projectssfWHERE/TCMJava

Overall, the TCM project is well designed. Moreover, the design of TCM intends to

avoid some pitfalls of C++ programming language.

76

e inheritance is avoided. We will discuss the drawbacks of multiple

ince in next section.
ie place used template. Also the translation problem of template will be

ed in next section.
1ext section we describe some differences between C++ and Java programming

Although the birth of Java benefits a lot from C++, still the differences should

Difference Between C++ and Java

-+ is a large language that is growing larger with its standardization. Part of this
the fact that C++ has grown being extensions from C into being a whole
anguage. The draft standard just released by the C++ standards committee has
standard library leap from just Isotreams and the C standard library into ten
ibraries. In a word, the C++ standard library is now huge.
sing large is not a big problem, especially in the sense of library routines.
, the C++ language has also grown increasingly complex. Features like operator
ng, multiple inheritance, and templates can generate very complex code that can
enhanced or maintained by the person who created it. If that person leaves
., the code becomes particularly difficult to maintain.
astly, not only did C++ inherit certain flaws and dangers from C, such as the
ssor and pointers, but added its own dangers and redundancies such as multiple
‘ce and references. And all the features to be discussed here do not cover all the
ures and ambiguities that are not included in TCM.

‘he following C++ features were intentionally omitted from Java.

eatures Omitted from C++ in Java

“structors. The Java language has changed the concept of an object’s destruction
its finalization. The reason for this is that object destruction is most often

sociated with the explicit freeing of dynamic memory allocated for the object.

71

Skt iH
¢ i‘ s

el E

a pointer. Much of the requirements of a pointer can be fulfilled with uninstantiated

object. Java has no way of implementing two current pointer functions:

1. Pass by reference. Although arrays and objects are passed by reference, a local
copy is made in the called function. The need for this is minimized through the
use of objects and object-oriented design whereby most methods act on the
objects data members and do not need to modify variables in the caller. If it is
necessary to modify a caller’s variable, the method’s return value can be used.

2. Function pointer. Although very useful as callbacks in GUI functions and in
parser dispatch tables, some of the benefit of function pointers can be gained
through using virtual functions and inheritance. As for the function dispatcher,
this can be achieved by using an uninstantiated variable of class Object and run-

time type identification.

C++pointer _ .~ Javareferences ...
Point *point, | Pointpoint; S

point = new point(); b : S pomt = new Pomt(), e
point>x=0; o pomtx =0; -
*point = *other; point ,_—_.:niew point(other);
Pompoin; Pontpoint=newPoint0;

a References. The reference is a feature that has two purposes: first, to eliminate the
need for pointers, and second, to make operator overloading work. Considering the
fact that good reasons have been put forth for eliminating both pointers and operator
overloading, reference become clearly unnecessary.

o Friend Classes. A feature that allows one class to have access to protected and
private data members and methods of another class. This feature is implemented

through packages. In a Java package, when you do not explicitly put in an access

80

specifier, the default access specifier is “friendly”, which means that all classes and
methods within the package have access to friendly methods and data.

a Sizeof in C, a compile-time operator that returned the size, in bytes, of its argument
(a data type or variable). Since the Java language precisely specifies the size of all
basic types, there is no need for the sizeof operator.

o extern in C. A data type modifier that tells the compiler that the definition of the
global variable or function is found in another compilation unit. In Java, there are
no global variables and all external classes are loaded dynamically by the runtime
interpreter. In TCMJava we collected some extern variables, and put them in one

class file (GlobalName java) so that all of the classes can access them.
public final class GlobalNam ds Object| T .

or = new Vector(20);

public static Vector theHelperVe /1 Type

public static Helper theHelper S

------- B .

o The C preprocessor processes a C source file before it is passed to the compiler. It
generally provides two capabilities: text replacement and conditional compilation. It
is important to understand that the functions the preprocessor performs have been
criticized as not truly being benefits at all [30]. The primary problem with the a
preprocessor can be summed up with the expression, “seeing is not believing.” That
means that C source code can not be trusted until all header files have been read and
all macros expanded. This chore becomes impractical in very large programming
projects. The use of interface can partially function as C preprocessor.

o In C++, a virtual function in a base class is dynamically bound at run time based on
the pointer value. If the pointer value points to a subclass, the subclass function
with the same name will be called. If the function was not declared virtual, no run
time checking of the type would occur and whatever type the pointer was declared
(i.e., the base class) that is the function that would be run. In Java, all functions of

the same name in both the base and derived classes are virtual.

