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ABSTRACT:

The effects of stress ratio (R) and crack-

opening behavior on fatigue crack growth rates (da/dN) for

Aluminum Alloy (AA) 2024-T3 were investigated using constant-AK

testing, closure measurements, and fractography. Fatigue crack

growth rates were obtained for a range of AK and stress ratios.

Results show that constant AK fatigue crack growth for R ranging

from near 0 to near I is divided into three regions. In Region L at

low R, da/dN increases with increasing R. In Region II, at
intermediate R, fatigue crack growth rates are relatively

independent of R. In Region II1, at high R, further increases in

da/dN are observed with increasing R.

Near-crack-tip surface closure measurements,

using a new noncontact displacement method, show that Region I

transient crack growth rates are a result of crack closure.

Increasing fatigue surface microvoid density, coinciding with

increasing da/dN for Region lll fatigue crack growth, suggests that

a K_o-dependent damage mechanism is responsible for the transient

fatigue crack growth rates characteristic of Region IlL For AA

2024-T3, the onset of Region 11I correlates with a critical value of
K o_ (13 MPa m_/2). Region llfatigue crack growth is unaffected by

both closure and I( effects. In this intrinsic region, AK = AK,I r
Rates from this region are used to test the validity of closure

measurements for Region I fatigue crack growth. Poor correlation

of da/dN and AKe_ occurs when AK,Ir is calculated from the fully
open load obtained by the reduced strain technique." Good

correlation of da/dN and AK_H are found when AK H is calculated
from local opening loads approximately O. 1 mm behind the crack-

tip.

KEYWORDS: aluminum alloy 2024, fatigue crack growth, stress ratio, crack closure, mean stress,

compliance.

Introduction

Prediction of fatigue crack growth rates is of practical interest for many applications. One

common method of predicting fatigue crack growth rates is the computer code, NASGRO [ 1]. To

predict a fatigue life using this code, an appropriate parameterized configuration is chosen from a

library. Parameters are input to describe a specific configuration and boundary conditions. A material

library provides parameters for a fatigue crack growth model. Stress intensity factors are calculated

from equations fitted to previously obtained solutions. These stress intensity factors are then input

into the fatigue crack growth model to predict crack growth rates. Crack lengths are incremented, and
the stress intensity factors are recalculated for the new crack size. The current form of the crack

growth model in NASGRO is such that the growth rate for a given material is a function of AK and

stress ratio (R). In this model, stress ratio affects growth rates through plasticity-induced crack

closure, the premature contact of crack faces resulting from propagation through the plastic zone

wake, and when _ approaches K c. For many practical situations, most of the fatigue life of a

structural component is spent in the near-threshold regime. For this reason, the near-threshold regime

of fatigue crack growth is of particular interest. The fatigue crack growth rate model in NASGRO

should be extended to account for first-order, near-threshold environmental effects. To accomplish

this, experimental methods must exhibit enough fidelity to quantify intrinsic near-threshold and lower



Parisregimefatiguecrackgrowthrates. Describedhereinis researchdirectedat developing
experimentalmethodsfordeterminingintrinsicfatiguecrackgrowthrates.Forthepurposesof this
paper,"intrinsic"referstocrackgrowthratesthatarefreefromclosureandotherstressratioeffects.

It hasbeenwelldocumentedthatstressratiocanaffectfatiguecrackgrowthratesin boththeParis
regime[2-4]andnear-thresholdregime[5-7]of variousalloys.Thesestressratioeffectshavebeen
explainedbycrackclosure[8,9]. Here,fatiguecrackgrowthrates(da/dN)correlatewitheffective
crack-tipstressintensityfactor (AK_-- K_, - Ko_ ). Considerable research has been performed to
study crack-wake closure effects [10]. Despite this research, the effect of stress ratio and crack

closure on fatigue crack growth rates is still debated. Some researchers have proposed intrinsic

mechanisms to explain R dependence on fatigue crack growth rates; certain K,_ levels are needed to
induce certain growth mechanisms, thus growth rates increase with R [1 l-12]. Other research debates

the current closure standard practices; during each fatigue cycle, damage occurs both above and below

