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SIMULATED BLADED MMC DISK LCF VALIDATION

NASA Contract NAS3-27564

Summary

The goal of this program was to evaluate the low cycle fatigue behavior of an SCS-6/Ti-
6Al1-4V sub-component under bi-axial loading conditions at 316C(600F). A simulated
bladed TMC disk was designed having thirty four blades representing the number that
would be used in AlliedSignal’s JTAGG II impeller. The outer diameter of the bladed
ring was 254mm (10.0 inch) and the inner diameter! 14.3mm (4.50 inch). The outer and
inner diameter of the composite zone was 177.8 mm (7.00 inch) and 127.0mm(5.00 inch)
respectively. Stress analysis showed that the fatigue life of the bladed composite ring
would be about 12000 cycles for the test conditions applied. A modal analysis was
conducted which showed that the blades would have sufficient life margin from dynamic
excitation.

The arbor design was the same as that employed in the spin-to burst test of NAS3-27027.
A systematic stress analysis of each part making up the arbor was undertakén to assure
the design would meet the low cycle fatigue requirements of the program.

The Textron Systems grooved foil - fiber process was chosen to make the SCS-6/Ti-6Al-
4V core ring based on the success they had in contract NAS3-27027. Fiber buckling,
however, was observed at several locations in the first ring made which rendered it
unsuitable for spin testing. The fiber buckling was attributed to cracking of the graphite
tooling during the consolidation process. On this basis a second ring was made but it too
contained fiber buckling defects. Analysis by Textron indicated that the fiber buckling
was most likely due to poor placement of the SCS-6 fiber in the etched grooves of the Ti-
6Al-4V foil. This was also a contributor to the defects in the first ring. Since there was
little indication of control in the process to manufacture a quality ring a third attempt at
making a ring was not undertaken.



SIMULATED BLADED MMC DISK LCF VALIDATION

1 INTRODUCTION

Prompted by the DoD/NASA initiative seeking quantum advances in propulsion systems
for future turbine engines, research work in recent years has been directed to achieving
major advances in component design concepts and materials development. As an active
participant in advanced turbine design and materials development, AlliedSignal is
committed to attaining substantial improvements in propulsive efficiency by developing
compression systems which can provide a high overall compression ratio with the fewest
number of rotating parts. The high speeds required place a premium on the materials that
can be used in terms of strength and temperature capability.

Metal matrix composites (MMC’s) have been identified as a class of materials which are
capable of meeting the strength and temperatures required of high speed compressor
components and considerable research has been undertaken during past years to develop
these composites and understand their mechanical behavior. for convenience much of
this work has been conducted using panel material consisting of unidirectionally disposed
silicon carbide fibers, e.g., Textron Specialty Divisions’s SCS-6 fiber, in a variety of
titanium alloy and, more recently titanium aluminide , matrices. Specific titanium
matrices include, Ti-6Al-4V, Beta 218, Ti-6-2-4-2, Ti-1100, the alpha 2 titanium
aluminides and more recently orthorhombic titanium aluminides, based on tfie compound
Ti2AINb. The volume fraction of fibers used has been as high as 40 percent by volume.
A substantial body of physical and mechanical properties data has now been generated
from panel material and is being compiled by the Titanium Matrix Composites
Cooperative working under an Air Force/NASA contract to be used for developing a life
prediction framework code.

MMC rotating components such as the centrifugal impeller will be designed and
fabricated using a unidirectional SiC fiber lay-up. While the high strength SiC fiber will
be sufficient to manage the hoop forces generated by high speed rotation, the radial
forces, while much lower, are of concern in component design. The [90] MMC
mechanical properties determined form panel testing illustrate the high degree of
anisotropy of the unidirectional fiber lay-up and the weak interface strength such that
debonding at the fiber/matrix interface occurs at quite low stresses. The challenge for the
component designer is to work within these broadly limiting parameters. To guide
design, more information is needed on the mechanical behavior of MMC’s under bi-axial
loading conditions, and in particular, cyclic loading.

