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I. Work Completed During the Past Year:

During the past year this grant has funded research by Drs. Golub and DeLuca, graduate

student A. Daw and undergraduates Ms. Wills and Mr. Hartl. The following is a brief sum-

mary of the published papers, abstracts and talks which have been supported by Grant

NAGW-4644 within the present grant performance period.

1. The paper "Temperature Structure of the Solar Corona: Comparison of NIXT and

Yohkoh X-ray Images" by T, Yoshida, S. Tsuneta, L. Golub, K. Strong and Y. Ogawara, has

been published in PASJ. Solar soft x-ray images taken simultaneously by the Yohkoh SXT

and the NIXT sounding rocket reveal significantly different coronal structures. Away from

active regions, loops are generally seen in the SXT while footpoints are seen in the NIXT.

The difference is due to the difference in the temperature responses of the telescopes: NIXT is

sensitive in the range from 1 - 3 MK and SXT is sensitive at temperatures above 2.5 MK.

The morphological differences reflect the multi-temperature nature of the solar plasma.

A copy of the paper is appended to this report. A follow-up study, comparing the NIXT

and the SXT in active regions is under way. Preliminary results show that entire sets of loops,

visible in one instrument are not sene in the other. The effect works in both directions.

2. The paper "NIXT X-Ray Bright Point Survey: Observation and Classification of Data

from 12 April 1993," by M. J. Wills, M. D. Hartl, E. E. DeLuca, and L. Golub, has been

brought to advanced draft form and is being readied for submission to Solar Physics. The aim

of this study is to examine the morphology of x-ray bright points together with the nature of

the underlying magnetic structure. In addition, due to the unprecedented number of XBPs

visible in the 12 April 1993 NIXT photographs, we are able to determine excellent estimates

for various parameters relevant to theoretical bright point models: the fraction of bright

points with clear bipolar signatures, characteristic angular size, and emitted energy flux. Due

to the large number of bright points in our study, we are also able to determine statistically

significant XBP distributions by solar latitude. Simultaneous observations with the Yohkoh

SXT are used to construct temperature and density distributions for the sample of XBP visible

in both datasets.
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3. The paper "Modeling Magnetic Flux Emergence",by M. Wills and E. DeLuca was

presentedat the SolarPhysicsDivision/AAS meetingin Madisonin June1996.

4. "Difficulties in Observing Coronal Structure". This representsan invited keynote

paper for the STEPWG1Workshop, "Measurementsand Analysis of Solar 3D Magnetic

Fields. The printed version has appeared as a refereed publication in a special issue of Solar

Physics, 174, 99 (1997).
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Abstract

Solar soft X-ray images taken simultaneously by the Yohkoh and the Normal Incidence X-ray Telescope

(NIXT) reveal significantly different coronal structures. Coronal loops are more clearly seen in the ¥ohkoh
images, and the isolated island-like structures seen in the NIXT image have been found to correspond to the

footpoints of the Yohkoh loops. The difference is due to the difference in the temperature response of the

telescopes: NIXT is sensitive to temperatures ranging from 0.9 to 3 MK, while Yohkoh is more sensitive to

temperatures above 2.5 MK. The morphological differences reflect the multi-temperature (1-5 MK) nature

of the solar coronal plasmas.

Key words: Sun: corona -- Sun: magnetic fields -- Sun: X-rays -- Sun: Yohkoh

1. Introduction

The soft X-ray telescope (Tsuneta et al. 1991) on

Yohkoh (Ogawara et al. 1991) reveals various magnetic
constituents of the solar corona, such as loops, cusps, and

(unipolar) holes (Acton et al. 1992). The plasma temper-
atures of these structures have been obtained using pairs

of broadband filters for flare loops (Tsuneta et al. 1992;

McTiernan et al. 1993), transient brightenings (Shimizu

et al. 1994; Shimizu 1995), steady coronal loops (Kano,

Tsuneta 1994), and coronal holes and the quiet Sun (Hara

et al. 1994). Figure 1 shows the temperature response of

the Soft X-ray Telescope (SXT) aboard Yohkoh. The

telescope is more sensitive to plasmas with temperatures
above 2.5 MK. In other words, SXT may not be capa-

ble of seeing structure with lower-temperature plasmas,
unless the emission measure at the low temperatures is

sufficient to compensate for the turnoff below 2.5 MK. It

may thus be misleading to assume that the Yohkoh Soft

X-ray Telescope can see all of the magnetic structures in
the solar corona.

This letter reports the first simultaneous observation

of the X-ray corona by the SAO Normal Incidence X-

ray Telescope (NIXT) aboard a sounding rocket (Golub,

Herant 1989) and the SXT. The differences in the op-

tics used for the telescopes result in significant differences

in the temperature response of the telescopes. Normal-
incidence multilayer technology is utilized for NIXT.

Thus, NIXT has a sensitivity in a narrow range of wave-

lengths, and is sensitive only to the lines and the con-

tinuum within its passband. NIXT has a wavelength
passband centered at 63.5 A with a width of 1.4 A. The

passband contains Mgx at 63.3 A, and FexvI at 63.7 A.

The contribution functions of these lines have peaks at

around 1.2 MK and 2.5 MK for Mg and Fe lines, re-

spectively. The NIXT and SXT temperature response is

shown in figure 1. [We used the spectral data of Mewe

et al. (1985, 1986) to obtain the emissivity.]
The Yohkoh SXT, on the other hand, utilizes grazing-

incidence optics, and is more sensitive to the temper-

atures above 2.5 MK (50% of the peak response of the

thin aluminum filter in figure 1). NIXT responds to lower

temperatures than does Yohkoh. Thus, taken together,
the two instruments have the capability to see all of the

magnetic structures in the temperature range from 0.9

to 10 MK. The key characteristics of the two telescopes
are summarized in table 1.

In this letter we compare the images taken by the two

telescopes and discuss the temperature structure of the
solar corona.

i............ ;

...... i

_i

. =

..... I

_P

--=

E

i

_ m=

i

I

I

/I
i
i
S



L16 T. Yoshida et al. [Vol. 47,

Temperature
106 107 108

...... I ....... , I ...... t

.00

_0.10

i
/ ..............

..:li I" /

001 I/- ,'i I
• I/ _! :" /

/:,,, J /
.:" # / /,• , , i, #'_ _ I _ , , , I .... ! .... I i

5.5 6.0 6.5 7.0 7.5 8.0
Log (Temperature)

'-1000

?
0

100

t.

_o

10 _

, i I 1

8.5

Fig. 1. (a-f) Temperature response of the Yohkoh SXT for various analysis filters: (a) open, (b) A1 1265/_., (c) A1/Mg/Mn,
(d) Mg 2.52 _m, (e) A1 11.6 pm, (f) Be 119 #m. (N) The normalized temperature response of NIXT. We used the spectral
data of Mewe et al. (1985, 1986).

Table 1. Characteristics of the SXT and NIXT instruments.

SXT NIXT

Optics ....................................

Sensitive temperature range ...............

Spatial resolution .........................

Detector ..................................

Grazing incidence Normal incidence multilayer
Above 2.5 MK 0.9-2 MK

1.2 MK (Mgx)
2.5 MK (FexvI)

3" 0:'75

CCD Film

2. Observations

NIXT was successfully launched on 1993 April 12.
NIXT observed the solar corona from UT 17:17 to 17:23,

and simultaneous Yohkoh observations were successfully

made. The NIXT experiment uses a film readout; the im-

ages were digitized to 4000 x 4000 pixel data with a pixel

size of 0:'6. The image is then a 2 × 2 pixel summed;

the image used in the present analysis had a pixel size

of lY2. The pixel size of the Yohkoh whole-Sun images

is 4Y91 (2 x 2 pixel sum). Alignment of the two images

was carried out by using the solar limb as well as scat-

tered X-ray bright points. The accuracy of the alignment
was confirmed to be better than that of the SXT 2 x 2

summed pixel size (4Y91) by examining the mutual lo-

cations of the solar limb and the X-ray bright points at

various positions of the Sun.

2.1. X-Ray Morphology

Figure 2 (Plate 3) shows the NIXT and ¥ohkoh im-

ages of the whole Sun taken at around 17:13 UT on

1993 April 12. The two images appear to be quite differ-

ent. We can notice numerous loop structures not only in

active regions, but also in the quiet corona outside active

regions in the Yohkoh image. In the NIXT image, on the

other hand, loop structures are seen only in the active

regions> and many island-like patchy structures are seen

in the quiet regions.