the crack opening load [13]. Near-threshold and lower Paris regime closure behavior is especially
complex. As the threshold regime is approached, the significance of closure mechanisms such as

roughness, oxide films, or corrosion debris increases [14-17]. Therefore, extrapolation of Paris regime

closure behavior to threshold and near-threshold regime closure behavior is extremely difficult. The

difficulty of making direct, accurate closure measurements and interpreting these measurements

correctly [18] likely obscures all of these issues. Current philosophy may consider this debate

somewhat academic, so long as a growth rate model can be fitted to experimental data. However,

environmental conditions affect both crack closure levels and the intrinsic da/dN-AK_ curve.

Therefore, to accurately model the environmental effects, both crack-tip and crack-wake mechanisms

must be understood and modeled separately.

Consider a fatigue crack at the minimum of a cyclic load. Portions of the crack faces may be in

contact. As thc toad increases, the crack faces "peel," and less crack face area remains in contact [19].

Eventually, the crack faces are no longer in contact. When the crack faces are first fully open, the

change in slope of the load-versus-displacement curve, i.e., compliance, is that of a linear-elastic,
fully-open specimen [8,9]. The change in compliance corresponding to the change from small contact

between the crack faces to no contact between the crack faces can be subtle, so a technique known as

"reduced strain" is employed. This technique, developed by Elber [20] magnifies changes in slope to

enable the fully open load to be discerned. Other methods of interpreting opening loads from

compliance information exist [21]. Most of these methods use either a fixed deviation from linearity

[22], or the intersection of two slopes [23] to define an opening load. Unlike Elber's fully open load,

these definitions give smeared, or averaged, opening loads. The opening loads obtained from such

methods are useful and appropriate engineering tools. However, smeared or averaged opening loads
are likely to limit fundamental understanding of the effects of crack closure.

As the goal of this research is to isolate near-crack-tip fatigue crack growth mechanisms, opening

loads should be defined to coincide with specific, near-crack-tip events. Two specific near-crack-tip

events are discussed in this paper: local opening and fully open loads. A local opening load is defined

as the first load that the crack faces at a given location behind the crack tip separate. Local opening

loads can change with distance behind the crack-tip and with position through-the-thickness. The

variation in local opening loads with location describes the peeling of the crack faces as the load

increases. The local opening loads can be defined anywhere along the crack faces where contact

occurs, and are a function of measurement location. The fully open load is the lowest load where the

crack is completely open. The fully open load is the maximum of all local opening loads, and

corresponds to Elber's definition of opening load.

In typical fatigue crack growth rate testing, AK is varied while either R or K_ is kept constant.

Such standard tests can produce data relatively quickly over many orders of magnitude of crack
growth rates. However, test methods where growth rates change orders of magnitude might not be

sensitive to important near-threshold growth rate transients. Crack-wake effects, such as closure, can

vary with load history [5]. In this regard, rates from variable-AK testing can also vary with load

history. Therefore, an alternative test procedure is adopted herein to determine intrinsic da/dN and

investigate stress ratio and crack closure effects. In this procedure, testing is performed at a constant



AK andstressratio. Fatigue crack growth data obtained in this manner are sensitive to subtle, yet

distinct, changes in fatigue crack growth rates associated with changing driving force mechanisms.
Furthermore, constant-AK tests result in controlled, constant-crack-wake history, which is necessary to

study crack closure.

This paper describes a series of constant AK, constant R tests. Near-crack-tip and far-field closure

measurements and fractography are used to study the effects of stress ratio on crack closure and

fatigue crack growth rates in these tests. Crack closure and K_x effects are both seen to affect fatigue

crack growth rates, depending on AK and R. These effects are used to divide fatigue crack growth

behavior for AA 2024-T3 into distinct regions on a AK-R map. Intrinsic fatigue crack growth

behavior occurs when neither closure nor Km= effects are present. Intrinsic fatigue crack growth rates

are used to test the validity of AKoff as a predictor of stress ratio effects on closure-affected fatigue

crack growth rates.

