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1 INTRODUCTION

1.1 TRELLIS REPRESENTATION OF CODES

A code trellis is a graphical representation of a code, block or convolutional, in

which every path represents a codeword (or a code sequence for a convolutional

code). This representation makes it possible to implement maximum likelihood

decoding (MLD) of a code with reduced decoding complexity. The most well

known trellis-based MLD algorithm is the Viterbi algorithm [23, 79, 105]. The

trellis representation was first introduced and used for convolutional codes [23].

This representation, together with the Viterbi decoding algorithm, has resulted

in a wide range of applications of convolutional codes for error control in digital

communications over the last two decades.

The recent search for efficient MLD schemes for linear block codes has moti-

vated some coding theorists to study the trellis structure of these codes so that

trellis-based decoding algorithms can be devised to reduce decoding complexity.

Trellis representation of linear block codes was first presented in [1] and then
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2 TRELLISESAND TRELLIS-BASED DECODING ALGORITHMS

in [67, 109]. The first serious study of trellis structure and trellis construction

for linear block codes was due to Wolf. In his 1978 paper [109], Wolf presented

the first method for constructing trellises for linear block codes and proved that

an N-section trellis diagram for a q-ary (N, K) linear block code has at most

qmla(K,N-K) states. He also presented a method for labeling the states based on

the parity-check matrix of a code. Right after Wolf's work, Massey presented

a simple but elegant paper [67] in which he gave a precise definition of a code

trellis, derived some fundamental properties, and provided implications of the

trellis structure for encoding and decoding of codes. However, these early works

in trellis representation of linear block codes did not arouse much enthusiasm,

and for the next 10 years, there was basically no research in this area.

There are two major reasons for this inactive period of research in this area.

First, most coding theorists at that time believed that block codes did not have

simple trellis structure like convolutional codes and maximum likelihood decod-

ing of linear block codes using the Viterbi algorithm was practically impossible,

except for very short block codes. Second, since almost all of the linear block

codes are constructed algebraically or based on finite geometries, it was the

belief of many coding theorists that algebraic decoding was the only way to

decode these codes. These two reasons seriously hindered the development of

efficient soft-decision decoding methods for linear block codes and their appli-

cations to error control in digital communications. This led to a general belief

that block codes are inferior to convolutional codes and hence, that they were

not useful.

In fact, for more than two decades, most of the practicing communication

engineers believed that the rate-l/2 convolutional code of constraint length 7

with Viterbi decoding was the only effective error control coding scheme for

digital communications, except for perhaps ARQ schemes. To achieve higher

reliability for certain applications such as NASA's satellite and deep space

communications, this convolutional code concatenated with a Reed-Solomon

outer code was thought the best solution.

It was really Forney's paper in 1988 [24] that aroused enthusiasm for research

in the trellis structure of linear block codes. In this paper, Forney showed that

some block codes, such as Reed-Muller (RM) codes and some lattice codes,

do have relatively simple trellis structures, and he presented a method for con-
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INTRODUCTION3

structingsectionalizedtrellisesforlinearblock codes and assertedthatthe con-

structionresultsin minimal trelliseswith respectto the statecomplexity (the

number ofstates).Motivated by Forney's work and the desireto achievemax-

imum likelihooddecoding of linearblock codes to improve errorperformance

over traditionalhard-decisionalgebraicdecoding, there have been significant

effortsinstudying the trellisstructureand devisingtrellis-baseddecoding algo-

rithmsforlinearblock codes over the lasteightyears.Developments have been

dramatic and rapid,and the new resultsare excitingand encouraging.Trellis-

based decoding algorithmsthat are more efficientthan the conventionalViterbi

decoding algorithm have recentlybeen devised [32,37] and implementation of

trellis-basedhigh-speeddecoders for NASA's high-speedsatellitecommunica-

tionsisnow underway [52,63].All ofthesenew developments make block codes

more competitivewith convolutionalcodes.

1.2 ORGANIZATION OF THE BOOK

Chapter 2 gives a brief review of linear block codes. The goal is to provide

the essential background material for the development of trellis structure and

trellis-based decoding algorithms for linear block codes in the later chapters.

Chapters 3 through 6 present the fundamental concepts, finite-state machine

model, state space formulation, basic structural properties, state labeling, con-

struction procedures, complexity, minimality, and sectionalization of trellises.

Chapter 7 discusses trellis decomposition and subtrellises for low-weight code-

words. Chapter 8 first presents well known methods for constructing long

powerful codes from short component codes or component codes of smaller

dimensions, and then provides methods for constructing their trellises which

include Shannon and Cartesian product techniques. Chapter 9 deals with con-

volutional codes, puncturing, zero-tall termination and tail-biting. It shows

that trellis construction procedures for both block and convolutional codes are

essentially the same, except that the trellises for convolutional codes or termi-

nated convolutional codes are time-invariant and the trellises for block codes

are in general time-varying. For both types of codes, trellis states are defined

based on a certain set of information bits, called the state-defining information

set.
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4 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS

Chapters 10 through 13 present various trellis-based decoding algorithms,

old and new. Chapter 10 first discusses the application of the well known

Viterbi decoding algorithm to linear block codes, optimum sectionalization of

a code trellis to minimize computation complexity, and design issues for IC

(integrated circuit) implementation of a Viterbi decoder. Then it presents a

new decoding algorithm for convolutional codes, named differential trellis de-

coding (DTD) algorithm. DTD algorithm is devised based on the principle of

compare-select-add (CSA) which is simply the opposite of the principle of

add-compare-select (ACS) used in the Viterbi algorithm. This new algo-

rithm is more efficient than the Viterbi decoding algorithm. For rate-l/2 an-

tipodal convolutional codes and their higher rate punctured codes, it requires

about 1/3 less real number operations than the Viterbi decoding algorithm.

This DTD algorithm can also be applied to trellis decoding of block codes.

Chapter 11 presents a trellis-based recursive MLD for linear block codes, the

RMLD algorithm. This decoding algorithm is devised based on the divide

and conquer principle. The implementation of this algorithm does not re-

quire the construction of the entire code trellis; only some special one-section

trellises of much smaller state and branch complexities for constructing path

metric tables recursively are needed. This reduces the decoding complexity

significantly and it is more efficient than the Viterbi decoding algorithm. Fur-

thermore, it allows parallel/pipeline processing of received sequences to speed

up decoding. Chapter 12 presents a suboptimum reliability-based iterative de-

coding algorithm with a low-weight trellis search for the most likely codeword.

This decoding algorithm provides a good trade-off between error performance

and decoding complexity. All the decoding algorithms presented in Chapters 10

through 12 are devised to minimize word error probability. Chapter 13 presents

decoding algorithms that minimize bit error probability and provide the corre-

sponding soft (reliability) information at the output of the decoder. Decoding

algorithms presented are the MAP (maximum a posteriori probability)

decoding algorithm and the SOVA (soft-output Viterbi algorithm) algo-

rithm. Finally, the minimization of bit error probability in trellis-based MLD

is discussed.
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LINEAR BLOCK CODES

Chapter 2 gives a brief review of linear block codes. The goal is to provide

the essential background material for the development of trellis structure and

trellis-based decoding algorithms for linear block codes in the later chapters.

We mainly present the basic concepts of encoding and decoding of linear block

codes and state some facts without derivations or proofs. Since in most present

digital data communication systems, information is coded in binary digits, '0'

or '1', we discuss only linear block codes with symbols from the binary field

GF(2). First, linear block codes are defined and described in terms of generator

and parity-check matrices. Second, coset partition of a linear block code is dis-

cussed, which is needed in analyzing the code trellis structure and construction.

Third, the concepts of minimum distance, weight distribution and distance pro-

file are presented, which are needed in the later chapters for presenting decoding

algorithms and their error performances. Finally, the concepts of hard-decision,

soft-decision, and maximum likelihood decoding are presented.
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6 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS

References 3, 9, 14, 59, 63, 78 and 79 contain excellent treatments of linear

block codes.

2.1 GENERATION OF LINEAR BLOCK CODES

In block coding, an information sequence of binary digits (called bits) is divided

into message blocks of fixed length; each message block consists of K informa-

tion bits. There are a total of 2K distinct messages. Each message is encoded

into a codeword (or code sequence) of N bits according to certain rules, where

N > K. Therefore, corresponding to the 2 K possible messages, there are 2K

codewords. This set of 2K codewords forms a block code of length N. For

a block code to be useful, the 2 K codewords must be distinct. Hence, there

should be a one-to-one correspondence between a message and a codeword.

Definition 2.1 A binary block code of length N and 2K codewords is called an

(N, K) linear block code if and only if its 2m codewords form a K-dimensional

subspace of the vector space of all the N-tuples over the binary field GF(2).

The parameter K is called the dimension of the code space.

An (N,K) linear block code C is generated by a K x N generator matrix

over GF(2),

gl glt g12 "'" gtl "'" gin

g2 g21 g22 "'" g2i "'" g2N
C = = (2.t)

• . : ° .

gK gKt gK2 "'" gKi "'" gKN

where the rows, gl, g2, ..., gK, are linearly independent over GF(2). The 2K

linear combinations of the K rows of G form the codewords of C. We say that

the rows of G span the code C, or C is the row space of G. Let

O. = (a1,tt2,...,aK)

be a message to be encoded. A natural encoding mapping is that the codeword

= (-I,-2, ,-.)

for the message a = (at,a2,... ,aK) is given by
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LINEAR BLOCK CODES '7

gl

= ("1,_= ...,aK) g2

gK

= al "gl -t-a= "g2 -t-... -I-aK ".qK. (2.2)

From (2.1) and (2.2), we find that for 1 < i < N, the i-th component of u is

given by

ui = at • gl_ -F a2 • g2i +"" + aK • gK_. (2.3)

During an encoding interval, K information bits are encoded into N code

bits. These N code bits are shifted onto the channel, one at a time, in N units

of time. An encoding interval, denoted F, is represented by a set of N + 1 time

instants,

F = {0, 1,2,... ,g}. (2.4)

For 1 < i < N, the i-th unit of time is the interval from time-(/- 1) to time-/.

During this interval, the i-th code bit u, is formed and transmitted. By time-i,

the transmission is completed. This interval is called a bit interval.

Example 2.1 Consider a binary (8, 4) linear block code which is generated by

the following generator matrix:

gl I I I I I I I I

G= g2 = 0 0 0 0 1 1 1 1 (2.5)

g3 0 0 I 1 0 0 1 1

g4 0 1 0 1 0 1 0 1

If a = (1101) is the message to be encoded, its corresponding codeword, ac-

cording to (2.2), is given by

U = l.g1+l.gT+O.g3+l.g 4

= (11111111)-I- (00001111)+ (01010101)

---- (10100101).

The 16 codewords of this code are listed in Table 2.1.

AA
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8 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS

Table 2.1. The codewordsof the code generatedby (2.5).

Messages Codewords Messages Codewords

(oooo) (oooooooo) (oool) (01010101)
(lOOO) (11111111) (lOOl) (10101010)
(OLOO) (00001111) (OlOl) (01011010)
(11oo) (11110000) (11Ol) (10100101)
(0010) (00110011) (0011) (01100110)
(1010) (11001100) (1011) (10011001)
(0110) (00111100) (0111) (01101001)
(1110) (11000011) (1111) (10010110)

A binary (N, K) linear block code C is also uniquely specified by an (N -

K) x N matrix over GF(2), called a parity-check matrix,

hll

h21
H=

hN-K,t

ht2 "" AtN

h22 "'" h2N

: ".. :

hN-K,2 "'" hN-K,N

(2.6)

where the rows are linearly independent. A binary N-tuple u = (ut, u2,..., UN)

is a codeword in C if and only if the following condition holds:

u-H T = 0, (2.7)

where 0 denotes the all-zero (N - K)-tuple, (0,0,...,0). Code C is called

the dual (or null) space of H. H itself generates an (N, N - K) linear code,

denote C ±. For any codeword u = (ul,u2,... ,UN) E C and any codeword

u = (vl,v2,... ,vjv) E C ±, the inner product

&
1/,.1) = U l .U 1 +U 2.u 2 +... + U N.u N

= O.

C -L is called the dual code of C and vise versa.
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LINEAR BLOCK CODES 9

In general, the generator matrix G of a linear block code C is used for

encoding, while the parity-check matrix H is used for decoding, particularly

for error detection.

Example 2.2 Consider the (8,4) linear block code given in Example 2.1. A

parity-check matrix for this code is the generator matrix itself given by (2.5),

H =G-._

i.e°_

I 1 1 1 I 1 1 i

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

In thiscase,C = C ± and C issaid to be self-dual.

AA

For an (N, K) linear block code C, the ratio R = K/N is called the code

rate which represents the average number of information bits carried by a code

symbol (or the average number of information bits transmitted per channel

usage).

2.2 COSET PARTITION OF A LINEAR BLOCK CODE

Consider a binary (N, K) linear block code C with a generator matrix G. Let

K1 be a nonnegative integer such that 0 < K1 _< K. A subset of 2K' codewords

in C is said to be a linear subcode of C if this subset itself is a/(1-dimensional

subspace of the vector space of all the N-tuples over GF(2). Any K1 rows of

the generator matrix G span an (N, K1) linear subcode of C, and they form a

generator matrix for the subcode. If KI = 0, the subcode consists of only the

all-zero codeword 0 of C. For Kl = K, the subcode is just the code itself.

Let C1 be an (N, K1) linear subcode of C. Then C can be partitioned into

2g-g_ disjoint cosets of C1; each coset is of the following form:

vLe C1 _ {vl +u: u e C1} (2.8)

with 1 < l < 2K-K_, where for vl _ O, vl is in C but not in C1 and for vl = O,

the coset 0 _ C1 is just the subcode C1 itself. This partition of C with respect

to C1 is denoted with C/CI, and the codeworcls v_ for 1 < l < 2 N-K_ are called
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10 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS

the coset representatives. Any codeword in a coset can be used as the coset

representative without changing the composition (the codewords) of the coset.

Important properties of cosets are:

(1) The sum of two codewords in a coset is a codeword in the subcode Cl.

(2) Let z and y be two codewords in cosets vi@C1 and vj _3C1 , respectively,

where i _ j. Then the sum _:+y is a codeword in the coset (vi+vi)t_C1

with vi + vj as the coset representative.

The set of representatives for the cosets in the partition C/C1 is denoted [C/CI]

which is called the coset representative space for the partition C/C1. Code

C can be expressed a.s the direct-sum of C1 and [C/C1] as follows:

C = [C/Cl] _9Cl a_ {v + u: v E [C/Cl] and 'u E C'1}. (2.9)

Let G1 be the subset of K1 rows of the generator matrix G which generates

the subcode C1. Then the 2K-K1 codewords generated by the K - K1 rows in

the set G \ G1 can he used as the representatives for the cosets in the partition

C/C1. These 2 K-El codewords form an (N,K - K1) linear subcode of C.

Let Cs be an (N, Kz) linear subcode of C1 with 0 < Kz < K1. We can

further partition each coset vz $ C1 in the partition C/C1 based on Cs into

2KI-K2 cosets of Cs; each coset consists of the following codewords in C:

• • -'--{,.,,+ + ,.,: ,, (2.1o)

with 1 < l < 2K-KI and 1 < k < 2Kt-K2 where for wk # O, wk is a codeword

in C1 but not in Cs. We denote this partition with C/C1/Cs. This partition

consists of 2K-K2 cosets of C=. Now C can be expressed as the following

direct-sum:

C = [C/C, l • [C,/Cs] _) C2. (2.11)

Let C1, Cs,..., C,_ be a sequence of linear subcodes of C with dimensions

K1, Ks,..., Kin, respectively, such that

C D Cl D (72 D... _DCm (2.12)

and

K > KI >/(2 _... _> Kin_> 0. (2.13)
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LINEARBLOCKCODES 11

Then we can form a chain of partitions,

C/C1, C/C1/O2,..., C/C1/C,.J,/.../C,,.,, (2.14)

and C can be expressed as the following direct-sum:

C = [C/C,] • [c,/c_] e... • [c,,,_,/c,,,] • c,,,. (2.15)

2.3 THE MINIMUM DISTANCE AND WEIGHT DISTRIBUTION OF A

LINEAR BLOCK CODE

Let u and v be two N-tuples over GF(2). The Hamming distance between

u and v, denoted d(u, v), is defined as the number of places where they differ.

