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Abstract. One month of the Advanced Very High Resolution Radiometer
(AVHRR) Global Area Coverage (GAC) Land Pathfinder (AGLP) data from
September 1985 are used to examine the spatial and temporal distribution of fires
over four major ecosystems in South America. The Earth Radiation Budget
Experiment (ERBE) scanner data are used to examine the top of atmosphere
(TOA) shortwave and Iongwave fluxes over smoke generated from biomass burn-
ing. The relationship between the AGLP-derived NormaIized Difference
Vegetation Index (NDVI) and the ERBE-estimated clear sky albedos are also
examined as a function of the four ecosystems. This study shows that the grassland
areas in South America have the highest number of fires for September 1985, and
their corresponding NDVI values are smaller than the tropical rainforest region
where the number of fires were comparatively small. Clear sky statistics accumu-
lated during the days when smoke was not present show that clear sky albedos
derived from ERBE are higher for grassland areas when compared to the tropical
rainforest. The results show that the AGLP can be used to determine the spatial
and temporal distribution of fires aIong with vegetation characteristics, while
ERBE data can provide necessary information on broadband albedos and regional
top of atmosphere radiative impacts of biomass burning aerosols. Since the AGLP
data are available from 1981 to the present day, several climate-related issues can
be addressed.

4'-

1. Introduction

One of the foremost objectives in the upcoming Earth Observing System (EOS)

programme is to use spaceborne observations in order to understand the earth and

its atmosphere as an integrated system (Asrar and Dokken 1993). With a wide

variety of sensors to be launched, NASA's Mission to Planet Earth (MTPE) pro-
gramme is the most ambitious project ever attempted to document and understand

the physical mechanisms responsible for global climate change. With terabytes of

data expected to stream from these Sensors every day, there needs to be a system in

place that will effectively archive and distribute the data to the research community.

As a precursor to the upcoming EOS mission, the NASA/NOAA Pathfinder pro-

gramme, initiated in 1990 (Maiden and Greco 1994), has produced successfully
several geophysical products from existing satellite data sets. These long-term data

sets will provide valuable experiences with data production, archiving, handling, and

distribution. The intent of the Pathfinder Programme is not only to provide easier

access to archived data, but also to prepare the research community and the Data

Archive Distribution Centers (DAACs) so that the onslaught of data expected from

spaceborne sensors in the near future will be used effectively. The Pathfinder data
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sets that are now available (Maiden and Greco 1994) to the research community

can be used for addressing a wide range of climate-related issues.

The Pathfinder development effort encompasses data from several sensors. The

AVHRR Land Pathfinder team (Townshend 1994) has nearly completed processing

of more than i2 years of AVHRR GAC data from the NOAA-7, NOAA-9, and
NOAA-I 1 satellites, at a spatial resolution of 8 kin. The LANDSAT Pathfinder effort,

in collaboration with NASA, USGS, and EPA, will build a three-year global data

set (Schwaller et al. 1993) at a spatial resolution of 80 m. The NASA/NOAA SSM/I

and SSMR Pathfinder data sets will produce long-term low-resolution data sets (at

12.5, 25, and 50 km spatial resolution) of several geophysical products. A global 1 km

Pathfinder data set (Eidenshink and Faundeen 1994), constructed from AVHRR

Local Area Coverage (LAC) data, is currently in production. In other words, the

final goal of the Pathfinder Programme is to provide the research community with

a long-term, high-quality data set from existing satellites.
The role of aerosols on the radiation balance of the Earth atmosphere system

has been well established (Penner et al. 1992, Charlson et al. 1990, 1992). Each year,

increasing amounts of aerosols are released into the atmosphere due to biomass

burning, dust storms, forest fires, and volcanic activity. These aerosol particles modify

the radiative balance by reflecting the solar radiation back to space, called the 'direct

effect' (Penner et al. 1992), and enhance the reflectivity of clouds by acting as cloud

condensation nuclei (Charlson et al. 1992, Kaufman and Nakajima 1993), which is
called the 'indirect effect'. For example, Penner et al. (1992) estimate that nearly

l l4Tg of smoke is produced in the tropics due to biomass burning, which could

partially offset the warming expected from a doubling of CO2. These aerosol particles

significantly affect the radiative balance on both regional and large scales.
Most biomass burning occurs in tropical countries (Hao et al. 1990, Crutzen and

Andreae 1990) due to savanna fires, shifting cultivation practices, deforestation, fuel
wood use, and burning of agricultural residues (Hao and Liu 1994). Although

biomass burning activities are intense in the dry season, which is between December

and March in the Northern Hemisphere, and between June and September in the

Southern Hemisphere, burning can take place whenever there is plant material dry

enough to burn (Andreae 1991). In South America, forest fires dominate the selva

(forest) region (5_S 10_N; 60°-80°W; and between 5°-20°S and 40 ° 65°W), while

agricultural burning due to savanna fires is widely prevalent in the cerrado region

(5°-20°S and 40 ° 70°W). Fuel wood is burned mostly between 0°-30°S in Brazil.

The major source of agricultural residue burning in South America is due to sugar
cane and is concentrated around 5"S, 50°W; 20_S, 55°W, and 25°S, 55°W. Due to

these activities, there is widespread concern about the loss of biodiversity (Uhl et al.

1988), the spread of human and plant diseases via colonization, the increase in
concentrations of greenhouse gases (Greenberg et al. 1984), the effects on atmospheric

chemistry (Fishman et al. 1986), a decrease in evapotranspiration (Shukla et al.