In a previous contract, NAS3-27027, small diameter MMC rings were made and one
burst tested. The test arbor used in this work was designed to allow cyclic tests to be
conducted. The objective of this contract is to validate the low cycle fatigue life of a
simulated bladed MMC ring reinforced sub-component. The data generated will be used
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to verify life prediction models that currently exist or are being developed by the MMC
Life Prediction Cooperative and Government Agencies.

To meet this goal the program has been divided into two phases. Phase I encompasses
the design and fabrication of the simulated bladed MC disk and consists of four tasks.
Phase II covers the LCF spin test and analysis of the data.

2. PROCEDURES

2.1 Design of Bladed Disk

A plane stress model approach was chosen for the analysis of the bladed TMC disk. In
keeping with the design of the JTAGG II impeller, thirty four blades were employed for
the bladed disk design. A rotational speed of 50.000 rpm was used, again based on the
likely the JTAGG II impeller requirement.

Several options were examined for the design of the blades taking into account the desire
to apply sufficient radial load on the TMC ring so as to induce fiber/matrix debonding an
yet achieve reasonable cyclic life at the test temperature.

The material properties used in the analysis were derived from prior AlliedSignal test data
conducted on eight ply panel material of the SCS-6/Ti-6Al-4V composite syStem
containing unidirectionally disposed SCS-6 fibers. The fiber volume percent was 35%.
The data were reported in Ref.1 and are again referenced in Table . The data were
garnered at 21C(70F) and 316C(600F). Data for “neat” Ti-6Al-4V are given in Table II.
This is used to establish the stress state in the blades and the transition zone from the
outer diameter of the TMC reinforcement.

In establishing the bladed ring allowable design stresses, the hoop and radial stresses
were treated separately. The hoop stress allowable was chosen from the [0] degree LCF
data, Fig. 1. For a life of 12000 cycles, the hoop stress will be 1206 Mpa (175 ksi). The
[90] tensile data for SCS-6/Ti-6Al-4V indicates that debonding at the fiber/matrix
interface occurs at about 124 Mpa (18 ksi) at 316C(600F), the test temperature. Even so,
the [90] LCF data, Fig. 2, show that a fatigue life of 12000 cycles will arise when the
stresses in uni-directionally transversly loaded panel material exceed the debond stress.

2.2 Design of Spin Test Arbor

The spin test arbor employed the same design as used in contract NAS3-27027. This was
successfully spin tested to a speed of about 60,000 rpm at 316C(600F) without incurring
physical damage. Such a speed is higher than will be required for the Low Cycle Fatigue
tests of this program. A cross-section of the arbor is shown in Figure 3 and consists of a

central shaft and two support disks with “soft touch” fingers to maintain light contact



with the bladed TMC ring yet not influence the ring stresses. The required clamping
pressure, applied through a torque nut and locking washer, is transmitted to the support
disks via two “arm” disks. The nickel alloy, alloy 718( AMS 6415), was used to machine
the arbor assembly.

Engineering drawings giving more detail of the arbor construction are contained in
Appendix 1.

2.3 Fabrication of the Bladed MMC Ring

It was originally planned that the bladed ring would be made in one integral piece with
the blades being machined from extra Ti-6Al-4V “neat” foil that was extended from the
TMC reinforcing zone. The TMC reinforcing section of the bladed ring has the same
design as the ring employed for burst testing in Ref. 1.

The chosen bladed TMC ring fabricator cautioned, however, that problems with fiber
bucking would likely be experienced. TSD have experience with the use of Ti-6Al-4V
shim stock to build up the outer diameter blade zone but with little success. As a result
the more traditional method of making the bladed ring was used. In this case the TMC
ring segment would be made first and this would then be bonded into Ti-6Al-4V shell
material. Following bonding the bladed ring would be finished machined to the design
dimensions.

Figure 4 shows the cross section and the dimensions of the TMC ring reinfofcing section
of the bladed ring. The OD of the ring is 185mm(7.3 inch) and the ID 1 14mm(4.5 inch).
The TMC core section has an OD of 178mm(7.0 inch) and an ID of 127mm(5.0 inch).
The thickness of this ring piece is 6.1mm(0.24 inch).