A quiet region indicated as I in figure 2 (Plate 3) is



No.2] TemperatureStructure

shownin figure3 (Plate3). It containscomplexstruc-
tures,manyof whichcanbeidentifiedascoronalloops
in theYohkohimage[figure3a (Plate3)]. TheNIXT
imageof thesamequietregion[figure3b(Plate3)]does
notshowanysignificantstructurecorrespondingto the
Yohkohloops.Figure3c(Plate3) showsthelocations
of theYohkohcoronalloopson theNIXT image.The
island-likestructuresaregenerallylocatedat the foot-
pointportionsof theYohkohloops.Exactlythe same
tendencyisseenin thequietSunjustsouthofthebright
activeregion[figure4(Plate4)]. [Theregionisindicated
asII in figure2. (Plate3)]At thefootpointportionsof
theYohkohloops,therearegenerallycompactstructures
in theNIXT image,asshownin figure4c(Plate4). ThKs
comparisonalsoshowsthat thediametersof the NIXT
footpointsaresimilarto thoseof theYohkohloops.The
connectivitybetweentheYohkoh and NIXT structures

is good, and the combined structures would show real

coronal magnetic structures.

The active region is also shown in figure 4 (Plate 4).
There are numerous loop structures within the active re-

gion in the NIXT image [figure 4b (Plate 4)] as well.
They are seen only in the active region in the NIXT im-

age. The coincidence of the SXT and NIXT loops in the

active region appears at first glance to be good. A de-

tailed comparison, however, implies that the NIXT loops

appear to be different from the Yohkoh loops in both po-

sition and shape [figure 4c (Plate 4)]. For instance, the

footpoint portions indicated as C in figure 4b (Plate 4)

(NIXT image) appear to be sharper compared with the

NIXT footpoints seen in the quiet sun. Such a signifi-

cant footpoint structure is not seen in the Yohkoh image

[figure 4a (Plate 4)].

7_::::.: :g

2.2. Temperature Analysis

We derived the temperatures of the coronal structures

using a pair of SXT broadband filters (Hara et al. 1992;

Kano, Tsuneta 1994). We chose several regions for the

temperature analysis; the regions indicated by boxes in

figures 3 (Plate 3) and 4 (Plate 4) were analyzed. Regions
B and E in figures 3 and 4 include the tops of loops, and

the emission of the region is dominated by that of the

tops of the loops. Regions A and F are located around

the footpoint portions of the loop structures in the quiet

Sun. Region D in figure 3 (Plate 3) is located around

the top of the loops, and region C is at the footpoint

portion of the loops. We can obtain the temperature of

each footpoint region from the Yohkoh data, even if there

is no corresponding structure in the Yohkoh image. This
is because there is a sufficient number of photons in the

footpoint regions of the Yohkoh image.

The SXT filters used in this analysis were thin-

aluminum and A1/Mg/Mn composites (Tsuneta et al.

1991). The dark current was subtracted from the images.

of the Solar Corona L17

Although the SXT images used in the analysis were taken

9 min apart in time, we confirmed that there had been

no appreciable changes in the relevant coronal structures

at that time. A temperature analysis of the bright active

region [figure 4 (Plate 4)] was not performed, because the

time separation of the two images with proper exposures

for the active region was about 15 min, and the stability

of the active region structure is unlikely to be over that

length of time.

This combination of filters provides a good tempera-

ture diagnostic capability in the temperature range below
4 MK. We assume isothermality in each pixel and choose

pixels with a sufficient number of photons to give a tem-
perature error better than 0.3 MK. Figure 5 shows the

derived temperature distribution of regions A through F,

showing the number of pixels as a function of the temper-

ature. The errors in the temperatures due to the Poisson

noise of the incident photons are less than 0.3 MK. Fig-

ure 5 shows clear differences in the temperatures depend-

ing on the location. The temperatures of the areas dom-

inated by the NIXT islands (regions A and F) are from

1 to 1.5 MK, whereas those dominated by the Yohkoh

loops (regions B and E) are from 1.5 to 2.5 MK. The

loop top region D has a temperature of 2 MK, and foot-

point C has a temperature of 1.5 MK. The temperature

difference ranged from 0.5 to 1 MK, which is statistically

significant. Note that these temperatures were obtained
from the Yohkoh data alone and that there was no al-

lowance for a systematic error in the temperatures of the
loop tops and the footpoints. Table 2 tabulates the peak

temperatures of figure 5 and the nominal mean emission

measures of the selected regions.

3. Discussion

We have so far demonstrated that. the NIXT island-

structures correspond to the footpoints of the SXT loops.

There may be a possibility that the NIXT structures were

(separate) low-lying cool loop structures. We can, how-
ever, nile out this possibility because the positional cor-

respondence is generally excellent.

We have also shown that the the regions that contain

the NIXT island-like structures in the quiet Sun have

lower temperatures (1-1.5 MK) than the loops seen by

Yohkoh (1.5-2 MK). The NIXT telescope is sensitive to

lower temperatures, and tends preferentially to see the

structures closer to the footpoints, whereas the Yohkoh

telescope is more sensitive to higher temperatures and
thus sees more coronal structures. This qualitatively ex-

plains the significant differences between the two images.

Since the NIXT temperature sensitivity is almost flat
between 1 MK and 2 MK, as shown in figure 1, the emis-

sion measures of the coronal loops must be sufficiently

low to make them invisible in the NIXT image. Ta-
ble 2 indeed shows that the emission measures of the
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Fig. 5. Temperature distribution obtained with the Yohkoh data: Number of pixels as a function of the temperatures. The
pixels which have statistical errors more than 0.3 MK owing to poor count statistics are not counted in the diagram. The
locations of the distributions are shown in the figures 3 (Plate 3) and 4 (Plate 4). The temperatures of the footpoint
portions are significantly lower than those of the upper loop structures.

Table 2. Peak temperature and mean emission measure.

Region Peak temperature Mean emissionmeasure

(indicated in (MK) (1044 cm -3)

figures 3 and 4)

- A ............ 1.4 11.0 :k 4.0

B ............. 1.7 2.9 :k 0.1
C ............. 1.4 4.8 ± 0.2
D ............ 1.8 3.8 =k 0.3
E ............. 1.6 3.8 ::k 0.1
F ............. 1.3 14.0 -{-3.0

Note: The peak temperatures are derived from the histograms
shown in figure 5. The histogram's temperature step is
0.1 MK. The mean emission measures are the average emis-

sion measures per one SXT pixel.

loop tops are a factor of 1.3-4.0 smaller than those of the

footpoints. However, this is apparently not sufficient to

quantitatively explain the differences of the two images.

We conclude that there is a significantly greater emission

measure around the footpoints with temperatures lower

than the temperature deduced here from Yohkoh data:

the SXT footpoint emission measure must be regarded

as being the lower limits, because of its poor sensitivity

in the temperature range.

We can also consider the NIXT spectral response as

the cause of the discrepancy: NIXT observes mainly

lines, mostly Mgx and Fe xvI. The NIXT temperature

response may, thus, be sensitive to the relevant atomic

parameters assumed in the spectral code. Indeed, Golub

and Herant (1989) obtained a significantly different re-

sponse on the basis of the different spectral code. Their

sensitivity at 1.2 MK is about a factor of 3 higher than

that at 3 MK, whereas the sensitivity is almost fiat over
the temperature range from 1 to 2 MK in figure 1. The

ratio between 1 MK (footpoint) and 2 MK (loop top)
is about 5 in Golub and Herant (1989). If the ratio is

combined with the difference of the emission measure,

the resultant intensity difference between the loop tops

and the foot points may reach a factor of 10. This would

also contribute to the significant differences of the two

images.

The observation indicates that the temperatures of the

coronal structures become lower as we go lower in the
corona, and that below a certain height the structures

become invisible to Yohkoh. This result is consistent

with an analysis of the temperature distribution along

the coronal loops (Kano, Tsuneta 1994).
The situation of the active region is less clear. If the

NIXT loops in the active region have temperatures as

high as 3-4 MK, they should have been seen in the
Yohkoh images. Thus, there is a possibility that the

NIXT loops in the active region have temperatures that

are invisible to Yohkoh (as low as 1 MK). The temper-

atures of some active-region loops can reach 2-6 MK,

as seen from the Yohkoh data (Hara et al. 1992; Kano,

Tsuneta 1994). The combined NIXT and Yohkoh data

sets imply that high-temperature loops are located in

close proximity to low-temperature loops in the active

region.