81

6.4.2 Java New Features

o Basic Types in Java. The treatment of basic types is special in Java, and compiler
and runtime system (i.e. VM), are aware of these special types. Variables of type int
can not be passed to a method expecting a real object, such as when creating a hash
table, where the key and contents are both subclasses of java.lang.Object. In order
to allow users to create hash tables with a key based on an integer value, classes like
java.lang.Integer have been invented. By definition, all objects are passed by
reference. Methods that receive an object instance can change its state, assuming
appropriate methods are defined. In contrast, variables of basic types, like int, are
passed by value. ITn TCMJava, in order to perform the same functionality in C
passing by reference (int &), we made a wrapper class which is similar to Integer

class, but much simpler.

public final class IntRef extends Object{
private int value; =~ o

publicIntRef(}{ -
this.value=0; "

} o
public IntRef(int value){
this,value = value;

}

[in other classes, for example, in Box class ===

public point _GivdSnp(bdint to, int order, int co int, IntRef code) {uuevass oo s |

o An interface is a list of static variables and method signatures. Classes that
implement a given signature basically promise to implement each of these methods.
The compiler checks to see if these methods are really implemented in the class
definition. Interfaces allow the Java developer to inherit a specification, yet no
implemented behavior is inherited. An interface works as a type in the language.
For instance, an interface could be used as the type of formal parameter in a given
method. In TCMJava we used several interfaces to define constants, and classes that

use those constants in an interface implement the interface. In such way the binding

82

of the constants with class files can be finished in compilation time rather than

runtime.

public abstract interface IconCodcs{
/4 .

pubhc static. fmal int BOX,“’; 0, ELLIPSE =1, DOT =2, COMMENT = 3

public. class GDIcons extenas Icons 1mplements IconCodes {

/* BOX can be dlrectly used rather than usmg IconCodes BOX */ —

a InJava, a package is primarily used for managing namespaces; however, Java does
allow default “friendliness” among all classes inside a package. A Java package can
be thought of as a container for related classes and interfaces.

o Communicating through static variables. When classes are loaded into a VM, all the
class variables are initialized. When a second application (editor) wants to load the
same class, and the VM determines that the class is already loaded, or is still cached
in memory, it will not reload the class and also not initialize the class variables.
This causes applications that have nothing to do with one another to share the same
static variables. In TCMJava, each editor uses several global variables to
communicate among classes. If those variables can not be restored at some stages
later, when the second editor is activated, the first editor dies, because the global
variables of first editor such as theDocoment, theHelper, thePrinter, were
overwritten by the second editor. In order to get around the effect, we used separate
Vectors to store each global variable, and assign every editor opened a unique

number, in this way we can restore global variables successfully.

6.4.3 System Information

This category classes provides both information form the operating system and
access to some operating system services. This is important to realize platform-

independent.

83

o Classloader. This is an abstract class that can be extended to allow the loading of
classes either from a file or over a network. This mechanism will allow true dynamic
distribution of objects to any machine on the network that has a Java run time. We
use Classloader class to load the images for logos and imagebuttons.

o System properties can be obtained by using System.getProperty(key) function in
System class. key can be user.name, user.dir, os.name, and etc.

The implementation of GUI part of TCMJAVA and original TCM is complete
different. In next section, we describe the some language aspects of X Motif and Java

AWT for GUI implementation.

6.5 X Window / Motif and Java AWT Package

The original TCM X/Motif user interface is restricted to that part of the source
(classes and functions) that directly uses the Motif, Xt and Xlib libraries. The typical

X/Motif application structure is shown in Figure 4.

Application
User Interface
Motif Library
Xt Intrinsics
Other
P_ibraries Xlib (X Window System)
Unix Operating System

The Java AWT uses three concepts to implement common functionality/platform-
unique look and feel: abstract objects, toolkits, and peers. Every GUI element
supported by the AWT package has a class. The AWT GUI objects are platform-

84

independent abstractions of a native GUI, just as Java bytecodes are platform
independent assembly language instructions for a virtual machine, AWT objects are
platform-independent GUI elements for a virtual operating system display. The toolkit is
the platform-specific implementation of all the GUI elements supported by the AWT.
Each toolkit implements the platform-specific GUI elements by creating a GUI “peer”. A
peer is an individual platform-specific GUI element. Since every AWT GUI object is
derived from the generic AWT object called a component, every component has a peer.
The peer implements the platform specific behavior of the AWT component. The peer is
added to the generic AWT object when the object is added to a container that has a peer.
The fact is that peers are separate from the AWT object. An AWT object contains a peer.
It was implemented using the idea of containment. The peer is not created until there is a
physical screen representation (i.e. associated with the setVisible() method).