Experimental Procedure

A computer-controlled servohydraulic test system was used to perform automated, K-controlled

tests. These tests were performed on AA 2024-T3 in the L-T orientation. Material properties for this

alloy are shown in Table 1. All fatigue crack growth tests were conducted using pin-loaded extended

compact tension specimens [24], as shown in Figure 1. Cyclic fatigue loads were applied at 11 Hz.

Either front-face or back-face compliance-based methods were used to monitor crack length and

adjust applied loads accordingly [25]. Optical measurements of crack length were used to validate

compliance-based measurements at the beginning and end of each test. For the configurations

considered, the apparent toughness (as opposed to K_c) can be described by Newman's two parameter
fracture criterion [26], and is a function of crack length. Fatigue testing was performed at crack-

length-to-width ratios (a/W) between 0.30 and 0.55 to minimize the effect of varying apparent

toughness on high-R fatigue crack growth rates [27]. Here, the apparent toughness ranges from 52 to
46 MPa m _.

Table 1 Tensile properties for AA 2024-T3 tested parallel to the longitudinal direction.

(Yy (MPa) 324

Oult (MPa) 462

E (GPa) 72

Fatigue Crack Growth Rates

Typical constant-AK test results of crack length (a) versus number of cycles (N) is shown in

Figure 2 for AA 2024-T3 at AK = 5.5 MPa m _r2,R = 0.35. Crack growth rate is determined by the

slope of the a-versus-N data. A typical transient behavior is seen for the first 0.2 mm of crack growth,

or nine data points (open circles), in Figure 2. Here, crack growth rates increase gradually until the

steady-state growth rate is achieved. The initial, non-linear a-versus-N response results from a

damage state in the crack-tip process zone that is reflective of a prior load sequence, and effects of

crack-wake resulting from past crack-tip process zone conditions. These transient effects are beyond

the scope of this paper, other to say that they are not considered in the fatigue crack determinations.
Once "current" constant-AK crack-tip and crack-wake conditions are fully developed, constant driving

force is fully established, and steady-state da/dN is achieved. A constant growth rate is observed for

approximately 0.45 mm of crack growth, the last 18 data points (closed circles). A linear regression

fit of these constant-growth-rate data characterizes the crack growth rate for AA 2024-T3 (L-T) at AK

= 5.5 MPa m _a, R = 0.35 in room temperature lab air under constant crack wake conditions. By

confirming that steady state crack growth rate has been established, it is ensured that history effects



dueto previousloadingconditionsarenotaffectingthemeasuredfatiguecrackgrowthrate. To
establishtheeffectof stressratioonda/dN,R was increased incrementally at each level of constant

AK. After each incremental increase in R, the crack was grown a substantial crack length increment

until a new linear a-versus-N relationship (steady-state da/dN) was verified. It is important to

emphasize that each constant AK crack growth rate described herein represents a constant fatigue

crack growth rate observed from a statistically large sampling of linear a-versus-N data. This is done

purposely to ensure that crack growth and crack wake effects are truly characterized for the desired
conditions.
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Figure 1. Extended compact tension specimen.

Near-Crack-Tip Load-Versus-Displacement Measurements

Near-crack-tip load-versus-displacement behavior is measured using a visual imaging technique,

named Digital Image Displacement System (DIDS) [281. A speckle pauem is applied to the surface of
the fatigue specimen in the region surrounding the crack-tip. A series of high-magnification, near-

crack-tip digital images are obtained through a long-focal-length microscope as the specimen

undergoes cyclic loading. An image correlation algorithm [29] is then used to follow the movement

of the speckle pattern as the applied load changes. The correlation algorithm allows sub-pixel

resolution of displacement [30]. Relative displacement between a pair of points on either side of the

crack face, a given distance behind the crack-tip, is determined and plotted versus load. Such traces

4



can be developed for a number of locations behind the crack-tip. These load-versus-relative-

displacement measurements provide valuable information about near-crack-tip opening behavior
during fatigue loading. Interpretation of this data will be discussed in the next section.

13.00

1275.

_ 12.50

12.25

1.07

I I I

. /

AA 2024-T3 (LT)

AK = 5.5 MPa m 1/2

_:_ o non steady state

_cV_" • s!eady state .