Although the sensitivity of the Yohkoh telescope to

temperatures below 2.5 MK is reduced, as shown in fig-

ure 1, the temperatures derived here for the footpoints

are about 1-1.5 MK. These are among the lowest temper-
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atures so far obtained by a Yohkoh temperature analysis.

The analysis suggests that we may be able to measure

temperatures as low as 1-1.5 MK from the Yohkoh im-

ages.
The present analysis shows that the structures in the

solar corona have a wide range of temperatures and that

the solar corona is far from uniform in temperature, even

within a single loop structure. Since the solar corona

consists of magnetic loops, and since these magneti c 10op s

are isolated from each other, the physical conditions (e.g.,

temperature) of each loop would reflect the present and
past local heating rate within the loops. Therefore, it is

extremely important that the next-generation solar soft

X-ray telescopes should have the capability of observing

the entire temperature range of the solar corona in order

to solve the coronal heating problem.

The successful simultaneous observation was made

possible through the close interaction between the

Yohkoh operation center at the Institute of Space and As-

tronautical Science (ISAS), Japan, and the NIXT launch
team in White Sands, New Mexico. The authors would

like to thank the Yohkoh operation team, especially,

R. Kano, T. Shimizu, H. Hudson, and T. Kosugi, who
contributed to the success of the precious simultane-

ous observation. KS was supported by NASA contract

NAS 8-37334 and the Lockheed Independent Research

Programme.
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Plate 3
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Fig. 2. V_ole-Sun images simultaneously taken by Yohkoh and NIXT: (a)Yohkoh SXT, (b) NIXT. North is up and east

is to the right. The Yohkoh image was taken at 17:13:19 UT on t993 April 12; the exposure time is 5.3 s, and the

analysis filter is Al/Mg/Mn composite. The NIXT image was taken between 17:17 and 17:23 UT. Figures 3 and 4 show
enlarged images of the regions indicated as I and II, respectively.

(a) (b) (c)

500 500

O
G)
t,D
o

400 400

300 _ 300

200 200

100 100

0 0

0.0 0.5 1.0 1.5

SXT Signal (Iog(DN/sec))

Fig. 3. X-ray images of the quiet region, indicated as I in figure 2: (a) NIXT image, (b) Yohkoh image. (c) The locations

of the significant Yohkoh loops are shown by thick lines and the NIXT footpoints by thin lines on the NIXT image.
The NIXT image was taken between 17:17 and 17:23 UT. The color changes from black through red, blue, and white
with increasing intensity. "The Yohkoh image was taken at 17:15:37 UT, and the exposure time is 30.2 s. The analysis

filter is A1/Mg/Mn composite. The temperature distributions for the areas indicated by the boxes E and F are shown

in figure 5.

YOSHIDA et al. (see Vol. 47, L16-L18 )
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Fig. 4. X-ray images of the region, indicated as II in figure 2: (a) NIXT image, (b) Yohkoh image. (c) The locations of the
significant Yohkoh loops are shown by the thick lines and the NIXT footpoints by the thin lines on the NIXT image.
The SXT image [panel (a)] was a composite image of three images with different exposures [30.2 s (17:15:37 UT), 5.3 s
(17:13:19 UT), 0.17 s (17:11:21 UT) to have a wider dynamic range.] The Yohkoh images with different exposures are
combined in panel (a) for the same reason. The analysis filter used is A1/Mg/Mn composite for both images. The
temperature distributions for the areas indicated by boxes A, B, C, and D are shown in figure 5.

T. YOSHIDA et al. (see Vol. 47, L17, L18)
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Errata

In the paper "Temperature Structure of the Solar Corona: Comparison of the NIXT and ¥ohkoh X-ray Images"

by T. Yoshida et al. [PASJ 47, L15-L19 and Plates 3-4 (1995)], the captions of figures 3 and 4 (Plates 3 and 4)
should be read as follows:

Fig. 3. X-ray images of the quiet region, indicated as I in figure 2: (a) Yohkoh image, (b) NIXT image.

(c) The locations of the significant Yohkoh loops are shown by thick lines and the NIXT footpoints by
thin lines on the NIXT image. The NIXT image was taken between 17:17 and 17:23 UT. The color

changes from black through red, blue, and white with increasing intensity. The Yohkoh image was
taken at 17:15:37 UT, and the exposure time is 30.2 s. The analysis filter is AI/Mg/Mn composite. The

temperature distributions for the areas indicated by the boxes E and F are shown in figure 5.

Fig. 4. X-ray images of the region, indicated as II in figure 2: (a) Yohkoh image, (b) NIXT image. (c) The
locations of the significant Yohkoh loops are shown by the thick lines and the NIXT footpoints by the

thin lines on the NIXT image. The SXT image [panel (a)] was a composite image of three images with

different exposures [30.2 s (17:15:37 UT), 5.3 s (17:13:19 UT), 0.17 s (17:11:21 UT) to have a wider

dynamic range.] The Yohkoh images with different exposures are combined in panel (a) for the same
reason. The analysis filter used is A1/Mg/Mn composite for both images. The temperature distributions

for the areas indicated by boxes A, B, C, and D are shown in figure 5.



DIFFICULTIES IN OBSERVING CORONAL STRUCTURE
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Abstract. There has developed in recent years a substantial body of evidence to indicate that the

temperature and density structure of the corona are far more complicated than had previously been
thought. We review some of the evidence and discuss some specific examples: observations of a

limb flare, showing that the cool Ha material is cospatial with the hot X-ray emitting material;

simultaneous NIXT and Yohkoh SXT observations of an active region, showing that loops seen in
one instrument are not seen in the other, and that the effect works in both directions; comparisons of

extrapolated magnetic field measurements to the observed coronal structure, indicating that neither
potential nor constant-a force-free fits are adequate. We conclude with a description of two new

instruments, the TRACE and the TXI, which will help to resolve some of these difficulties.

1. Overview

The importance of magnetic fields in determining the structure of the solar outer

atmosphere has long been recognized. Billings (1966) notes that magnetic fields

'are employed, as a matter of fact, to explain all departures from a nonspherical [sic]

distribution of matter in the corona, including the loop structure of the corona over

active regions...' Observations from sounding rockets in the late 1960s and early

1970s provided convincing evidence that loops structures, apparently outlining the

magnetic field direction, are fundamental (Vaiana, Krieger, and Timothy, 1973) and

the Skylab observations in 1973-1974 provided the impetus for constructing atmo-

sphere models in which loop 'mini-atmospheres' are the fundamental constituent

of the inner corona (Rosner, Tucker, and Vaiana, 1978; Craig, McClymont, and

Underwood, 1978).

This atmosphere is dynamic and constantly varying. Low (1990) notes that the

solar atmosphere is never truly quiescent or static, but adds that for the purpose

of building models idealized static states may be used as an approximation to the

physics underlying the apparent stability of long-lived structures. The extremely

dynamic nature of the corona has been shown most effectively by the Soft X-ray

Telescope (SXT) aboard the Yohkoh satellite: repeated transient loop brightenings

in active regions (Shimizu et aL 1992), continual rapid expansion outward of

structures at the tops of active regions (Uchida et aI., 1992), jets of X-ray emission,

apparently associated with reconnection events (Shibata etal., 1992), among others.

Thus, it is already clear that the simplest models of the corona - spherical or

plane-parallel - are of limited applicability for interpreting the actual observations,

and that the simplest loop atmosphere models - static loops - are also of limited

usefulness. To these complications, we will add an additional set of worries, by

Solar Physics 174: 99-114, 1997.
(_) 1997 Kluwer Academic Publishers. Printed in Belgium.
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Table I

Observational questions about the solar corona

Q I. Is the corona hot or cold

at a given point in space?

Q2. Where is the 'base' of

the corona?

Q3. What is the transverse scale

size of coronal structures?

Q4. What is the relation between

the coronal B and X-ray emission?

Q5. What does the hot corona

look like?

Depends on the viewing method.AI.

A2. Meaningful only for individual loops

and probably unanswerable.

A3. Our knowledge is limited by present

instrumental resolutions.

A4. Data do not provide sufficient

constraints.

A5. Depends on the viewing method.

showing that it is not at alI clear that we are even now in a position to say that we

know what coronal loops look like, or to know how the real corona is constructed

of such loops.