The minimum (Hamming) distance of a block code C, denoted drain(C),

is defined as the minimum Hamming distance between all distinct pairs of

codewords in C, i.e.,

dr, i.(C) _ min{d(u,v) : u,v E C,u :p v}. (2.16)

The (Hamming) weight of an N-tuple v, denoted w(v), is defined as the

number of nonzero components of v. It follows from the definition of Hamming

distance and the fact that the sum of two N-tuples over GF(2) is an another

N-tuple over GF(2) that the Hamming distance between two N-tuples, u and

v, is equal to the Hamming weight of the sum of u and v, i.e.,

d(u,v) = w(u + v). (2.17)

For a linear block code C, it follows from (2.16) and (2.17) that

drain(C) = min{w(u+v):u, vEC, u#v}

= min{w(x): x E C,x _ O}

*-- (2.18)

The parameter Wmi,(C) A min{w(x) :x E C,x _ O} iscalledthe minimum

weight ofC. Eq.(2.18)simply saysthat the minimum distanceofa linearblock

code isequal tothe minimum weight ofitsnonzero codewords. The minimum
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12 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS

weight of the (8,4) linear block code given in Table 2.1 is 4; therefore, its

minimum distance is 4.

Let C be an (N, K) linear block code. For 0 < i < N, let Ai be the number

of codewords with weight i. The numbers Ao,A1,A2,... ,AN are called the

weight distribution of C. It is clear that A0 = 1. The weight distribution of

the (8,4) linear block code given in Table 2.1 is

A0= 1, A1 =A2=Aa=0, A4 = 14, As =A6=AT=0, As=l.

The weight distribution is often expressed as a polynomial,

A(X) = Ao + A_X + ...+ ANX N,

which iscalledthe weight enumerator of C. Let W = {O,wx,w2 ....,win}

denote the setof allweightsof codewords in C such that:

(i) 0 < wl < w2 < "" <wm < N; and

(ii) For I < i < m, the number of codewords in C with weight wi is not

equal to zero.

This set is called the weight profile of C. The weight profile of the (8, 4)

linear block code given by Table 2.1 is {0,4,8}. Let u be any codeword in

C. The weight distribution of C actually gives the distribution of distances of

codewords in C from the codeword u. The weight profile W of C gives the

profile of distances of codewords in C from the codeword u.

The error performance of a linear block code is determined by its minimum

distance and weight distribution. For an (N, K) linear block code with min-

imum distance drain, we often use the notation (N,K, dmin) to represent the

code. Therefore, the code given by Table 2.1 is an (8, 4, 4) linear block code.

2.4 DECODING

Suppose an (N, K) linear block code C is used for error control over an ad-

ditive white Gaussian noise (AWGN) channel. Let u = (ul,uz,...,ut¢) be

the codeword to be transmitted. Before the transmission, a modulator maps

each code bit into an elementary signal waveform. Binary PSK or FSK are

commonly used signal waveforrns for transmitting the bits in a codeword. The
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LINEAR BLOCK CODES 13

resultant signal sequence is then transmitted over the channel and corrupted

by noise. At the receiving end, the received signal sequence is processed by a

demodulator and sampled at the end of each signal (bit) interval. This results

in sequence of real numbers,

r =

which is called the received sequence. For 1 < i < N, the i-th received

component ri is the sum of a fixed real number ci and a Gaussian random

variable nl of zero-mean and variance No/2 where ci corresponds to the trans-

mitted code bit ul at time-/. These received components may or may not be

quantized. At one extreme, the demodulator can be used to make firm deci-

sions on whether each transmitted code bit is a '0' or a '1'. Thus the output

is quantized to two levels, denoted as 0 and 1. We say that the demodulator

has made a "hard decision" on each transmitted code bit. This hard decision

results in a binary received sequence,

z = (zl, zM),

which may contain transmission errors, i.e., for some i, zl # ui. This bi-

nary hard-decision sequence is fed into a decoder which attempts to correct the

transmission errors (if any) and recover the transmitted codeword u. Since the

decoder operates on the hard decisions made by the demodulator, the decoding

process is called hard-decision decoding. At the other extreme, the unquan-

tized outputs from the demodulator can be fed directly into the decoder for pro-

cessing. We refer to the resulting decoding as soft-decision decoding. Since

the decoder makes use of the additional information contained in the unquan-

tized received samples to recover the transmitted codeword, soft-decision decod-

ing provides better error performance than hard-decision decoding. Decoding

based on the quantized outputs from the demodulator, where the number of

quantization levels exceeds two, is also referred to as soft-decision decoding.

Soft-decision decoding provides better error performance than hard-decision

decoding; however, hard-decision decoding is much simpler to implement. Var-

ious hard-decision decoding algorithms based on the algebraic structures of

linear block codes have been devised. These hard-decision decoding algorithms

are also termed algebraic decoding algorithms. Recently, effective soft-decision
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14 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS

decoding algorithms have been devised, and they achieve either optimum error

performance or suboptimum error performance with reduced decoding com-

plexity.

Let u" be the estimate of the transmitted codeword at the output of the

decoder. If the codeword u was transmitted, a decoding error occurs if and

only if u" _ u. Given that r is received, the conditional error probability of

the decoder is defined as

P(Elr ) A P(u" # u I')- (2.19)

The error probability of the decoder is then given by

P(E) = __, P(E 1r)P(r). (2.20)

P

P(r) is independent of the decoding rule used since r is produced prior to

decoding. Hence, an optimum decoding rule (i.e.,one that minimizes P(E))

must minimize P(E I r) = P(u" _ u [ r) for all r. Since minimizing P(u" #

u I r) is equivalent to maximizing P(u" = u It), P(E I r) is minimized for a

given r by choosing u" as the codeword that maximizes

P(u It) = P(r I u)P(u)
P(r) ' (2.21)

that is, u" is chosen as the most likely codeword given r is received. If all

the codewords are equally likely,maximizing (2.21) isequivalent to maximizing

P(r I u). For an AWGN channel,

N

P(r l u) = H P(r, l u,), (2.22)
i=l

since each received symbol depends on the corresponding transmitted symbol.

A decoder that chooses its estimate to maximize (2.22) is called a maximum

likelihood decoder and the decoding process is called the maximum like-

lihood decoding (MLD). Maximizing (2.22) is equivalent to maximizing

N

logV(r l u) = _logP(r, l ui) (2.23)
i=1

which is called the log-likelihood function.
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LINEAR BLOCK CODES 15

Suppose BPSK signaling is used. Assume that each signal has unit energy.

Let u -- (ul,u_,... ,UN) be the codeword to be transmitted. The modulator

maps this codeword into a bipolar sequence represented by

c = (cl,c2,...,CN)

where for 1 < i < N,

cl = 2u_ - 1. (2.24)

From (2.24), we see that

-1, if ui = 0,
c, = (2.25)

4"1, if ui = 1.

The squared Euclidean distance between the received sequence r = (rl, r2,

• .., rN) and c is given by

N

Ir - cl2 A _(r, - c,) 2. (2.26)
i=1

For an AWGN channel, maximizing the log-likelihood function is equivalent to

minimizing the squared Euclidean distance between r and c. If we expand the

right-hand side of (2.26), we have

N N N

- cl2= r, -
i=1 i=l i=1

2 is a common term andIn computing Ir - cl 2 for all codewords in C, _N=I r,

2 = g. Therefore, minimizing Ir - cl 2 of (2.26) is equivalent to maxi-EN__,c,
mizing

N

r • C : ri • ci

i--1

N

= 1).
i=1

(2.28)

The inner product given by (2.28) is called the correlation between the re-

ceived sequence r and the codeword u.
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16 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS

Furthermore, (2.28) can be expanded as follows:

N N

r.c = 2_: r,.,, - _ r,. (2.29)
i=1 i=1

Since the second term EN=, r, in (2.29)isa common term incomputing r. c

for allcodewords inC, maximizing r •c isequivalentto maximizing

N

r'u a= _ r_. ,,. (2.30)
i=I

The inner product given by (2.30) is called the binary correlation between

the received sequence r and the codeword u.

Summarizing the above, MLD can be stated in four equivalent ways:

(1) Log-likelihood function

Decode the received sequence r into a codeword u for which the log-

likelihood function

N

log P(r ]u)= y_ log P(r, l t t,)
i=1

is maximized.

(2)Squared Euclidean distance

Decode the received sequence r into a codeword u for which the squared

Euclidean distance

N

I_-=1_A_(_, - (2., - 1))_
i=1

is minimized.

(3) Correlation function

Decode the received sequence r into a codeword u for which the corre-

lation function
iv

i=1

is maximized.

D R A F T January 6, 1998, 8:40pm D R A F T



LINEAR BLOCK CODES 17

(4) Binary correlation function

Decode the received sequence r into a codeword u for which the binary

correlation function
N

b(r, u) = E r, . ui
i=1

is maximized.

2.5 REED-MULLER CODES
i

Reed-Muller (RM) codes form a class of multiple error-correction codes. These

codes were discovered by Muller in 1954 [78], but the first decoding algorithm

for these codes was devised by Reed, also in 1954 [83]. They are finite geometry

codes and rich in algebraic and geometric structures. The purpose of including

these codes in this reviewing chapter is that they have very simple and regular

trellis structures and their trellises can be easily constructed. These codes can

be decoded effectively with trellis-based decoding algorithms. Furthermore,

they provide good example codes. Throughout this book, many example codes

are RM codes.

For any nonnegative integers rn and r with 0 < r < m, there exists a binary

r-th order RM code, denoted RMr,m, with the following parameters:

Length Nr.m -- 2m

Dimension Kr,,,_ = 1 + (_') +... + (7)

Minimum distance d.,,,_ = 2 '_-'.

In the following, we first present the original construction of RM codes and

then we describe an alternate construction for these codes. For 1 < i < m , let

vi be a 2m-tuple over GF(2) of the following form:

v, = (,_,_ I_ 0_,_..., I_,_,) (2.31)
2,-1 2,-t 2,-I 2i-t

which consists of 2m-i+1 alternate all-zero and all-one 2i-Z-tuples. For m = 3,

we have the following three 8-tuples:

v3 = (00001111),

v2 = (00110011),

vl = (01010101).
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18 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS

Let a = (at,a2,...,aN) and b = (bl,b2,...,bN)be two binary N-tuples.

Define the followinglogic(boolean) product of a and b,

a.b A= (al. bl,a2, b2,... ,aN" blv),

where '.' denotes the logic product (or AND operation), i.e. ai • bi = 1 if and

only if both al and bl are '1'. For m = 3,

v3 • u1 = (00000101).

For simplicity,we use ab for a. b.

Let 1 denote the ail-one2_n-tuple,1 = (I,i,...,I). For I __il< iz < ...<

iz__m, the product

t_ixUi2 " " " _il

is said to have degree I. Since the weights of v l, v2,..., um are even and powers

of 2, it can be shown that the weight of the product vilvi3 ... vi, is also even

and a power of 2, in fact 2"_-l.

The r-th order RM code, RM,.,m, of length 2"_ is generated by the following

set of vectors:

GRM(r,m) = {1,VhV2,...,V,_,VlV2,VlV3,...,V,,_-lV,_,

...up to products of degree r). (2.32)

There are

m ÷(:)
vectors in GaM(r,m) and they are linearly independent. If the vectors in

GRM(r,m) are arranged as rows of a matrix, then the matrix is a generator

matrix of the RM code, RMr,m. For 0 < l < r, there are exactly ('_) rows

in GaM(r,m) of weight 2m-l. All the codewords of the RM code, RM_,m with

0 <_ r < m, have even weights. It is also clear that the (r - 1)-th order RM

code, RM,-1,,_, is a proper subcode of the r-th order RM code, RM ....
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by the followingII vectors:

v0 =1 1111111111111111

v4 0000000011111111

va 0000111100001111

_ 0011001100110011

Vl 0101010101010101

v3v4 0000000000001111

v2v4 0000000000110011

vlv4 0000000001010101

v2v3 0000001100000011

vlv3 0000010100000101

vlv2 0001000100010001

LINEAR BLOCK CODES 19

Let rn = 4. The 2nd order RM code of length 16 isgenerated

This is a (16, 11) code with minimum distance 4.
AA

The code given in Example 2.1 is the 1st order RM code, RM1,3, of length 8.

Let

G(2'2)_ [ 10 11 ] (2.33)

be a 2 x 2 matrix over GF(2). The two-fold Kronecker product of G(2,2) is

defined as

1]G(2"2') I0

1

0

0

0

1]o[I1 0

1 1 1

1 0 1

0 1 1

0 0 1

(2.34)

where ® denotes the Kronecker product. The 3-foldKronecker product of

G(2,2)isdefinedas
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20 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS

1 1 1 1 1

0 1 0 1 0

0 0 1 1 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 1 1

1 0 1

0 1 1

0 0 1

1 1 1

1 0 1

0 1 1

0 0 1

(2.35)

Similarly, we can define the m-fold Kronecker product of G(z,z). Let N = 2m.

We use G(N,jv) to denote the m-fold Kronecker product of G(a,2). G(t¢,#) is a

2m x 2 'n matrix over GF(2). The rows of G(tc,_t) have weights, 2 °, 21, 22,..., 2m,

and the number of rows with weight 2 'n-t is ('_) for 0 < l < m.

The RM codes of length N = 2m can be expressed in terms of the rows of

G(N#v). Let GaM(r,m) denote the matrix formed by the rows of G(_¢,/¢) with

weights equal to or greater than 2m-r. Then GRM(r,m) is a generator matrix

for the r-th order RM code, RM .... of length N = 2" [24]. Actually, GRM (r, m)

is the same set of rows as that given in (2.32). In the above construction of

RM codes, we can also set the base matrix G(2,2) of (2.33) as

For m = 3 and r = 1, the rows of weights 4 and 8 in G{2_,23) of (2.35) form

the generator matrix of the 1st order (8,4) RM code given in Example 2.1.

Let u = (ul,u2,...,ulv) and v = (vl,v2,...,vlv) be two N-tuples over

GF(2). From u and v, we form the following binary 2N-tuple:

+ v[ + vl.... + vN). (2.36)

Let C1 and C2 be an (N, Kl,dl) and an (N, K2,d2) binary linear codes, re-

spectively. Assume that d2 > dl. Form the following code:

ICIICI+ C21 _={lulu + vl: u e CI and u 6 C_}. (2.37)

Then IC, lC_ + C21 is an (2N,/(1 +/(2, d) binary linear code with

d -- min{2dl, dz}. (2.38)
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The above construction of a code from two component codes is called the

[ulu + vl-construction [66] which is a powerful technique for constructing pow-

erful long codes from short codes.

RM codes of length 2rn can be constructed from RM codes of length 2 m-I

using the lulu + vl-construction [66]. For m > 2, the r-th order RM code

RMr,_ in lulu + _l-construction is given below:

RM,, = {l ,lu + ,,1: • .... 1 v • RM,_,.m_J (2.39)

with generator matrix

[ GaM(r, rn--1) GaM(r,m--1) ] (2.40)VaM(r,m) = 0 Gau(r- 1,m- 1) '

where 0 is a zero matrix. Equation (2.40) shows that a RM code can be

constructed from short RM codes by a sequence of lulu + vl-constructions.

Consider a boolean function f(xl, x2,..., zm) of m variables, xl, x2,. • •, xm,

which take values 0 or 1. For each combination of values of xl, x2,.. •, and xm,

the function f takes a truth value either 0 or l. For the 2 "_ combinations of

values of xl,x2,... ,xm, the truth values of f form a 2m-tuple over GF(2).

For a nonnegative integer I less than 2 "_, let (ba, bz2,..., him) be the standard

binary representation of 1, such that I = ba + bl_ 2 + bla 2_ +-'" + btm2 m- 1. For a

given boolean function f(xl, _2,..., xm), we form the following 2"_-tuple (truth

vector):

v = (vl,v2,... ,v,+l,... ,v2-) (2.41)

where

A f(ba,b_2,... ,blm) (2.42)111+ 1

and (bn, hi2,..., bl,_) is the standard binary representation of the index integer

I. We say that the boolean function f(zl,z2,... ,x_) represents the vector v.

We use the notation b(f) for the vector represented by f(zl, x2,..., xm).