In the process of porting, because of the irrelevant relationships between X/Motif
and Java AWT package, we had to isolate the parts about user interface from source
code. Then implemented the GUI parts separately in Java. A lot of classes are related
with GUI implementation in TCMIJava, such as DrawingArea, DialogManager,
EditWindow, and Menu. The X/Motif GUI implementation was ignored, and Java
implementation has to be written from scratch.

The most difficult part in the translation process is event handling. Java uses event
delegation model to solve the problem; while X Motif uses a lot of callback functions to

solve the problem. In next section we describe those two kinds of event handling models.

6.6 Event Handling

Event Handling mechanisms in Java programming language is different with that
in X Window Motif. In this section, we describe how C++/X Motif and Java handle

events.
6.6.1 X Motif Event-Driven Solution

Programming graphical user interfaces introduced a new style of programming

called “event-driven’ programming. Although the terminology differs between X

85

Windows, MS Windows, and the Mac OS, the methodology for event-driven
programming is the same. Event-driven programming describes a new paradigm for
control flow of a program. In the event-driven paradigm, your program becomes a set of
event handlers that are invoked by a user-triggered event. On Macintosh and MS
Windows, an application programmer actually writes the small function to retrieve and
dispatch events. This main function is the infamous “event loop”. In X Windows and
Java AWT, the event loop is hidden from you. In X Windows, an application
programmer registers function pointers to event handling routines (called callbacks) and
then calls a function called XtAppMainLoop(). In the Java AWT events are retrieved and
dispatched by Java runtime. Let us see the TCM implementation in more details.
a Create the Widgets.
0 Register the event handling for these widgets.
o Go into the main event loop (which is built-in, hidden).
0 Activate the appropriate event handler when specific event occurs on a specific
widget.
o Return to the main event loop when done.

When a TCM tool is started the widgets that form the main window are created.
The class EditWindow and its specialization contain the functions to create the
constituent parts of the main window. These widgets have one or more call-back
functions. The Widget reacts to a certain set of X events (That set is built-in) and when
such an event occurs a user-supplied action is called.

6.6.2 Event Delegation Model in Java

In Java event delegation model, events are generated by event sources. One or
more listeners can register to be notified about events of a particular kind from a
particular source. Since it allows the programmer to delegate authority for event handling
to any object that implements the appropriate listener interface. The new AWT event
model lets you both handle and generate AWT events. Event handlers can be instances of
any class. As long as a class implements an event listener interface, its instances can

handle events.

86

In our approach of porting, after the GUI parts have been implemented, they were
registered for some specific event listeners. Then, in the classes registered corresponding

events were handled.

6.7 Summary and Future Work

In this chapter, we discussed the difference of C++ and Java programming
languages and the difficulties we encountered during the porting process. An approach of
porting process is summarized as following in Figure 5. And the current version of
TCMJava can be obtained from SRL web site at

http://research.ivv.nasa.gov/projects/WHERE/TCMJava/index.html

In the future, the WHERE project editing toolkit should be capable of dealing
with various notations, including mathematical notations (e.g. PVS) and natural language
notations. And user could check the consistencies between different notations. In current
version of TCMJava, most editing functions are available, such as copy, cut, paste, zoom
in, zoom out, save file, load file and more. However, in future version of TCMJava more
features are expected as listed below.

o Multiple steps undo-redo functionality.
User can customize the background color, and foreground color.
User can change fonts.

User can customize different colors for different shapes.

o 0 o g

Printing and Postscript support.

87

C++ Source Code

|

Analysis

GUI Independent GUI dependent Code

Code (have to be rewritten)
(Could be automated)

I /

Java Code Java Code

NS

[Working Java program

implements
EventListeners to
replace call-back
functions in C++

Figure 5. The porting process summary.

With the increasing power and stability of Java programming language, the
implementation of these wishes could get more feasible. JavaBeans is a reuse component
solution for Java programming language, the conversion of every editor of TCMJAVA
into a JavaBeans, will improve the applicability and reusability of TCMJAVA. Other
users can use drag and drop mechanism to use any of our editors in a jar file, and tailor

with his (her) application to make a new application. The conversion each of 16 editors is

also imperative.

