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ABSTRACT

As a promising model for the X-ray emission from radio-quiet quasars and Seyfert 1 nuclei, we present a
nonthermal disk-corona model, where soft photons from a disk are Comptonized by the nonthermal electron-
positron pairs in a coronal region above the disk. Various characteristics of our model are qualitatively similar
to the homogeneous, spherical, nonthermal pair models previously studied, but the important difference is that
in our disk-corona model ",/-ray depletion is far more effÉcient, and, moreover, the y-ray annihilation line is much
less prominent. Consequently, this model naturally satisfies the observed constraints on active galactic nuclei.

Subject headings: accretion, accretion disks--galaxies: Seyfert- gamma rays: theory--radiation
mechanisms: nonthermal- radiative transfer--X-rays: general

1. INTRODUCTION

Among various models suggested for the roughly power-law
X-ray spectrum from a class of active galactic nuclei (AGNs)
represented by type 1 Seyfert nuclei and radio-quiet quasars,
the most promising appears to be the Comptonization of soft
photons by energetic electron-positron (e -e _) pairs. Pairs
could be produced thermally (e.g., Sunyaev & Titarehuk 1985;
Lightman 1982) or nonthermally (e.g., Guilbert, Fabian, &
Rees 1983, hereafter GFR83; Fabian et al. 1986; Lightman &
Zdziarski 1987, hereafter LZ87; Done & Fabian 1989, here-
after DF89; Zdziarski et al. 1990, hereafter zg0; Coppi &
Blandford 1990, hereafter CB90; Zdziarski & Coppi 1991,
hereafter ZC91). In essentially all of the nonthermal models
investigated to date, a homogeneous spherical geometry is
adopted, where both soft and hard components are uniformly
distributed within a spherical region. These types of models
can naturally explain many aspects of the observed spectrum,
but pose a serious problem in the sense that they produce a
strong y-ray annihilation line which has not been observed
(see figures in, e.g., LZ87, DF89, and Z90). In our very recent
work (Kcllen, Tsuruta & Tritz 1995, hereafter KTT95) a
possible geometrical effect is introduced to the nonthermal
pair-cascade model. In this communication we apply an im-
proved version of the testing methods developed by DF89 to
our nonthermal disk-corona model and demonstrate that our

model more naturally satisfies the observed y-ray constraints.

2. PtlYSICAL MODEL AND METHOD OF SOLUTION

A Compton model involving e -e + pairs generally consists
of two components, the soft and hard photons (see, e.g.,
GFR83 and DF89). In our model a planar-surface source, such
as a disk, emits the soft photons. It also emits T-rays which
initiate a pair cascade in the space above the source, and a pair
corona results. Detailed calculations of the structure of the

resulting pair-photon corona and of the spectral reprocessing
are carried out in KTT95. Our basic equations and approach
are similar to those in LZ87 and DF89, but the input micro-
physics has been considerably updated and improved, mostly
by utilizing the work of CB90 and ZC91. Also, homogeneous
spherical radiative transfer equations are replaced by a system
describing radial out-streaming of radiation from the source.
The major difference between the earlier homogeneous spher-
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ical model (hereafter referred to as "HS Model") and ours is
that, in our model, the primary seed photon injection (both
soft and hard) is confined to the region near the disk surface,
while in HS Model it is distributed uniformly throughout the
entire spherical emitting region. We consider that our model is
physically more realistic, because in reality the efficient MHD
acceleration of electrons to highly relativistic regimes, which in
turn will produce the hard lj, component as, e.g., synchrotron
photons, probably takes place very close to the accretion disk
surface (e.g., Galeev, Rosner, & Vaiana 1979).