For 1 < i < m, consider the boolean function

f(xl,X2,... ,x,n) = x,. (2.43)

It is easy to see that this boolean function represent the vector vi defined by

(2.31). For 1 < i,j < m, the function

= (2.44)
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22 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS

representsthe logicproduct ofuiand vj, representedby g(zt,z2,...,z,_)= =i

and h(=1,z2,...,z,_)= =i, respectively.For 1 < ii < i2< ...< i, __m, the

boolean function

f(x1,=2,...,=m) = x,,=h ""=,, (2.45)

representsthe logicproduct of _iL,ui2,...,and uir. Therefore,the generator

vectorsof the r-th order RM code of length N --2m are representedby the

boolean functionsin the followingset

= =-,-1=,,,,

... up to all products of r variables}. (2.46)

Let P(r,m) denote the set of allboolean functions(orpolynomials)of degree

r or lesswith m variables.Then

RM,,_, = {b(f) : f E P(r,m)}. (2.47)

Finally,we want to point out that the dual code ofthe r-thorder RM code,

RM ....isthe (rn- r - 1)-thorder RM code,RM .... 1,m.
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3 TRELLIS REPRESENTATION OF

LINEAR BLOCK CODES

A code trellis is a graphical representation of a code, block or convolutional, in

which every path represents a codeword (or code sequence). This representation

makes it possible to implement maximum likelihood decoding (MLD) of a code

with a significant reduction in decoding complexity. Chapter 3 presents the

fundamental concepts and basic structural properties of trellises for linear block

codes. An encoder with finite memory for a linear code is modeled as a finite-

state machine. With this model, representation of the dynamic behavior of the

encoder by a trellis diagram is easy to conceive. During an encoding interval,

the state of the encoder at a specific time instant is simply defined by the

information bits stored in the memory which affect both the past and future

outputs of the encoder. To facilitate the construction of a code trellis, the

generator matrix of a code is put in trellis oriented form. From this trellis

oriented generator matrix, some basic structural properties can be derived.
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24 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS

3.1 TRELLIS REPRESENTATION OF CODES

An encoder for a linear code C with a finite memory, for which the output

code bits at any time instant during an encoding interval F -- {0,1,2,...}

are uniquely determined by the current input information bits and the state

of the encoder at the time can be modeled as a finite-state machine. The

dynamic behavior of such an encoder can be graphically represented by a

state diagram expanded in time, called a trellis diagram (or simply trellis)

as shown in Figure 3.1.

The encoder starts from some initial state, denoted c0. At any time instant i

during its encoding interval F, the encoder resides in one and only one allowable

state in a finite set. In the trellis diagram, the set of allowable states at time-

i is represented by a set of vertices (or nodes) at the i-th level, one for each

allowable state. The encoder moves from one allowable state at one time instant

to another allowable state at the next time instant in one unit of time. This

is called a state transition which, in the trellis diagram, is represented by

a directed edge (or branch) connecting the starting state to the destination

state. Each edge is labeled with the code bits that are generated during the

state transition. The set of allowable states at a given time instant i is called

the state space of the encoder at time-i, denoted Zi(C). A state _i E Y_i(C)

is said to be reachable if there exists an information sequence that takes the

encoder from the initial state _0 to state oi at time-i. Every state of the encoder

is reachable from the initial state _r0. In the trellis, every vertex at leveL/for

i E r is connected by a path from the initial state _r0. The label sequence of

this path is a code sequence (or a prefix of a code sequence). Every vertex

in the trellis has at least one incoming edge except for the initial state and at

least one outgoing edge except for a state called the final state. Encoding of

an information sequence is equivalent to tracing a path in the trellis starting

from the initial vertex or0. If the encoding interval r is semi infinite, the trellis

continues indefinitely; otherwise it terminates at a final state, denoted _I.

Convolutionai codes have semi infinite trellises, while the trellises for linear

block codes terminate at the end of each encoding interval.

For i E 1", let Ii and Oi denote the input information block and its corre-

sponding output code block, respectively, during the interval from time-/ to
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2nd level o
4

Time ----+

i-th level

state

transition

Figure 3.1. Trellis representation of a finite state encoder.

time-(/+ 1). Then the dynamic behavior of the encoder for a linear code is

governed by two functions:

(i) Output function,

Oi = fi(o'i, li),

where fi(eri, li) _-/i(cq,/:) for li _: I:.

(ii) State transition function,

ai+l = gi(ai, li),

where oi 6 ]Ei(C) and ai+l E Zi+z(C) are called the current and next states,

respectively. In the trellis diagram for C, the current and next states are

connected by an edge (cri, hi+z) labeled with Oi.

A code trellis is said to be time-invariant if there exists a finite period

{0, 1,..., v} C F and a state space E(C) such that
4
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0 0

0 0

0

0 0

Figure 3.2. A time-varying trellis diagram for a block code.

1

Figure 3.3. A time-invariant trellis diagram.
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(1) _i(C) C _(C) for 0 _<i < v and }31(C) = _(C) for i > v and

(2) [i = f and gi = g for all i E r.

A code trellis that is not time-invariant is said to be time-varying. A trellis

diagram for a linear block code is, in general, time-varying. However, a trellis

diagram for a convolutional code is usually time-invariant. Figure 3.2 and 3.3

depict a time-varying trellis diagram for a block code and a time-invariant trellis

diagram for a convolutional code, respectively.

3.2 BIT-LEVEL TRELLISES FOR BINARY LINEAR BLOCK CODES

Consider a binary (N, K) linear block code C with generator and parity-check

matrices, G and H, respectively. During each encoding interval, a message

of K information bits is shifted into the encoder memory and encoded into a

codeword of N code bits. The N code bits are formed and shifted onto the

channel in N bit times. Therefore, the encoding span 1" is finite and consists

of N + 1 time instants,

r = {0, 1,2,...,N}.

C can be represented by an N-section trellis diagram over the time span r. Let

g(C) denote the encoder for C.

Definition 3.1 An N-section trellis diagram for a binary linear block code C

of length N, denoted T, is a directed graph consisting of N+ 1 levels of vertices

(called states) and edges (called branches) such that:

(t) For 0 < i < N, the vertices at the i-th level represent the states in the

state space Zi(C) of the encoder E(C) at time-/. At time-0 (or the 0-th

level) there is only one vertex, denoted a0, called the initial vertex (or

state). At time-N (or the N-th level), there is only one vertex, denoted

cry, called the final vertex (or state).

(2)For 0 < i _< N, a branch in the i-th section of the trellis T connects

a state _ri-1 E _i-t(C) to a state ai E ]Ei(C) and is labeled with a

code bit ui that represents the encoder output in the bit interval from

time-(/- 1) to time-/. A branch represents a state transition.
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28 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS

(3) Except for the initialstate, every state has at least one, but no more

than two, incoming branches. Except for the finalstate, every state has

at least one, but no more than two, outgoing branches. The initialstate

has no incoming branches. The final state has no outgoing branches.

Two branches diverging from the same state have differentlabels.

(4) There is a directed path from the initialstate ao to the finalstate a I

with a label sequence (u_,u2,..., u/v) ifand only if (u_,us,..., u/v) is a

codeword in C.

A/x

Two states in the code trellisare said to be adjacent ifthey are connected

by a branch. During one encoding interval F, the encoder starts from the initial

state a0, transverses a sequence of states

generates a code sequence

O'0,al,... ,O'i,...,0"I) ,

Ul, U21 • • • ,Ui,. • • , B/V),

and then reaches the final state a/. The bit-level 8-section trellis diagram

for the (8,4) linear block code given in Example 2.1 (Table 2.1) is shown in

Figure 3.2.

For 0 < i < N, let I_i(C)l denote the cardinality of the state space [_i(C).

Then, the sequence,

(Ir.o (C)I, I_ (C)l,..., Ir./v-_ (C)l, Ir-/v (C)l),

is called the state space complexity profile, which is a measure of the

state complexity of the N-section code trellis T. We will show later that for

0 < i < N, IZi(C)[ is a power of 2. Define

p,(C) = log 2 Ir.,(C)l,

which is called the state space dimension at time-i. When there is no

confusion, we simply use Pl for pi(C) for simplicity.The sequence,

(PO, Pl, • • •, P/V),
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is called state space dimension profile. From Figure 3.2, we see that the

state space complexity and dimension profiles for the (8, 4) code given in Ex-

ample 2.1 are (1, 2, 4, 8, 4, 8, 4, 2, 1) and (0, 1, 2, 3, 2, 3, 2, 1, 0), respectively.

3.3 TRELLIS ORIENTED GENERATOR MATRIX

To facilitate the code trellis construction, we put the generator matrix G in a

special form. Let u = (ul, u2,..., ujv) be a nonzero binary N-tuple. The first

nonzero component of u is called the leading '1' of u and the last nonzero

component of u is called the trailing '1' of u.

A generator matrix G for C is said to be in trellis oriented form (TOF)

if the following two conditions hold:

(1) The leading '1' of each row appears in a column before the leading '1'

of any row below it.

(2) No two rows have their trailing _ones" in the same column.

Any generator matrix for C can be put in TOF by two steps of Gaussian

elimination.

Example 3.1

generator matrix,

1

0

0

0

Consider the (8, 4) RM code given in Example 2.1 with following

1 1 1 1 1 1 1

0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1

It is not in TOF. By interchanging the second and the fourth rows, we have

1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1
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30 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS

Add the fourth row of the above matrix to the first,second and third rows.

These additions result in the following matrix in TOF:

gx 1 1 1 1 0 0 0 0

G= g2 = 0 1 0 1 1 0 1 0

g3 0 0 1 1 1 i 0 0

g4 0 0 0 0 1 1 1 1

A/x

The span of a row g = (gl,g2,... ,gs) in a trellisoriented generator matrix

(TOGM) G is defined as the smallest interval {i,i+ 1,..., j} which contains

all the nonzero bits of g. This is denoted as span(g) A_ [/,j].For a row g in

a TOGM G whose span is [i,j], the active span of g, denoted aspan(g), is

defined as aspan(g) _A [i,j - 1]for i < j and aspan(g) _ 0 (empty set) for i = j.

Let gx,g2 ....,gK be the K rows of a TOGM G with

gl= (ga,gz2,...,gIN)

for l<l<K. Then

gl gll g12 ... glN

G : g2 g21 g22 ... g2N

• . • ...

gK gK1 gK2 ... gKN

Let (al, a2,..., aK) be the block of K information bits (called a message) to

be encoded. The corresponding codeword is given by

=

= ax • gl + a2 • g2 -[- "'" _- aK " gK"

We see that the/-th information bit al affects the output u of the encoder

£(C) over the span of the/-th row gt of the TOGM G. This span(g_) may be

regarded as the constraint length of the code associated with the/-th input

information bit at.

At time-/with 1 < i < N, the number of information bits that affect the next

output code bit u_+l is equal to the number of rows in G whose active spans

contain i. These information bits define the state of the encoder at time-/.
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3.4 STATE SPACE FORMULATION

In the following, we give a mathematical formulation of the state space of the

N-section trellisfor an (N, K) linear block code (7 over GF(2) with a TOGM

G.

At time-i, 0 < i < N, the rows of G are divided into three disjoint subsets:

(I) G_ consists of those rows of G whose spans are contained in the interval

[1,il.

(2) G / consists of those rows of G whose spans are contained in the interval

[i+ 1, q.

(3) G_ consists of those rows of G whose active spans contain i.

Let A v, A{ and A_ denote the subsets of information hits that correspond to

the rows of v ! sG i,G i and Gi, respectively. The information bits in AiP do not

affect the encoder outputs after time-i, and hence they become the past with

respect to time-/. The information bits in A { only affect the encoder outputs

after time-/. Since the active spans of the rows in G_ contain the time instant

i, the information bits in A_ affect not only the past encoder outputs up to

time-/ but also the future encoder outputs beyond time-/. We say that the

information bits in A_ define a state of encoder C(C) for the code (7 at time-i.

Let p_ _ IA_I = IG_I. Then there are 2 m distinct states that the encoder £.((7)

can occupy at time-i; each state is defined by a specific combination of the Pi

information bits in A_. These states form the state space El(C) of the encoder

g(C) (or simply of the code C). The parameter p_ is the dimension of the

state space Ei(C). In the trellis representation of C, the states in El(C) are

represented by 2p' vertices at the i-th level of the trellis.

Example 3.2 Consider the TOGM G for the (8, 4) RM code given in Exam-

ple 3.1. The spans of the four rows are: span(g1) = [1,4], span(g2) = [2,7],

span(g3) = [3,6], and span(g4) = [5,81. Their active spans are therefore:

 pan(gl)= [i,31, pan(g )= [2,61, 'pan(g3)= [3,5]and = [5,7].
For each i with 0 < i < 8, counting the number of rows which are active at

time-/yields the state space dimension profile (0,I,2,3, 2,3, 2, 1,0).
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The above formulation of a state space actually provides a sequential ma-

chine model for the encoder E(C).

3.5 STATE TRANSITION AND OUTPUT

For 0 < i < N, suppose the encoder E(O) isinstate_rlE Ei(C). From time-/

to time-(/+ 1),E(C) generates a code bit ui+z and moves from state_ri to a

state_i+z E Ei+z(C). Let

c,'. " ,s(,,',I) (3.1)= 1.9z ,g2 ,""

and

A_ -- t_'z1"(i),"2_(i),... , a(pid)} (3.2)

where Pi = [G_I. The current state cri of the encoder is defined by a specific

combination of the information bits in A_.

Let g" be the row in G / whose leading '1' is at position-(/+ 1). The unique-

ness of this row 9" (if it exists) is guaranteed by the first condition in the

definition of a generator matrix in TOF given in section 3.3. Let g.+z denote

the (i+ l)-thcomponent of g'. Then g_+z = 1. Let a" denote the inforxna-

tion bitthat corresponds to row g'. Itfollowsfrom (2.3)and the structureof

the TOGM G that the output code bit ui+z generated during the bitinterval

between time-iand time-(/+ 1)isgiven by

Pi

ui+z a" + _ (0_(0 (3.3)al gl,i+l'

/=1

_(0 is the (i + 1)-th component of g_0 in G_. Note that a" beginswhere Y/,i+ 1

to affect the output of the encoder £(C) at time-(/+ 1). For this reason, the

bit a" is regarded as the current input information bit. The second term

in (3.3) is the contribution from the state _i defined by the information bits

in AiO __ Luzs-(0,"z-('),.. . ,a_, )} which are stored in memory. From (3.3), we see

that the current output ui+z is uniquely determined by the current state _i of

the encoder C(C) and the current input a °. The output bit ui+l can have two

possible values depending on the current input information bit a'; each value

takes the encoder £(C) to a different state at time-(/+ 1). That is, there are

two possible transitions from the current state _i to two states in Ei+z(C) at
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time-(/+ 1). In the code trellis, there are two edges (or branches) diverging

from the vertex ai labeled with '0' and T, respectively.

Suppose there is no such row g" in G//. Then the output code bit is given

by

Pi

ui+t Y_al i) -(I} (3.4)_-_ " YI,I+I"

In this case, we may regard that the current input information bit a" is being

set to "0", i.e. a" = 0 (this is called a dummy information bit). The output

code bit ui+l can take only one value given by (3.4) and there is only one

possible transition from the current state ai to a state in Ei+I(C). In the

trellis T, there is only one branch diverging from the vertex ai.

Example 3.3 Again we consider the (8,4) code with its TOGM G given in

Example 3.1. Consider time-2. Then we find that V p = O,G_ =- (Y3,Y4) and

G_ = (gt, Y_ }. Therefore, the information bits al and a2 define the state of the

encoder at time-2 and there are 4 distinct states defined by four combinations

of values of al and a2, (00,01, 10, 11). We also see that g* = g3. Therefore,

the current input information bit is a" = a3. The current output code bit u3

is given by

us = a3 +at'glS +a2"g23

= a3 + al.

For every state defined by al and a2, us has two possible values depending on

as. In the trellis, there are two branches diverging from each state at time-2,

as shown in Figure 3.2.