1990), and an increase in surface albedo and water runoff (Gentry and Lopez-Parodi

1980). The implications of these activities on regional and global scales are relatively
unknown. The reduced resolution data sets that are now available as part of the

AVHRR Land Pathfinder programme provide an opportunity to examine several

important issues, including the spatial distribution of fires (Belward et al. 1994),

ecosystem dynamics and cropping practices (Malingreau 1986), and vegetation map-

ping (Justice et at. 1985). Although high spatial resolution imagery from LANDSAT
and AVHRR Local Area Coverage (LAC) provide more detailed information, these
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data are difficult to obtain, expensive, and are not available over long enough

time periods.
There is widespread concern that human activities are altering the climate and

the nature of ecosystems (Charney 1975, Dickinson 1983). The tropical rainforest
has received much attention (Henderson-Sellers and Gornitz 1984, Gash and

Shuttleworth 1991, Potter et al. i975) due to the high rates of deforestation (Salati

and Vose 1983, Skole and Tucker 1993) from forest fires and fires due to various

agricultural practices (Hao and Liu 1994). In tropical rainforests, albedo, along with

surface roughness, appears to be the important factor which affects land surface and

climate (Gash and Shuttleworth 1991). The change in vegetation and associated

change in albedo could lead to changes in evapotranspiration and rainfall from

altered general circulation patterns (Nobre et al. 1991). There is also modelling
evidence that suggests tropical rainforests tend to be replaced by degraded grass

(pasture) due to the reduced albedo and evapotranspiration (Nobre et al. 1991).
Therefore, it is critical that the relation between the vegetation and the albedo be

investigated over a sufficiently long period of time so that the role of fires in modifying

the nature of the ecosystems is clearly defined. In this regard, more than 12 years of

the AGLP data can provide the necessary data base.

The major focus of the present study is to examine the potential of the AVHRR

GAC Land Pathfinder (AGLP) data set for aerosol and earth radiation budget
studies. One month of AGLP data over South America from September 1985 is

used, first to obtain the spatial and temporal distribution of fires; second, to collocate
measurements from the ERBE scanner to examine the top of atmosphere radiative

impact of smoke aerosols; and third, to examine the relation between NDVI and
clear sky albedo during those days when smoke and clouds are not present.

Specifically, this study demonstrates the potential of collocated AGLP and ERBE
data to examine the effect of fires on the surface characteristics (NDVI and albedo)

and the top of atmosphere regional radiative energy budget. A recent study by

Belward et al. (1995) has already shown the usefulness and the potential of the
AGLP data for mapping fires in West Africa. The present study is focused upon the

South American region.

2. Data

2.1. The AGLP data

The creation of the AGLP data set is fully explained in James and Kalluri (1994).

A brief description is given here for sake of completeness. The AVHRR GAC level
1B data set is used as input to the AGLP data processing scheme. Navigation of

the image data is performed by using an orbital model and updated ephemeris
(Rosborough et al. 1994). The radiances from channels 1 and 2 are converted to

reflectances, and the radiances from channels 3, 4, and 5 are converted to brightness

temperatures (Kidwell 1991). Corrections for the degradation of channels 1 and 2

are computed from Rao (1993), and corrections for the non-linear calibration of
channels 4 and 5 are taken from Rao et al. (1993). Atmospheric corrections for

Rayleigh scattering and ozone are performed following Gordon et al. (1988).
However, no corrections are made for water vapour. A Goodes Interrupted

Homolosine Projection at a resolution of 8 km (Steinwand 1994) is used for mapping.

This mapping technique allows the best equal area representation of the data and
allows for rapid subsetting and display capabilities. The values from the AVHRR

channels 1 through 5 are output for each 8 km grid based on a forward binning
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procedure. This method finds the location of a satellite pixel which is then used to

locate the output bin. Note that there is no interpolation or averaging of the original

AVHRR GAC pixel. However, at nadir, up to six GAC pixels can be mapped to a

single 8 km output bin. The NASA Pathfinder scheme presently selects the 'greenest'

pixel based on the Normalized Difference Vegetation Index (NDVI) to fill that bin,

and this sampling biases the results towards less cloudy conditions (Belward et al.

1995). Along with the five channels of data, quality control flags and pertinent sun-
satellite angles also are provided. In addition, an ancillary data set that includes

latitude, longitude, elevation, and land/sea mask is available. The AGLP data set also

provides a cloud mask index based on the CLouds from AVHRR (CLAVR) algo-
rithm (Stowe et al. 1991). In the CLAVR algorithm, eleven tests are performed to

classify a pixel as being either cloudy, cloud-free, or mixed. The AGLP data set

produces both daily and ten-day composites from the afternoon satellites (NOAA-7,

NOAA-9 and NOAA-I1) from July 1981 to the present. The daily data set is used
in this investigation and is restricted for viewing angles between +30 ° to avoid
bi-directional effects.

2.2. The Earth Radiation Budget Experiment scanner data

The ERBE instrument (Barkstrom et al. 1989), which was launched in 1984 by

NASA, has given the research community unique insights into the radiation balance

of the earth-atmosphere system (for example, Hartmann et al. 1986, Ramanathan

and Collins 1991). In addition, ERBE scanners were mounted on the NOAA-9,

NOAA-10, and the ERBS platforms. The ERBE scanners, with a nominal spatial
resolution of about 40km (Kopia 1986), measured broadband radiances

(0.25_m 4_m and 4jLm 50_m), which were then converted to TOA fluxes by using

Angular Dependence Models (ADM's) (Suttles et al. 1988, 1989). Since the scanner

on NOAA-9 was operational between February 1985 and January 1987, the radiative

impact of two biomass burning seasons can be analysed. In particular, by collocating
measurements from the narrowband AVHRR data and the broadband ERBE data,

the radiative impact of aerosols on the earth-atmosphere system can be investigated.

2.3. Area of stud),

In the present investigation, the daily AGLP data from September 1985 are used.