2. Case Studies

In order to illustrate the difficulties alluded to in the Overview, we will examine five

specific 'case studies,' each involving a seemingly reasonable question about the

corona. The questions addressed by these studies are listed in Table I, along with

the answer to each question. The latter will be explained in the course of discussing

each case. These examples are all taken from work related to flights of the Normal

Incidence X-ray Telescope (NIXT) sounding rocket payload (Golub et al., 1990)

during the years 1989-1993.

2.1. A LIMB FLARE

On 11 Sept. 1989, the NIXT rocket was launched at the start of a small flare (GOES

classification C5). However, during the five-minute flight, a second flare began in

an active region at the limb (Herant et al., 1991). Examination of the GOES X-ray

light curves (Figure 1) indicates that the limb flare began at about 16:36 UT during

the decay phase of the larger on-disk flare. The NIXT observations also began at

16:36 UT, with the last image taken at 16:41:35 UT; the peak of the limb flare in

X-rays is at ,-_16:42 UT. Thus, the NIXT coverage could not have been better-timed.

Figure 2 shows simultaneous Ha and X-ray images of the flare at the time of

the peak. The most striking aspect of this event seems to be the nearly identical

size, shape and location of the flare in the two wavelength regimes. This similarity

is confirmed by a cross-correlation between the two datasets, shown in Figure 3.

The contour lines show the X-ray brightness and the shaded region shows the H

brightness: the two overlap to within the accuracy of alignment. Thus it would
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Figure I. GOES I-8 _ and 0.5-4 _ X-ray plots for 9 November, 1989.

Figure 2. Simultaneous Ho_ and NIXT X-ray images of a limb flare.

appear that the corona is both hot (X-ray) and cool (Ha) at the same place at the

same time.

Possible explanations exist, of course, for this apparent contradiciton. It is

possible that the X-ray emission originates from a thin shell ahead of the advancing

Ha region. Alternatively, hot and cool material may be intermingled on small spatial

scales within the observed regions. The problem is not to come up with an answer,

it is to come up with a correct answer.
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Figure 3. Relative positions of X-ray event and Ha material.

2.2. SIMULTANEOUS WHITE-LIGHT AND X-RAY IMAGING

Plane-parallel, or spherically symmetric models of the outer solar atmosphere treat

the relation between temperature and height as one-dimensional, although not

monotonic since the temperature at first increases with height but then decreases

again. With the advent of loop model atmospheres, as described above, this fun-

damental view did not change in essence, but the temperature vs height relation is

transplanted into each loop instead of into the atmosphere as a whole. However,

a flight of the NIXT payload on 22 February 199I provided a unique dataset

which shows that a more complicated geometry is required in order to explain the

observations.

The multilayer mirrors used in the NIXT to provide X-ray imaging also reflect

visible light with _ 50% reflectivity. In order to record only the (much fainter) X-

ray image, two stages of visible-light rejection are employed: an entrance aperture

filter, which cuts the visible to _ 1% and a focal plane filter, which provides

109 reduction in the visible. During the launch phase of the February 1991 flight, a

portion of the entrance aperture filter broke. The instrument, however, was designed

so that the focal plane filter acts as back-up in the event of just such a failure. Thus,

because the X-rays and the visible are reflected in the same way from the same

mirror at the same time, we obtained simultaneous images of the visible disk and

the corona. These are automatically coaligned and have the same plate scale, so

that high precision (< 1 arc sec) comparison between the two can be made.

Figure 4 shows a portion of the east limb from one of the exposures obtained

on that flight. Note that there is a dark band at the limb, between the white-light

solar limb and the bright coronal X-ray emission. We note several features of this



DIFFICULTIES IN OBSERVING CORONAL STRUCTURE 103

Figure 4. Portion of a combined NIXT/white-Iight image, showing a gap between the visible limb
and the 'base' of the corona, 22 February, 1991.

gap: (1) it is most clearly evident when there is an X-ray emitting region behind

the limb and no emitting region in front of the limb; (2) the thickness of the gap

varies between equator and poles, or between active regions and large scale 'quiet'

regions; (3) at both the inner (white light) and outer (X-ray) heights, the gap is

quite sharp. The question we will address is, how is this gap to be interpreted?

The data from this flight have been analyzed by Daw, DeLuca, and Golub

(1995), who find that a model in which the corona is viewed as consisting of a

homogeneous set of loops, with temperature varying as a function of height in a

uniform manner (Figure 5(a)) is not consistent with the data. In order to explain

what is seen, it is necessary to use a model in which hot loops penetrate downward

into an atmosphere having cool spicular material penetrating upward (Figure 5(b)).

The two types of loops do not connect physically, but are interspersed along the

line of sight. Thus, the gap is interpreted as the upward extent of spicular material,

viewed along the line of sight at the limb and absorbing the X-rays emanating from

loops behind the spicules.

We note that the soft X-rays in the NIXT data are strongly absorbed in spicular

material, with about 10 arc sec path length required for e- 1absorption. The variation

in thickness of the band indicates that spicules may extend farther in open field (e.g.,

coronal hole) regions than in higher temperature closed-loop regions, as reported

by Huber et al. (1974). This interpretation of the NIXT data suggests that the

footpoints of coronal loops cannot, in principle, be seen. When viewed at the limb,



104 L. C_K)LUB

Cool Malct'_l #

/Y/

.... l,-b.-m

i II /J

Hot Martial

Figure 5. Two loop model atmospheres offering alternative explanations of the gap seen in Figure 4,
Modified plane-parallel model on left does not fit the data.

they are obscured by the intervening spicule material; when viewed from above,

the projection angle is such that the height of the coronal 'base' is very poorly

determined. Depending upon the relative spatial density of hot vs cool structures,

there may be a small range of locations near the center of the disk which allow for

both viewing the loops at an angle and for viewing them unobstructed. However,

this is not yet known.

2.3. ACTIVE REGION FINE STRUCTURE

The progress in X-ray optics, when applied to solar coronal imaging, has consist-

ently revealed coronal fine structure down to the resolution limit of the observing

instruments (see, e.g., articles by Giacconi, Golub, and Walker et al. in Linsky and

Serio, 1993). An example is shown in Figure 6, a coronal X-ray image from the

NIXT instrument, obtained on 11 July, 1991. There is clearly fine structure preval-

ent everywhere in the image and photographic analysis indicates that it reaches the

combined limit set by the film and by the pointing stability of the rocket.

A quantitative analysis of the fine structure of several active regions observed

by the NIXT was carried out by G6mez, Martens, and Golub (1993). By Fourier

analyzing the images, they find a broad, isotropic power-law spectrum for the

spatial distribution of soft X-ray intensities. The spectrum has a slope of a _ -3,
which extends down to the resolution limit of the instrument at _ 0.75 arc sec.

A similar result has been obtained by Martens and G6mez (1992) from analysis

of Yohkoh SXT data: the Fourier transform distribution is a power law (with

somewhat smaller slope of _ -2.4) which extends down to the Nyquist frequency.

Thus, for both cases in which the procedure has been carded out, the spatial

structuring of the corona is seen to be limited by the resolution of the imaging

instrument. The implication, since the Sun does not know what instrument we are
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Figure 6. 11 July, 1991 NIXT image.

using to observe it, is that we have not yet fully resolved the coronal fine structure.

Thus, the answer to Question 3, 'What is the transverse scale size of coronal

structures?', is that we do not yet know.

2.4. MAGNETIC FIELD EXTRAPOLATION VS OBSERVED STRUCTURE

There have been only a limited number of attempts in recent years to carry out

direct comparisons between high resolution coronal observations and magnetic

field extrapolations, if we exclude attempts to explain the onset of flares by testing

the non-potentiality of fields. For non-flaring regions, i.e., normal coronal structure,

Poletto et al. (1975) and Sakurai and Uchida (1977) had reasonable success at the

level of late 1960s and early 1970s resolution. More recently Sams, Golub, and

Weiss (1993) found a general agreement between extrapolations and the structures

seen in the NIXT, although close examination shows that the agreement is quite poor

in detail. Metcalf et al. (1994) conclude, from comparison of vector magnetograph

data (giving the locations of vertical currents) with Yohkoh SXT coronal data, that

there is a very poor spatial and temporal correlation between the locations of the

currents and the locations of bright coronal structures.
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Figure 7. NIXT X-ray image of AR 6718 and KPNO magnetogram of the region.
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Figure 8. Magnetic field extrapolations of AR 6718, with three values of c_.