Now consider time-3. At i = 3, we find that V_ = 0, G_ = {g4} and

G_ = {91,g2, g3}. Therefore, the information bits al, a2 and as define 8 states

at time-3, as shown in Figure 3.2. There is no row 9" in G_ with leading '1'

at position (or time) i = 4. Hence we set the current input information bit

a* = 0. The output code bit u4 is given by

u4 = al.g14+a2.g24+as'g34

= at+a2+as.
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In the trellis, there is only one branch diverging from each of the 8 states, as

shown in Figure 3.2.

/x/x

Let gO be the row in G_ whose trailing '1' is at the position-(/+ 1). (Note

that this row gO may not exist.) The uniqueness of the row gO (if it exists)

is guaranteed by the second condition of a generator matrix in TOF given in

Section 3.3. Let a ° be the information bit in A_ that corresponds to row go.

Then at time-(/+ 1),

G,'+I = (a_\{g°}) U {g'} (3.5)

and

= u{a'). (3.6)

The information bits in As define the state space _i+l(C) at time-(/+ 1).i+1

The change from AS to A,_+I defines a state transition from the current state _i

s s Therefore from AS, Ai%,,defined by A i to the next state ai+l defined by Ai+ 1.

(3.3) and (3.4), we can construct the N-section code trellis T for C.

The construction of the N-section trellis T is carried out serially, section by

section. Suppose the trellis has been constructed up to section-/. Now we want

to construct the (i + 1)-th section from time-/to time-(/+ 1). The state space

_(C) is known. The (i + 1)-th section is constructed by taking the following

steps:

(1) Determine G" and AS+l from (3.5) and (3.6). Form the state spacei+1

_i+l(C) at time-(/+ 1).

(2) For each state al 6 E_(C), determine its state transition(s) following the

state transition rules given above. Connect ai to its adjacent state(s) in

Zi+,(C) by edge(s).

(z) For each state transition, determine the output code bit u_+t from the

output function of (3.3) or (3.4), and label the corresponding edge in

the trellis with ui+l.
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3.6 TIME-VARYING STRUCTURE

During the encoding interval r = {0, 1,...,N}, the output function of the

encoder £(C) changes between (3.3) and (3.4). Also, the set _ (i) _(i)_gl,i+l ' Y2,1+ I ' " " " '

g(i)
p,,i+l } in the summations of (3.3) and (3.4) may change from one time instant

to another. This is because each column in the TOGM is, in general, not a

downward shift of the column before it. Therefore, the output function of £(C)

is time-varying. As the encoder £(C) moves from time-/ to time-(/-I- 1), its

state space may also change, i.e., _i+x(C) _ Yl'i(C). Consequently, the trellis

for £(C) is time-varying.

To describe the time-varying state space of £(C), there are four cases to

consider.

Case I: There is no such row gO in G_, but there is a row g" in G[. As

the encoder moves from time-/ to time-(/-t- 1), the active span of g"

contains the time instant i -t- 1. Therefore, g" is added to the set G_

to form G_+ 1. The information bit a" that corresponds to 9" is now

in the encoder memory and is included in determining the next and

future states of the encoder. The next state cri+l is determined by the

information bits

(i) (i) (pl,),a*G 1 ,0. 2 ,...,0,

Since IGL_I = IC/I + 1, p,+_ = m + 1. This results in state space
expansion.

CaselI: There is a rowg° E G_ and arow g" E G{. When the encoder

moves from time-/to time-(/+ 1), the span of g0 moves into the interval

[1,i + 1] and 9 ° is replaced by g" in G_+ 1. In this case, the information

bit a ° that corresponds to g0 becomes part of the past with respect to

time-(/+ 1) and will not affect the encoder outputs further; however, the

information bit a" is now in the memory and is included in determining

the next and future states of the encoder. Assuming that a ° = a_i), the

next state ai+l of the encoder is then determined by the information

bits

a_ i) , a_'),..., a_, ) , a'.

Therefore, from time-/ to time-(/+ 1), the state space of the encoder

and its dimension remain the same, i.e., Pi+l = Pi-
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Case Ill: There is no such row gO in G_ and no such row g" in G{. In this

case, G_+l ----G_ and there in no change in the state space dimension

as the encoder moves from time-/ to time-(i + 1). The next state is

determined by the saxne set of information bits as at time-i, i.e.,

Case IV: There exists a row gO E G_ but there is no such row g" fi G{. In

this case, gO is excluded from G_ to form G_+ 1 and its corresponding

information bit a ° becomes part of the past as the encoder moves from

time-i to time-(/q- 1). Assuming that a ° -- a_ i), the state _i+1 of the

encoder is determined by the information bits

a(i) _,(1) _,)2 ,"3 _..._a .

Consequently, IG_+I[ = IG_I-I and pi+1 = Pi - 1. This results in state

space reduction.

Example 3.4 Consider the (8,4) code given in Example 3.1. From itsTOGM

G, we see that for i = 0, 1 and 2, there is no such row go in G_, but there is

a row g" in G{. Hence there is state space expansion from time-0 to time-3

as shown Figure 3.2. We note that there is such a row go in G] and there is

no such row g" in Ga/. Therefore, there is state space reduction from time-3 to

time-4, as shown in Figure 3.2.

AA

From the above analysis of the N-section trellisfor an (N, K) linear block

code C, we have the following observations. At time-i, with 0 < i < N,

(1) The information bits in A p become the past and do not affectthe future

outputs of the encoder beyond time-/.

(2) The information bits in A{ affectthe encoder outputs only beyond time-

i, i.e.,they axe the future input information bits.

(3) The information bits in A_ are the bits stored in the encoder memory

that define the encoder state at time-/.

The above observations make the formulation of a trellisdiagram for a block

code the same as for a convolutional code [62].
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3.7 STRUCTURAL PROPERTIES

For 0 <_ i < j _< N, let Cij denote the subcode of C consisting of those

codewords in C whose nonzero components are confined to the span of j - i

consecutive positions in the set {i + 1, i + 2,... ,j}. Clearly, every codeword in

Cid is of the form,

i N-j

It follows from the definition of Cij and the structure of the TOGM G for

C that Cij is spanned by those rows in G whose spans are contained in the

interval [i + 1,j]. The two subcodes, Co,i and Ci,N, are spanned by the rows

in G_ and G{, respectively, and they are called the past and future subcodes

of C with respect to time-/.

For a linear code D, let k(D) denote its dimension. Then, k(C0,,) = IG_'I

IG{I. Recall that the dimension of the state space E_(C) atand k(C_,_) =
time-/is

re(C) = IGCI-- K-IGfl- IG{I

= K - k(Co,i) - k(Ci,N). (3.7)

This gives a relationship between the state space dimension pi(C) at time-/

and the dimensions of the past and future subcodes, C0,i and Cijv, of C with

respect to time-/.

Note that Co,i and Cijv have only the all-zero codeword 0 in common.

The direct-sum of C0,i and Ci,N, denoted C0,i $ Ci,/v, is a subcode of C with

dimension

k(co,,) + k(c_._,).

Let C/(Co,i _ Ci,/v) denote the partition of C with respect to Co,i _ Cijv.

Then this partition consists of

ICl(Co,, • C,,_,)l = 2K-k(Co.,)-k(C..N)

= 2 m (3.8)

cosets of Co,i • CI,N. Eq.(3.8) says that the number of states in the state space

_ (C) at time-/is equal to the number of cosets in the partition C/(Co,/$ C_,jv).
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Time

o- o

0 i N

C-=-_ a/

A coset in A coset in
po,,(c)/c_:h p,,,,(C)/Ct,'N

Figure 3.4. The paths in the code trellis that represent the 2 K-O' codewords in v

(Co,,_ C,,N).

Let Si denote the subspace of C that is spanned by the rows in G_. Then

each codeword in Si is given by

_(,I _._ ,a_)). G:: _I '_2 s''"

= + +... + (3.9)

where al ') E A_ for 1 < l _ pi. The 2 0` codewords in S, can be used as

the representatives for the cosets in the partition C/(Co,i _ C,,N). Therefore,

S, is the coset representative space for the partition C/(Co,, ¢_ Ci,N). From

(3.9), we see that there is one-to-one correspondence between v and the

, (i) (,) ., a(',_). Since there is a one-to-onestate o'i £ Ei(C) defined by l a I ,a 2 ,..

correspondence between v and a coset in C/(Co,, _ Ci,N), therefore, there is

a one-to-one correspondence between a state in the state space Ei(C) and

a coset in the partition C/(Co,i _ Ci,N).

With the above one-to-one correspondence in the trellis T, the codeword v

given by (3.9) is represented by a path that passes through the state a, defined

by the information bits, a_0, a_0, ..., a_. ) (i.e., a path that connects the initial

state a0 to the final state a! through the state a,). If we fix the information

bits, a_0, a(20,..., a(p',), and allow the other K - p, information bits to vary, we

obtain 2K-P'codewords of C in the coset

_,_ (Co,,¢ C_,N) _-{,, + ,-,: u _ co,, $ C_,N} (3.10)

with u as the coset representative. In the trellis, these 2 K-p' codewords are

represented by paths that connect the initial state a0 to the final state o!
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through the state ai at time-/defined by the information bits, a_ i), a_ i), ...,

a(oi,), as shown in Figure 3.4. Note that

K - p, = k(C0.,) + k(C,._,) (3.11)

which is simply the dimension of Co.i • Ci,lv.

For 0 <_ i < j <_ N, let pij(C) denote the linear code of length j - i obtained

from C by removing the first i and last N - j components of each codeword

in C. This code iscalleda punctured (or truncated) code of C. Let C_,%

denote the punctured code ofthe subcode Cij, i.e.,

= pid(Cij). (3.12)cl5 "

Itfollowsfrom the structureof the TOGM G that

k(pij(C)) = K - k(Co,i) - k(Cj, N) (3.13)

and

k( C_' _, ,,.1, = k(Cij). (3.14)

Consider the punctured code po,_(C). Partition poj(C) based on C tr It0,i"

follows from (3.13) and (3.14) that the partition po,i(C)/C_: i consists of

2K-k(Co..)-I=(C,.,'_) = 2p'

cosetsofC_:i.We can readilyseethatthereisa one-to-one correspondence

between the cosetsinpo,i(C)/C_:iand the cosetsinC/(Co,i$Ci,lv),and hence a

one-to-one correspondence between the cosetsinPo,i(C)/C_:iand the states

inthe statespace ]Ei(C).The codewords in a cosetinpo,i(C)/C_riare simply

the prefixesof the codewords in itscorresponding coset in C/(Co,i _ Ci,_v).

Hence the codewords in a cosetofpo,i(C)/C_:iwilltake the encoder £(C) to

a unique stateaiE _i(C). In the trellisT, they are the paths connecting the

initialstatea0 to the stateaias shown inFigure 3.4.Let L(a0,hi) denote the

paths in the trellisT that connectthe initialstatea0 to the stateai in FII(C).

Then L(a0,ai) isa cosetinthe partitionpo,i(C)/C_;i.

Now we consider the punctured code pijv(C). Partitionp,,.,v(C)based on

ctri,N = Pi,N(Ci,N). Then it follow from (3.13) and (3.14) that the partition
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Time 0 i 0 j N

0 __ 0
0 0

O'o . . ) al

o,

Figure 3.5. Paths in the code trellis that represent the codewords in Cij.

pi,lv(C,)/Ct,_ consists of

2K-k(Co.,)-_(C,.rv) = 2 m

cosets of C tr Again we see that there is a one-to-one correspondencei,N.

between the cosets in pidv(C)/Gt,_ and the cosets in C/(Co,i (_ Gi,lv), and

hence a one-to-one correspondence between the cosets in pijv(C)/Ctr, N and

the states in the state space _i(C). In the trellis, the codewords in a coset

pi,N(C)/C_,_ form the paths that connect a state _ri E Ei(C) to the final state

_r! as shown in Figure 3.4. Let L(al, al) denote the paths in the trellis T that

connect the state ai E _i(C) to the final state a I. Then L(c_,al) is a coset in

C trthe partition pijv(C)/ i,lv"

For 0 < i < j < N, let a_ °) and _(o) denote two states on the all-zero path 0

in the trellis T at time-/and time-j, respectively. Let " (o) (o),_tcri ,a i )denotethe

paths of length j i in T that connect _(o) to _(o) Consider the paths in T-- o i o i •

that start from the initial state a0, follow the all-zero path 0 to the state al °),

,, (o) (o), state a_ °), then follow thetransverse through the paths in _(ai ,_j ] to the

all-zeropath 0 until they reach the finalstate a! as shown in Figure 3.5. These

paths represent the codewords in the subcode Ci,j of C. This implies that

L, (o) (o), ctr. (3.15)[ai ,aj ] = tn"

Let v = (vz,v2,... ,vlv) be a path in the code trellis T. For 0 <_ i < j < N,

let oi-(w) and a_') be two states on the path v at time-/and time-j, respectively.
_, (w) (_),

Let _(_r i , aj ) denote the paths of length j - i that connect a}') to a_ ").

Consider the paths in T that start form the initial state or0, follow the path v

to the state or}"), transverse through the paths in "' (') -(')x_tai ,o i 1, then follow the
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Time 0

(3

O" o

U

i v j N

° o
o i " -- .'_,,,oj- °l

p_a(v)+ c:'.

Figure 3.6. Paths in the code trellis that represent the codewords in the coset u _ Ci,j.

path v until they reach the final state a I as shown in Figure 3.6. These paths

represent the codewords in the following coset of Ci,j:

v e C_,s_={v + u : u _ C_,j}. (3.16)

., (-) (-)
This is a coset in the partition C/Ci,j. This implies that Lta i ,a i ) is a coset

of Ct,_ in pi,s(C), i.e.,

L. (_,) (-), + C tr ,C,.Ct_[a i ,a s ) = pi,j(u) i,S 6Pi,St )/ i,S, (3.17)

where Pi,j (v) denotes the vector of length j- i obtained from v by removing the

first i and last N-j components of v. For any two connected states ai 6 _,(C)

and a s 6 Zj(C) with 0 < i < j < N, they must be on a path in the trellis T.

It follows from (3.17) that

L(al, aS) C C t'e p ,s( )/ ,,,- (3.18)

Therefore, the number of paths that connect a state ai E _i(C) to a state

a s 6 _j(C) is given by

2t(c[_ ), if al and a s are connected,]L(ai,aj)] = 0, if ai and a# are not connected.
(3.19)

For 0 < i < j < k __ N, let _j(ai, ak) denote the set of states in Es(C )

through which the path in L(ai,ak) connect the state ai to the state ak as

shown in Figure 3.7. Let

L(a,, aj) o L(aj, ak) a_ {u o v: u C L(ai, a s), v e L(a i, a_)} (3.20)
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Time i j k

o. i

D,

£2)-

Y

ak

Figure 3.7. The state set Ej(al, ak).

where u o v denotes the concatenation of two sequences u and v. In the trellis,

L(ai, aj) o L(aj,a_) consists of those paths in L(ai, ak) that connect the state

ai to the state at through the state aj. Then,

L(a,,aj:)= U L(a"aj)°L(ai'a_)"

ojE_j(crs,a_)

(3.21)

The above developments give some fundamental structural properties of an

N-section trellisT for a linear block code C.
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STATE LABELING, TRELLIS

CONSTRUCTION PROCEDURES AND

TRELLIS SYMMETRY

The construction of a code trellis can be facilitated by labeling the states at

each level of the trellis. State labeling is also necessary in the implementation

of a trellis-based decoding algorithm. This chapter presents three methods

for labeling the states of the N-section trellis for an (N, K) linear block code.

The first two methods are based on the information set that defines the state

space at a particular encoding time instant and the third method is based on

the parity-check matrix of the code. The first two methods are more efficient

than the third one for codes with K < N - K; however, the third method is

more efficient for codes with N - K < K. Based on these labeling methods,

construction procedures for the N-section trellis for an (N, K) linear block code

are presented. Also presented in this chapter is the mirror symmetry structure

of a code trellis. This symmetry structure is useful in decoding.
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4.1 STATE LABELING BY THE STATE DEFINING INFORMATION

SET

In a code trellis, each state is labeled by a fixed sequence (or given a name).

This can be accomplished by using a K-tuple A with components correspond-

ing to the K information bits, al,a2 .... ,azc, in a message. At time-i, all the

components of A are set to zero except for the components at the positions
_ (_) (i)

corresponding to the information bits in A i = _tat ,a 2 ,..., a(i, )}. Every com-

bination of the Pi bits at the positions corresponding to the information bits

in A_ gives the label l(ai) for the state ai defined by the information bits,

(i) (1) , a_i).al _ (22 , •..