The area of study is roughly between 0° to - 20°S and 43°W to 72°W and is shown

in figure 1. There are four major ecosystems within this region, based upon the Olson

world ecosystem database (Olson 1992). The four ecosystems are: tropicaI rain forest

(TRF); tropical broadleaf seasonal (TBS), with dry or cool season; savanna/grass,

and seasonal woods (SGW)t; and mild/warm/hot/grass/shrub (MGS). In other

studies, Prins and Menzel (1994), this study region is broadly classified as either

seh'a (rainforest), mixed (broadleaf and savanna), or cerrado (grassland). This area
of study has been the subject of many other investigations (for example, Malingreau

et al. 1989, Malingreau and Tucker 1988, Ward et al. 1992) due to the high rates of

deforestation and other agricultural practices. Although much effort has gone into

obtaining the spatial and temporal distribution of fires, there exists no comprehensive

information on the regional radiative impact of aerosols produced from burning.

tin this category, trees or shrubs above grass ground cover may be interspersed in many
scales in savanna belts of varying drought duration and high fire frequency.
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3. Methodology

The AGLP data are currently being received from the NASA's Goddard Space

Flight Center (GSFC) on 4 mm DAT tapes (Agbu and James 1994). The data volume

for each day is rather large, on the order of 250 Mb. Each file contains: (1) the
Normalized Difference Vegetation Index (NDVI); (2) the CLAVR cloud masking

flags; (3) quality control flags; (4) relevant Sun-satellite geometry angles; (5) AVHRR
channel 1-5 values; and (6) the day of the year. These data are made available for

Africa, Asia, Australia, Europe, North America, and South America. Note that the

data are only provided over land. Subsetting tools are also provided to analyse
either the individual channels or selected continents. The data is in hierarchical data

format (HDF) format; even with subsetting tools, the data volume is rather difficult

to handle. Although the HDF format is quickly becoming the standard for remotely-

sensed data, efficient ways for storing and distributing the data must be explored.
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3.1. Fire detection

Fires are detected following the method of Kaufman et al. (1990). In this method,

a pixel is labelled as containing fire if it satisfies the following conditions:

Tz>_316K

r_> r.+10K (l)

T4>250K

where T3 and T4 are AVHRR channel 3 and channel 4 temperatures. The first

condition ensures that the channel 3 temperatures are closer to the saturation level.

The second condition ensures that the hot shrub and grass are not included as fire

pixels. The third condition ensures that the pixel is not contaminated with strongly

reflective clouds. Due to the different background conditions, Belward et al. (1995)

and Franca et al. (1995) use different conditions for detecting fires over West Africa.

However, a GAC pixel can be classified as a fire pixel only if the original AVHRR
Local Area Category (LAC) pixels all had fire. Therefore, in the present study, the

number of fires are adjusted for the GAC resolution (Belward et al. 1994) when

actual fire counts are performed. Although spatial averaging of the AVHRR LAC

data reduces the fire counts (Belward et al. 1994), it is useful to determine the spatial
extent of the fires from the AGLP data set.

3.2. Detection of smoke

The smoke aerosols produced from biomass burning can be broadly classified

into two categories. The first is the dense smoke category, or areas with heavy
aerosol loading, which is found over the active and smoldering fires and is comprised

of smoke aerosols. The second category is the haze-like smoke which has been

transported by the meteorological conditions to several hundreds of kilometres.

These haze-like conditions are found throughout the biomass burning season in

South America (Andreae et al. 1988) and could have a significant impact on the
regional radiative balance.

In the present study, a combination of spectral and textural measures is used to
separate visually the aerosols from the underlying background (Christopher et al.

1996). The normalized AVHRR channel ratio of (1 -4)/(1 + 4) is first used to produce

an image. This image then is used to compute several textural measures (Welch et al.

1988a, b, Tovinkere et al. 1993) for a 9 × 9 pixel window. The textural measure that

best produces a visual separation between the aerosols and the underlying back-

ground is then used to create a three-band overlay image. The textural measure that

produces the best results was the 'mean' value. Although the channel ratio of

(1- 4)/( 1+ 4) is sensitive to both smoke and clouds, it is the combination of spectral

(channel 1, (1-4)/(1 +4)) and textural measure (mean) that provides a good visual

separation between the surface and aerosol features.
Figure 2 shows a three-band overlay of one image from 3 September 1985 over

South America. The AVHRR channel 1 is in red, the normalized AVHRR channel

combination of(1 -4)/(1 + 4) is in green, and the 'mean' textural measure of channel

(1 -4),./(1 + 4) is in blue. Each channel is histogram equalized. The fires are coloured

in red (which were detected using the technique described in section 3.1), and the

image has been enlarged by a factor of 2 for clarity of presentation. Several interesting

features can be seen in this image. The background appears dark due to the dense

vegetation, the clouds appear white, and the haze appears to be light yellow. The
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dense smoke plume labeled 'P' toward the middle of the image in Rondonia is bright
yellow in colour, and there are a number of fires in the Matto Grasso area. More

than 1500 pixels were classified as 'fire' from this image. The dense smoke plume

was also verified using the AVHRR LAC imagery (Christopher et al. 1996). Also
shown, in blue, are several sample ERBE scanner footprints (see section 3.4) over

the area of interest. Note the jagged appearance toward the edge of the swath; this
is due to the overlap of the AVHRR swaths and the forward binning procedure that

is inherent in the AGLP data processing scheme. Figure 2 is a typical example of

AGLP imagery over South America and is merely shown to demonstrate the spatial
extent of fire and smoke in the Amazon Basin.