88

In the next chapter we present a summary of the thesis and give an evaluation of
its achievements. We discuss remaining problems which this thesis does not address, and

outline future work.

89

Chapter Seven Conclusions and Future Work

90

In the translation process, we had to redesign and rebuild the GUI parts, event
handling parts, and graphics enabling functions from scratch. GUI handling part of Java
language is completely different with that in X Motif C++. Fortunately, several classes in
the TCM such as shape, subject, document can be reused, still we had to change many
places because of the difference of programming languages. We summarized our
empirical approach for future projects that need translate C++ into Java in chapter four. A
clean separation of GUI parts with underlying functionality implementation is essential.
Tossing away the GUI implementation in C++, writing new coding from scratch. Even
the coding about GUI parts can be finished beforehand of the translation, just from the
appearance of the project translated. Java makes the connection between GUI and
application coding easy. Java event delegation model is easy to grasp and simple to
implement. The callback features in X motif C++ implementation can be replaced by
static stubs functions which use various Java eventlistener classes in our port of
TCMIJAVA. The translation process of application code (GUI independent) might be
automated.

Our translation effort succeeded with the release of beta version of TCMJAVA
1.4. Tt includes 16 graphical and tabular editors, with 10 diagram editors: "Generic
Diagrams”, "Entity Relationship Diagrams",

"Class Relationship Diagrams", "Static Object Diagrams”,

"State Transition Diagrams", "Process Structure Diagrams”,

"Recursive Process Graphs", "Data Flow Diagrams",

"Data and Control Flow Diagrams", "System Network Diagrams",

Four table editors: "Generic Tables", "Transaction Decomposition Tables",
7 "Transaction Use Tables", "Function Entity type Tables",
And two tree diagram editors: "Generic Textual Trees", "Function Decomposition Trees".

All 16 editors support basic editing functionality, such as copy, cut, paste;
viewing functionality, such as zoom in, zoom out, home view; data saving/loading
functionality, such as save file, load file, insert file; help facilities, such as help,
document info; grid facilities, such as show grid, hide grid. Furthermore, TCMJAVA
supply an attractive and user friendly GUI. For more details, please refer to web page at,

hftp://research.ivv.nasa. gov/projectss/WHERE/TCMJava/index.html

92

The finishing of TCMJAVA gives us a chance to experiment our inconsistency
management framework.

Our inconsistency management framework is based upon graph rewriting rules
system, ViewPoints framework, and the internal data implementation of TCMJAVA.
Graph is a universal data model to describe static properties of objects and the structure
of their relationships. It is feasible to encode the diagrammatic or tabular objects in
TCMJAVA into graph system, which has six attributes. Because the graph infrastructure
is already there, the encoding process just is a graph attribute recognizing and
redistributing process. The inconsistency checking between two partial specifications
(ViewPoints) can be accomplished to seek if there is a homomorphism between the two
graph systems, which correspond to the two partial specifications (ViewPoints). The
finding of homomorphism reduces the effort to track relationships inside the
homomorphic part of the graphs. The seeking of homomorphism needs query subgraphs
in a supergraph. Four basic operations are established in this framework for graph queries
and replacements, UNION, INTERSECTION, DIFFERENCE, SELECTION. The non-
determined sequence combination of the four basic operations can derive a lot complex
operations on graph. The implementation of these four operations is based the List data
structure in TCMJAVA, which stores all the shape or table cell objects in a diagram or
table respectively. Dynamic aspects of graph systems are represented by graph rewrite
rules. The application of graph rewriting rules keeps any information in the development
process. Therefore, the recording of graph rewriting rules can reverse graph
transformation, supports Undo operations in development process, supports method user
to explore alternatives, and supplies active help to the developer to search for an
inconsistency resolution. Hence, the application of graph rewriting rules supports
inconsistency reasoning, analysis, diagnosis, tracing information, resolution,
amelioration, rational. Therefore, our framework supports inconsistency management. In
order to check the applicability of our framework, we applied our framework on a large-
scale real project, International Space Station project.

In the tomes of NASA Space Station Specification, various notations used make
all existing CASE tools not enough to check the consistency of inner-notation or inter-

notations. For the valid space station modes and state transitions requirements in

93

International Space Station Specification, there are two different notations to represent
the same requirements, state transition diagram and state transition table. We applied the
WHERE to this piece of requirements specification. After method user defines the
mapping functions in seeking homomorphism process, inconsistencies are detected and
displayed. We found that there are often many inconsistencies even for a simple partial
specification. This supports the argument; inconsistency is inevitable. In next section we

discuss the limitation of our framework, and what should be done in the future.