Example 4.1 Consider the (8,4) code given in Example 3.1. At time-4, we

find that A_ = {az, a3}. There are 4 states corresponding to 4 combinations of

a: and a3. Therefore, the label for each of these 4 states is given by (0, a2, a3,0).

AA

The construction of the N-section trellis for an (N, K) linear block code C

can be carried out as follows. Suppose the trellis T has been constructed up to

section-/. At this point, G[, A_ and _i(C) are known. Each state ai E _i(C)

is labeled by a K-tuple. The (i + 1)-th section is constructed by taking the

following steps:

(1) Determine Gi'+l and A_+ 1 from (3.5) and (3.6).

(2) Form the state space _i+x(e) at time-(/+ 1) and label each state in

Z,+I(C) based on li_+l. The state in _+x(C) form the vertices of the

code trellis T at the (i + 1)-th level.

(3) For each state ai • _,i(C) at time-i, determine its transition(s) to the

state(s) in _i+x(C) based on the information bits of a* and a °. For each

transition from a state ai • _i(C) to a state ai+l E _i+l(C), connect

the state ai to the state ai+l by an edge (ai, ai+l).

(4) For each state transition (al, ai+x), determine the output code bit ui+l

and label the edge (al, ai+l) with ui+l.

Recall that at time-i, there are two branches diverging from a state in _]i(C)

if there exists a current information bit a*. One branch corresponds to a* =

D R A F T January 6, 1998, 8:40pm D R A F T



STATE LABELING, TRELLIS CONSTRUCTION PROCEDURES 45

Table 4.1.

block code.

State defining sets and state labels for the 8-section trellis for the (8, 4) linear

0

1

2

3

4

5

6

7

8

GS

0

{gz,gz,g3}

{g,}
0

0.= 0.0

G1 --

G2 --

a 3

-- 0.1

a4 -

-- a3

-- 0.2

-- 0.4

0

{o,,0.,}

¢

State Label

(oooo)
(0. ooo)
(0.1a200)

(0a a30)
(Oa2a3a4)

(Oa20a4)

(0000.4)
(oooo)

0 and the other corresponds to a* = 1. For the convenience of graphical

representation, in the code trellis T, we use the upper branch to represent

a" = 0 and the lower branch to represent a" = 1. If a" is a dummy information

bit, then there is only one branch diverging from each state in ZI(C). This single

branch represents a dummy information bit. Using the above representation,

we can easily extract the information bits from each path in the trellis (the

dummy information bits are deleted).

Example 4.2 Consider the state labeling and trellis construction for the (8, 4)

RM code given in Example 3.1 whose TOGM G is repeated below,

G ____

91

g2 =

g3

94

1 1 1 1 0 0 0 0

0 1 0 1 1 0 1 0

0 0 1 1 1 1 0 0

0 0 0 0 1 1 1 1

For 0 < i < 8, we determine the submatrix G s and the state defining in-

formation set A s as listed in Table 4.1. From AS, we form the label for each

state in _i(C) as shown in Table 4.1. The state transitions from time-/to time-

(i + 1) are determined by the change from A_ to AS+ z. Following the trellis
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0 0

0

Figure 4.1. The 8-section trellis diagram for the (8, 4) RM code with state labeling by

the state defining information set.

construction procedure given above, we obtain the 8-section trellis diagram for

the (8,4) RM code as shown in Figure 4.1. Each state in the trellis is labeled

by a 4-tuple.

AA

In many cases, we do not need K bits for labeling the states of the N-section

trellis for a binary (N, K) linear block code C. Let (P0,Pl,... ,pie) be the state

space dimension profile of the trellis. Define

Pmax(C) max Pi (4.1)
o<_i<N

which is simply the maximum state space dimension of the trellis. From (3.7),

we find that Pm_x(C) _< K. In general, Pmax is smaller than K. Since the

number of states at any level of the trellis is less than or at most equal to
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Table 4.2. State labeling for the (8, 4) RM code using Pmax(C) = 3 bits.

0

1

2

3

4

5

6

7

8 0

State Label

(ooo)

(a,oo)
(aia20)

(a a30)

(a2a,O)
(a, O0)
(ooo)

2 p"'x(c), Pmax(C) bits are sufficient for labeling the states in the trellis. Con-

sider the state space Ei(C) at time-/with 0 < i < N which is defined by the set

{(1) (i) . ,a(pi,)} of information bits. For each state aie Ei(C), we forma 1 ,a 2 ,.. Pi

a pmax(C)-tuple, denoted l(a_), in which the first p_ components are simply

a(0 _(i) ,a_, ) and the remaining Pmax(C) - Pi components are set to 0, i.e.,1 ' u2 '' " "

•,, c,Il(a_) ,0).= [a 1 ,a2 , .... (4.2)

Then l(ai) is the label for the state ai.

Example 4.3 Again we consider the (8,4) RM code given in Example 4.2.

From the TOGM G of the code, we find the state space dimension profile of

the 8-section trellis for the code to be (0, 1, 2, 3, 2, 3, 2, 1, 0). Hence pm_x(C) - 3.

Using 3 bits for labeling the states as described above, the state labels are given

in Table 4.2. Compared to the state labeling given in Example 4.2, one bit is

saved.

AA
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4.2 STATE LABELING BY PARITY-CHECK MATRIX

Consider a binary (N, K) linear block code C with a parity-check matrix

H -- [hl, h2,..., hi,..., hN], (4.3)

where, for I _ j _< N, hj denotes the j-th column of H and is s binary

(N - K)-tuple. A binary N-tuple c is a codeword in C if and only if

C" H T --= _, (4.4)

N-K

where H T denotes the transpose of H. C is called the null space of H.

Let 0N-K denote the all-zero (N - K)-tuple (0,0,... ,0). For 1 < i < N,

let Hi denote the submatrix that consists of the first i columns of H, i.e.,

Hi = [hl, hs,..., hi]. (4.s)

It is clear that the rank of Hi is at most N - K, i.e.,

Rank(Hi) _< N - K. (4.6)

Then for each codeword c E C_i,

c" H T = 0_'-K- (4.7)

C_:i is the null space of Hi.

Now we consider the partition

po,iCC)lC :i.

Let D be a coset in po,i/C_: i and 19 ¢ C_: i. For every vector a e D,

a. H T = (s,, ss,... , sir-K) # ON-K (4.8)

and is the same for all vectors in D, i.e., for al,a2 E D and al _ a2,

a 1 • H_/= a s • _ = (s1,$2,... ,$N-K). (4.9)

The (N- K)-tuple (sl, ss,..., SN-K) is called the label for the coset D. Let

D_ and Ds be two different cosets in po,i(C)/Ct:i. Let al E D1 and as E Ds.

It follows from the theory of linear block codes that al ¢ as and

.H? # as.
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This says that different cosets in po,i(C)/C_[ i have different labels.

Recall the mathematical formulation of the state spaces of a code trellis.

There is a one-to-one correspondence between a state a in the state space

_i(C) at time-/and a coset D 6 po,i(C)/C_[ i, and the codewords of po,i(C) in

D form the paths that connect the inltiM state a0 to state a. This one-to-one

correspondence leads to the definition of a state label.

Let L(cr0,a) denote the set of paths in the code trellis for C that connect

the initial state a0 to a state a in the state space _i(C) at time-i.

Definition 4.1 For 0 < i < N, the label of a state _ G Ei(C) based on a

parity-check matrix H of C, denoted l(a), is defined as the binary (N- K)-

tuple

a. = (sl,s2,,.. (4.10)

for any a 6 L(ao,a). For i = O, Hi = @and the initial state a0 is labeled with

the all-zero (N- K)-tuple, 0N-K. For i - N,L(ao,af) = C and the final state

_1 is also labeled with ON-K.

AA

It follows from the above definition of a state label, the one-to-one correspon-

dence between the states in Z,(C) and the cosets in po,i(C)/Ct_i for 0 < i < N,

and (4.10) that every state a 6 _i(C) has a unique label and different states

have different labels.

For 0 < i < N, let ai and ai+l be two adjacent states with ai 6 Ei(C)

and ai+t G _i+l(C). Let ui+l be the label of the branch in the code trellis

that connects state cq to state ai+l. The label ui+l is simply the encoder

output bit in the interval from time-/to time-(/+ 1) and is given by (3.3) or

(3.4). For every path (ul,u2 ..... ul) 6 L(ao,ai), the path (ul,u2,... ,ut,u,+l)

obtained by concatenating (ul, u2,..., ul) with the branch ui+, is a path that

connects the initial state a0 to the state ai+l through the state a,. Hence,

(u,,u2 .... ,ul,ui+l) 6 L(ao, ai+l). Then it follows from the definition of a

state label that

l(ai+l) = (ut,u2,...,ui,ui+x).H_i+t

= (u,, HS + u,+,.

= t(,r,) + ui+l •hir+l. (4.11)
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Eq.(4.11) simply says that given the starting state labeled l(#_) at time-/and

the output code bit ui+t during the interval between time-/and time-(/+ 1),

the destination state labeled l(a_+x) at time-(/+ 1) is uniquely determined.

Now we present a procedure for constructing the N-section trellis diagram

for a binary (N, K) linear block code C by state labeling using the parity-

check matrix of the code. Let u = (ux,u2,... ,UN) be a binary N-tuple. For

0 < i _< N, let po,i(u) denote the prefix of u that consists of the first i

components, i.e.,

po,i(u) = (ul, u2,..., ui). (4.12)

Suppose that trellis has been completed up to the i-th section (or time-i). At

this point, the rows of the TOGM G in the set G_ = t:_lYn(i),_"(1),--. ,g(pi,)) and

their corresponding information bits (i) (i) _(1) uniquely define a statea I ,a 2 ,...,tip_

a_ E E_(C). Let

, = g ,l+o?. gg,I+... + g;,,.

Then po,i(u) is a path connecting the initial state a0 to the state a, defined by

a_i), a_i),..., a(i,). The label of state a, is given by

= po.,(-)HT.

The construction of the (i + 1)-section of the code trellis is accomplished by

taking the following four steps:

(1) Identify the special row g" (if any) in the submatrix G{ and its cor-

responding information bit a*. Identify the special row gO (if any) in

the submatrix G_. Form the submatrix G_+ 1 by including g" in G_ and

excluding gO from G_.

(2) Determine the set of information bits, A_+ 1 r (i+1) _(i+x) (i+1) 1.1(21 _,u 2 ,... ,Gpi+s J,

that correspond to the rows in G_+ 1. Define and label the states in

E,+I(C).

(3) For each state ai E Ei(C), form the next output code bit ui+l from

either (3.3) (if there is such a row g* in G[ at time-i) or (3.4) (if there

is no such row g" in Gi"f at time-i).
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0 0

0 0

Figure 4.2. 8-sectiontrellis for (8, 4) RM code with state labelingby parity-checkmatrix.

(4) For each possible value of Ui+l (two if computed from (3.3) and one if

computed from (3.4)), connect the state ai to the state az+l E Ei+l (C)

with label

= + u,+l. h,T÷l.

The connecting branch, denoted L(ai, o'i+1), is labeled with Ui+l. This

completes the construction of the (i + 1)-th section of the trellis.

Repeat the above steps until the entire code trellis is constructed.

Example 4.4 Consider the (8, 4) RM code given in Example 3.1. This code is

self dual. Therefore, a generator matrix is also a parity-check matrix. Suppose
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we choose the parity-check matrix as follows:

H

1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

Using this parity-check matrix for labeling and following the above trellis con-

struction steps, we obtain the 8-section trellis with state labels shown in Fig-

ure 4.2. To illustrate the construction process, we assume that the trellis has

been completed up to tlme-3. At this time instant, G_ = {gl,g2,g3} and

A_ = {al,a2,a3} are known. The eight states in E3(C) are defined by the

eight combinations of al,a2 and as. These 8 states and their labels are given

below:

0-_ 1)

a_ s)

0-(33)

a_7)

states defined

by (al, as, a3)

(000)

(001)

(OLO)

(o11)

(lOO)

(101)

(11o)
(111)

statelabels

(oo0o)
(lOlO)
(lOOl)
(oo11)
(lO11)
(OOOl)
(OOLO)
(1ooo)

Now we want to construct the 4-th section of the trellis up to time-4. At time-3,

from the TOGM G, we find that 90 = gl and there is no such row 9" with

leading '1' at time-4. Therefore, G_ = {Ys,g3} and A_ = {as,a_). The four

states in E4(C) at time-4 are defined by the four combinations of as and a3.

The four codewords generated by the rows in G_ are:

as, a3 )

(0,0)

(o,1)
(1,o)
(1,1)

paths

_o= (o000ooo0)
Ul = (00111100)

us = (01011010)

us = (01100110)
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The four paths that connect the initial state a0 to the four states, denoted al °),

(2) and a (3) in E4(C) are:_(1) _ 0"4

po,,(,_o) = (oooo),

po,,(ul) ---- (0011),

po,,(,,_) = (OlOl),

po,,(_,_)= (OliO).

The submatrix//4 is

H

1 1 1 1

0 0 0 0

0 0 1 1

0 I 0 i

From po,4(uy), with 0 < j _< 3 and/-/4, we can determine the labels for the four

states, a_°),a_l),a_ 2) and a_ s), in E4(C) which are given below:

al i)

a_ 2)

a_ s)

states defined

by (a2, as)

(oo)

(Ol)
(10)

(ii)

state labels

(0000)

(0001)

(ooio)

(00ii)

The four states and their labels are shown in Figure 4.3 at time-4. Now suppose

the encoder is in the state _r3{s) with label l(ai 5)) = (0001) at time-3. Since no

such row g" exists at i = 3, the output code bit u4 is computed from (3.4) as

follows:

_4 = 1 • gl4 + 0 • g24 -}- 1 • 934

= I'I+0"I+I'I

= O.

Then the state a_ s) is connected to the state in E4(C) with label

z(4_))+,,.h_ = (oooi)+ o.(io_1)

= (00Ol),
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oooo)

oool)

oolo)

Figure 4.3.

code.

(

(1ooi)0

l
Time-3 Time-4

State labels at the two ends of the 4-th section of the trellis for (8, 4) RM

u O). The connecting branch is labeled with u4 = 0. The connec-which is state

tions from the other states in E3(C) to the states in E4(C') axe accomplished

in the same manner.

/xA

State labeling based on the state defining information sets requires K (or

Pmax(C)) bits to label each state of the trellis;however, state labeling based on
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the parity-check matrix requires N - K bits to label each state of the trellis.

Therefore, labeling method-1 is more efficientfor codes with K < N - K while

labeling method-2 ismore efficientfor codes with K > N - K.

4.3 STRUCTURAL SYMMETRY

Consider a binary (N, K) linear block code C with even length N and TOGM

e

gl

g2 ----

gK

gll g12 "'" glN

g2t g22 "'" g2s

: : ... :

gK_ gK2 "" gKN

Let T denote the N-section trellisdiagram for C. Suppose the TOGM G has

the following symmetry property: For each row g in G with span(g) = [a,b],

there exists a row g' in G with span(g') = [N + 1 - b,N + 1 - a]. With this

symmetry property in G, we can readily see that for 0 < i < N/2, the number

of rows in G that are active at time-(N - i) is equal to the number of rows in

G that are active at time-/. This implies that

= IS,(C)l

for 0 < i < N/2. We can permute the rows of G such that the resultant matrix,

denoted G _, is in a reverse trellis oriented form:

(1) The trailing '1' of each row appears in a column before the trailing '1'

of any row below it.

(2) No two rows have their leading "ones" in the same column.

If we rotate the matrix G' by 180 ° counter clockwisely, we obtain a matrix G"

r G Iin which the i-th row g_' is simply the (K + I - i)-th row 9K+t-_ of in

reverse order (the trailing'1' of 'gK+I-_ becomes the leading 'I'of g_' and the

leading '1'of gK+I-_ becomes the trailing '1' of g_'). From the above, we see

that G" and G are structurally identical in the sense that

span(g_') = span(g,)
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for 1 < i < K. Consequently, the N-section trellisT for C has the following

mirror symmetry [101]:The lastN/2 sectionsof T form the mirror image

ofthe firstN/2 sectionsof T (not includingthe path labels).