Figure 3 shows the channel 3 and channel 4 temperatures from the AGLP data
set for the transect A-B shown in figure 2. The dense smoke plume, labelled P in

figure 2, around pixel number 250 shows a difference of about 12K to 15 K between
channel 3 and channel 4 temperatures. This difference in temperatures between
channel 3 and channel 4 makes the detection of fires possible from satellite imagery.

Even at a coarse spatial resolution, the AGLP data set shows the sensitivity of

channel 3 temperatures to the fires.

3.4. Collocation of AVHRR with ERBE data
Since the AVHRR and the ERBE scanner were both mounted on board the

NOAA-9 satellite, coincident measurements are available for the two years that the
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scanner was operational. The ERBE-measured radiances are converted to top-of-

atmosphere fluxes (Barkstrom et al. 1989) using a maximum likelihood estimation

(MLE) technique (Wielicki and Green 1989) and angular dependence models (Suttles

et al. 1988, 1989). The ERBE scene identification classifies a pixel as either clear,

partly cloudy, mostly cloudy or overcast. The geographical regions with aerosols

tend to be misclassified as being partly cloudy or mostly cloudy (Ackerman and

Chung 1992), thereby resulting in errors in top-of-atmosphere (TOA) fluxes. A

technique described in the next paragraph provides for more reliable scene identifica-
tion. The maximum errors by assuming the inappropriate bidirectional and limb-

darkening models for shortwave flux are about 14 per cent, and are negligible in the

longwave (Diekmann and Smith 1989). Until realistic limb darkening and
bi-directional models are developed for aerosols, the ERBE measurements provide

the only method for estimating the direct radiative impact of aerosols using
satellite data.

Since the ERBE scanner has a footprint which is about five times larger than

the Pathfinder output bin, a group (5 x 5) of AVHRR pixels that corresponds to the

AGLP data is first identified. Then the average channel 1 reflectances and channel 4

temperatures for that group of pixels are correlated with the ERBE shortwave and
longwave fluxes, respectively. Figures 4(a) and 4(b) show the correlation between

the AGLP channel 1 reflectance and the ERBE shortwave flux (linear correlation

coefficient: 93 per cent) from 3 September 1985, and between the AGLP channel 4

temperatures and the ERBE longwave fluxes (linear correlation coefficient: 95 per

cent), respectively. Correlation coefficients greater than 90 per cent ensure that the

AGLP and the ERBE data have been properly calibrated, navigated, and collocated.

This provides an indirect method for validating the two data sets. After a group of

AVHRR pixels has been identified, the CLAVR flags are used to further divide the

5 x 5 AGLP pixels into four categories, as shown in table 1.
By using the CLAVR flags, this scene identification scheme is more reliable than

the ERBE scene identification scheme, since narrowband radiometers such as

AVHRR provide more spectral and spatial information as opposed to the ERBE

broadband measurements. This technique of combining narrowband and broadband

measurements is a powerful tool in climate studies (see Ackerman and Inoue 1994,

Ackerman et al. 1992, Li and Leighton 1991).

4. Results

The results are divided into the following sections. First, the spatial and temporal

distribution of the fires is examined as a function of four ecosystems for September

1985. Then, the TOA SW and LW fluxes for dense smoke are computed. The final

section discusses the relationship between the ERBE clear sky albedos and the AGLP
derived NDVI.

4.1. Spatial and temporal distribution of fires

In this section, the spatial and temporal distribution of fires as a function of four

ecosystems is discussed. Figures 5 (a-d) show the number of fire pixels for each day

in September 1985 for TRF, TBS, SGW, and MGS. The number of fires has been

adjusted to account for the AGLP spatial resolution following Belward et aI. (1994).

The number of fires in TRF is much less compared to the other three ecosystems.

Maximum fire events are in the grassland. The peak fire activities for SGW are
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Figure 4. Scatter plot and correlation for (a) ERBE shortwave flux vs. AGLP channel 1

temperature; and (b) ERBE Longwave flux vs. AGLP channel 4 temperature.

during the beginning of the month, and for the TBS and MGS ecosystems during

mid- to late-September. There is a well-defined temporal change in the number of

fires for the TBS, SGW, and the MGS ecosystems.
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Table 1. Classification of ERBE pixels based on AGLP data.

Percentage of AGLP pixels
classified as cloudy ERBE pixel labelled as

0 5 Clear
5-50 Partly cloudy

50 95 Mostly cloudy
95-100 Overcast

4.2. The ERBE top of atmosphere (TOA) fluxes fi)r dense smoke

In order to examine the TOA radiative impact produced from biomass burning,
each AGLP image is used to separate the dense smoke from cloudy conditions by

using a simple infrared threshold. If within a collocated ERBE pixel, a fire or a

group of fires was detected, the SW and LW fluxes were assumed to be from smoke,

provided the channel 4 temperatures were greater than 250K. This method does

have the drawback of sometimes identifying low clouds warmer than 250 K as smoke.

However, a visual examination of several AVHRR LAC images from the 1985 and

1987 biomass burning seasons over South America (Christopher et al. 1996), shows
that directly above fires, in most cases smoke is present, as opposed to low clouds.

For the labelling of clear sky pixels, the CLAVR flag was used. If 95 per cent of the

AGLP pixels within the ERBE footprint were identified by the CLAVR algorithm

as being clear, then that ERBE pixel was classified as being clear sky. The majority

of the pixels identified as clear from the ERBE scheme were classified as partly

cloudy or mostly cloudy by the CLAVR method. This shows the difficulty in using

broadband measurements for identifying clouds, aerosols and surface features and

the importance of augmenting them with narrow band AVHRR data. More than 70

per cent of the smoke pixels were classified by both ERBE and AVHRR as being
partly cloudy or mostly cloudy.