/'4" linear regression
I I I

1.08 1.09 1.10

cycles (xl0 -6)

Figure 2. Typical a versus N data used to determine fatigue crack
growth rate for a given AK and stress ratio.

Crack Opening Measurements

To determine opening loads, load-versus-displacement or load-versus-strain data, henceforth

referred to as compliance data, is measured in three different locations after steady-state fatigue crack

growth rates are confirmed for constant AK and R testing. The location of compliance measurements

on the extended compact tension specimen are shown in Figure 1. Load-versus-displacement

measurements were performed at the crack mouth using a clip gage, and at several locations less than

0.3 mm behind the crack-tip, denoted X in Figure 1, using DIDS. Load-versus-strain traces are

measured at the back face using a strain gage. This compliance data is used to measure crack opening

loads. Clip gage and strain gage techniques provide remote measured compliance data, while DIDS
technique provides near-crack-tip surface compliance measurements.

Three near-crack-tip load-versus-displacement DIDS traces are shown in Figure 3. Each trace
represents the relative displacement between a pair of points on either side of the crack face and at

fixed distances (X) 0.021 mm, 0.071 mm, and 0.296 mm behind the crack-tip. For these traces, the

crack-tip was at a/W = 0.22. The crack-wake and crack-front conditions for these traces were

developed by 0.6 mm of crack growth under constant cyclic loading of AK = 3.3 MPa m _a, R = 0.10.

Load-versus-relative-displacement records for six pairs of points, including the three represented in

Figure 3, were developed from the digital images using DIDS.

5
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Figure 3. Load-versus-displacement traces at three locations
behind a crack-tip in AA 2024, AK = 3.3 MPam la, R = 0.1.

The reduced strain technique [20] was used to determine all the fully opened loads discussed in
this paper. As defined, the fully open load is independent of measurement location, so near-crack-tip

and remote measurements should result in the same value of fully open loads. However, the

sensitivity of fully open loads is dependent on measurement location and technique [31]. Local

opening loads are dependent on measurement location, so compliance measurements must be taken at

(or near) part of the crack faces that are in contact during some of the load cycle, i.e., near the crack-

tip. There is no relative displacement between two points on opposite crack faces that are in local

contact. Therefore, the load-versus-relative-displacement curve for these two points must be vertical

at loads less than the local crack opening load. The local opening load for each near-crack-tip

measured load-displacement trace was obtained by noting the deviation from the vertical slope at or

near zero displacement (dotted line in Figure 3).

The variation of measured local opening and fully open loads as a function of distance behind the

crack-tip are shown in Figure 4. The dashed line through the four highest measured fully open loads

is assumed to give the true fully open level, and is independent of measurement location. The

measured decrease in fully opened load 0.18 mm behind the crack-tip is believed to be caused by

experimental error. The local opening load for the pair closest to the crack-tip is higher than the local

opening loads discerned for the other pairs. A dotted line is drawn through the local opening loads

and is extended to the fully open load at the crack-tip.

Results

Steady state fatigue crack growth data from constant AK, constant R tests is plotted against AKaf
calculated from both fully open and local opening loads. Local closure measurements and

fractography are used to distinguish between three distinct fatigue crack growth behaviors: closure-

affected, closure-free; K,_-independent (intrinsic); and closure-free, K_-affected.

6
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Figure 4. Local opening and fully open loads measured at various
locations behind a crack-tip in AA 2024, AK = 3.3 MPa m'_, R = 0.1.

Calculated AK_-versus-da/dN

When AKf_ is calculated from fully open loads, AK,.-da/dN data do not collapse to high-R da/dN-

AK data. Figure 5 shows AK_ calculated from fully opened loads extracted from compliance data

measured at three different locations (front face clip gage, back face strain gage, and near crack-tip)

plotted versus steady state crack growth rates. Note that these results are obtained from a wide range
of constant AK, constant R tests. For reference, the low- and high-R bounds of the da/dN-AK data are

shown by dashed lines. The stress ratio for the low-R data is 0.05 for most AK levels. The Kin= for the
high-R data is nearly equal to fracture toughness (R = 0.75 or greater, depending on AK). It is

assumed that the data at high-R is closure free, and is an upper bound on AKaf-da/dN rates. Therefore,
the fully open load is too high to correlate fatigue crack growth rates. As stated previously, fully open

loads should be independent of measurement location. However, measured fully open loads can vary

with compliance measurement location and technique; in many cases fully open loads measured using

a clip gage are less than fully open loads measured by back-face strain gages or using the near-crack-

tip DIDS.