Example 4.5 Consider the (8, 4) RM code given in Example 4.2 with TOGM

e

gl

g2 =

gs

94

1 I I 1 0 0 0 0

0 1 0 1 1 0 i 0

0 0 1 1 1 I 0 0

0 0 0 0 1 i 1 1

We find that span(g 1) = [1, 4], span(g4) = [5, S], and gl and g, are symmetrical

with each other. Row g2 has span [2, 7] and is symmetrical with itself. Row

g._ has span [3, 6] and is also symmetrical with itself. Suppose we permute the

second and third rows of G. We obtain the following matrix in reverse trellis

oriented form:

9'2

g',

1 1 1 1 0 0 0 0

0 0 1 1 1 1 0 0

0 1 0 1 1 0 1 0

0 0 0 0 1 1 1 1

Rotating G' 180 ° counter clockwisely, we obtain the following matrix:

g';

1

0

0

0

1 1 I 0 0 0 0

I 0 1 1 0 I 0

0 1 1 1 1 0 0

0 0 0 1 1 1 I

We find that G" and G are in fact identical, not just structurally identical.

Therefore, the 8-section trellis T for the (8, 4) RM code has mirror symmetry

with respect to the boundary location 4, the last four sections form the mirror

image of the first four sections as shown in Figures 3.2 and 4.1.

AA

For the case that N is odd, if the TOGM G of a binary (N, K) code C has

the mirror symmetry property, then the last (N- 1)/2 sections of the N-section

trellis T for C form the mirror image of the first (N - 1)/2 sections of T.
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For the case that G" --- G, the N-section trellis T of C has full mirror

symmetry structure [101]. For N even, the last N/2 sections of T in reverse

direction (the final state _rf is being regarded as the initial state) is completely

identical to the first N/2 sections of T (including the path labels). The 8-section

trellis of the (8, 4) RM code has full mirror symmetry as shown in Figure 4.1.

For N odd, the last (N - I)/2 sections of T in reverse direction are completely

identical to the first (N - 1)/2 sections of T (including the path labels).
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5 TRELLIS COMPLEXITY

This chapter is devoted to analyzing the complexity of an N-section trellis

diagram for an (N, K) linear block code. Trellis complexity is, in general, mea-

sured in terms of the state and branch complexities. These two complexities

determine the storage and computation requirements of a trellis-based decod-

ing algorithm, such as the Viterbi decoding algorithm. The state complexity of

a trellis is measured by its state space dimension profile and the branch com-

plexity is measured by the total number of branches (or edges) in the trellis.

In Section 5.1, a simple upper bound on the maximum state space dimension

is derived. It is proved that the state complexity of a linear block code is the

same as that of its dual code. In Section 5.2, the concepts of a minimal trellis

diagram and optimum bit permutation in terms of state complexity are intro-

duced. It is proved that the trellis construction based on a TOGM results in

a minimal trellis. In Section 5.3, the branch complexity of an N-section trellis

diagram is analyzed. Finally, in Section 5.4, the general structure of N-section
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trellisdiagrams forcycliccodes isgiven. Ititshown that the maximum state

space dimension meets the upper bound derivedinSection5.1.

5.1 STATE COMPLEXITY

For a binary (N, K) linear block code C, the state complexity of an N-section

bit-level code trellis is measured by its state space dimension profile

(Po,Pl,p2,... ,PN),

where for 0 < i < N,

p_= log2IS,(C)l.

Let Pmax(C) denote the maximum among the statespace dimensions,i.e.,

pm,x(c)= max p_.
o_i_

Using the constructionmethod described in Chapter 3,the statespace dimen-

sion at time-/isgivenby (3.7),

o, = K - k(Co,,)- k(C_,_,),

for 0 < i < N. Since k(Co,i) and k(Ci,u) axe nonnegative, we have

pm,,x(C) _ K. (5.1)

However, itfollowsfrom (4.6)and the definitionand uniquenessofa statelabel

at any time-i(see(4.10))that

Ir._(C)l < 2N-x

and

Pi _ N - K (5.2)

for 0 < i < N. Eq.(5.2) implies that

Pm-x (C) < N - g. (5.3)

Combining (5.1) and (5.3), we have the following upper bound on the maximum

state complexity:

pm,x(C) < rain{K, N - K}. (5.4)
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This bound was first proved by Wolf [109]. In general, this bound is quite loose.

However, for cyclic (or shortened cyclic) codes, this bound gives the exact state

complexity. For noncyclic codes, tighter upper bounds on pm_(C) have been

obtained.

If the Viterbi algorithm is applied to the N-section trellis of a code, then the

maximum numbers of survivors and path metrics needed to be stored are both

2 p=-(c). Therefore, the parameter pm_.(C) is a key measure of the decoding

complexity (or trellis complexity).

For 0 < i < rain{K, N - K}, it follows from the structure of a TOGM G

that the number of rows in G whose active spans contain the time index i is no

greater than i. For i >_ max{K, N - K}, since there is one-to-one correspon-

dence between the states in _i(C) and cosets in the partition p,,N(C)/C_rN,

ktC t,m =

< k(p,,N(C))
< N-i

_< min{K,N- K}. (5.5)

Therefore, for 0 < i < N, we have the following upper bound on Pi:

p, < min{i, K, N - K, N - i}. (5.6)

Let C -Ldenote the dual code of C. Then C "Lis an (N, N - K) linear block

code. Consider the N-section trellisdiagram for C "L. For 0 _< i _< N, let

_i(C "L) denote the state space of C "L at time-/. Then there is a one-to-one

correspondence between the states in _i(C "L)and the cosets in the partition

po,i(c-L)/Co,i-L'tr where c-L'tr05 denotes the truncation of C_i in the interval [1, i].

Therefore, the dimension of Ei(C "L) is given by

"L,trMc') = k(po.,(c'L))- ). (5.7)

Note that Po,i(C "L) is the dual code of C t' and C "L'tr0,i 0,i is the dual code of

po,i(C). Therefore,

i wc"_-" -- _ O,i]

= i- k(Co,d (5.s)
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k/fy-L,tr$ ,= i- (5.9)

It follows from (5.7), (5.8) and (5.9) that

p (c ±) = K - k(Co, )- k(C,,N). (5.10)

From (3.7) and (5.10), we find that for 0 < i < N,

pi(C J')= p,(C). (5.11)

This says that C and its dual code C ± have the same state complexity.

5.2 MINIMAL TRELLISES

An N-section trellisissaidto be minimal ifthe totalnumber ofstatesinthe

trellisisminimum. A minimal trellisisunique within isomorphism [77],i.e.,

two minimal trellisesforthe same code are isomorphic (structurally identi-

cad). The above definitionof mlnimality iscommonly used in the literature.

However, a more meaningful and usefuldefinitionofminimality of a trellisis

in terms of itsstatespace dimension profile.An N-section trellisissaid to

be a minimum state space dimension trellisifthe statespace dimension

at each time of the trellisisminimum. A more precisedefinitionisgiven as

follows.Let T be an N-section trellisfor an (N, K) code C with state space

dimension profile(P0,Pt,...,Ply). T issaid to be minimal if,for any other

N-section trellisT' for C with statespace dimension profile(P'o,P_,...,P_v),

the followinginequalityholds:

pi < p_,

for0<i<N.

Suppose a minimum state space dimension trellis T exists. Then, it is clear

that T is a minimal trellis in total number of states. The formulation of state

spaces given in Section 3.4 results in a minimum state space dimension trel-

lis (or minimal trellis) for an (N, K) linear block code. This will be proved

in Theorem 5.1. This says that a minimum state space dimension trellis T

exists for any linear block code C. From the uniqueness of a minimal trellis

in total number of states within graph isomorphism, the minimal trellis is a
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minimum state space dimension trellis. This gives the equivalence between the

two definitions of minimality of a trellis for a linear block code.

Theorem 5.1 Let C be a binary (N, K) linear block code with trellis oriented

generator matrix G. The N-section trellis T for C constructed based on G is a

minimum state space dimension trellis.

Proof: We only need to prove that for 1 < i < N, the number of states, 2 p',

at time-/in the trellis T is minimum over all the trellises for C, where

= K - k(Co,d -

Let C_ denote the linear subcode of C that is spanned by the rows in the

submatrix G_ of G. Then IC_I = 2a'. For two different codewords u and v in

C_, it follows from condition (1) of a TOGM that

This implies that

#

: = • C }l = 2.,.

Suppose there is a trellis T t for C whose number of states at time-/is less

than 2p'. Then, there must be two different codewords u and v in C_ such

that: (1) there are two paths connecting the initial state to a state tr at time-/

in T' whose label sequences are po,i(u) and po,iCv), respectively; and (2) there

is a path connecting the state a to the final state in T _ whose label sequence is

pi,N(U). Without loss of generality, we assume u # 0.

Let u' denote the binary N-tuple such that po,:(u') = po,:(v) and pi,N(U') =

pi,N(U). Since u' is a path in T' connecting the initial state to the final state,

it follows from condition (4) of Definition 3.1 of an N-section trellis for a linear

block code that u' is a codeword in C. Therefore, u + u _ • C. Note that

po,:(u + u') = po,i(u) + po,:(v) # 0 and pi,N(U + U') = pd,N(U) + pi,N(U') = O.

This implies that u + u _ • C0,:. There are three cases to be considered:

(1) Suppose u _ • Co,i. This implies that u • Co,: which is a contradiction

to the hypothesis that u • C_ and u # 0.

(2) Suppose u' • C_'. This implies that u + u' • C_. Since u + u' # 0,

u + u _ can not be in both C_ and C0,:. This results in a contradiction.
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Suppose u _ E Cij¢. This implies that u E Co,i (_ Cijv, which is not

possible.

Therefore, u + u _ can not be a codeword in C. This results in a contradiction

to our earlier hypothesis that there exists an N-section trellis T _ for C whose

number of states at time-/is less than 2p'. Therefore, the hypothesis is invalid

and 2p' gives the minimum number of states at time-/for 1 < i < N.

/xA

It followsfrom Theorem 5.1 that Eq.(3.7) gives the minimum statespace

dimension Piwith 0 < i< N foran N-section trellisforan (N, K) linearblock

code. Prom (3.7),we see that the statespace dimension p_ at time-/depends

on the dimensions of the past and future codes, Co,i and Ci,N. For a given

code C, k(Co,i) and k(Ci,N) are fixed.

Given an (N, K) linear block code C, a permutation of the orders of the bit

(or symbol) positions results in an equivalent code C t with the same weight

distribution. Different permutations of the bit positions may result in different

dimensions, k(Co,i) and k(Cijv), of the past and future subcodes, Co,i and

Ci,N, and hence different state space dimensions pi at time-i. A permutation

that yields the smMhst state space dimension at every time of the code trellis is

called an optimum permutation (or bit ordering). It is clear that an optimum

permutation reduces the state complexity and is often desirable. Optimum

permutation is hard to find, however optimum permutations for RM codes

are known [45] but they are unknown for other classes of codes.

5.3 BRANCH COMPLEXITY

The branch complexity of an N-section trellis diagram for an (N, K) linear

block code C is defined as the total number of branches in the trellis. This

complexity determines the number of additions required in a trellis-based de-

coding algorithm to decode a received sequence.

Consider the N-section treUis diagram T for C which is constructed based

on the rules and procedures described in Chapters 3 and 4. Recall that at

time-/with 0 _< i < N, there are two branches diverging from a state in P.i(C)

if there exists a row g" in Gff; and there is only one branch diverging from a
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state in Zi(C) if there exists no such row g" in G[. Define

1, if g- ¢ G{, (5.12)I,(_') _= 2, if #" e G{.

Let E denote the total number of branches in the N-section trellis T. Then

N-1

E = _ Ir.,(C)l.I,(g')
i----0

N-1

= _-a 2"''Ii(g'). (5.13)
i=0

Example 5.1 Again we consider the (8, 4) linear block code given in Exam-

ple 3.1. From Table 4.1, we find that

lo(g') = It(g') = I2(g') = h(g °) = 2

and

I3(g') = h(g') =/,(g') = I7(g') = 1.

The state space dimension profile of the 8-section trellis for the code is (0, 1,

2, 3, 2, 3, 2, 1, 0). From (5.13), we have

E = 2°.2+21"2+22"2+23"1+22"2+23"1+22"1+ 21"1

= 2+4+8+8+8+8+4+2

= 44.

AA

An N-section trellis diagram for an (N, K) linear block code is said to be

a minimal branch (or edge) trellis diagram if it has the smallest branch

complexity. A minimal trellis diagram has the smallest branch complexity [69].

Branch complexity also depends on the bit ordering of a code. Proper permuta-

tion of the bit positions of a code may result in a significant reduction in branch

complexity. A permutation that results in minimal branch complexity is called

an optimum permutation. From (5.13), we can readily see that a permutation

which minimizes each product in the summation of (5.13) is a minimal edge

trellis diagram. A good permutation in terms of branch complexity should have

the following property: for 0 < i < N, when pi is large, Ii(g °) should be equal

to 1.
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S.4 TRELLIS STRUCTURE OF CYCLIC CODES

Consider an (N, K) cycliccode C over GF(2) generatedby the followingpoly-

nomial [62],

g(X) = 1 + glX + _X 2 +... + gN-K-IX N-K-I + X N-K,

where for 1 _< i < N - K, gi E GF(2). A generator matrix for this cyclic code

is given by

G

1 gl _ ...... gN-K-1 1 0 0 ... O"

0 1 gl g_ ...... gN-K-! 1 0 .." 0

".

0 0 ... 0 1 gl g2 .... gN-K-1 1

(s.14)

The K rows of G are simply the K cyclic shifts of the first row. This generator

matrix has the following properties:

(1) It is in trellis oriented form.

(2) For 1 < i < K, the span of the i-th row gi is

span(gi) = [i, N - K + i].

(3) The active spans of aU the rows have the same length, N - K.

Now we consider the bit-level trellis structure for this (N, K) cyclic code.

There are two cases to be considered: K > N - K and K _< N - K. Consider

the case for which K > N - K. For 1 < i < N - K, the number of rows whose

active spans contain the time index i is i. These rows are simply the first i

rows. For N - K < i _< K, the number of rows whose active spans contain the

time index i is N - K. For K < i _< N, the number of rows whose active spans

contain the time index-/is N - i. Since i > K,

N-i<N-K.

From the above analysis, we see that the maximum state space dimension is

Pmax(C) = N - K and the state space profile is

(0,1,...,N- K- 1,N- K,...,N- K,N- K- 1,...,1,0).
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Now consider the second case for which K < N - K. For 1 < i < K, the

number of rows whose active spans contain the time index i is i (the first i

rows). For K < i < N- K, the number of rows whose active spans contain the

time index i is K. For N - K < i <_.N, the number of rows whose active spans

contain i is N - i. Since i > N - K, N - i < K. From the above analysis, we

find that the maximum state space dimension is

p_.x(C) = K,

and the state space dimension profile is

(0,1,...,K- 1,K,...,K,K- l,...,1,0).

Putting the results of the above two cases together, we conclude that for an

(N, K) cyclic code, the maximum state space dimension is

pm,x(C) = rrfin{ g, N - K }.

This is to say that a code in cyclic form has the worst state complexity (i.e., it

meets the upper bound on the state complexity).

The generator polynomial g(X) of an (N, K) binary cyclic code C divides

X 2v + 1 [62]. Let

x N + 1 = g(X)h(X).

Then h(X) is a polynomial of degree K of the following form:

h(X) = i -b hlX d" h2 X2 "{-"'" -}- hE-1XK-1 d- X K

with hi E GF(2) for 1 _< i < K. This polynomial is called the parity-check

polynomial. The dual code C 1 of C is an (N, N-K) cyclic code with generator

polynomial

XKh(X -1) = 1 + hK-1X +'" + hlX K-1 + X K.

The generator matrix for the dual code C ± is

0 1 hK_ 1 hK_ 2 ............... 1 0 ...

H= 0 0 1 hK-l hK-2 ............... 1 ... (5.15)

0 ......... 0 1 hK-lhK-2"'"
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which isin trellisorientedform. The trellisstructurefor C ± can be analyzed

in the same manner as for C.

The trellisof a cycliccode has mirror symmetry, i.e.,the right-halfand

left-halfof the trelliswith respecttothe centerare structurallyidentical.