In a recent study, Schmieder et al. (1996) have used high resolution NIXT data

combined with Kitt Peak magnetogram and Multi-channel Double Pass (MSDP)

spectrograph data, to study in more detail the relationship between the observed

structure and the type of magnetic field extrapolation employed. The extrapolation

code is based on the work of Alissandrakis (1981) as modified by Dfmoulin et al.

(1996). A single active region, AR 6718 on 11 July, 1991, was chosen for study;

an X-ray image of the region and the corresponding portion of the magnetogram

are shown in Figure 7.

The first result is that a potential-field extrapolation does not represent the

observed coronal structure at all, and that even a constant-o_ force-free field extra-

polation is not adequate. Figure 8 shows extrapolations using three values of a.

The left-most panel shows a = 0, i.e., a potential field. Note that the connectivity

of the field lines is entirely different from that of the observed structures. The two

force-free fits in the middle and right-hand panels match portions of the region,
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Figure 9. Comparison between Yohkoh (top) and NIXT (bottom) observations of an active region;
arrows indicate structures seen in one of the instruments but not seen in the other.
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but neither one in itself is a good fit. What we find is that the inner portion of the

active region is well matched by the larger value of a while the outer portion of

the region is matched by a lower a.

A possible interpretation of this result is that there is, with time, a relaxation

of the magnetic field, as proposed by Heyvaerts and Priest (1984). In a highly-

conducting plasma, small-scale processes dissipate magnetic energy much more

rapidly than helicity H = f A. B dV (Taylor, 1974; Berger, 1985). With this

constraint the magnetic field does not relax to a potential state, but to a linear

force-free state. The gradient of a found in this region may be indicative of this

ongoing relaxation process.

2.5. Yohkoh SXT vs NIXT COMPARISON

In April 1993 the Yohkoh SXT carried out a special observing sequence simultan-

eous with a flight of the NIXT rocket. An inital comparison of the two datasets

was carried out by Yoshida et al. (1995) for a quiet corona region. Because the

SXT temperature response is somewhat harder than that of the NIXT (>2.5 MK

for SXT vs 1-3 MK for NIXT) it was expected that the SXT would see the hotter

top portions of coronal loops while the NIXT would see the lower portions or the

footpoints. This was indeed generally seen to be the case in that study.

However, subsequent evaluation of the one active region on the disk on that day

is showing a completely different and unexpected result. One expects that 'all X-ray

images are alike,' so that the two should show roughly similar structures. Viewed

from a distance, the two observations seem to be showing the same coronal features.

However, detailed examination shows some remarkable discrepancies between the

two.

Figure 9 shows the comparison of NIXT and Yohkoh SXT observations, with

arrows pointing to three locations in the region. These are places where a structure

or set of structures is visible in one of the images and entirely invisible in the other;

the effect works both ways. Thus, if only one of these images were available, we

would draw reonneous conclusions about the coronal structure, since there would

be no indication at all that some structures are present.

The seriousness of this problem is obvious: if we intend to study the formation,

stability and dynamics of coronal structures, one must first be able to see them. A

partial solution to this problem is described in the next section.

3. Some Partial Solutions

The above discussion provides only a partial listing of some of the problems we

are encountering in attempting to study the formation, heating, structuring and

dynamics of the solar corona. In this section we describe two new instruments

which will help to solve, or at least advance, some of these problem areas. The
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TRACE instrument will have the highest spatial resolution ever used to observe the

corona, as well as the ability to discriminate multiple temperature regimes and to

view the atmosphere from the upper chromosphere up into the active region corona.

The TXI is a rocket-borne payload which will have the capability of observing the

entire sequence of successive ionization stages of a single element from < 10 6 K

to >3 × 10 6 K, and will also determine flow velocities at these temperatures.

3.1. TRACE

The Transition Region And Coronal Explorer (TRACE) is designed to explore

quantitatively the connections between fine-scale magnetic fields at the solar surface

and the associated plasma structures in the solar outer atmosphere. The TRACE

instrument uses multiple UV and normal-incidence XUV channels to collect images

of atmospheric plasma from 10 4 K to 10 7 K. Many of the physical problems

that arise in this portion of the atmosphere - plasma confinement, reconnection,

wave propagation, plasma heating - arise throughout space physics and much of

astrophysics as well. Although recent progress in, e.g., numerical MHD simulations
has been substantial (viz., Low, 1990), use of these models requires close guidance

by the observations, because the enormous range in parameter scale sizes cannot

be realized in the computations.

The telescope provide.s true 1 arc sec resolution (1 pixel is 0.5 arc sec) and

temporal resolution as short as a fraction of a second for bright sources. Table II

lists the operating spectral bands, the associated temperatures and the portions of the

atmosphere covered. The instrument uses four normal incidence coatings, one for

broadband UV and three for narrowband XUV operation. The UV channel includes

a set of narrow-band filters at the focal plane, thereby allowing sub-channels which

detect portions of the atmosphere from the photosphere to the transition region.
Selection of the XUV channels is based on a thorough analysis carried out by

Golub, Hartquist, and Quillen (1989), who analyzed the spectral region accessible

to normal incidence techniques and determined the best lines to use for particular

atmospheric features of interest.

TRACE is launched on a Pegasus-XL into a polar, Sun-synchronous orbit,

thereby providing continuous observation of the Sun. Continuous observing for

about 8 months is planned over a 1-year baseline mission. TRACE produces data

complementary with SOHO, and planning of the TRACE daily observations is

being coordinated with those of SOHO.

The main components of the TRACE instrument are shown in Figure 10. The

TRACE instrument consists of a 30-cm diameter Cassegrain telescope and a filter

system feeding a CCD detector. Each quadrant of the telescope is coated for

sensitivity to a different wavelength range. Light entering the instrument passes

first through an entrance filter assembly which transmits only UV and soft X-ray

radiation, thus blocking the solar heat from reaching the mirrors. A large rotating
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Table II

TRACE spectral regions and observing parameters

Central wavelength (A) Width (._) Ion Location

2500 Broad Continuum Photosphere

1700 Broad Tmin/Chrom.

1570 30 C I, Fe I], Cont. Photosphere

1550 30 C Iv Transition region

1216 84 H La Chromosphere

284 14 Fe xv Corona

195 10 Fe xl[ Corona

(+Fe xxlv) Flares

171 9 Fe Ix Corona

Figure 10. Major system components of the TRACE instrument.

quadrant shutter selects one quadrant at a time for viewing. The secondary mirror

of the telescope is active, to correct for pointing jitter to better than 0.1 arc sec.

The converging beam from the secondary mirror passes through the central hole

in the primary, where it encounters two filter wheels in series, each having three

filters and one open position. These wheels contain both the XUV light-blocking

and the UV passband filters. Finally, there is a focal plane shutter and a 1024 x 1024

CCD, for a field of view of 8.5 x 8.5 arc min. Mosaic observations are planned,

for larger field and daily full disk data-taking. The TRACE launch is late in 1997,

and mission lifetime is at least 8 months. Thus it will be observing during the rise

phase of the new solar cycle.

Some of the scientific objectives of the mission are:

- Magnetic field structure and evolution.

- Coronal heating and magnetic fields.

- Onset of coronal mass ejections.

- Variability of X-ray bright points.
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The mission and its objectives are described in more detail in Tarbell et al.

(1994).

3.2. TXI

The Tuneable X-ray Imager (TXI) is a high-resolution coronal imaging instrument

which has the ability to produce near-monochromatic images tuneable over a range
of XUV wavelengths. The present design covers the wavelength range 170-220 A,

which includes the strong series of iron lines from Fe IX through Fe xIv, inclusive.

Thus, the problem of 'missing' structures is solved, for the temperature range

log T = 5.8-6.4, because all of the successive ionization stages are isolated and

recorded.

Figure 11 shows a schematic layout of the instrument. Spectral isolation is

achieved by using a double-crystal monochromator, which feeds a broadband tele-

scope, coated with an XUV multilayer having A_ ,_ 30 A (FWHM). The mono-

chromator is made as narrow-band as possible, which in this instance is _ 4 .A, and

it is tuned by rotating the two plane mirrors in parallel. A Cowan-Golovehenko

arrangement is used (Cowan, 1983), which has the highly desireable property that

the entrance and exits beams stay fixed during tuning. Thus, there is no image

motion in the focal plane as the wavelength is changed.

Table III shows the strongest lines in the TXI passband. Depending upon line

strength and available exposure time, it appears possible to record data out to

220 A; no data below 170 ]k are recorded because aluminum light-blocking

filters are used at the entrance aperture and at the focal plane. We note that line

multiplets, such as Fe xII near 193 A., do not smear the image, because this is a

non-dispersive system.