When AKo, is calculated from local opening loads, da/dN-AK_, data have little scatter and are

bounded by high-R da/dN-AK data. The same data are shown in Figure 6 as Figure 5, except AK_f are

calculated using the local opening load 0.10 to 0.15 mm behind the crack-tip. As seen in Figure 4,

there is relatively little change in the local opening loads in the region 0.10 to 0.15 mm behind the

crack-tip, so the exact location for local opening load measurement is not critical in this region.

Stress Ratio Effects on Fatigue Crack Growth Rates

Fatigue crack growth rates for AA 2024-T3 (L-T) are shown as a function of R for five different

values of AK in Figure 7. Each set of da/dN data in Figure 7 represent the result of transient-free

fatigue crack growth produced under the highly controlled constant crack-wake conditions of constant

AK, constant R tests. For some AK, data were repeated using different specimens. For these cases, the

data are denoted on the plot by different symbols. For example, the results of 25 constant AK = 3.3
MPa m _n tests performed on two different specimens are shown in Figure 7(b).

The constant AK crack growth behavior shown in Figure 7 reveals a strong influence of R on

fatigue crack growth rates in the range of AK investigated, and can be characterized into three regions:

Region I, II, and III. Region I is a closure-affected region. Region II is an intrinsic, closure-free, K,_-
independent region. Region Ill is a closure-free, K_,_-dependent region. These three regions are
discussed below.
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The boundaries between Regions I and II were established by performing near-crack-tip local

closure measurements (0.10 to 0.15 mm behind the crack-tip) during each constant AK test. Any tests

that local closure was observed 0.10 to 0.15 mm behind the crack-tip were deemed Region I. Any
tests that no closure was observed 0.10 to 0.15 mm behind the crack-tip were either Region II or
Region HI. Closure measurements were not made for AK = 4.4 MPa m in. The closure division for AK

= 4.4 MPa m _ was identified by interpolating between test results shown in Figures 7(b) and 7(d) at
AK = 3.3 and 5.5 MPa m 1_, respectively.

The boundary between Regions II and Ill represents the transition from intrinsic da/dN to a

transient crack growth rate regime at higher R. Here, near-crack-tip displacement measurements

verified that Region III rates are not affected by crack closure. Figures 8(a), 8(b), and 8(c) are

scanning electron micrographs that show the fatigue fracture surface morphology at steady state crack

growth at constant AK = 5.5 MPa m _ and constant R. Figure 8(d) shows the surface resulting from

ductile tearing. Figure 8(a) reveals that the fatigue crack surface produced at R = 0.1 is dominated by

transgranular crack growth [32]. The small (5 pm) microvoids shown in Figure 8(a) typically initiate

at microstructural inhomogenieties, i.e., precipitates and constituent particles, that are contained in the
crack-tip process zone [33]. A comparison of Figures 8(a), 8(b), and 8(c), show that microvoids

become larger and more frequent and transgranular regions become less dominant as stress ratio (K_)

increase from R = 0.1, 0.6, and 0.8, respectively. As the mechanical crack-front driving force is

increased with increasing R (increasing K_), more damage is produced within the crack-tip process

zone. For the fatigue surface shown in Figure 8, increased crack-tip damage is associated with greater
numbers of larger microvoids. At R = 0.8 (high K_), the appearance of the fracture surface shown in

Figure 8(c) approaches that of the ductile tearing, shown in Figure 8(d).

(a) Co)

(c) (d)
Figure 8. Microsraphs of fatigue fracture surfaces for AA 2024, AK = 5.5 MPa mI_ (a) R = 0.1, (b) R = 0.6, (c_
R = 0.8, and (d) tearing.
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Theonset of increased microvoid damage observed in Region III is associated with a critical K_.