The outer shell of Ti-6Al-4V was made from forged and annealed stock material. One
piece was machined with a recess to receive the TMC ring and with an OD of
267mm(10.5 inch) and a thickness of 12.2mm (0.48 inch). The recess was given a taper
of 16 degrees to assure good bonding with TMC ring, which likewise was given a
corresponding taper at the OD and the ID. A second disk was machined to form a cover
for the TMC ring. This had the same OD but was thinner, 6.4mm (0.25inch).

The Textron spiral grooved-foil preform process (Ref. 2) was used to make the TMC ring
segment. This process had been used successfully in contract NAS3-27027 (Ref.1). In
this process the Ti-6A1-4V foil material is etched to produce the required spiral groove
using photolithography techniques. Both sides of the foil were etch-grooved for making
the ring in this case. Some specifics as to the procedure used to make the rings are given
in the Appendix 2.

3. RESULTS AND DISCUSSION



3.1 Bladed TMC Ring Mechanical Design Analysis

Several options were considered for the mechanical design of the blades and transition
from the TMC reinforcement zone. The essential variables were the filet radius of the
blade and the blade width, since these affected the number of blades that could be used
and which were fixed at thirty four to simulate the number of blades that would be in the
impeller design. Since the blade thickness was fixed by the need to the same as the TMC
ring zone, only the blade width could be varied and then only in conjunction with the
blade filet radius. The possibility of using a “hammer” head on the blades as a variable to
change the blade mass and hence the radial loading on the TMC ring was considered and
some preliminary analyses performed. This, however, introduced additional design
variables which complicated the issue.

Three basic blade design configurations were analysed in more detail.

Configuration 1: In this case a 2D analysis was made for the ring with 34 blades having
a thickness of 6.1mm (0.24 inch) and with a blade filet radius of 3.0mm (0.12 inch). The
outer diameter of the bladed ring was 254mm (10.0 inch).

Figure 5 shows the finite element model created for the stress analysis and Figures 6 and
7 the hoop and radial stress distribution calculated using the material properties listed in
Tables I and II. For this case, the hoop stress, Figure 6a and 6b, will be 1206 MPa

(175 ksi) at the inner diameter of the composite zone and 884 MPa(124 ksi)at the outer
diameter of the composite zone. Figures 7a shows the stress distribution for the bladed
ring and Figure 7b the radial stress distributions in the composite zone alone. The radial
stress in the composite zone reaches a maximum of 172 MPa(25 ksi) in the fibers at the
outer diameter of the composite zone. This stress is higher than allowed by the design
criteria since it would lead to a lower LCF life than desired.

Configuration 2: To reduce the radial stress in the composite zone of the bladed ring,
the filet radius of the blade was increased to 5.1mm(0.20 inch). The blade thickness was
maintained at 6.1mm(0.24 inch). The finite element model was adjusted for this design
and is given in Figure 8. The results of the analysis for this configuration are shown
Figure 9 and 10. The hoop stress was essentially unchanged, however, a reduction in
radial stress to 145MPa (21 ksi) was achieved.

Configuration 3: For this design, the filet radius was again increased. This time to
7.6mm(0.3 inch) while at the same time the blade thickness was reduced to 2.5mm(0.1
inch). The finite element model for this configuration is shown in Figure 11 and the
stress distributions in Figures 12 and 13. The maximum radial stress at the outer
diameter of the TMC zone is now 124MPa(18 ksi) while the maximum hoop stress in the
fibers at the inner diameter is 1582 MPa(177 ksi). The maximum value of the hoop stress
in the blade root is below the elastic limit of Ti-6Al-4V at 316C(600F), Table II. The



hoop stress in the “neat” Ti-6Al-4V at the inner diameter of the bladed ring is close to
that which would induce some plastic deformation in this region.