For the primary spectrum of soft photons emitted from the
disk, our code will accept arbitrary spectra within the range of
dimensionless photon energies 10 -a <x< 2 × 104, where
x = hu/m,,c 2. As a simple model for the so-called UV bump,
which exists in most radio-quiet quasars and Seyfert I nuclei,
we assume a primary soft photon source spectrum given by the
specific flux distribution F,.(x) (ergs cm -2 s -l per unit x), which
is proportional to a PIanck distribution at temperature T,_. A
characteristic soft energy x_ = 2.8kTJm,.c 2 is defined at the
peak of the soft emission. This simplification may affect the
realistic modeling of the soft X-ray cxcess region. However,
our main concern in this paper is the high-y-ray region, and,
hence, this simplification will not affect our major conclusions.
The compactness parameter corresponding to soft emission is
defined by 1_= L_rr/Rm,.c 3, where L, = 47rR" f F,(x) _h" is the
soft luminosity and _r r is the Thomson cross section. (R is thc
effective radius of the emission region.) Substantial pair
production requires that a sufficiently strong flux of hard
(x >_ 1) photons bc present. Various authors have argued that
accretion flows are natural sites for y-ray production, through
the presence of one or more particle acceleration mechanisms,
such as shocks, magnetic reconnection, etc. It has been found
that these relativistic particle accelerations generally produce
power-law radiation (e.g., GFR83, LZ87, and DF89). There-
fore, a "hard" primary spectral component, F/,(x), is generally
modeled as a power law, with the spectral energy index o_uand
extending from the soft energy x, to a maximum emitted
energy x,,. The compactness associated with hard emission is
defined as lh = Lj, crv/Rm_c _, where Lh = 47rR'- f Fj,(x) dx is the
hard luminosity. The relative strength of the soft and hard
emission is set by the model parameter l,/lh. The total com-
pactness of the source is l = L_rr/Rm_c 3, whcrc 1 = 1_+ lh and
L = L, + Lh is the total luminosity.
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Fin. I.--Emergent speclra are shown for power-taw photon injection (solid

curves),withx_ - 3 × 10 S,x,,, = 2.25 × 103, a0 = 0.5, lJlh = 0.25, aridly, = {1,

10, I00, 10013}. The dotted curves reproduce the results of Fig. 2 in LZ87,

roughly for the same parameter ranges.

We treat radiative transfer by modeling the surface cascade
as a shower atmosphere in which radiation streams outward
through the pair plasma (see Tritz 1990, hereafter T90). This
and some other simplifying assumptions were relaxed in T90,
where the general case of arbitrarily anisotropic atmospheres
is investigated. However, we have found that the present
results agree qualitatively with the more exact results of T90,
within a factor of ~2. The boundary conditions at the emission
surface are obtained from the primary emission fluxes. For
both the boundary conditions and the various rate equations
which enter the photon continuity equation, the improved
methods and equations in CB90 are adopted. For each photon
energy x, the photon continuity equation is integrated from
h = 0 to typically h = Rm where RI, is the effective disk radius.
At each h the electron continuity equation is then integrated to
obtain the nonthermal-pair density. The thermal-pair density
and temperature are obtained by requiring that pair creation
and annihilation be in equilibrium and the thermal population
be in equilibrium with the radiation field. Hence, photon
densities at each height h are sufficient information to calcu-
late the pair distribution at h, which consists of the nonther-
mal-pair density NiT, h) (electrons and positrons per unit
volume per unit Lorentz factor y) and the density No(h) and
temperature To(h) of thermalizcd pairs. A more exact iteration
method was adopted in T90, but we obtained similar results.
The reason is that, owing to the absence of primary seed
photon injection except at the base of the coronal region, no
energy dissipation takes place in the whole coronal space
except at the base, and also that the optical depth is much less
than in the HS case (see § 4). Consequently, the contribution
from the matter and radiation above h is not significant. In
view of the excessive computing requirements needed for the
exact approach and the practical usefulness of the current
simplified method, we conclude that the present approach is
justified. Further details on the equations and methods are
found in T90, KTT95, LZ87, DF89, and CB90.

3. RESULTS AND COMPARISON WITtl OBSERVATION

The solid curves in Figure 1 show emergent spectra from a
representative model with parameters chosen for comparison
with figures in LZ87 and DF89. Injection parameters are chosen
as x_=3xlO 5, ljib=0.25, x,, = 2.25 x10 _, u0=0.5, and
lh = {1, 10, 100, 1000}. Various spectral behavior noted in
HS Model (e.g., LZ87, DF89, Z90, and ZC91) is seen in our
disk-corona results as well. On the other hand, a comparison

of the T-ray region in our results with that of HS Model
illustrates important differences. In Figure 1 the dotted curves
show the emergent spectra from the roughly equivalent mod-
els in Figure 2 of LZ87. See KTF95 and Tg0 for detailed
comparison of photon and electron injection parameters. The
main quantitative difference (e.g., the slope and intensity of
the power-law part of the spectra at a given lh) is due to the
improved microphysics we adopted. The major important
differences to be noted are (i) the y-ray annihilation line is
much weaker for higher lh, and (it) depletion of the higher
energy T-rays is significantly more enhanced in our disk-
corona model than in HS Model.