The TXI sounding rocket program has just received approval from NASA to

begin construction (May 1996). Present plans are to have the payload ready to fly by

the summer of 1998. A summer launch is neccessary in order to reduce absorption

by the residual atmosphere even at rocket altitudes. A minimum altitude of 100

miles is necessary for the wavelengths observed in this experiment, and a line

of sight to the Sun as near normal to the plane of the atmosphere as possible is

required. The launch therefore takes place around local noon in White Sands, NM.

3.3. THE SOLAR RADIO TELESCOPE

Of course, it is not only in the area of space-based instrumentation that solutions

to the present set of problems in solar physics may be sought. In this section we

describe a representative ground-based instrument, designed to map the magnetic

field structure and topology in the corona.

A proposal for a dedicated Solar Radio Telescope which represents a major

advance on current radio facilities is currently being explored (a report by D. Gary

and T. Bastian will be available shortly). The ability to map solar magnetic fields
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Figure 11. Schematic layout of the Tuneable XUV Imager.

Table III

Strongest lines in the TXI passband

Ion Wavelength (_) log T

Fe IX 171.08 6.0

Ov 172.17 5.4

O Vl 172.94 5.5

173.08

Fe x 174.53 6. !

177.24

Fe xI 180.42 6.2

Si m/Fe xll 186.88 6.2

Fe xI 188.22 6.2

Fe xxIv ! 92.03 7.3

Fe xn i 92.40 6.2

193.52

195.13

Fe xm 202.04 6.2

203.82

Fe xIv 211.32 6.3

He II 237.35 4.7

SUN
UGHT

above coronal active regions is one of the major goals of this telescope. The features

necessary to carry out such a goal are:

w
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- the ability to make radio images of active regions on short time scales with

high spatial resolution and high dynamic range;

- the ability to make images at many closely-spaced frequencies across a broad

frequency range nearly simultaneously; and

- accurate polarimetry.

The proposed instrument which provides these features consists of an array

which contains many small dishes (presently planned to be 40) with full-disk

coverage, three large (,,_25 m) dishes to provide sensitivity and allow accurate

calibration, and receivers which incorporate the frequency agile characteristics so

successfully demonstrated by the OVRO array with a target range from 300 MHz

to 30 GHz. This instrument would have 2.5 times as many baselines as the VLA,

and requires a large correlator to handle them. Recent advances in broadband

microwave components, large correlators and computers make such an instrument

possible for a low cost. Considerable effort will also be expended on software

for real-time processing of the data into a form (images and coronal field maps)

suitable for immediate use by the broader solar community.

3.-3.1. Vector Magnetic Fields

Finally, we mention the almost obvious point that vector magnetograms are cru-

cially important in the comparison between surface fields and coronal struc-

ture/stability. Ground-based observations have progressed enormously, but there

still remains the basic question: how much of the observed variability is due to

atmospheric effects and how much is intrinsic to the source? This question has

been answered in part by comparing observations taken simultaneously at widely-

separated sites. However, the best way to answer the question and to obtain the

highest quality observations, is to place a vector magnetograph in orbit.
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I. Introduction

X-ray bright points (XBPs) are compact, isolated x-ray structures seen in images of the x-ray

coronaGolub, et al. 1974). Over the past twenty years, they have been observed by various instruments

sensitive to 2 million degree plasma, such as SoHO/EIT, Yohkoh, NIXT, MSSTA, HRTS, and Skylab,

resulting in an abundance of data. XBPs are thought to have characteristic sizes of 10-30", although this

range is not strictly adhered to (Parnell, Priest, & Golub 1994). Detailed studies of individual bright points

reveal that they are prone to variability and can possess intricate loop structures (Parnell, Priest, & Golub

1994; Strong, et al. 1992; Sheeley & Golub, 1979).

One line of research on XBPs examines them as part of global solar phenomena. Early XBP studies

suggested that their abundance is anti-correlated with the number of observed active regions and therefore

XBPs follow an inverse solar cycle (Golub, et al. 1990; Golub 1980; Golub, Davis, & Krieger 1979). Recent

work by Harvey & Strong (personal communication) using Yohkoh data reveals a leveling-off of bright point

numbers which may signal a deviation from this cyclical trend, or possibly a lack of correlation entirely.

The resolution of an apparent conflict between the Skylab and Yohkoh results remains elusive.

Other studies have focused on the mechanisms powering XBPs. Most models focus on the solar

magnetic field as the source of XBP brightening. Studies using magnetograms have found that XBPs are

generally associated with bipolar magnetic structures (Moses, et al. 1994; Webb, et al. 1993; Webb &

Moses 1989; Webb & Moses 1990; Golub, Harvey, & Webb 1986; Tang, et al. 1982; Golub 1980; Golub,

Davis, & Krieger 1979); moreover, comparisons between soft x-ray data and time-resolved magnetograms

show that the magnetic dynamics most often associated with bright points are converging flux regions

(Moses, et al. 1994; Webb, et al. 1993; Webb & Moses 1989; Webb & Moses 1990). This has led to the

development of a converging flux model (Priest, Parnell, & Martin 1994), which hypothesizes magnetic

reconnection of opposite polarity magnetic fields as the source of bright point heating. This model continues

to be developed, with the most recent work focusing on modeling three-dimensional bright point structure

(Parnell, Priest, & Golub 1994) and unequal bipolar cancellation sources (Parnell, Priest, & Titov 1994).

The aim of our study is to examine the morphology of XBPs together with the nature of the underlying

magnetic structure. In addition, due to the large number of XBPs visible in the 12 April 1993 NIXT

photographs, we are able to determine estimates for parameters relevant to theoretical bright point models:

the fraction of bright points with clear bipolar signatures, characteristic angular size, and emitted energy

flux. The large number of bright points in our study allows us to determine statistically significant XBP



distributionsbysolarlatitude.

2. ObservationalProcedures

Ourstudyfocusesonfull-disksoftx-rayimagestakenbytheNormalIncidenceX-rayTelescope(NIXT)

payloadduringa soundingrocketflightlaunchedon 12April 1993at 1715UT fromtheWhiteSands

MissileRangein NewMexico.TheNIXT instrumentoperatesat 63.5/_inorderto imagetheFeXVI and

MgX spectrallines(. Thisallowsforanobserving range of 1-3 million degrees (Golub & Pasachoff, 1997).

NIXT observations were made over i717-1723 UT and recorded on Kodak Technical Pan photographic

emulsion, then digitized at the National Solar Observatory, Sac Peak, to 4000 × 4000 pixels, each 0.58

arcsec square. Recovered data from the rocket flight consists of exposures ranging from 10 to 60 seconds in

duration. Some of the images, notably the 60-second exposure, have scratches due to high-velocity impact

of the rocket with the desert floor. For the present analysis, one 60-second and one 30-second exposure were

used.

We define an XBP as a compact, isolated x-ray structure. We make no a pr/or/assumptions about size

range or associated magnetic structure. We are particularly concerned about including two types of points

in our study: XBPs that fall outside the traditional !0-30" range, and XBPs that have underlying bipolar

magnetic fields. Since the latter points are so common, we shall call them bipolar XBPs.

To find the XBPs from 12 April 1993, we examine the 60-second exposure, taken starting at 1718 UT,

and a 30-second exposure taken at 1721 UT. Both are shown in Figure 1. Using the 60-second image at

full resolution, we examine the solar disk in detail, studying only a 500 × 500 pixel area, corresponding to

290 × 290 arc-seconds, at any one time. This allows us to distinguish features with respect to the local

background, rather than the full disk background. Our XBP candidates are any compact, isolated x-ray

structures noticeably brighter than the local background. (We say "candidate" because some apparent

XBPs may turn out to be other identifiable structures, such as x-ray loop footpoints.) When an XBP

candidate is found, we compare that region to the same area on the aligned 30-second exposure. If the

feature appears on both images, we assume it is a genuine x-ray feature (as opposed to a chance exposure

of the film due to an emulsion defect or other non-solar source).

In order to determine the underlying magnetic structure of our XBP candidates, we compare them with

near-contemporaneous Big Bear Solar Observatory and Kitt Peak National Observatory magnetograms.