Figures 6(a d) show the frequency histograms of shortwave flux for four eco-

systems and figures 6 (e-h) show the corresponding longwave fluxes. The solid lines

denote the clear sky histograms and the pixels identified as smoke are shown in

dotted lines. The number of collocated pixels identified as clear sky and smoke are

annotated for the four ecosystems in figures 6(a-d). For example, there are 198

collocated ERBE pixels identified as being clear in the MGS ecosystem and 1553 as

dense smoke aerosols. The TRF ecosystem has the fewest pixels identified as smoke,
since there were not many fires, as discussed in section 4.1. The other ecosystems

have adequate samples for clear sky and smoke representation. The peak clear-sky

shortwave flux values are between 160-200W m -2 for the four ecosystems, while

the areas with heavy aerosol loading have peak SW flux values between 200_240 W

m -2 for TBS, SGW, and the MGS ecosystems, and between 240-280W m -2 for the

TRF ecosystem. For ail four ecosystems, the SW flux values are higher for smoke

than that over clear land, which shows the importance of smoke aerosols in modifying

the shortwave energy budget of the Earth-atmosphere system.
While there appears to be a significant impact between the smoke aerosols and

the underlying background in the shortwave part of the spectrum (0.25 4 l_m), it is

rather difficult to discern the effect of aerosols in the longwave (4 to > 50t,m) part

of the spectrum. The TRF ecosystem shows that the longwave flux from the smoke

aerosols are lower than that of clear land. However, the results from the TRF
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Figure 6. Frequency distribution of dense smoke and clear-sky pixels from collocated meas-
urements (a d) shortwave flux; and (e h) long-wave flux, for four ecosystems. The solid
line is for clear sky and the dotted line is for dense smoke. The number of collocated
clear sky pixels for the four ecosystems are 98, 707, 850 and 198 respectively. The
number of smoke pixels are 8, 643, 584, 1553.
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category should be interpreted with caution because there are only eight collocated

samples. The clear sky longwave flux values, which could be converted to temper-
atures, show a large variation even within each ecosystem category. For example,

the MGS ecosystem has peak LW flux values between 30(_320W m -2 with a few

collocated pixels having clear-sky LW flux values of as low as 240W m 2 and as

high as 340W m -2. This spread in LW flux values of about 100W m 2 shows the

varying temperatures across the grassland areas of the Amazon Basin. Finally, it is
noted that the longwave flux values are similar for both the clear-sky and the smoke

aerosols. This is probably due to the fact that the ERBE footprints are only partially-

covered by smoke aerosols. This produces higher LW flux values due to the fact

that the signal emanates from the aerosol layer and the background. On the other

hand, even though the smoke aerosols partially cover the ERBE footprint, the highly-
reflective nature of these aerosols tends to increase the SW signal above the

background values.

4.3. Relation between NDVI and ERBE broadband albedo

In this study, collocated clear sky pixels, as determined by the CLAVR algorithm,
are used to obtain the Normalized Difference Vegetation Index (NDVI), provided

as part of the AGLP data set. The TOA clear sky fluxes from ERBE are used to
obtain instantaneous clear sky albedos. Both the clear sky albedos and NDVI

statistics were accumulated during those days when smoke and clouds were not

present. The NDVI has been correlated with green-leaf biomass and green-leaf area,
and is widely used to discriminate vegetation (for example, Curran and Williamson

1987, Holben et al. 1980). Figures 7(a d) show the frequency histograms of NDVI

for clear sky pixels for the four major ecosystems under consideration: (a) TRF;

(b) TBS; (c) SGW, and (d) MGS. Figures 7(e h) show the corresponding clear sky
albedos determined from the ERBE scanner data. In figures 7(a d), a well-defined

NDVI relationship is found between the four ecosystems, with the peak NDVI values
for TRF between 0.5 0.6; for TBS between 0'3 0.4; for SGW between 0.2 0'3 and

for MGS between 0 0.1. This relationship between NDVI and ecosystem could be

due either to less vegetation or drying vegetation. Note that although peak values

are different for these four ecosystems, the spread in NDVI values are quite large

(0.2 to 0.6 for TRF; -0.1 to 0.6 for TBS; -0-1 to 0.6 for SGW and -0.2 to 0-6 for

MGS) and indicate the variability within each ecosystem. The small percentage of

pixels with negative NDVI values are probably due to uncertainties in the navigation
or due to water contamination.

Clear sky albedos are between 14 to 25 per cent for all four ecosystems. The

TRF shows a slightly lower peak clear sky albedo when compared to the other three

ecosystems. In order to understand the correlation between NDVI and clear sky

albedo, figures 8 (a-d) shows a scatter plot between the two parameters for the four

ecosystems. In all four cases, the correlation coefficients are negative, which shows
that as clear sky albedos increase, the corresponding NDVI values decrease. The

TRF has the smallest range of NDVI's and clear sky albedos with the highest
correlation coefficient. Some of the variability could be attributed to the atmospheric

variability and instrument characteristics. Also note that in figure 8 (d), the slope for

the relationship between NDVI and albedo is different from that in figures 8 (a c).

Using this kind of analysis, seasonal and yearly trends in the radiation budget can
now be examined as a function of burned areas, land use change, and so on, on

tropical ecosystems.
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Conclusions

In this study, the potential of the NASA AGLP data and coincident ERBE data

are explored for addressing the role of fires on four major ecosystems in South

America. One month of data from September 1985 is used to examine the spatial

and temporal distribution of fires. Collocated measurements from the ERBE scanner

are also used to examine the regional TOA radiative impact of smoke pixels directly

over the fires. When smoke and clouds are not present, ERBE clear sky albedos are
correlated with the NDVI values.