In order to conduct the observational tests on our model,
the general approach of DF89 and LZ87 is adopted, with the
following important revisions. When DF89 and LZ87 con-
ducted their observational tests, one constraint was that the
X-ray energy index oq be 0.1-1. The recent development
within the last few years, in both observation and theory,
however, indicates that the observed X-ray energy index for
_>2 keV is close to 0.7, and that this o_ is obtained as the final
value for the spectrum reprocessed further through reflection
by the cold matter, if the index of the intrinsic spectrum
emerging from the pair cascade is ~0.7-1. Hence, the follow-
ing updated constraints are applied to our model in order to
delineate a parameter space in which our model is consistent
with observations. Our first constraint, therefore, is that the
2-10 keV index of our emergent spectra (from the pair
atmosphere before reflection) be in the range 0.7 < _, < 1. In
our emergent spectra, we calculate c_, from the slope of a
power-law fit to this energy band. Second, the ratio of UV
luminosity to X-ray luminosity, lJl_, is restricted to the con-
servative range of 1 < l_/I_ < 300. Our upper limit is somewhat
higher than the value adopted by DF89, because we take into
account the uncertainty in the size of the UV bump. (Here the
X-ray compactness parameter is defined as 1_ : L,GT/Rm,,c 3,
where L_ is the X-ray luminosity in the 2-10 keV range.) The
soft compactness parameter l, is a model parameter, while l_ is
obtained by integrating energy flux over 2-10 keV. Third,
observations of the T-ray background provide an upper limit to
the strength of the I-I00 MeV band for a given 2-10 keV flux.
The y-ray excess is defined as the ratio of the 1-100 McV
energy flux to the maximal value allowed by oe_. To be
consistent with the T-ray background measurements, AGNs in
general must exhibit excesses less than or equal to unity. The
fourth constraint is a maximum strength of the annihilation
line required by the failure to detect it in observed spectra.
Line strength is measured in terms of its equivalent width, EW
(keV). Following DF89, if it is assumed that turbulent veloc-
ities in the _stem reach 0.3c, then annihilation lines must have
EW < 300 keV to remain undetectcd.

The results of our testing are summarized in Figures 2-4.
The dotted curves represent a relatively high-energy injection
capable of producing several generations of pairs, with
x, = 10 4 and x,,, - 1.333 x 1W, while the solid curves repre-
sent a low-energy injection capable of producing one genera-
tion of pairs, with x, = 10 s and x,,, = 13.33. In both cases
_0 = 0.5 and 0.1 <l_, < 7 x 10_. These models correspond

roughly to lhe dotted and solid curves, respectively, in DF89.
Figure 2 shows the T-ray excess plotted against the EW of the
annihilation line, for 0.1 < lJlh < 10. The acceptable region
lies below the T-ray excess = 1 line and to the left of the
EW = 300 keV line. The part of the curves which lies outside
this acceptable region corresponds to lh < 10. Hence we
conclude that all of the parameter values for It, > 10 yield
models which arc consistent with these two constraints. Figure
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x, - 10 -4 and x,, = 1.333 x 104 .

3 shows the y-ray excess plotted against Ijl,. The numbers
attached to the curves refer to the wtlues of I,/4,. To be
consistent with the associated constraints, models must lie in
the region below the excess = unity line, and between the
IJI, = I and l_/l, = 300 lines. We note that, again, the T-ray
excess constraint is satisfied by all of the parameter combina-
tions when 4, > 10. Figure 4 shows the X-ray spectral cncrgy
index a, plotted against l,/1, (with the same notation as in
Figurc 3), and indicates that the observational constraint
0.7 < a, < 1 is satisfied for a significant range of our runs.
From Figures 2-4 together, we find that successful models,
consistent with all constraints, arc produced by the following
widc rangc of injection parameters: 0.1 <_ lylh <_5 and 10 _<4,.