(The magnetogram times range from 1739 to 1806 UT, very close to the NIXT flight time.) A prior/, we
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expectto findmanybipoles,someindeterminatemagneticstructures,andsomemonopoles(i.e.structures

whoseoppositepolaritycomponentisnotdetected).All areperfectlyacceptablebrightpointsexcept

for unipolarstructuresthat areclearlypartof a largerloop;wewishto excludesuchfootpointsfrom

consideration,sincetheyfail to satisfythecriteriathatXBPsmustbecompactandisolated.

Weexpectthat XBPswithclearmagneticassociationwillbeconcentratedtowardthecenterof thedisk

dueto line-of-sighteffectsin themagnetogram.(Themagnetogrammeasurestheline-of-sightcomponent

of themagneticfield,whichdecreasesascos0,where_is theanglerelativeto thelineof sight.)Becauseof

thiseffect,whendrawingconclusionsaboutthenumberof XBPswithagiventypeof magneticsignature

wewill needto restrictattentionto thoseXBPsina centralregionofthedisk,awayfromthelimb.

3. Observational Results

Using the method for finding XPBs outlined above, we find 172 x-ray bright point candidates, as

seen in Figure 2. When compared to the magnetograms, we find that only two of these points are loop

footpoints, leaving 170 genuine x-ray bright points. This is the highest level of single disk bright point

activity observed to date; previously, the largest number found was 122, observed during a rocket flight on

16 September 1976 near the minimum of solar cycle 21 (Golub, Davis, & Krieger 1979).

Since most theoretical models rely on cancelling magnetic flux, we focus particularly on bipolar XBPs.

Our survey finds that 93 XBP candidates show positive bipolar association; Figure 3 shows which bright

points have underlying bipoles. For our purposes, '%ipolar" is broadly defined; any point with one or more

regions of opposite polarity qualifies as bipolar. Often it is difficult to determine which bipole corresponds

to which bright point, and in fact the converging flux model predicts that XBPs will not necessarily form

directly over their corresponding magnetic bipoles (Parnell, Priest, & Titov 1994).

As expected, these 93 bipolar XBPs are concentrated away from the limb. We suspect that many of

the non-bipolar XBPs near the limb actually have corresponding bipoles, which are simply too faint to see

due to line-of-sight effects.

To get an estimate for total number of bipolar XBPs, we find the percentage of points that are bipolar

in a central region of the disk and then multiply by the total number of XBPs. We determine 0.8R® as the

boundary for disk center. Beyond this point, cos 6 _< 0.6, and the magnetogram line-of-sight effects cause

most bipoles to be obscured (Figure 3). 83 XBP candidates are observed inside the resulting "inner circle."
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Of these83points,71arebipolar,soapproximately86%,or 71/83x 170= 145,of theobservedXBPsare

expectedto havebipolarsignatures.Thiscalculationignoresthepossibilitythatthefrequencyof bipolar

XBPsvariesasafunctionoflatitude;sincethe0.SR®circlepreferentiallyeliminateshigh-latitudepoints,

anysuchvariationis likewiseexcludedfromconsideration.

ExamplesofbipolarXBPs,chosenfromtheinnercircle,showmuchmorphologicaldiversity(Figure4).

In examiningdetailsof theassociatedmagneticstructures,wefindthat mostof themaresimplebipoles.

Figures4a-4eshowexamplesof thisbasicbipolarstructure.However,16of the93observedmagnetic

structuresaremorecomplicated.Mostof theseconfigurations possess a single point of one polarity

connected to multiple points of the opposite polarity (Figures 4i and 4j), and some XBPs correspond to

multiple bipoles (Figures 4g and 4h). There is even an example of both of these effects simultaneously

(Figure 4f). Such multipolar structures remind us that a simple bipolar model for XBPs is an idealization;

there are many XBPs with more intricate magnetic structure.

4. Analysis and Discussion of Results

Having observed 170 x-ray bright points (with 93 of them definitely bipolar), we have a source for a

statistically significant analysis of various XBP properties. From this data set, we examine XBP latitude

distributions, size, and emitted magnetic flux.I*** i- WHAT DOES THIS MEAN?? ***].

4.1. Latitude Distribution

We calculate latitude density distribution as a function of quiet sun disk area. Since active regions

would obscure any bright points forming in the same area, we subtract off active region areas from the total

disk area. Of course, the effective area of a given patch of the sun increases as we move toward the limb;

when calculating number densities, we take this variation into account. The resulting density distributions

appear in Figures 5-8.

The figures show that there are no systematic trends in bright point distribution, either by absolute

latitude or by hemisphere. (The sharp downward trend *** ... [WHERE? TOWARD THE LIMB?

TOWARD THE POLES?] ... *** for bipolar XBPs is almost certainly due to the line-of-sight effects

discussed above.) Such a lack of correlation may be consistent with the Harvey _: Strong observations

[REFERENCE].
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**** [PLEASEADD SOME WORDS ABOVE. FOR INSTANCE, DOES 'no systematic trends'

MEAN A UNIFORM COSINE DISTRIBUTION? ] *****

4.2. Size Range

Our primary measure of XBP size is area; since XBPs vary widely in shape, a single dimension is

insufficient to characterize their size completely. Nevertheless, since XBP sizes are traditionally given by

characteristic lengths, we also calculate the "diameters" of the XBPs; we define the diameter of an XBP as

the longest chord that fits inside the XBP.

A distribution of the resulting XBP sizes appears in Figure 9; we plot histograms for both the total

XBP sample and for magnetically correlated bright points. The observed range of sizes is larger than

the commonly assumed 10-30", although the majority of the bright points are smaller than 20". Both

distributions have a mode at _12", and the shape of the two curves is similar. The number of XBPs

larger than the mode tapers off to a maximum of 40", while the XBPs smaller than the mode are more

concentrated. The smallest bright point that we observe is 3", or 5 pixels, across. Such a point is close to

the lower limits of our resolution, and the shape of the graph suggests that smaller XBPs may exist.

4.3. Energy Calibration

For analysis purposes, the NIXT flight film (Kodak Tech Pan) was enlarged and then digitized using a

micro-densitometer at SAC Peak. After digitization, each image consists of 40002 pixels. An X-ray intensity

calibration was obtained by exposing film with the same emulsion as the flight film to a 67.6 A source

(Spiller, et a1.1991). The calibration film and flight film underwent identical development, enlargement and

digitization procedures. However, because the base plus fog levels of the flight film differed from those of

the calibration strips, a simple transformation must be applied to the calibration strip data before it will

yield a calibration for the flight film.

An independent calibration of the relative X-ray exposure can be obtained from the flight film itself,

because there is no reciprocity failure for the film when it is exposured to X-rays. We use a bootstrap

method as follows: after precision alignment of the images, we found all the points on say, a 30 second

image, which were located at positions where the densitometer units were a specified value on a 60 second

image. The average value of the densitometer units on the 30 second image at these locations then gives



a twopointenergycalibration,sincetheratiooftheX-rayexposuresis knownto be theinverseof the

exposuretimeratio.In otherwords,thespecifieddensitometervaluefor the60secondimagecorresponds

to twicetheexposureof theaveragevalueobtainedfromthe30secondimage.Notethat thedistributionof

densitometervalueson the30secondimageat theselocationsyieldsestimateof theprecisionof individual

densitometervalues.ThedistributionsweretypicallycharacterizedbyaFWHMof200 to 300 densitometer

units.

By appropriately choosing the specified densitometer unit values and repeating the process, this

method can be used by itself to obtain a complete relative energy calibration. For example, pick the first

specified densitometer value for the 60 second image (call it D1) to be the value of the most exposed regions,

and, as above, obtain an average value from the same locations on the 30 second image (call it D2). Then,

use D2 as the next specified value for the 60 second image, finding a new set of locations and a new average

densitometer value for these locations on the 30 second image (call this new value D3). This process can be

repeated until D, = D,_+I , at which point the base plus fog level has been reached and further iterations

are pointless. We then have a set of densitometer values, {D1, D_, D3, D4,...}, and a corresponding set

1 1 1 . .}, which we will refer to as a bootstrap. The calibration curveof relative X-ray exposures, {1, _, 4, s,"

in figure 10 was derived from bootstrap method. These curves are identical to H-D curve, aside from the

vertical scale, because the densitometer unit values are directly proportional to the photographic density of

the enlarged film.