3.2 Arbor Design

A 2D axisymmetric model, Figure 14, was developed to analyse the stresses in the arbor
under spin test conditions. the model took into account the arbor shaft, the spacers, the
“soft touch” disks and the bladed TMC ring itself. The fingers of the soft touch disks
were modeled using plane stress elements. This model was used to determine
interactions within the assembly and to assist fatigue life remote from local stress
concentrations due to the disk fingers. A 3D model was used for assessing the fatigue
life of the arbor in the finger areas.

Fatigue Life in the Finger Location: Using the 3D pie segment finite element model ,
Figure 15a, analysis showed that the maximum equivalent stress around the fingers would
be 889 MPa( 129 ksi), Figure 15b. This results in a corresponding fatigue life again in
excess of 100,000 cycles. The finger design, therefore, also meets the life requirements.

Interface Loads: The “soft touch” disks were specifically designed to maintain a
minimum contact load throughout the cyclic operating range while at the same time not
encumbering the bladed disk. The addition of the blades to the TMC ring will increase the
radial growth of the TMC ring, however, adequate piloting contact is maintained. Figure
16 lists the calculated interface loads betwen the soft touch disks and the bladed TMC
ring at assembly and at the maximum cyclic operating speed. -

Fatigue Life Remote From Fingers: The arbor design requires that the arbor be
capable of surviving 15,000 cycles between 0 and 50,000 rpm. For locations remote from
the soft touch fingers, the 2D axisymmetric model was used to determine the equivalent
stress range and the resulting fatigue life. The arbor equivalent stress range caused by a 0
to 50,000 rpm cycle is shown in Figure 17. The highest stress range occurs in the finger
bores and is 901 Mpa (130.8 ksi). From the known fatigue properties of the arbor
material this stress would would result in a fatigue life of >100,000 cycles. This
adequately satisfies the test requirements of this program.

3.3 Modal Analysis of the Simulated Blades

Because of the small dimensional cross-section of the blades, 2.54mm (0.10 inch) by
7.1mm (0.28 inch), a modal analysis was performed to determine whether the simulated
blades of the TMC ring would have sufficient life margin from dynamic excitation.

The design of the integrally bladed TMC ring is shown in Figure 18

The 3D finite element model developed for the dynamic analysis, and illustrated in Figure
19 ,was used to determine the modal response of the integral blades. In addition to the



low order excitations, the dynamic analysis also considered excitation sources due to the
air turbine drive equipment. These were:

- 10/revolution due to the number of nozzles feeding the air turbine,

- 24/revolution due to the number of blades on the air turbine,

- 14/revolution due to the difference between the number of nozzles and vanes.

Figures 20 through 25 illustrate the blade distortions predicted by the modal analysis. The
blade first bending mode, Figure 20, occurs in the circumferential direction and is ten
percent above the 3/revolution excitation at 50,000 rpm. Although the test facility does
not directly cause a 3/revolution excitation, good design practice requires avoiding a high
speed crossing with at least ten percent margin. As such, extending the maximum test
speed beyond 50,000 rpm should be carefully assessed. All crossings occur below 40,000
rpm and are considered acceptable without dwell time. As a result, the simulated blades
satisfactorily meet the dynamic design criteria with the proviso that the speed change
between 30,000 and 40,000 rpm be a transient one. This would be the case for the LCF
test program.

3.4 Simulated Bladed Ring Fabrication

The test ring was designed to be made in two parts. The TMC ring would be made first
and this would be bonded within an outer shell if Ti-6Al-4V from which the simulated
blades would be machined. The fiber/Ti-6Al-4V preforms were bonded using vacuum
pressing at a temperature of of 899C(1650F) and a pressure of 103 MPa(15 ksi)
Details of the fabrication process for the TMC ring are contained in Appendix 2.

First Ring: C-Scan and X-Ray images of the first ring made are shown in Figure 26.
These reveal several flaws at the outer diameter of the SCS-6 fiber reinforced region of
the ring. The X-Ray image shows that the defects are due to buckling of the fibers.

The largest flaw occurs at the 360 degree mark from the NDE reference mark and extends
inward radially approximately 13mm(0.5 inch). At this same radial location some
buckling of the fibers at the inner diameter were also evident.