To reduce the state complexity of a cycliccode, a permutation of the bit

positionisneeded [45,46].

The branch complexity ofthe N-sectiontrellisdiagram T constructedbased

on the TOGM G given by (5.14)can be evaluatedeasily.Firstwe note that

/_ . { 2, for0<i<K,_(g ) = 1, otherwise.

Suppose K < N - K. Then branch complexity of the trellis T is

E

K-I K-I

--_ _ 2' . 2-1- (N-- 2K) . 2K -1- __ 2K-' . 1
i=0 i----0

= 2. (2_ - l) + (N - 2K). 2K+ 2. (2_ - 1)

= (N-2K+4).2K-4.

For K > N- K, we have

N-K-I N-K-I

= 2'. 2+ 2. N)-2 + 2"-"'
i=0 i=0

= (4K- 2N+4).2 _V-K- 4.

E

(5.16)

(s.lz)

5.5 TRELLISES FOR NONBINARY LINEAR BLOCK CODES

The methods for constructing trellises for binary linear block codes can be gen-

eralized for constructing trellises for nonbinary linear block codes with symbols

from GF(q) in a straightforward manner. The symbol-level N-section trellis

diagram for an (g, K) linear block code C over GF(q) has the following basic

properties: (1) every branch is labeled with a code symbol from GF(q); (2)

except for the initial state, every state has at least one, but no more than q,

incoming branches; (3) except for the final state, every state has at least one,

but no more than q, outgoing branches; and (4) the initial state has no in-

coming branch and the final state has no outgoing branch. In the definition of
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a trellis oriented generator matrix, the leading "1" and trailing "1" of a row

are replaced by leading and trailing "nonzero components", respectively. The

maximum state space dimension pm_x(C) of the minimal N-section trellis for

C is upper bounded by

Pmax(C) __<min(K,N - K},

and the maximum number of states, [E(C)[m_, is upper bounded by

iS(C)lm.., < _,,{x,_-K}.

For Reed-Solomon (RS) codes over GF(q), the above equalities hold, i.e.,

p_,x(C) = min{K, N - K},

and

IS(C)l,... = qmin{K,N-K}.
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6 TRELLIS SECTIONALIZATION

So far, we have only considered bit-level N-section trellis diagrams for linear

block codes of length N. In a bit-level trellis diagram, every time instant in

the encoding interval F = {0, 1, 2,..., N} is a section boundary location and

every branch represents a code bit. It is possible to sectionalize a bit-level

trellis with section boundary locations at selected instants in the encoding

interval F. This sectionalization results in a trellis in which a branch may rep-

resent multiple code bits and two adjacent states may be connected by multiple

branches. Proper sectionalization may result in useful trellis structural prop-

erties and allow us to devise efficient trellis-based decoding algorithms. This

chapter is devoted in analyzing sectionalized trellis diagrams for linear block

codes. Section 6.1 presents the concepts and rules for trellis sectionalization.

In Section 6.2, the branch complexity and state connectivity are analyzed and

expressed in terms of the dimensions of codes related to the code being con-

sidered. In Section 6.3, construction of a sectionalized trellis diagram for a
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linear block code based on the trellis oriented generator matrix is presented.

Section 6.4 studies the parallel structure of a sectionalized trellis diagram.

6.1 SECTIONALIZATION OF A CODE TRELLIS

For a positive integer L _<N, let

U A .{he, hx,he,... ,h_} (6.1)

be a subset of L + 1 time instants in the encoding interval F = {0, 1, 2,..., N}

for an (N,K) linear block code C with 0 = he < hi < h2 < ... < hL = N.

An L-section trellis diagram for C with section boundaries at the locations

(time instants) in U, denoted T(U), can be obtained from the N-section trellis

T by: (1) deleting every state in _]h(C) for h E {0,1,... ,N} \ U and every

branch to or from a deleted state, and (2) for 1 _ j _ L, connecting a state

a E Ehj_l to a state a _ E Ehj by a branch with label a if and only if there is a

path with label a from state a to state a' in the N-section trellis T. In an L-

section trellis with boundary locations in U = {h0, hi,..., hL}, a branch from

a state in Ehj_,(C) to a state in Eh,(C) represents (hi - hi_l) code symbols.

A subgraph of a trellis diagram is called a subtrellis. The subtrellis of

T(U) which consists of the state space Eh__,(C) at time-h/_l, state space

_h_(C) at time-hi, and all the branches between the states in )']h__,(C) and

Ehj (C), is called the j-th section of T(U). The length of the j-th section is

hj - hi_ 1. If the lengths of all the sections of an L-section code trellis T(U)

are the same, T(U) is said to be uniformly sectionalized. In an L-section

trellis diagram with L < N, two adjacent states may be connected by multiple

branches (called parallel branches) with different labels.

Let ph s _= log s [_h# (C) I be the dimension of the state space ]Eh, (C) at time-

h 1. Then

(p0, Phi, ph,, • • •, P_L-I, PN)

is the state space dimension profile of the L-section code trellis T(U) with

section boundary set U = {0, h_, h2,..., hL-_, N}. From (3.7), we have

Ph# = K - k(Co,h,) - k(Ch,,N) . (6.2)

If we choose the section boundaries, U = {h0, hi,..., hn}, at the places where

Phl,Ph3,... ,PhL-I are small, then the resultant L-section code trellis T(U) has
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Figure 6.1. A 4-section trellis for the (8, 4) RM code.

a small state space dimension profile. The maximum state space dimension is

pL,_(C) _---- max Ph,. (6.3)
O<i<L "

In implementing a trellis-based decoder, such as a Viterbi decoder, a proper

choice of the section boundary locations results in a significant reduction in

decoding complexity.

Example 6.1 Again, we consider the (8,4) RM code given in Example 3.1

whose 8-section trellis diagram is shown in Figure 3.2 (or Figure 4.1). Suppose

we choose L = 4 and the section boundary set U = {0,2,4,6,8}. Follow-

ing the above rules of sectionalization of a code trellis, we obtain a uniform

4-section trellis diagram as shown in Figure 6.1, in which every branch repre-

sents 2 code bits. The state space dimension profile for this 4-section trellis

is (0,2,2,2,0) and the maximum state space dimension is P4,max(C) = 2. It

is a 4-section, 4-state code trellis. From Figure 6.1, we notice that the right-

half of the trellis (the third and fourth sections) is the mirror image of the

left-half of the trellis (the first and second sections). This mirror symmetry

allows bidirectional decoding. Furthermore, the code trellis consists of two

parallel and structurally identical (isomorphic) subtrellises without cross

connections between them. This parallel structure allows us to devise two

identical 2-state (Viterbi) decoders to process the trellis in parallel. The mirror
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symmetry and parallel structure not only simplify the decoding complexity but

also speed up the decoding process. For large code trellises, these structural

properties are very important in IC (integrated circuit) implementations.

AA

An L-section trellis diagram obtained from a minimal N-section trellis dia-

gram by deleting states and branches at places other than the section boundary

locations is minimal, i.e., it is a minimal L-section trellis diagram for a given

section boundary set U.

6.2 BRANCH COMPLEXITY AND STATE CONNECTIVITY

Consider the j-th section of a minimal L-section trellis diagram T(U) with

section boundary set U -- {ho,hl,... ,hL} for an (N,K) linear code C. The

boundaries of this section are hi_l and hi. Each branch in this section is

labeled with hj - hi-1 bits. Let a and _' be two adjacent states in the state

spaces _n,_l (C) and _hj (C), respectively. Let L(a, a t) denote the set of parallel

branches connecting _r and or'. Let L(cr0, _r) denote the set of paths connecting

the initial state or0 to the state s,. Sometimes, it is convenient to regard the

parallel branches, L(a, at), between two states as a single branch. This single

branch is called a composite branch, and L(cr, a _) is called a composite

branch label.

The branch complexity of a trellis section is measured by: (1) the size of a

composite branch; (2) the number of distinct composite branches in the trellis

section; and (3) the total number of composite branches in the trellis section.

The overall branch complexity of the trellis is then the sum of the trellis section

branch complexities. These three branch complexity parameters can be ex-

pressed in terms of the dimensions of Chj_l,h_, C0,h#_l, Ch_,A', and Ph__l,h_ (C)

which can be obtained from the TOGM G of C.

Let ah__l and _rh# be two adjacent states with _hj-i E _h__l(C) and cr_j

E Ehi(C). It has been shown in Section 3.7 that the parallel branches in

L(ah___, _hj) form a coset in the partition

tr

pn,_,,h,(C)/Ch__,,_,,.
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Therefore, the number of parallel branches between two adjacent states ah__1

and ah# in the j-th section of T(U) is

IL(,,n,_,,ah,)l = 2_(c",-1.',). (6.4)

and

In Section 3.7,we have also shown that

L(a0, ah#_, ) 6 Po.n,_, (C)/C_'a,_I (6.s)

L(ao,,%) epo,h,(c)IC_',n,. (6.6)

Ifan,_1 and an, are adjacent, then

L(ao,an,_,) o L(ahj_:,ah,)

{U 0 V: U e n(ao, an,_1 ) and v e L(ah,_,, an, )}, (6.7)

is the set of paths in T(U) that diverge from the initial state a0, converge

at the state an#_,, and then transverse the parallel branches in L(anj_l,an,)

to the state o'nj as shown in Figure 6.2. It has also been shown in Sec-

tion 3.7 that L(ao,an,_,) o L(ah#_,,ah_) is a subcode of a coset in the par-

tition po,h# (C)/Ct:n#. Let Y:'h,_, (an#) denote the set of states in the state space

:Enj_I (C) that are adjacent to state an# as shown in Figure 6.2. Then

U LCao,an,_,) oL(a.,_l, an,) _ LCao,an,) (6.8)

isa¢osetin thepartitionP0,n,(C)/C_%.
Note that the dimensions of L(ao, an,_1), L(ah,_,, an,) and L(ao, an#) are

klC tr _ k,C tr _ k/C tro,h#_,J, ( nj_,,njJ and t 0,h,J, respectively. It follows from (6.8) that

the number of states in 3_uj_l (ah_) is given by

klCtf _ k_C _ _ kiC_r
Ir%_,(an,)l = 2' o_,,-, o.,_,,-, .,_,.,)

= 2k(c°.%)-_(c°.%-,)-_(c%-,'% } (6.9)

This implies that the number of composite branches converging into a state

anj E _ni(C), called the incoming degree of anj, is given by

deg(o'nj)ia a_ 2k(Co,,.fl-k(Co.,.__l)-k(C%_,.,,,). (6.10)
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l l
Time-hj_t Time-hi

Figure 6,2. State connectivity.

This number is a measure of the state connectivity of the sectionalized code

trellis T(U). In an IC implementation of a Viterbi decoder, this number is

known as the radix number, a key design parameter.

Since each composite branch L(crh__l,_rh,) in the j-th section of T(U) is a

coset in the partition Phj__,hj (C)/Cth__s,h_, the number of distinct composite

branches in the j-th section of T(U) is

2k(nh__,,hj(C))--k(Ch_-I,"j). (6.11)

It follows from (6.2) and (6.10) that the total number of composite branches in

the j-th section of T(U) is given by

2K--k(Co'h_-l)--k(Chj'N)--k(ChJ-l'_J ). (6.12)

From (6.11) and (6.12), we find that each distinct composite branch appears in

the j-th section of T(U)

2/(- _(co.hj_ 1) -_(ch, .N)-- k(nh__ l.h_ (C)) (6.13)
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times.

Prom (6.2)(with hj replaced by fij-1)and (6.12),we can compute the

number of composite branches divergingfrom a state #hj-1 E _j_I(C) at

time-fij-ias

2t(Ch__1.N)--t(C_#.N)--h(Ch#_1.h#) (6.14)

which iScalledthe outgoing degree ofch#_s,denoted deg(ch#_s)o,t.Equa-

tions(6.4),(6.10)-(6.12)and (6.14)givethe branch complexity and statecon-

nectivityof the j-th sectionof a minimal L-sectiontrellisT(U) with section

boundary locationsinU = {rio,hl,...,h/,).

Define

53 A log_ deg(_h#)iu

with anj E End(U). The ordered sequence (#1,6:,...,5L) is called the con-

verging branch dimension profile (CBDP). Define

Aj A log 2 deg(o'_,_)out.

The ordered sequence (A0,A1,... ,AL-1) is called the diverging branch di-

mension profile (DBDP).

Let M i denote the total number of composite branches in the j-th trellis

section (given by (6.12)) and define

_j A log 2 Mj.

The ordered sequence

(_1,_,... ,_)

is called the branch complexity profile (BCP). The branch complexity of

the minimal L-section trellis T(U) in terms of the total number of branches in

the trellis is given by
L

B = _ 2_,. 2_c%-,.', _. (6.15)
j=l

Since each branch in the j-th section of T(U) represents hj - hj-1 code bits, it

is equivalent to hj - hi_ i branches in the bit-level N-section trellis T for the

code. Therefore, the branch complexity in terms of bit branches is given by

L

E = _(hj- hj__)2_,.2_I_',-,.',_. (6.16)
j=l
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Ifthe sectionboundary isU = {0,1,2,...,N}, then (6.16)givesthe branch (or

edge) complexity of the bit-levelN-section minimal trellisofthe code.

6.3 A PROCEDURE FOR CONSTRUCTING A MINIMAL L-SECTION

TRELLIS

A minimal L-section trellis diagram for an (N, K) linear block code C can be

constructed directly from the TOGM G. Let U = {ho, hi,..., hL} be the set of

section boundary locations with/to = 0 < hi < ... < hL-1 < hL = N. Again

the construction of the minimal L-section trellis diagram T(U) with section

boundary set U is carried out serially, section by section. Suppose T(U) has

been constructed up to the j-th section (i.e., up to time-hi) with 1 _< j <: L.

Now we begin to construct the (j -t- 1)-th section from time-hi to time-hj+l.

Partition the rows of the TOGM G into three disjoint subsets, GPj, G/, and

G'h_as follows(alsoshown inFigure 6.3):

(i) Gnh#consistsofthoserows in G whose spans are containedinthe interval

[1,hj].

(2) G_j consists of those rows in G whose spans are contained in the interval

[h# -I- 1, N].

(3) G'hj consists of those rows in G whose active spans contain the time

index hi.

It isclearthat G_j and Gh/i generate the past and futurecodes, Co,hi and

Ch_,Jv,respectively.Let A"hj be the set of informationbits that correspond

to the rows of G 8_. Then the bits in Ash#definethe statespace Ehj(C) at

A"time-hi. That is,for any binary Ph, = [ h_[-tuple,which representsvaluesof

informationbitsin A s thereisa correspondingstatein Eaj (C).hj,

To determine the composite branches between statesin Eh# (C) and states

in Zh_+_(C) and the parallelbranches between two adjacentstates,we further

partition the rows of G/j into three subsets, Gl'Phj,hj+_,Gh_,hj+_l'"and Gfhj+l as

follows (see Figure 6.3):

(1) Gl'Ph#,hj+:consistsofthose rows ofGhf whose spans are contained in the

interval[hi+ 1,hi+l].
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Time _..

0 h

G_,

o
0

,I 0

hi+z N

0 0

p,,.,_,, ¢at,_'.,,,) 0

1,s

P_j,_s+, (Ghj ,_j+, )

0

Phj,hj+,(Ga,,aa+1) 0

}a_,÷,

Gl,V

Figure 6.3. Partition of the TOGM G.

f:-f'" consists of those rows of Gh/ whose active spans contain the(2) --h,,h,+,
time index hj+l.

(3) The remaining rows in G_, form G lh,+,"

Let A Lp and A l's denote the subsets of information bits that corre-
hj,hi+ , h,,hj+,

spond to the rows in G y'p and _'-f" respectively. Then the information
hi,hi+, V h_,hj+ , '

bits in these two sets may be regarded as the current input information bits.