The errors in this bootstrap method are estimated by obtaining bootstraps using different image pairs,

and with different starting points. All the points from 27 bootstraps using the April flight film are shown in

figure 10. Some bootstraps were obtained from a 60 second, 30 second image pair, and some were obtained

from a 30 second, 10 second image pair. The various bootstraps follow each other well over the linear

portion of the H-D curves, which are characterized by a straight line whose slope equals the contrast index

of the film. However, the extrapolation down into the base plus fog region of the curves is less certain, with

base plus fog levels varying by as much as a few hundred densitometer units, depending on the bootstrap.

To set the absolute X-ray exposure scale for the bootstrap calibrations, we used the calibration strip

data. The two different types of calibration also serve as a valuable cross check on each other. The

relationship between samples of the same film with different base plus fog levels is adequately described

by the linear relationship DA = aDB --k/3, where DA and DB are the photographic densities of the two

film samples (Simon, et a1.197?). Thus, to determine the absolute scale of the bootstrap calibrations, we



useda threeparameterfit of thecalibrationstripdatato thebootstraps.Thethreeparameterswerethe

twoconstantsmentionedabove,_ and_, andamultiplicativeconstantto settheX-rayexposurescale.

ThesewerefoundbyminimizingX2. Theoveralluncertaintyin theexposurescale,asdeterminedby the

deviationsin parameterspacerequiredto raiseX2by 1aboveits minimumvalue,isaboutafactorof two.

Thecalibrationsandmodifiedcalibrationstripdataareshownin figure 10.

4.4. Emitted Energy Flux

To determinetheflux perbrightpoint,weisolateeachpointinto tworectangularregions-one

immediatelyenclosingtheXBP,anda largerrectangleenclosingboththebrightpointandaportionof the

localbackground.Thecentralrectangleis thensubtractedoutof thelargerrectangle,andtheremaining

areaisconsideredthelocalbackground.Twosetsofhistogramsaremade:oneof theXBPemittedenergy

flux,andtheotherofemittedenergyfluxof thelocalbackground.Thismethodisusedonboththe30-

andthe60-secondexposures.Thecorrespondinghistogramsfromthe30-andthe60-secondimagesare

summed,andwetakethemodeof theresultastheemittedenergyfluxvaluefor theregion.Figures11

and12showexamplesofthesehistogramsfor theXBPsfromFigure4.

Wedefinethebrightpointfluxasthetotal fluxmeasuredfor theXBP minusthefluxof the local

background.In orderto eliminatepossiblesystematiceffectsdueto variationsin thelocalbackgroundflux,

wealsoconsider,asaseparatedataset,XBPsdrawnfromthecoronalholeregionsat thepolesandto the

eastof theactiveregion.Sincecoronalholesarecharacterizedbyextremelydim localbackground,wecan

assumethat XBPsobservedin theseregionsaretheleastlikelyto beinfluencedbysystematiceffectsdue

to backgroundsubtraction.A distributionof emittedx-rayfluxperunit areaisshownin Figure13.The

figureincludesflux emissionfromall threedatasets.Notethat mostbrightpointsemitbetween0.04and

0.40milliergs/cm2/sec,withscatteredXBPsemittingmuchmore;theoutliersaremostlyflaringXBPs.

TheXBPsin thecoronalholestendtohaveloweremittedflux.--/, *** !!! [BADNEWS!!THISIMPLIES

THATTHESUBTRACTIONIN THEOTHERAREASHASNOTBEENDONECORRECTLY!!]!!! ***

Weexaminethetotal energyfluxasa functionof size(Figures14-16).Surprisingly,wefindno

correlationbetweenflux andsize.In fact,withtheexceptionof theflaringXBPs,mostof theenergyflux

fallsintoa well-definedband.Figure16,whichshowsthecorrelationof brightpointsin coronalholes,

shouldgiveusthebestunderstandingof correlation,astheXBPswill besubjectto theleastamountof

influencefromlocalbackground.But evenhereweseenocorrelation.If anything,theenergyfluxrangeis



actuallybetterdefined.

5. Conclusion

Results of this study offer us greater clarification as to the characteristics of the x-ray bright point. We

find that XBPs range in size from __ 3-40", rather than the narrower, more commonly used 10-30", and our

minimum may be due to resolution limitations, rather than a phenomenological size cutoff. We also observe

that bright points are generally associated with bipolar magnetic structures, although not necessarily

simple bipoles. The significant fraction of complex structure observed leads us to believe that enhanced

resolution may show intricate loop systems even at the smallest scales. In examining XBP luminosity, we

find that emitted x-ray flux is confined to a narrow range of 0.04-0.4milliergs/cm2/sec. Surprisingly, this

measurement shows no correlation with size. While not conclusive, it is possible that this limited flux range

is itself characteristic of x-ray bright points.

Our results call for more in-depth research on the structures and mechanisms of x-ray bright points.

In spite of excellent resolution and a large single-disk sample, our study suffers from one major limitation.

By using data collected during a sounding rocket flight, our observations only offer a few minutes of time

resolution, making the study of dynamics extremely difficult. While continuous data is available from the

Yohkoh SXT and now SoHO/EIT, neither of these instruments offers spatial resolution comparable to

NIXT (both Yohkoh and EIT have ,-_ 2.5" pixels). With the majority of our XBPs measuring less than

20", sub-arc-second resolution would seem essential for any complete study of bright point morphology and

dynamics.

The expected launch of TRACE in December 1997 will offer the opportunity to observe the corona

continuously at sub-arc-second resolution (--_ 0.5" pixels). In overcoming current spatial and temporal

limits, TRACE will make it possible to examine bright points in more depth. Previously, XBP studies have

tended to focus on phenomenological statistics. With TRACE, the questions of structure and mechanisms

can be more thoroughly addressed. Since x-ray bright points exist at the limits of our current resolution, it

has been difficult to examine all but the simplest structure. Data from TRACE will allow us to determine

the extent to which XBPs are morphologically complex. Comparisons between TRACE and SoHO/MDI

magnetograms will also offer insight into the connections between XBPs and the magnetic network. Such

contemporaneous data will enable us to verify the converging flux model (Priest, Parnell, & Martin 1994),

as well as examine the question of the often observed misalignments between bright points and their
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correspondingbipoles(Kankelborg,et al. 1996).Thereis alsohopethat, sinceTRACEfunctionsin a

temperaturerangesimilarto NIXT, thenarrowenergyflux rangeweobservecanbestudiedandan

explanationcanbeoffered.

As instrumentslikeTRACE(0.5"pixels),Solar-B(1" pixels),andHIREX(0.01"pixels)become

available,thestudyofsmallcoronalphenomena,suchasx-raybrightpoints,standsto improvedrastically.

Detailedobservationsofthetinieststructuresmaynotonlyprovideexplanationsfor existingquestions,but

will almostcertainlyraisenewones.Westandonthethresholdofafacetofsolarphysics,oneiswhichthe

Suncanbeexaminedandunderstoodonamicroscopiclevel.

Theauthorswouldliketo thankH. Zirin forhisassistancewith theBBSOmagnetograms,aswell

asK. Strongfor discussionandintellectualcontributions.ThisresearchwassupportedbyNASAgrant

NAGW-4644.MDHwassupportedbytheCalifornia Institute of Technology's SURF program during the

summer of 1994.
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Fig. 1._ NIXT photographs.Left: 30-secondexposure. Right: 60-second exposure.
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Fig.2.-- NIXT full-diskimagewithXBPs.
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Fig. 3.-- NIXT full-diskimagewithXBPs.XBPswith bipolarmagneticstructurearewhite,whilethe

othersareblack.Thecirclehasradius0.8R®;outsidethis circleVMGline-of-sighteffectsdecreaseour

abilityto findmagneticcorrespondence.
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(f)

Fig. 4.-- The XBPs shown here correspond to the following labels in the previous figure: (a)-56, (b)-57,

(c)-58, (d)-79, (e)-82, (f)-23, (g)-42, (5)-43, (i)-81, (j)-115. Images (a)-(e) are examples of the most

common type of x-ray bright points, which are associated with simple bipolar structure. (g)-(h) show bright

points corresponding to multiple bipolar structures. In (i)-(j), we can see x-ray bright points associated

with structures containing a single pole of one polarity and multiple poles of the opposite polarity. Image

(f) shows a combination of several of these features.
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Fig. 12.-- Histograms for the bright point emitted x-ray flux for each of the examples used in Figure 4.

The dotted line corresponds to the 60-second exposure, the dashed line corresponds to the thirty-second

exposure, and the solid line is the sum of the two. The mode of the solid line is taken as the total emitted

x-ray flux. From this, the background flux is subtracted in order to determine the _verage x-ray flux per

XBP.
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