The second pronounced defect is located at the 150/160 degree mark. The fiber buckling
here extends inward radially about 5 mm(0.2 inch).

Less pronounced outer diameter fiber buckling was also evident at the 25/30, 100 and
200/210 degree marks.

Such fiber buckling has been experienced in past attempts to make this sized MMC ring
(Ref 1) but steps had been taken to overcome this problem by minimizing the amount of
unreinforced material at the outer diameter, using tight tolerences for the tooling and by
employing a higher CTE graphite center plug material. Examination of the graphite
tooling, however, revealed a number of cracks after the hot press cycle. The graphite
tooling had been used successfully in three prior ring fabrication operations and had been



reworked to provide smooth surfaces contacting the TMC ring. No obvious reason
presented itself as to why the tooling failed other than it’s useful life may have been
exceeded. Whereas, a molybdenum ring was in place to contain the graphite tooling, this
was insufficient to constrain the TMC one the graphite tooling cracked. On the basis that
the cracking of graphite tooling was the cause of fiber buckling in the vacuum hot press
cycle, fabrication of a second ring was undertaken.

Second Ring:

A second MMC ring was made. In this case new graphite tooling was employed.
However, this did not solve the problem. X-ray NDE, Figure 27, again revealed a number
of defects. At the outer diameter of the MMC core, four symmetrically disposed defects
were discernable and again appeared due to fiber buckling. These occurred at the ring
positions 65-70 deg., 145-150 deg., 215-220 deg, and 310-315 deg. At the inner diameter
of the MMC core, the fibers appeared to be wavy at some locations and in addition fiber
buckling is in evidence at the 245 deg. mark.

It is evident that fiber buckling of the first ring was not caused by cracking of the graphite
tooling and that some other factor(s) was causing the defects in the MMC ring.
Discussions with Textron have revealed that fiber placement during the fiber loading into
the etched grooves in the Ti-6Al-4V foils is a probable reason. This part of the overall
MMC ring manufacturing process had been performed by the etching vendor who would
be less experienced that Textron

——

SUMMARY AND CONCLUSIONS

1) A simulated bladed TMC ring was designed which met the low cycle fatigue test
requirement at 316C(600F). A modal analysis was performed to assure that, because
of the flexible nature of the simulated blades, no undue blade vibration would occur
during fatigue testing.

2) A stress analysis of the each of the components making up the spin test arbor was
conducted. These demonstrated that the arbor was sufficiently robust to perform the
low cycle fatigue test. The fatigue life of the arbor is well in excess of that required
for testing the TMC simulated bladed ring.

3) Difficulties were encountered in fabricating the TMC core ring. NDE evaluation of
the first ring made showed a number of defects due to fiber buckling. The occurrence
of these defects was attributed to cracking of the graphite tooling employed in the ring
consolidation practice. A second ring, however, made with new tooling again showed
defects. Causal analysis revealed that the likely reason for the defects was poor
placement of the SCS-6 fiber in the etched grooves of the Ti-6Al1-4V foil. This may
well have been the true cause of the defects in the first ring. Because it was evident
that the TMC ring fabrication vendor did not have repeatable process to manufacture
the rings designed for this program, no further attempt were made to make a TMC
ring
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Table I: Material Properties for the SCS-6/Ti-6A1-4V Composite (Unidirectional Fiber
Lay-up)

Temp., E(t) uts () UTsS (t)

3
C(F) GPa&sn GPa(msi) MPa(ksi) MPa(ks) v() v(V

21 214 132 1770 453 028 028  1.94 2.89
(70) (31) (19) (257 (66) (0.28) (0.28) (1.94)  (2.89)
316 200 130 1540 296 0.28 028 233 2.99

(600) (29) (19) (244) (43) (0.28) (0.28) (2.33)  (2.99)

G7568-12



Table II:  Ti-6Al-4V Material Properties

316C(600F) Tensile Properties

Stress, MPa(Ksi) Plastic Strain
606(87,94) 0.00000
622(90.24) 0.00011
629(91.26) 0.00031
634(92.07) 0.00071
640(92.83) 0.00151
645(93.55) 0.00631
654(94.98) 0.01271
659(95.70) 0.02551
664(96.41) 0.05111