These input bits together with the state of the encoder at time-h/ uniquely

determine the output code bits between time-hi and time-hi+,. Note that

the information bits in A Lp only affect the output during the interval be-
hj,h3+l

tween time-hi and time-hj+l. Therefore, they determine the parallel branches
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between two adjacent states. The information bits in A/'° determine the
h_,hj+l

diverging composite branches from a state in Ea_ (C).

l,p
Let Ph,,h,+_ (Gh#,_j+_), Ph,,_#+i (G/_'j_h,+ x) and Ph,,hj+l (G_#) denote the trun-

cations of G f'p Gfh:h#+_ and G_,# from time-hi to time-hj+l. The rows in
h_,hj+l 1

,fd.p '_span the code C tr and the rows in ph,,h,+.(Glh_hj+,).
phi ,h j+l _s"r hj,h_+l / hj,hj+l '

f,J
Ph,,a,+l (Ghj,hj+_) and ph,,aj._ (G_#) span the truncated code Pa#,a,+x (C). Then

every composite branch between a state ahs E Y'.hj(C) and a state ah#+x E

Zaj+I (C) is a coset in the partition Ph,,nj+l (C)/C_,h#+ x. The number of par-

allel branches between two adjacent states is therefore [C_,a#._ [.

Let aaj be the state at time-hi defined by the binary ph,-tuple formed by

the binary information bits in the set A_,,

G" - (D (i) ,g_)} denote thewhere Phj= log21_j(C)l = I h_l" Let lgl ,g2 , .-. rows

in G_. Then

u = a_ j)" 9[J) + ag j)" g_J) +'"-F a_: ), "g_:)j (6.18/

is a codeword (or path) passing through the state ahj at time-h/. Let ph_,_,+, (u)

denote the branch on u from time-hi to time-h/+x. Let Bh_.h,+, denote the

code of length h1+1 - h I generated by p_,,.h,+, (G_:h,+x). Then for every vector

b _ Bh_,hj+_, there is a composite branch diverging from the state ahj which

consists of the following parallel branches,

(p_,,h,+, (U) + b + • : • _ C tr }.h_,h.j+_
(6.19)

Therefore, the number of composite branches diverging from the state am, is

IB_,,_,+, [.

Next,we analyzethestatetransitions.Partitionthe matrixG_,,intotwo

submatrices, G_,:_,+, and G_,':,_,+,,where

(1) G_:_+I consists of those rows in G °h_ whose active spans do not contain

the time index hj+_, and

(2) G_,,_+,"" consists of those rows in G'h_ whose active spans contain the

time index hj+x.
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Let A°'Pn_,aj+Iand A_h_+l denote the sets of information bits corresponding

to G_n,+I and G_'j',hi+_, respectively. Then the set of information bits that

defines the state space Eh,+l (C) at time-hj+l is given by

At,., -- (A_,\ A',_h,,_,+,)uA_;'_,÷,

,... o 1.,.,, (6.20)

Therefore, the state transitions from time-hi to time-hj+l are completely spec-

flied by the change from A ° to A °h_ hj+l"

Define

= = IG,,,h,+, I. (6.21)Ph,,h,+, IAh,,h,+,l

Then it follows from (6.20) (also Figure 6.3) that

As'P ] = Ph, -- Pha.ha+l , (6.22)

and

IA_';h,,I = ,_,+, - p_,,_.,. (6.23)

Let a° be the binary (Ph_ -- Phj,h_+=)-tuple formed by the binary information

bits in the set A°'Phj,h_+l, ahj be the binary phj,hj+_-tuple formed by the infor-

s,8 and a_,, be the binary (Ph_+_ - ph_,hj+_)-tuplemation bits in the set Ah,,h,+_,

formed by the information bits in the set Ahf':h,.. Then (a°hj,ah_) defines a

state, denoted cr(a_,, ah_), in the state space E_,, (C) at time-h/, and (am,, a'h_)

defines a state, denoted a(ah,, a_,,), in the state space Eh,+, (C) at time-hj-+x.

State a(a%, ah,) is adjacent to state a(ah,, a'h,). The composite branch that

connects these two states in the trellis is given by (6.19) with

b = a'h, .pha,h,+ , (Gfh'_h,+,). (6.24)

Note that these two states share a common ahj. For a phj _ ah,, the state c(a%,

ah#) at time-hi is not adjacent to the state a(a_h,, a_,,) at time-hj+_. Therefore,

from each state ff(O,°hj, aha) in _h, (C), there are 2P_, +' -P_'",+_ possible tran-

sitions to the states a(a_,, a_,) in _,+_ (C) with a_, • {0, 1}P_,+ x-p_,'_,+'.

This completely specifies the state transitions from time-h/to time-h_+_.

State labeling based on the state defining information set A_ with 0 < j < L

is exactly the same as described in Section 4.1. We may use either a K-tuple
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or a PL,max(C)-tuple to labela state. In general,pL,,,_x(C)ismuch smaller

than K, and hence using a PL,m.x(C)-bitlabelfora stateismore efficient.

Suppose an L-sectiontrellisdiagram T(U) with boundary locationsetU =

{ho,h,,...,hL} has been constructed up to time-hi. The trellissectionfrom

time-hi to time-h#+, can be constructedby the followingprocedure:

(1) Form and labelthe statesin Eh#+,(C) based on A_#÷.

(2) For each state in Eh,(C), determine its transitionsto the statesin

Eh#+,(C) based on the statetransitionrulesdescribedabove.

(3) For two adjacent states, _,(a°h#,ah#) and ¢r(ah,,a;,,), at time-hi and

time-hi+l, connect them by parallel branches given by (6.19).

Repeat the above procedure until the L-section trellis T(U) is completed.

Example 6.2 Consider the (8, 4, 4) RM code with the TOGM G as

G ____

i 1 1 I 0 0 0 0

0 1 0 1 1 0 1 0

0 0 1 1 1 1 0 0

0 0 0 0 1 1 1 I

Suppose we want to construct a 4-sectiontrellisforthiscode with boundary

locationsin U -- (0,2,4,6,8). First,we find from G that the state space

dimension profileis(0,2,2,2,0). Therefore,P4,max(C)= 2.We alsofindthat

C t' C t' C" C"0,5= e,,={o},

[11] i. [ ]P°'2(G°/i_)--- 0 1 ' p2,4(G2,,)= 1 1 ,

i,. [ ]p,,s(a,,s) = 1 1 , Ps,s(GI:;) = 0.

The state defining information sets at the boundary locations, 0, 2, 4, 6, and 8,

are given in Table 6. I. Following the constructing procedure given above, we

obtain the 4-section trellis diagram for the (8, 4, 4) RM code as shown in Fig-

ure 6.4, where the states are labeled based on the information defining sets

using p,,max(C)-tuples with p,,max(C) = 2.

AA
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Table 6.1. State defining information sets for a 4-section trellis for the (8, 4, 4) RM code.

Time

0 2 4 6 8

A" 0 {a_,a2} {a2,a__} {a_,_4} 0hs

AI,, {a_a_} {,,_) {_,} 0 0
hj,hj+l

Statelabel (al,_2) (a2,_3) (_2,a4)

fro

10_01

a!

Figure 6.4. A minimal 4-section trellis diagram for the (8, 4, 4) RM code with 2-bit state

labels.

Construction of T(U) can be achieved by using the state labeling based on

a parity-check matrix H for C [101]. Let

Hh,,h_+_ -- [hhj+l, hh#+z,..., hh#+,] (6.25)

denote the submatrix of the parity-check matrix H of C that consists of columns

from hhj+l to hhj+,. Let l(_Yhj) be the label for the state ahj. Then the

composite branch given by (6.19) connects the state ah, to the state a_i+ _ E

Ehj+_ (C) at time-h/+1 that is labeled by

l(ahj+,) ---- l(ah,) ÷ (ph,,h,+,(u) % b). I_h,,h#+ . (6.26)
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Eq.(6.26)givesthe connectionfrom a startingstateah, at time-hi to a desti-

nation stateerh,+1at tirne-hj+,.

To facilitatethe constructionof the (j+ 1)-thtrellissectionbetween time-

hj and time-hi+x, we form a table,denoted Qh#, at the completion of the

constructionof the j-thsection.Each entry inQh# isa triplet,

(1,1(.),c).

The firstcomponent f isa binary ph,-tupleformed by a specificcombination

of the p_j information bitsin A s This ph#-tupledefinesa specificstatea inha"

Eh, (C). The second component l(_r)issimply the labelof state#. The third

component isgiven by

= Ph,.hj+_(.f"G_#), (6.27)

where u = f. G_j is given by (6.18).

Construction of the (j + 1)-th section of T(U) is carried out as follows:

(1) Form C_,r,h,+, and Bh,,h,+,.

(2) For every entry (f,/(a),c) e Qh,

composite branch,

and every b E Bhj,h,+l, form the

{b+c+z : z • C_r#,h#+,}, (6.28)

(3) For every starting state a • Ehj(C), and b • Bhj,h,+,, the destination

state a' • Eh,+,(C) is labeled with

l(.') l(.)+(b+c) T= •ghj,h,+,• (6.29)

Repeat the above process until the L-section trellis T(U) is completed.

The trellis construction procedures presented in Section 4.1, Section 4.2, and

this section only provide the general steps of construction. A detail and efficient

trellis construction procedure is given in Appendix A.
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6.4 PARALLEL STRUCTURE

Consider the trellis section from time-h I to tlme-hi+t. For a given Phj,h#+s"

tuple ah_, define the following two sets of states at time-h I and time-hi+l,

respectively:

= ): o • 10, (6.30)

and

=" .;, e {0, }. (6.30

Then SL(ah,) and SR(ah,) are subspaces of the state spaces, _%(C) and

_%+1 (C), respectively. From the state transition analysis given in the previous

section, we observe the following:

(1) Every state in SI,(a%) is adjacent to all the 2Ph'+l--Ph''h#+ 1 states in

SR(ah#) and is not adjacent to any other state in _%+_(C).

(2) Every state in SR(a%) is adjacent from all the 2P_#-Ph#'%+* states in

SL(ah_) and is not adjacent from any other state in _hj(C).

Therefore, the states in SL(a%), the states in Sn(a%), and the composite

branches connecting them form a completely connected suhtrellis (known

as a complete bipartite graph). Since there are 2P_J'hJ+1 possible p%,%+_-

tuple a%, there are 2Ph,'%+ * such completely connected subtrellises in the

trellis section time-h/ and time-hj+l. All these subtrellises are structurally

identical (isomorphic), and there are no cross connections between them.

These subtrellises are called parallel components. The parallel structure of

a trellis section is shown in Figure 6.5.

It follows from the definition of P%,h_+! given by (6.21) and the partition of

the TOGM G shown in Figure 6.3 that

Ph,,h,+, = K -- k(Ch,,N) -- k(Co.%+,) + k(C%,%+ 1). (6.32)

Therefore, the total number of parallel components in the trellis section from

time-h/to time-hj+l is

2K-k(C%._)-k(Co.%+O+l,(C%.%+ _). (6.33)
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2Phj._#+._
parallel

components

• time hi hj+l

2Ph#--P_#'h#+II_Istates 2Ph#+1-Ph#'"#+tstates

2PhJ--OhJ'_'J+_I_ 1states 20hJ+_--Phi'hJ+'states

r,h,(c) r,h,+,(c)

Fisure 6.5. Parallel structure in a trellis section.

From (6.2) and (6.33), we find that the numbers of states in SL(ah,) and

SR(ah,) are:

2k(co._j+_ )-k(Co.hj)-k(C_._+z) (6.34)

and

2k(c_j .,,..)-k(Chj+ 1.:v)-Ic(C,,_.hj+ s), (6.35)

respectively. Equations (6.30) to (6.35) completely characterize the parallel

components in the (j + 1)-th trellis section of T(U).

Consider the 4-section trellis diagram for the (8, 4) RM code shown in Fig-

ure 6.4. There are two parallel components in both the second and third sections

of the trellis. Each component has two states at each end.

Analysis of the parallel structure of a sectionalized code trellis is presented

in the Appendix A.
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4 states 4 states 4 states

ao al

4 states 4 states 4 states

a coset of RMo,2 in RM2,2

Figure 6.6. The 4-section minimal trellis diagram T({0, 4, 8, 12, 16}) for RM2,4.

Example 6.3 Consider the RM2,4 code which is a (16,11) code. The 4-

section minimal trellis diagram T(U) with section boundary locations in U --

{0, 4, 8, 12, 16} is depicted in Figure 6.6. There are two parallel and structural

identical components in both the second and third sections of the trellis, and

each component is a complete bipartite graph. Each component has 4 states at

each end. Each state at boundary location 8 has 4 composite branches diverg-

ing from it. For 1 _< j _< 4, p4(i_l),4i(RM2,4) = RM2,2 and C tr4(i_1),41 = RMo,2.

Therefore, there are 2 parallel branches between any two adjacent states whose

4-bit label sequences form a coset of RM0,2 in RM2,2. In both the second and

third sections of the trellis, each coset in RM2,2/RM0,2 appears 4 times as the
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composite branch label. In fact, the entire trellis consists of two 4-section par-

allel and structurally identical subtrellises without cross connections between

them. The maximum state complexity is 8. Therefore it is possible to devise

two identical trellis-based decoders, say Viterhi decoders, to process the entire

trellis in parallel. This not only simplifies the decoding complexity but also

speeds up the decoding process.

AA

The parallel components in a trellis section can be partitioned into groups of

the same size in such a way that [44]: (1) two parallel components in the same

group are identical up to path labeling, and (2) if there is a common label

sequence in two parallel components, then they are in the same group. Since all

the parallel components in a group have the same label set, in a trellis-based

decoding algorithm, only the metrics of the branches in one of the parallel

components need to be computed. This results in a reduction of branch metric

computation.

Let Ca_,h,+, denote the subcode of C that consists of those codewords

whose components from the (hi + 1)-th bit to the hj+l-th bit positions are

all zero. Then each group consists of 2xh, .h,+, (c) identical parallel components

where [44]

_n,,n,., (c) = k(G,,_,.,) - k(po,h,(Co,h,+,)n po.h,(G,,a,÷,)) -- a(Ch,+,,M).
(6.36)

Each paralhl component can be decomposed into subtrellises with simple

uniform structure [44] as shown in Figure 6.7. Consider a parallel compo-

nent, denoted A. Let _h, (A) and _n_+l (A) denote the state spaces at two ends

of A. We first partition En# (A) into blocks, called left U-blocks, which satisfy

the following condition:

(B1) Iftwo statesan, and a' in _n# (A) are in the same leftU-block, thenh#

they have the same setofdivergingcomposite branches,i.e.,

{L(_n,,_n,+,) : an., e r%+,(^))

= a' r%+,(^)}{L( h#,ah,+,) : an#+, • (6.3?)
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A left

U-block

r-

l

A U-block pair and

branches between them
A right

U-block

Time hj h j+l

Figure 6.7. Partition of a parallel component.
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and otherwise

e

(6.38)

We next partition _hj+l (A) into blocks, called right U-blocks, which satisfy

the following conditions:

(B2) If two states aa)+, and a' in _h)+l (h) are in the same right U-block,hj+l
then they have the same set of converging composite branches, i.e.,

{L(ah,,ahj+,):a_, E _h,(A)) = (L(ah,,_,_+,): ah) E _h,(A))

(6.39)
and otherwise

{L(ah,,ah,+,) : ah, e _h)(h)} N {L(ah,,a_,+,) : ah, e Eh,(A)) = 0.

(6.40)

Each left U-block (or right U-block) consists of 2v',''*+' (c) states [44], where

va,,n#+,(C) _=k(po,h)+,(_h,,hj+, n (Co,at+ , ¢_ebb,N))) -- k(Co,hj). (6.41)

A pair of a left U-block and a right U-block is called a U-block pair. It follows

from the conditions (B1) and (B2), that eaz.h U-block pair (Bh, Bh_+, ) has the

following uniform properties:

(1) For any two states ah_+l and a p in Bh,+,,h_+t

{L(_h,,an,+,) : ah, • Bh)} = (L(an,,a_,+,) : a,,, • Bh,). (6.42)

(2)For any two states _n# and a _ in Bn_,hj

(L(an,, an,+,): an,+, • Bn,+, } = {L(a_,, an,+,): ah_+l • Bn,+, }.

(6.43)
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The first property simply says that for a U-block pair (Bha,Bhl+t), the set

of composite branches from states in the left U-block Bh2 converging to any

state in the right U-block Bh_+_ is the same. The second property simply

says that the set of composite branches diverging from any state in Bhj to

states in Bhj+_ is the same. Two different U-block pairs have mutually disjoint

composite branch sets.
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