4. DISCUSSION AND CONCLUDING REMARKS

DF89 found that no homogeneous spherical (HS) injection
model robustly satisfies all constraints. They did not take into
account the effect of reflection. By including the reflection by
cold matter, Z90 claim that this problem is solved, because the
correct emergent spectral index should be largcr. Then, since
larger a, corresponds to larger 4, with more enhanced high-
energy y-ray depletion, the T-ray excess no longer appears.
However, with closer examinations, we note that, paradoxi-
cally, in their HS Modcl the situation which solves the T-ray
excess problem makes the annihilation-line problem even
worsc. This is bccausc the larger 4, which solves the T-ray
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continuum excess problem, means the production of a morc
prominent T-ray line and, consequently, makes it harder to
reconcile with the lack of detection of such a line. Z90
comment that this even stronger annihilation feature pre-
dicted from their model is not observed because it will

probably be broadened by motions in the emitting plasma.
DF89 did estimate such broadening and applied it in their
testing procedure, zg0 did not conduct any such ",/-ray line
testing. Obviously, however, the annihilation-line problem
only becomes worse when the reflection is included. If the
DF89 model fails to satisfy this line constraint, it would be
cven more scvcrc with thc reflection model of Z90, wherc the

LZ87 pair cascade is adopted. Note that the pair-cascade
models of LZ87 and DF89 are qualitatively similar.

This problem, on the other hand, is solved far more
naturally by introducing our disk-corona geometry. In § 3 wc
noted that not only the enhanced depletion of ",/-ray contin-
uum but also much weaker 0.5 McV line production for higher
I h are major characteristics of our disk-corona model. The
reason is that, with our choice of geometry, the primary sced
photons (both y-ray and soft) must travel through the entire
column of absorbing coronal gas lying above their point of
injection and extending out to around the freeze-out height hj
beyond which there is no further change in the outcoming
spectra (where hj _<R,). (For instancc, hj is ~0.5R, when
4, = 500.) In contrast, in tIS Model the primary seed soft
photons, as well as radiation injected within absorption optical
depth unity of the surface of the sphere, arc more or less free
to escape. If _-_..mp(x)is the optical depth to pair creation for
",/-ray energy x, then these T-rays will cmerge from the top of
the disk-corona geometry at a rate approximately equal to the
fraction exp[-'rc,,,0(x)] of the rate at which they injected,
while for HS Model that fraction would bc _1/[1 + rcom,,(x)]
(sec KTl"95). The disappearance of the e--e + annihilation line
in our model at higher compactness is also due to the
geometry of the model. The "life-cycle" of an e--e + pair is
creation, Compton cooling, thcrmalization, and annihilation.
For high compactness, the cascade-creation process quickly
depletes the high-energy (>_1 MeV) photons, which (as thcrc
is no local injection) are not replenished. Soon the only source
of high-energy photons is the pair-annihilation process, and
the majority of pairs are in a (cooler) thcrmal distribution.
Thus, we begin to lose our ~MeV photons to down-scattering.
This reduces the nonthermal pair production. The thermal
population continues annihilating, but fewer nonthermal pairs
exist to replenish the distribution. The density drops, reducing
the number of annihilation events. This furthcr reduces the
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density of photons capable of creating new pairs, which

accelerates the process. The population of e -e ÷ pairs decays

exponentially, taking the annihilation-line strength along with

it. For the same reason our rc,,,,p is less than in HS Model. For

instance, our _'comp ~ 4 when It, = 500 and Xr, = 2.25 × 10 s,

although it becomes less for lower values of x,,, and lj,.

Although our studies show that if the Fc line from the disk is

to survive the passage through the corona it must be suffi-

ciently strong (KqT95), that should not pose a serious prob-

lem. For instance, in reality, the disk may bc "patchy," in the

sense that the injection from the disk surface takes place in

discrete active regions. In fact, very recently such a "patchy"

disk-corona configuration had to be introduced to thermal

models also, in order to make them consistent with observa-

tion (e.g., Stern et al. 1995, hereafter $95). Also, the cold

component within _10Ry may consist of not only a disk but

also an assembly of blobs (or filaments) spreading over more

extended regions which contribute significantly to the Fe line.
Wc arc aware of the existence of various thermal disk-

corona models (scc, e.g., $95 and references therein). The

detailed comparison of our nonthcrmal disk-corona model

with these thermal models, as well as detailed spectral fitting

to the observational data, are outside the scope of this current

short Letter. (Scc KTT95 and Kcllen & Tsuruta 1995a for such

studies.) ltowcver, the important difference is that, in our

model, the pairs which play a major role are produced

nonthermally and, especially, that in most of the existing

thermal models the hard photon injection and energy dissipa-

tion take place over the whole coronal region, while in our

model they are confined to the base of the coronal region.