To quantify Region I, II, and HI process zone damage, microvoid density determinations were made
for fatigue fracture surfaces resulting from constant-AK steady-state crack growth. Figure 9 is a plot

of microvoid density determinations for eighteen tests conducted at a constant AK = 5.5 MPa m ''2 and

constant R. A slight increase in microvoid density is observed as R increases from 0.05 to 0.55

(Regions I and II). The slope of the microvoid-density-versus-R curve for R > 0.55 is steeper than it is
for R < 0.55, suggesting a critical stress ratio near R = 0.55 or K,_ _=_13 MPa m L'2. The two solid lines

shown in Figure 9 are the result of linear regression analysis of microvoid data for fatigue crack

surfaces of R ranging from 0.05 to 0.55 and for R ranging from 0.55 to 0.84. A comparison of the
microvoid density versus R data with the constant AK fatigue crack growth data in Figure 9 show that

the transition for fatigue fracture surface microvoid morphology occurs at the same stress ratio and

K_ (R = 0.55 and Kin= = 13 MPa m _r2)that separate Region II and Region III fatigue crack growth rate

behavior. A further review of Figure 7 shows that a critical Km_ = 13 MPa m ''2 is related to transient

Region HI da/dN at all levels of AK. As this transition is related to a distinct change in fracture

surface morphology that is dependent on microstructure, the relationship and behavior observed for

AA 2024-T3 might not be general to other alloys or heat treatments.
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Figure 9. Relationship between stress ratio, microvoids, and crack growth rate for 2024-T3, AK = 5.5 MPa m1'_.

For all levels of AK shown in Figure 7, the plot of da/dN versus R exhibit a general shape

characterized by Regions I, II, and III. Transient crack growth in Regions I and III are observed at all
levels of AK. For AK = 2.2 and 5.5 MPa m '_, the crack growth rates in Region II form a distinct

plateau. For AK = 3.3, and 4.4 MPa m ''2 the plateau is less distinct. For AK = 4.4 MPa m _, the

increased crack growth rates begin when K_ is approximately 10 MPa m'/2. For AK = 8.8 MPa m _n,

the closure-affected/closure-free boundary occurs when K_ > 13 MPa m ]_. Therefore, AK = 8.8 MPa
m 'r2does not exhibit Region II behavior. Rather, there is a Region UIII intersection for AK = 8.8 MPa

1/2

m .

Discussion

The constant AK, near-threshold and lower Paris regime fatigue crack growth behavior shown in

Figure 7 reveals three distinct regions for stress ratios ranging for 0 to 1.0. Near-crack-tip closure

measurements confirm that Region I da/dN is reduced from intrinsic rates by crack closure. Region II

is characterized by da/dN that is independent or nearly independent of R. The range of R that Region

II occurs for varies with AK. The trans-plateau behavior (Region III) exhibits transient, closure-free,

crack growth behavior. Here, da/dN increases as R is increased, suggesting that K_ effects promote

Region HI transient crack growth behavior [34]. The three regions are further defined in Table 2.
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Table2 Regions of fatigue crack growth behavior.

Region I

Region II

Region III

closure affected

closure free

closure free, Kr_x

affected

da

da

aN f(AK)

da f(AK, Kmax)
dN

Region I Fatigue Crack Growth

Figure 6 shows that a specific, near-crack-tip event, namely local closure 0.10 to 0.15 mm behind
the crack-tip, explains the first order effects of R on da/dN in Region I. Figure 5 shows that the fully
open load is too high to correlate fatigue crack growth rates. The three-dimensional nature of the
crack closure process might explain this observation. Plasticity-induced crack closure is greater at the
free surface compared to the interior of the crack front [35,36]. Simulations of three-dimensional
plasticity induced crack closure [37-39] suggest that the interior part of the crack front is open while
the part near the free surface is closed during a portion of the load cycle. Fatigue crack growth might
occur along the open portions of the crack front while the surface is closed. The DIDS measurements
are surface, as well as near-crack-tip, measurements, and are therefore especially sensitive to surface
closure levels. The relationship between surface-measured phenomena and bulk closure behavior is
investigated elsewhere [40].

