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I. Work Completed During the Past Year:

During the past year we have completed the changeover from the NIXT program to the

new TXI sounding rocket program. The NIXT effort, aimed at evaluating the viability of the

remaining portions of the NIXT hardware and design, has been finished and the portions of

the NIXT which are viable and flightworthy, such as filters, mirror mounting hardware, elec-

tronics and telemetry interface systems, are now part of the new rocket payload.

The backup NIXT multilayer-coated x-ray telescope and its mounting hardware have

been completely fabricated and are being stored for possible future use in the TXI rocket. The

H-alpha camera design is being utilized in the TXI program for real-time pointing verification

and control via telemetry. A new H-alpha camera has been built, with a high-resolution RS-

170 CCD camera output.

Two papers, summarizing scientific results from the NIXT rocket program, have been

written and published this year:

1. "The Solar X-ray Corona," by L. Golub, Astrophysics and Space Science, 237, 33

(1996).

This is an invited contribution to a Festschrift in honor of Sir Robert Wilson, representing

an introduction to the physics of the solar corona. A major portion of the discussion is a sum-

mary of results from the series of NIXT sounding rocket flights.

A copy of this paper is appended to this report as Appendix 1.

2. "Difficulties in Observing Coronal Structure," Keynote Paper, Proceedings STEPWG1

Workshop on Measurements and Analyses of the Solar 3D Magnetic Field, Solar Physics,

174, 99 (1997).

There has developed in recent years a substantial body of evidence to indicate that the

temperature and density structure of the corona are far more complicated than had previously

been thought. We review some of the evidence and discuss some specific examples: observa-

tions of a limb flare, showing that the cool H-alpha material is cospatial with the hot x-ray

emitting material; simultaneous NIXT and Yohkoh SXT observations of an active region,



-3-

showingthat loops seenin one instrumentarenot seenin the other,and that the effect works

in both directions.

Comparisons of extrapolated magnetic field measurements to the observed coronal struc-

ture, indicating that neither potential nor constant-alpha force-free fits are adequate. We con-

clude with a description of two new instruments, the TRACE and the TXI, which will help to

resolve some of these difficulties.

A copy of this paper is appended to this report as Appendix 2.

3. Both a PIC and a CDR were held at Wallops Island FLight Facility during the past

year. The presentation packages for these meetings are appended to this report as Appendices.

II. Future plans: Preparation of the payload for launch continues.
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Abstract. The solar corona, and the coronae of solar-type stars, consist of a low-density

magnetized plasma at temperatures exceeding 10 8 K. The primary coronal emission is

therefore in the UV and soft x-ray range. The observed close connection between solar

magnetic fields and the physical parameters of the corona implies a fundamental role for
the magnetic field in coronal structuring and dynamics. Variability of the corona occurs

on all temporal and spatial scales - at one extreme, as the result of plasma instabilities,
and at the other extreme driven by the global magnetic flux emergence patterns of the

solar cycle.

L

1. Introduction

The corona is a portion of the Sun's outer atmosphere beginning slightly

-above the visible surface and extending many solar radii out. A precise defi-

nition of the term "corona" is to some extent dependent on one's theoretical

bias, and one may choose to think in terms of a modified plane-parallel mod-

el, or in terms of a composite, multi-component model made up of relatively

isolated individual structures.

In either case, the most important physical fact about the corona is that

it reaches very high temperatures, more than 106 K. Moreover, this tem-

perature increase is found to occur over very short distances, with the rise

from < 104 K to > 106K occurring within less than a thousandth of the

solar radius. If we pick a temperature well above that of the photosphere,

such as 105 K, then we may define any portion of the atmosphere above this

temperature as corona. Because the rise in temperature is so dramatically

steep, this choice is adequate for many purposes, since a large change in this

cutoff value will correspond to only a very small change in actual physical

location.

At visible wavelengths, the corona is extremely faint relative to the disk,

having a maximum brightness ratio of _ 10 -6, decreasing to _ 10 -9 within a

single solar diameter away from the visible limb. However, at UV and soft x-

ray wavelengths, the situation is reversed. Because of the high temperature

of the coronal gas, its primary emission is in the UV and soft x-ray portion of

the spectrum. Therefore, an instrument in which the visible light is blocked

while the short wavelengths are transmitted permits viewing of the coronal

emission on the disk and out to several solar radii above the limb.

Figure 1 shows a superposition of both on-disk and limb observations.

It was obtained during a total solar eclipse in 1991, using ground-based

data from the CFH-T in Hawaii and x-ray data from the NIXT sounding

Astrophysics and Space Science 237: 33-48, 1996.

© 1996 Kluwer Academic Publishers. Printed in Belgium.
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rocket (Golub et al. 1990). The ground-based eclipse permitted the white-

light photo of the outer corona to be obtained, while the uneclipsed sun

was viewed at the same time from above White Sands, New Mexico, where

the eclipse had not yet started. The combination of the two observations

shows that the streamer structures originate at the solar surface, typically

in the brighter places called "active regions." This type of comparison brings

home clearly the point that the corona is three-dimensional, with its roots at

or below the solar photosphere and outer extension far into interplanetary

space.