The four major ecosystems in the area of study show a well-defined temporal
variation of fires. The grassland ecosystem has the highest number of fires and peak

values are found during mid- to late September in 1985. On the other hand, the

number of fires over the tropical rainforest are significantly less. It is emphasized

again, that although it is difficult to obtain the absolute number of fires from reduced

resolution imagery (Belward et al. 1994), it is nevertheless useful to obtain the spatial
distribution of fires.

The TOA shortwave fluxes for smoke pixels directly over the fires are higher
than that of clear land, which shows the importance of smoke in modifying the

regional radiative balance, while the longwave fluxes for both the clear and aerosol

regions are similar.
The NDVI values derived from the AGLP data show that the peak values for

the tropical rainforest are higher than that of broadleaf, savanna, and grassland,

although there is a well-defined spread in NDVI values for each ecosystem. The

clear sky albedos show a negative correlation with the NDVI values. For all four

ecosystems, as NDVI values decreased, the corresponding broadband ERBE clear

sky albedos increased.
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This study, although from one month of analysis, shows that the AGLP data set

has good potentiaI for studying several climate-related issues such as spatial extent

of fires and vegetation mapping. The appropriate use of collocated data from other

instruments such as the ERBE scanner will provide information on the role of

vegetation or land use change in modifying the albedo. These results could also be

used to verify land surface feedback processes in general circulation models (GCMs).

A long-term analysis of the AGLP data could reveal vital information on the role

of anthropogenic activities on land. Although the Pathfinder team has successfully

completed one of its objectives by providing the research community with a long-
term data set, there needs to be adequate resources to analyse these data and realize

the final objectives of the Pathfinder and the Global Climate Change programme.

Acknowledgments

This research was funded by NASA Grants NAGW-3966 and NAGW-3740, both

managed by Dr Robert J. Curran. The Pathfinder data used by the authors in this

study include data produced through funding from the Earth Observing System

Pathfinder Program of NASA's Mission to Planet Earth in cooperation with National

Oceanic and Atmospheric Administration. The data were provided by the Earth
Observing System Data and Information System, Distributed Active Archive Center

at Goddard Space Flight Center, which archives, manages and distributes the data

set. The ERBE S-8 data were obtained from the NASA Langley Research Center

EOSDIS Distributed Active Archive Center. Special thanks to Rand E. Feind and

Ronald M. Welch for their useful comments. Appreciation is extended to Connie

Crandall for organizing this manuscript.

References

ACKERMAN, S. A., and CHEf, G, H., 1992, Radiative effects of airborne dust on regional energy
budgets at the top of the atmosphere. Journal of Applied Meteorology, 31,223-233.

ACKERMAN, S. A., FREY, R. A., and SMITH, W. L., 1992, Radiation budget studies using
collocated observations from AVHRR, HIRS/2 and ERBE instruments. Journal of
Geophysical Research, 97, 11513-11525.

ACKERMAN, S. A., and INotm, T., 1994, Radiation energy budget studies using collocated
AVHRR and ERBE observations. Journal of Applied Meteorology, 33, 370-377.

AGBU, P. A., and JAMES, M. E., 1994, The NOAA/NASA Pathfinder AVHRR Land Data Set
User's Manual. Goddard Distributed Active Archive Center, NASA, Goddard Space
Flight Center, Greenbelt.

ANDREAE, M. O., 1991, Biomass burning: Its history, use, and distribution and its impact on
environmental quality and climate. In Global Biomass Burning, edited by J. S. Levine
(Cambridge, MA: MIT Press), pp. 1-21.

ANDREAE, M. O., BROWELL, E. V., GARSTANG, M., GREGORY, G. L., HARRIS, R. C., HILL,

G. F., JAQCOB, D. J., PEREIRA, M. C., SACHSE, G. W., SETZER, A. W., SILVADIAS,

P. L., TABLOT, R. W., TORRES, A. L., and WOESY, S. C., 1988, Biomass burning

emissions associated with haze layers over Amazonia. Journal of Geophysical Research,
93, 1509 1527.

ASRAR, G., and DOKKEY, D. J., 1993, LOS Reference Handbook. NASA NP0202.
BARKSTROM, B. R., HARRISON, E., SMITH, G., GREEN, R., KIBLER, J., CESS, R., and the ERBE

Science Team, 1989, Earth Radiation Budget Experiment (ERBE) archival and April
1985 results. Bulletin of the American Meteorological Society, 70, 1254 1262.

BELWARD, A. S., KENNEDY, P. J., and GREGOIRE, J-M., 1994, The limitations and potential of
AVHRR GAC for continental scale studies. International Journal of Remote Sensing,
15, 2215-2234.

BELWARD, A. S., HOLLIFTELD, A., and JASIES, M., 1995, The potential of the NASA GAC



2674 S. A. Christopher and J. Chou

PATHFINDER product for the creation of global thematic data sets: the case of

biomass burning patterns. International Journal of Remote Sensing, 16, 2089-2097.

CHARLSON, R. J., LANGNER, J., and RODHE, H., 1990, Sulphate aerosol and climate. Nature,

384, 22.

CHARLSON, R. J., SCHWARTZ, S. E., HALES, J. M., CESS, R. D., COAKLEY, JR., J. A., HANSEN,

J. E., and HOFMANN, D. J., 1992, Climate forcing by anthropogenic aerosols. Science,

255, 423 430.
CHARNEY, J. G., 1975, Dynamics of deserts and drought and shale. Quarterly Journal of the

Royal Meteorological Society, 101, 193-202.

CHRISTOPHER, S. A., KLIC:qE, D. V., CHOU, J., and WELCh, R. M., 1996, First estimates of

the radiative forcing of aerosols generated from biomass burning using satellite data.

Journal of Geophysical Research Atmospheres, 101, 21265-21273.