Elastic Modulus and Poison’s Ratio

Temperature, C(F) E(Gpa) Poison’s Ratio
21(70) 116 0.33
93(200) 112 0.33
204(400) 105 0.33
316(600) 97 0.33
427(800) 90 033

Coefficient of Thermal Expansion

Temperature, C(F) CTE
21(70) 4.75E-06
93(200) 4 .80E-06
204(400) 5.10E-06
316(600) 5.30E-06

427(800) 5.50E-06
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Figure 3: Cross-Section Diagram of the Spin Test Arbor and TMC Ring Assembly
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Figure 4: Dimensions of the SCS-6/Ti-6Al-4V TMC Core Ring



Wi

puneun}
3

vé N

)

11l

1

RN

Y
rang

5: S333csRsSoralscise i
FreEE G i £

Figure 5: Finite Element Model for the Configuration 1 Bladed Ring




@IliedSignal

AEROSPACE

1 ANSYS 5.2
. MaR 22 1996
10:32:42
NODAL SOLUTION
STEP=1
sug =1
TIME=1
Sy (AvG)
RSYS=13
DMX =.030918
SMN =-468.626
SHX =175237
=9293
=28B16

~XONMMON®@P
"
o
~
w
&
—

. nasa bladed rirg @ 50,000 rpm, 34 blades l

Figure 63: Hoop Stress Distribution for Configuration 1;
Full blade, 0.12-inch filet radius, 0.24-inch blade thickness



@IliedSignal

AEROSPACE

ANSYS 5.2

MAR 22 1996
10:34:40

NODAL SOLUTION
STEP=1

sus =1

TIME=1

>wn

23
]

S
~
I~
~
~3

=168354
=1742.6

HETOMMOMN

Ll

Pt
w1
<

(=4}
w
o

‘nasa bladed ring @ 50,000 rpm, 34 blades

Figure 6b: Hoop Stress Distribution for Configuration 1;
MMC ring only



@IliedSignal

AEROSPACE

ANSYS 5.2

MAR 22 1996
10:21:46
NODAL SOLUTION
STEP=1

su8 =1

TIME=1

SX (AVS)
l RSYS=13

| M =.030918
l SNN =197.64

SMX =76388
A =4430
8 =12836
c =21362
D =29827
E =38293
F =4675%
G =55224
H =63690
I =72156

\
»/\/
3

ﬁ
|

Iy

N\

-2

o
N
.

nasa bladed ring @ 50,000 rpm, 34 blades

Figure7 a: Radial Stress Distribution for Configuration 1;
Full Blade, 0.12-inch filet radius



@IliedSignal

AEROSPACE

HZIAMTMOA®)
U
o
“ar
w0

I\I

T

nasa bladed ring @ 50,000 rpn. 34 blades

Figure 7b: Radial Stress Distribution for Configuration 1;
MMC insert only

ANSYS 5.2

MAR 22 1996
10:38:49
NODAL SOLUTION
STEP=]1

sus =1

TIME=1



@IliedSignal

AEROSPACE

»
-

nasa bladed ring @ 50,000 rpm, 34 blades, 0.2 fillet radius

Figure 8: Finite element Model for Configuration 2

ANSYS 5.2
MAR 22 1996
12:57:54
ELEMENTS
TYPE NUM

v =1
DIST=1.525§
XF =3.598
YF =.335711



A\liedSignal

AEROSPACE

nasa bladed ring @ 50,000 rpm, 34 blades, 0.2 fillet radius

Figure 9a: Hoop Stress Distribution for Configuration 2;
Full Blade, 0.20-inch filet radius