Observations of the high-temperature solar emission were first carried out

from sounding rockets (Baum et al. 1946) and techniques for high resolution

x-ray imaging were developed under NASA's Suborbital program (Vaiana,

Krieger & Timothy 1973) during the late 60's and early 70's. The high tem-

perature corona emits predominantly in isolated spectral lines which fall

in the XUV and soft x-ray spectral regions, and many of the important

lines were observed and identified by Sir Robert and co-workers in the 60's

(Wilson 1964; Jones, Freeman & Wilson 1968). These studies and techno-

"logical development efforts led to the first series of high resolution studies

with extended temporal coverage, carried out from Skylab (viz. Orrall 1981);

these will be discussed in the next section. Most recently, the Yohkoh satel-

lite has significantly advanced the study of coronal activity and variability,

using a combination of soft x-ray and hard x-ray imaging to study coronal

activity, and a major new solar observatory - the Solar and Heliospheric

Observatory (SoHO) - carries a large complement of instruments which are

expected to provide a comprehensive view of the sun from its interior out

to the solar wind.

The solar-stellar connection

If our sun, which is a typical middle-aged low-mass star, has a corona

and is a source of x-ray emission, then it is reasonable to ask whether other

stars also have coronae and emit x-rays. Within the past two decades this

question has been answered in the affirmative: not only do other stars emit

x-rays, but the sun is rather below average in activity level. Stars of nearly

all spectral types are found to emit UV and x-rays and to display tracers of

activity which are detectable in ground-based observations.

Ground-based observations may be used to determine the level of activity

on stars, using methods which range from detection of chromospheric lines

(Wilson 1963) to direct detection of magnetic fields (Robinson, Worden &

Harvey 1980). Surveys of all spectral types, but especially of solar-type stars,

have been carried out, most notably at Mt. Wilson (Vaughan 1980).

The direct detection of material at transition region and coronal temper-

atures had to await observations from space: the International Ultraviolet
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Fig. 1. Composite photo showing the white-light corona seen from the CFH-T in Hawaii
at the 11 July 1991 eclipse and the on-disk x-ray corona observed from the NIXT sounding
rocket at the same time.

Explorer (IUE) was launched into a quasi-geosynchronous * orbit on 26 Jan-

uary 1978. The satellite provided ultraviolet spectra of astronomical objects

ranging from comets and planets to active galactic nuclei and quasars. For

stellar studies, the spectra extended the ground-based observations to more

highly ionized species, such as Si IV, C IV and N V, thus permitting the

extension of ground-based chromospheric studies into what would appear to

" The satellite circulates over Central and South America in a pattern which allows

access by ground stations feeding both Europe and North America.
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be temperatures more characteristic of the chromosphere-corona transition

region.

Early IUE surveys extended our knowledge of high-temperature atmo-

spheres on solar-type stars, and also showed a cutoff in coronal emission for

late-type giants and supergiants (Linsky & Haisch, 1979). Detailed analysis

of emission from late-type stars shows that in general they are solar-like in

their properties, as was shown by data from both the IUE (Linsky 1980)

and the Einstein Observatory, launched on 13 November 1978.

The Einstein Observatory had higher sensitivity to x-rays than previous

experiments and it also had the ability to produce high resolution images,

which yields a high signa/-to-noise ratio. As it turns out, flare stars and RS
CVn stars are only a few orders of magnitude brighter than "normal" stars,

so that the increase in sensitivity of the Einstein observations was more

than enough to allow the less active solar-type stars to be seen. A survey

published after the first year of observation (Vaiana et al., 1981), showed an

"x-ray H-R diagram" nearly indistinguishable from its optical counterpart.

2. Magnetic Fields and X-ray Emission

In seeking to explain the existence of a corona on the sun, the major ques-
tions to be answered concern:

- corona/ heating: the high temperature seems to compel the need to

invoke some non-thermal, i.e., mechanical, source of energy. What is

that source and how does it transfer energy to the coronal plasma?

- corona/structure: in addition to the gross correlation between magnetic

fields and coronal heating, there is fine structure in the corona. What

determines the scale size of the "loops"?

- stability: the overall appearance of the corona is stable on several days'

timescale, but instabilities and rapid energy release occur on timescales

of minutes and seconds.

- currents: how is energy stored in the corona and what causes its sudden
release?

The key to answering these questions seems to be in the close connection

between the presence, at and above the photosphere, of strong magnet-

ic fields and the locations of the brightest, hottest regions in the corona.