CRUTZEN, P. J., and ANDREAE, M. O., 1990, Biomass burning in the tropics: impact on

atmospheric chemistry and biogeochemical cycles. Science, 250, 1669-1678.

CtrP, RAN, P. J., and WILLIAMSON, H. D., 1987, GLAI estimation using measurements of red,

near-infrared, and middle-infrared radiance. Photogrammetric Engineering and Remote

Sensing, 53, 181-186.
DICKINSON, R. E., 1983, Land surface processes and climate-surface albedos and energy

balance. Advanced Geophysics, 25, 305-353.

DIEKMANN, F. J., and S_,lrrH, G. L., 1989, Investigation of scene identification algorithms for

radiation budget measurements. Journal of Geophysical Research, 94, 3395 3412.

EIDENSHINK, J. C., and FAUNDEEY, J. L., 1994, The 1 km AVHRR global land data set: first

stages in implementation, hlternational Journal _(Remote Sensing, 15, 3443 3462.
EISHMAN, J., MINNIS, P., and REICF_LE, JR., H. G., 1986, Use of satellite data to study

tropospheric ozone in the tropics. Journal of Geophysical Research, 91, 14451-14465.
FRANCA, J. R., BRUSTET, J-M., and FONTAN, J., 1995, Multispectral remote sensing of biomass

burning in West Africa. Journal of Atmospheric Chemistry, 22, 81-110.

GASH, J. H. C., and SHUTTLEWORXH, W. J., 1991, Tropical deforestation: albedo and the

surface energy balance. Climate Change, 19, 123-134.

GENTRY, A. H., and LOPES-PARODY, J., 1980, Deforestation and increased flooding in the

upper-Amazon. Science, 210, 1354 [356.

GORDON, H. R., BROWN, J. W., and EVANS, R. H., 1988, Exact Rayleigh scattering calculations
for use with NIMBUS-Coastal Zonal Color Scanner. Applied Optics, 7, 2111-2122.

GREENBERG, J. P., ZIMMERIVlAN, P. R., HErDT, L., and POLLOCK, W., 1984, Hydrocarbon and
carbon monoxide emissions from biomass burning in Brazil. Journal of Geophysical

Research, 89, 1350 1354.

HAO, W. M., and Ltv, M-H., 1994, Spatial and temporal distribution of biomass burning.

Global Biogeochemical Cycles, 8, 495 503.
HAO, W. M., LIu, M-H., and CRUTZEN, P. J., 1990, Estimates of annual and regional releases

of CO2 and other trace gases to the atmosphere from fires in the tropics, based on

the FAO statistics for the period 1975-1980. In Fire in the Tropical Biota: Ecological

Studies, vol. 84, edited by J. G. Goldammer (New York: Springer-Verlag), pp. 440 462.

HARTMANN, D. L., RAMANATHAN, V., BERROIR, A., and HUNT, G. E., 1986, Earth radiation

budget data and climate research. Reeiews of Geophysics, 24, 439-468.
HENDERSON-SELLERS, A., and GORNITZ, V., 1984, Possible climatic impacts of land cover

transformations, with particular emphasis on tropical deforestation, Climatic Change,

6, 231-257.
HOLBEN, B. N., TUCKER, C. J., and FAN, C. J., 1980, Spectral assessment of soy-bean leaf

area and leaf biomass. Photogrammetric Engineering & Remote Sensing, 45, 651.

JAMES, M. E., and KALLURI, S. N. V., 1994, The Pathfinder AVHRR land data set: an improved
coarse resolution data set for terrestrial monitoring. International Journal of Remote

Sensing, 15, 3347 3364.

JUSTICE, C. O., TOW'NSHEND, J. R. G., HOLBEN, B. N., and TUCKER, C. J., 1985, Analysis of

the phenology of global vegetation using meteorological satellite data. International

Journal of Remote Sensing, 6, 1271-1318.
KAUFMAN, Y. J., and NAKAJIMA, T., 1993, Effect of Amazon smoke on cloud microphysics

and albedo-analysis from satellite imagery. Journal of Applied Meteorology, 32,

729-744.



i

Collocated AGLP and ERBE data for fire, smoke, and radiation budget studies 2675

KAUFMAN, Y. J., TUCKER, C. J., and FUNG, 1., 1990, Remote sensing of biomass burning in

the tropics. Journal of Geophysical Research, 95, 9927 9939.
KrOWELL, K. B., 1991, NOAA Polar Orbiter Data Users Guide. NOAA National Climatic

Data Center, Satellite Data Services Division.

KOPIA, L. P., 1986, Earth Radiation Budget Experiment scanner instrument. Journal of
Geophysical Research, 89, 400-406.

El, Z., and LEIGHTON, H. G., 1991, Scene identification and its effect on cloud radiative forcing

in the Arctic. Journal of Geophysical Research, 96, 9175-9188.

MArDEN, M. E., and GRECO, S., 1994, NASNs Pathfinder data set programme: land surface

parameters, hzternational Journal of Remote Sensing, 15, 3333-3346.

MALINGREAU, J. D., 1986, Global vegetation dynamics: satellite observations over Asia.

h_ternational Journal _?f Remote Sensing, 7, 1121 1146.
MALINGREAU, J., and TUCKER, C. J., 1988, Large scale deforestation in the southeastern

Amazon Basin of Brazil. Ambio, 17, 49-55.

MALINGREAU, J. P., TUCKER, C. J., and LAPORT, N., 1989, AVHRR for monitoring global

tropical deforestation, hlternational Journal of Remote Sensing, 10, 855 867.

NOBRE, C. A., SELLERS, P. S., and SHUKLA, J., 1991, Amazonia deforestation and regional

climate change. Journal of Climate, 4, 957-988.