Region III Fatigue Crack Growth

Detailed characterization of Region HI-produced fatigue fracture surfaces revealed an increase in
microvoid damage corresponding to the increased fatigue crack growth rates observed in Region HI.
These results strongly suggest a critical K_ above which additional crack-tip process zone damage
(microvoid formation) occurs. For AA 2024-T3 sheet, a critical K_ _=_13 MPa m _:_is suggested. The
modest change in microvoid data for R < 0.5 in Figure 9 suggests a secondary or tertiary K_ effect
for Km_ < 13 MPa mm. Above the critical Kin, value, crack-tip damage is influenced by K_ damage
modes to a much greater extent. Here, Region III crack growth rates increase by 50% compared to
Region H intrinsic da/dN.

Region II Fatigue Crack Growth

Between the closure-dominated and the K_-affected regions, near-threshold and lower Paris
regime da/dN is nearly independent of stress ratio. Steady-state, Region II intrinsic da/dN (solid
circle) for constant AK tests performed at 1.5, 1.7, 1.9, 2.2, 3.3, 4.4, 5.5, and 8.8 MPa m lt2 1, and
closure-corrected, steady-state Region I da/dN for AK tests performed at 2.2, 3.3, 4.4, 5.5, and 8.8
MPa m _:2are shown in Figure 10. Closure corrected, Region I fatigue crack growth rates agree with
Region H intrinsic fatigue crack growth rates. Region I fatigue crack growth rates are reduced by

Intrinsic fatigue crack growth rates for 1.5, 1.7, and 1.9 MPa m 1/2 were determined by the constant AK,
constant R fatigue crack growth rate test procedure described in the Experimental Procedure section. The
Region II stress ratios for these values of AK were estimated based on the results shown in Figure 7(a) for
AK = 2.2 MPa m1t2. Km_x= 7.3 MPa mm, AK = 2.2 MPa m m was shown to be Kin:independent and
closure free, so _ = 7.3, AK = 1.5, 1.7 and 1.9 MPa mm were assumed to be Kmax-independent and
closure free as well.
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crack closure. Region Ill fatigue crack growth rates are increased by an additional K_ damage
mechanism. Also shown in Figure 10 are results from four variable AK tests: two constant R tests

1/2

conducted at R = 0.0 and 0.5 [41], and two constant K_ tests conducted at K_, = 11 and 33 MPa m

Crack growth rates in these tests might be reduced by crack closure, increased by an additional Kin-
induced damage mechanism, or represent intrinsic behavior. These variable AK test data are discussed
in the next section.

10 4
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Figure 10. Closure-free, K==-independent growth rates with AK_ rates calculated from local opening loads.

Constant AK Maps and Variable AK-da/dN Testing

The Region I data corrected for local opening loads agrees well with the intrinsic, Region II

growth rates. The fatigue crack growth rate data from Region II validate the use of local closure 0.10

to 0.15 mm behind the crack-tip as a means to calculate AKa_ for the range of data investigated.
Further research is necessary to understand, fine tune, and generalize this algorithm. Fatigue crack

growth rate data from arbitrary, high-R (Region III) tests do not correlate with AKdr. In Region III, an

alternate, Km_-dependent mechanism operates. This claim can be supported by the sharp transition in

microvoid density shown in Figure 9. This mechanism is not accounted for in AKae calculations.