7.2 Discussion

We described our framework in previous section and Chapter four. It is a
preliminary research work. There should be a lot of places that need to be improved or
reconstructed. We outline several deficiencies of the framework; they may not cover all
of the holes in this framework.

In our framework, we emphasize that inconsistency handling actions need not
necessarily remove the inconsistency. How does meta-level inconsistency handling
actions combine with graph grammar approach is still a problem. In our framework,
method user defines mapping functions in seeking a homomorphism between two graph
systems by using wizard window. Sometimes, the definition of mapping functions are
blur, the seeking of mapping functions is not very easy. This is an engineering issue, also
is an implementation issue. In next section we will describe what makes a good CASE
tool, and a wish list for the WHERE.

7.3 Future Work

In today’s webbed world, with using of distributed technology and decentralized
control, managing overlap and inconsistency in a software system under development is a
big consideration, and is replacing the concern for rigidly enforcing consistency and
removing redundancy. The delivery a tool like the WHERE is imperative. However,

Before put into a real large-scale project, following implementation needs to be finished.

94

A granulated analysis and clarification is needed between the relationships of
related notations, in order to use our framework better. For example, the static aspect of a
partial specification can be represented using ER diagram, and the dynamic aspect can be
represented in State transition diagram. A fined analysis of the relationships between
these notations is needed.

The automatic conversion between two different related notations is expected, this
will greatly unload human effort from tedious work, and concentrate on the creative
activity. For example, a state transition diagram can be automatically generated from an
ER diagram.

In a long-term, we pursue the computational support for our the WHERE project
to support the full spectrum of inconsistency management covering specifications
expressed in different languages, with different degrees of abstraction, granularity and
formality, deploying different terminology and being at different stages of development
or elaboration. We believe that to cope with the diversity of the inconsistency problem,
the WHERE project should support multiple reasoning mechanisms and/or methods with
different application domains; including Quasi-classical logic based consistency
management, graph rewriting rules based consistency management. And the combination
of QC-logic and graph rewriting rules may give rise to a potential better solution for

inconsistency management. The research in this area is expected.

95

Bibliography

[1] S. Easterbrook and J. Callahan, "Independent Validation of Specifications: A
coordination headache," IEEE Fifth Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE96) - Workshop on

Requirements Engineering in and for Networked Enterprises, Stanford, CA, Jun 19-
21, 1996.

[2] Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh, "Inconsistency
Handling In Multi-Perspective Specifications”, IEEE Transactions on Software
Engineering, Vol.20, pp. 569-578, August 1994.

[3] Hunter and B. Nuseibeh, “Managing Inconsistent Specifications: Reasoning,
Analysis and Action”, Department of Computing Technical Report Number 95/15,
Imperial College, London, UK, October 1995.

[4] H. J. Kreoswki, and G. Rozenberg, “On structured Graph Grammar I”, Journal of
Information Sciences, Vol.52, pp. 185-210. 1990A; “On structured Graph Grammar
IT’, Journal of Information Sciences, Vol.52, pp. 211-246. 1990B.

[5] TCM homepage http://www.cs.vu.nl/~tcm/project.html.

[6] S. M. Easterbrook, "The Role of Independent V&V in Upstream Software
Development Processes," Second World Conference on Integrated Design and
Process Technology (IDPT-96), Austin, TX, December 1996.

[7] S. Easterbrook, A. Finkelstein, J. Kramer, and B. Nuseibeh, "Coordinating
Distributed ViewPoints: The Anatomy of a Consistency Check", International

Journal on Concurrent Engineering: Research & Applications, Vol. 2, pp. 209-222,
March 1994.

[8] A. Al-Rawas, “A framework for the communication and organization of requirements
perspectives”, Ph.D. Thesis, University of Sussex, 1996.

[9] S. Dhaliwal, “Providing the Persistent Data Storage in a Software Engineering
Environment Using Java/CORBA and a DBMS”, MS Thesis, West Virginia
University, 1997.

[10] S. Easterbrook and B. Nuseibeh, "Using ViewPoints for Inconsistency
Management,"Software Engineering Journal, Vol. 11, (1), 1996.

[11] B.Nuseibeh, J. Kramer, and A. Finkelstein, "A Framework for Expressing the

Relationships Between Multiple Views in Requirements Specification”, IEEE
Transactions on Software Engineering, Vol. 20, pp. 760-773, October 1994.

96