OLSON, J. S., 1992, World Ecosystems (WE1.4): Digital raster data on a 10-minute geographic

1080 × 2160 grid. Global Ecosystems Database, Version I'0: Disc A. Boulder, CO, 3

independent single-attribute spatial layers on CD-ROM, 5 MB. National Geophysical

Data Center, Washington, DC.

PENNER, J. E., DICKINSON, R. E., and O'NEILL, C. A., 1992, Effects of aerosol from biomass

burning on the global radiation budget. Science, 256, 1432-1433.

POTTER, G. L., ELSAESSER, H. W., MACCRACKEN, M. C., and LUTHER, F. M., 1975, Possible

climatic impact of human deforestation. Nature, 258, 697 698.

PRINS, E. M., and MENZEE, W. P., 1994, Trends in South American biomass burning detected

with the GOES visible infrared spin scan radiometer atmospheric sounder from

1983 1991. Journal of Geophysical Research, 99, 16719 16735.

RAMANATHAN, V., and COLLINS, W., 1991, Thermodynamic regulation of ocean warming by
cirrus cloud deduced from observations of the 1987 E1 Nifio. Nature, 351, 27-32.

RAO, C. R. N., ed., 1993, Degradation of the visible and near-infrared channels of the Advanced

Very High Resolution Radiometer on the NOAA-9 spacecraft: assessment and recom-

mendations for corrections. NOAA Technical Report NESDIS 70.

RAO, C. R. N., SULLIVAN', J. T., WALTON, C. C., BROWN, J. W., and EVANS, R. H., 1993,

Nonlinearity corrections for the thermal infrared channels of the Advanced Very High

Resolution Radiometer: assessment and recommendations. NOAA Technical Report
NESDIS 69.

ROSBOROUGH, G. W., BALDWIN, D. G., and EM'ERV, W. J., 1994, Precise AVHRR image

navigation. IEEE Transactions on Geoscience & Remote Sensing, 32, 644 657.

SALATI, E., and VOSE, P., 1983, Depletion of tropical rain forests, Amhio, 12, 67-71.

ScrrWALLER, M., PRICE, R., and DALTON, J., 1993, Science data plan for the LOS data and

information system covering EOSDIS version 0 and beyond. Version 2.0, NASA

Goddard Space Flight Center, Greenbelt, MD.

SHUKLA, J., NOBRE, C., and SELLERS, P., 1990, Amazon deforestation and climate change.

Science, 247, 1322-1325.

SKOLE, D., and TUCKER, C., 1993, Tropical deforestation and habitat fragmentation in the

Amazon: satellite data from 1978 to 1988, Science, 260, 1905 1910.

STErNWAND, D. R., 1994, Mapping raster imagery to the Interrupted Goode Homolosine

Projection. International Journal of Remote Sensing, 15, 3463 3471.
STOWE, L. L., MCCLAIN, E. P., CAREY, R., PELLEGRINO, P., GUTMAN, G., DAVIS, P., LONG, C.,

and HART, S., 1991, Global distribution of cloud cover derived from NOAA/AVHRR

operational satellite data. Advances in Space Research, l l, 51 54.

SUTTEES, J. T., GREEN, R. N., MINNIS, P., SMITH, G. L., STAYLOR, W. F., WIELICKI, B. A.,

WALKER, 1. J., YOL_G, D. F., TAYLOR, V. R., and STOWE, L. L., 1988, Angular

radiation models for earth-atmosphere system. Shortwave radiation, Vol. I, NASA
Ref. Publ. 1184.

SUTTLES, J. T., GREEN, R. N., SMITH, G. L., WIELICKI, B. A., WALKER, L J., TAYLOR, V. R.,



2676 Collocated AGLP and ERBE data for fire, smoke, and radiation budget studies

and STOWS, L. L., 1989, Angular radiation models for Earth-atmosphere system. Vol. 2,

longwave radiation. NASA Reference Publication 1184.
TOVINKERE, V. R., PENALOZA, M., LOGAR, A., LEE, J., WEGER, R. C., BERENDES, T. A., and

WELCH, R. M., 1993, An intercomparison of artificial intelligence approaches for polar

scene identification. Journal of Geophysical Research, 98, 5001 5016.

TOWNSmT,rD, J. R. G., 1994, Global data sets for land applications from the Advanced Very

High Resolution Radiometer. l, ternationat Journal of Remote Sensing, 15, 3319 3332.

UHL, C., Bt_JscrraACrnTR, R., and SERRAO, E. A. S., 1988, Abandoned pastures in eastern
Amazonia. 1: Patterns of plant succession. Journal of Ecology, 76, 663-681.

WARD, D. E., SusorT, R., KAUFFMAN, J., BABITT, R., HOLBEN, B. N., KAUFMAN, Y. J.,

SETZER, A., RASMUSSEN, R., CUMMING, D., and DtAS, B., 1992, Emissions and burning

characteristics of biomass fires for cerrado and tropical rain forest regions of Brazil-

BASE B experiment. Journal of Geophysical Research, 97, 14601-14619.

WELCH, R. M., SENOVPTA, S. K., and CHEN, D. W., 1988a, Cloud field classification based

upon high spatial resolution textural features. Part 1: Gray level concurrence matrix

approach. Journal of Geophysical Research, 93, 12663-12681.

WELCH, R. M., SENGUPTA, S. K., and Kuo, K. S., 1988b, Marine stratocumulus cloud fields
off the coast of southern California observed using Landsat imagery. Part II: Textural

analysis. Journal of Applied Meteorology, 27, 362 378.
WIELICKI, B. A., and GREEN, R. N., 1989, Cloud identification for ERBE radiative flux

retrieval. Journal of Applied Meteorology, 28, 1133 1146.