Each steady-state, constant-A_K, constant-R test is plotted on the AK-R behavioral map shown in

Figure 11. Different symbols are used to denote each behavior: Region I, Region ]I, Region III, and

Region I/III intersection. Approximate boundaries for these regions are shown by dashed lines. These

boundaries are used to delineate fatigue crack growth mechanisms operative during fatigue crack

growth. The paths of variable AK tests, the results of which are shown in Figure 10, are shown by
solid lines. Traditional variable-AK tests can cross behavioral boundaries, thereby changing the

operative fatigue crack growth mechanisms. Fatigue data from these tests are interpreted with the aid

of a behavioral map.
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The behavioral map shown in Figure 11 was developed using steady-state fatigue crack growth

behavior observed for constant-AK, constant-R tests. Data from the variable-AK tests are not steady-

state fatigue crack growth. As such, the effective behavioral boundaries for these tests might shift

from the boundaries established for steady state fatigue crack growth. Figure 11 shows that the

constant-R test performed at R = 0.0 (denoted D in Figure 11) remains in Region I for the entire

duration of the test. Crack closure causes fatigue crack growth rates for this test to be lower than

intrinsic rates for all levels of AK. The constant R test performed at R = 0.5 (denoted C) is in Region
III for AK > 6.5 MPa m _n, in Region II for 6.5 < AK < 2 MPa m _ and enters Region I at AK = 2 MPa

I/2

m . The corresponding fatigue crack growth rates from this test match the intrinsic fatigue crack
growth rates for AK from 2 to 6 MPa m _. However, at low values of AK (less than approximately 2

MPa m _/2)fatigue crack growth is affected by crack closure, and therefore rates fall below the intrinsic

curve. Here, the onset of closure at low AK affects the observed fatigue threshold, even though crack
closure does not affect the fatigue behavior for most of the test. The constant Km_ = 11 MPa m _n test

(denoted B) also produces intrinsic rates for much of the test. However, the deviation from intrinsic

rates at low AK indicates a transition to an additional K_,-driven growth mechanism, characteristic of
Region III. The constant K_, = 33 MPa m _ test (denoted A) remains in Region HI for the entire

duration of the test. Here, deviation from intrinsic rates is particularly noticeable when AK is greater
in

than 3.3 MPa m , and when AK is less than 2.2 MPa m _n,as seen in Figure 10.

1.0

0.8

0.6
,,,,a

L

80.4

0.2

' I , f r I , , ' I I

"-, A _ A
II °'_ LL28. fi IH z_

0.0 D <
i i L I i J i I i l L t k i 1 [ L I L

0 2 4 6 8 10

AK (MPa m 1/2)

Figure 11. Paths of four variable AK tests, A) K = 33 MPa m la, B)

K = 11 MPa m _a,C) R = 0.5, D) R = 0.0, shown on a behavioral
map for AK = 2024-T3 (L-T).

The deviations from intrinsic fatigue crack growth rates observed in the data from variable-AK

tests can be interpreted with the aid of the behavioral map. However, it would be extremely difficult

to discern intrinsic near-threshold fatigue crack growth rates from these tests without the aid of the

behavioral map, developed through careful constant-AK, constant-R testing, near-crack-tip closure
measurements, and fractography. For example, it is easy to foresee results from either the variable-

AK, constant-R = 0.5 test or the variable-AK, constant-K_ = 33 MPa m _ test being interpreted as

intrinsic rates. However, the thresholds resulting from these two tests differ by a factor of two.

Summary and Conclusions:

A test methodology for evaluating intrinsic fatigue crack growth rates has been described.

Constant-AK, constant-R testing, near-crack-tip closure measurements, and fractography were used to

investigate the effects of stress ratio on fatigue crack growth rates. Three distinct regions of fatigue
crack growth behavior were established, based on the relationship between growth rate and R for a
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given AK. These regions are: Region I "closure-affected," Region II "closure-free, Km_-independent,"

and Region III "closure-free, Km -dependent." It was shown that neither constant-R testing nor

constant Km_,-testing are adequate to determine the desired intrinsic fatigue crack growth behavior

over the entire range of AK investigated.

Near-crack-tip closure measurements indicate that fatigue crack growth rates observed for Region

I are reduced from intrinsic rates as a result of closure. Excellent agreement between steady-state

Region I and Region II da/dN was found when Region I data are corrected for local opening loads

measured 0.10 to 0.15 mm behind the crack-tip.

Increased fatigue crack growth rates observed in Region III cannot be accounted for by crack

closure. Rather, observed changes in Region III da/dN are associated with a change in growth

mechanism at increased K_,, as evidenced by changes in fatigue fracture surface morphology.
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