It is generally thought that radio-quiet quasars and Seyfcrt

nuclei are powered by accretion of gas onto a supcrmassive

black hole (see, e.g., review by Rces 1984). The presence of

relatively cool, dense plasmas is then inevitable near the

central engine of these objects (Guilbcrt & Recs 1988, here-

after GR88; Lightman & White 1988, hereafter LW88).

Therefore, the presence of various additional fine structures,

such as a soft X-ray excess, iron and other emission-line and

absorption features, and a hard X-ray reflection hump, have

been predicted as a natural consequence of the reprocessing of

X-rays by the cool component in the vicinity (GR88 and

LW88). Such fine structures have bccn discovered by EXO-

SAT, Ginga, and ROSAT (e.g., Pounds et al. 1990; Matsuoka et

al. 1990; Nandra & Pounds 1994). In order to construct a

composite physical model consistent with both theory and

observation, this reprocessing by further reflection has to be

included. The work presented here was carried out as our first

step toward the construction of such a more realistic model.

Further reflection of the coronal component by the cold

material is currently under investigation (Kellen & Tsuruta

1995b). ttowever, the purpose of our current Letter is to

report on our testing mainly of the y-ray constraints. Note that

in our testing procedure we self-consistently took into account

the effect of reflection, and, hence, further calculations of

reprocessing will not affect our major conclusion, namely, that

the h_troduction of our disk-corona geometry to the nonthemzal-

pair model offers a natural solution to the observed "/-ray

constraints. The most recent COMPTEL data appear to indi-

cate that the upper limit to the bump in the diffuse background

y-radiation is significantly reduced (e.g., Collmar 1995, private

communication). However, note that most of our curves in

Figures 2 and 3 (with lh > ~ 10) lic comfortably below the

y-ray excess = 1 line, so that the above conclusions will not bc

affected by this newer constraint (sec KTT95). The latest

RGO/OSSE cutoff energy constraint is ~0.2 < E, < ,-- 1 MeV

(e.g., Zdziarski et al. 1995, hereafter Z95a; Madcjski et al.

1995, hereafter M95; Zdziarski 1995, hereafter Z95b). In fact,

currently the 200-600 keV OSSE sensitivity is not sufficient to

be able to offer any stronger constraint. In Figure 1 a typical

value is E,. _ 500 keV, which is certainly within this limit. Note

that this value, however, corresponds to x,,, = 2.25 × 10 _. For

larger x,,, the corresponding E, becomes lower. The cutoff

energy may be much less for Scyfcrt 2 galaxies (e.g., Z95b).

However, note that there has been increasing observational

evidence that the spectra of Seyfert 2's are intrinsically flatter

than those of Seyfcrt l's (e.g., Z95b and references therein),

and, hence, there probably is an intrinsic difference between
the dominant emission mechanisms of these two types of

Seyferts. For instance, Scyfcrt 2 radiation is consistent with

nonrclativistic thermal models (e.g., Z95b and Sunyacv &

Titachuk 1985). In fact, it could be that both thermal and

nonthcrmal components are present, but the difference could

be that in some cases (e.g., Seyfert 2's) the nonrclativistic

thermal component is dominant, while in other cases (e.g.,

Scyfert l's) the nonthermal process is more effective.
We have demonstrated that a relcvant model consistent

with the y-ray constraints on Seyfcrt 1 galaxies can naturally be

nonthermal, when a certain realistic geometrical effect is taken

into account. Wc emphasize that, as far as we are aware, this

is the first paper in which our kind of disk-corona configura-

tion is introduced to the nonthermal pair-cascade model and,

moreover, where detailed observational testing of such a
model has been carried out.
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