ANSYS 5.2

MAR 22 1996
12:49:16

NODAL SOLUTION
STEP=1

SUB =1

TIME=1

SY (AVG)
RSYS=13

oMx =.030809
SMN =-219.756
SMx =17715S

HZIOTMMON®E>
I
o
=3
-3
(=2
~

=167301



@IliedSignal

AEROSPACE

ANSYS 5.2

MAR 22 1996
12:51:48
NODAL SOLUTION
STEP=1

sus =1

TIME=1

SY (AVG)
RSYS=13

DMX =.030809
SMN =125688
SMX =179084
=128654
=134587

C =140520
D =146453
E =152386
F =158319
G

H

I

@ >

=164252
=170185
=176118

nasa bladed ring @ $0,000 rpm, 34 blades, 0.2 fillet radius

Figure 9b: Hoop Stress Distribution for Configuration 2;
MMC ring only



@IliedSignal

AEROSPACE

1 o ANSYS §.2

MAR 22 1996
N /WX:///MX’/’/////’/ é; é%gji N

12:47:45
NODAL SOLUTION
[nasa bladed ring @ 50,990 rom, 34 blades, 0.2 fillet radius

STEP=1

suB =1
TIME=1

SX (AVG)
RSYS=13

OMX =.030809
SMN =204.89
SMX =68120
=3978
=11524
=19070
=26616
=34162
=41709
=49255
=56801
=64347

HIZOATMOM®@>
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FigurelZa: Hoop Stress Distribution for Configuration 3;
Full Blade, 0.30-inch filet radius, 0.10-inch blade thickness
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Figure3b: Radial Stress Distribution for Configuration 3;
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Figure 16: Spin Arbor Interface Loads
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Figure 27: X-Ray NDE Image of Second TMC Ring Fabricated. Defects due to Fiber
Buckling are again Evident



Appendix 1

Engincering Drawing of the Spin Test Arbor components and the Simulated Bladed TMC
Ring
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Appendix 2

Vendor documentation of the TMC ring fabrication process



W6-2321
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SPECIAL MANUFACTURING ORDER

HYHH HEET 1 QOF 1 ORDER
L12.41t{*]/] Systems Division SHEET _1_OF 1 NUMBER
TRAVELER NUMBER
ORDER DATE TOOL IDENTIFICATION

PROGRAM MAC. NO PART NAME DATE WANTED | EST.HRS

A]“ed SIQ Ran#2 R2471000000 Ti-6-4/SCS-6 Ring 10/14/97 40
ORIGINATOR TELNO. | ROOMNO. | SECTION | DWG. NUMBER Q7Y SCHEDULED DELIVERY

R. Lewis 7511 Low. BId. 9 7321 1
PROCESS ENG. TEL NO. | MFG EXPEDITER TEL NO. APPLICABLE E.C. APPROVALS
R. Lewis 7511 R. Horton 7539

DEFINE END USE. SECURITY CLASS. INSPECTION REQMTS. MATERIALS CERT.
{3 EXPERIMENTAL | [0 SECRET (J TEXTRON COyes d NO
d TooL O CONFIDENTIAL (d REQUESTER MATERIALS SUPPLIED MATERIAL LOCATION
(J END PRODUCT (d NONE O wAIVED Oves 3@ No Lowell Bidg. 9
INSTRUCTIONS: -

OPERATION WORK EST. STAMP/

NUMBER CENTER OPERATION DESCRIPTION HOURS DATE INITIALS
10 9-200 Obtain Grooved Ti-6-4/SCS-6 Fiber Preforms
20 9-250 Obtain Graphite Tooling
30 9-210 Laser Cut Preforms
40 9-210 Cut Mo Foils
S0 9-250 Prep. Tooling
60 9-220 Layup and Assemble into Graphite Tooling
70 9-250 Load into Vacuum Hat Press
9-250 Consolidate in VHP

[¢.0] 9-250 Disassemble
100 9-310 Acid Etch Mo
110 9-710 C-Scan
120 10-780 X-Ray
130 8888 Machine Ti-6-4 Tooling and MMC Ring
140 9-310 Clean and Assemble Ring and Tooling
150 9-250 Bond in Vacuum Hot Press
160 9-710 C-Scan
170 9-310 Final Clean
180 Shipping Ship

ORDER CONTROL
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