Magnetic flux is seen to emerge from the solar interior, rising and break-

ing through the surface in the form of bipolar regions. Here 'bipolar' indi-

cates that the magnetic field is re-entrant to the solar surface - field of one

polarity emerges and field of the opposite polarity re-enters, usually at a

nearby location. The overall appearance is roughly that of the field from a

magnetic dipole lying horizontally just below the surface. Corresponding to

this magnetic structure, the hot corona/plasma is seen to form loop-shaped

structures which appear to trace the magnetic topology.
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The life of such a region is divided into two main stages, the emergence of

magnetic flux and then the subsequent diffusion of that flux across the solar

surface. The x-ray loop structures are seen to emerge and grow in accordance

with the evolution of the magnetic field.

These processes are directly observed in the corona by x-ray imaging

techniques, and at the photospheric level by magnetic field maps, or mag-

netograms, which can measure the field strength* directly. The regions of

emerged flux are seen in magnetograms as neighboring patches of opposite

polarity fiel. The bottom panel of Fig. 2 shows such a magnetogram.

For large regions containing more than 1020 Mx [1 Mx = 1 gauss-cm 2]

total flux, the field is seen to emerge, grow in size and then gradually spread

out across the solar surface. The calculated timescale for ohmic diffusion of

the magnetic field in the photosphere by classical collisional electric resis-

tivity is too slow by many orders of magnitude. It appears necessary to

invoke turbulent diffusion, in which the field is moved about by the convec-

tive motions at or below the photosphere, in order to account for the rapid

spreading of emerged magnetic flux. This process is also, in some theories,

closely connected with the heating of the corona, by one of any number of

proposed mechanisms whereby the convective motions feed energy into the

coronal plasma via the magnetic field _for a recent review, see Narain &

Ulmschneider 1990).

Fig. 2 also shows a near-simultaneous coronal x-ray image, taken with

the NIXT sounding rocket payload (Golub et al. 1990)**. The x-ray image

covers temperatures from 1 - 3 × 10 6 K, and the hottest, brightest locations

coincide with the strongest concentrations of emerged magnetic flux. This

can be seen by locating the x-ray bright regions in the top photo and com-

paring to the black-and-white bipolar magnetic areas in the bottom photo.
Note also that there are extensive regions of weaker magnetic flux in the

magnetogram. However, the measured values of magnetic field strength are

now known to be deceptively low. The actual photospheric strength of the

magnetic field is found to be well over 103 G, (Frazier & Stenflo 1972) so

that the appearance of weaker average field means that the B is concentrated

into small magnetic elements with a low filling factor: the photospheric field

is intermittent. In the corona, the field cannot be measured directly, but

appears to be space-filling, as expected from the low plasma j3. Above the

weak-field regions the loop structures are larger and weaker than in active

regions; such locations have sometimes been called "quiet corona", but time
resolved observations show that it is not at all quiet, as we describe in the

next section.

* Either just the line of sight component, or more recently the full vector field.
** The data could not be taken exactly simultaneously because of a total eclipse; note

the shadow of the moon entering the x-ray f.o.v, from the west.
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Fig. 2. Near-simultaneouslongitudinalmagneticfield map (bottom, from NSO/Kitt
Peak),and x-rayimagesof thesun (top,from the NIXT rocket),11July 1991.
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3. Short-term Variability
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X-ray variability.

Prior to Skylab it was generally expected that the x-ray corona would

show variations on time scales governed by the emergence and diffusion of

magnetic flux. Although flares certainly were known, the general view con-

cerning rapid events was that "Coronal events are rare." (Dunn, 1971). This

view was completely reversed by the Skylab data, leading to the realization

that all parts of the corona are varying on nearly every possible timescale

(Vaiana &: Rosner 1978) and that future instruments should be designed with

the capability to obtain both high spatial and temporal resolution coronal

imaging (Golub 1991).

An example of the dynamic changes seen in active regions is shown in

Fig. 3. The four panels cover about 1-1/2 days and show the changes in the

corona induced by the emergence of new magnetic flux near a pre-existing

_region. The older region is seen to consist of closed (re-entrant) loops and

follows the magnetic field in being spread-out and fairly diffuse. To the

west (right in this image) a newly emerging region is compact and very

bright, with correspondingly strong emerging magnetic field. The dynamic

and highly variable x-ray emission in the newly emerging region is evident, as

is also the flare-like activity associated with the formation of interconnecting

loops between the two regions. The complexity of the coronal structures, i.e.

of the magnetized plasma loops, is also quite evident.

Transient loop brightenings.

A study carried out by Sheeley & Golub (1979) using Skylab data from the

NRL S-082 and AS_zE S-054 instruments provided one of the only studies

of coronal variability at high spatial and temporal resolution. The study

consisted of a set of nested exposures with time resolution down to two

minutes at the center of the set, and focussed on two x-ray bright points

(XBPs). These are defined as small, short-lived, magnetically bipolar regions

of enhanced x-ray emission in the low corona (Golub et al. 1974). Active

regions (ARs) were also seen in the data, but were excluded from the study

because the large number of loops in the ARs made tracking of individual

structures difficult.

The XBPs were seen to consist of a small number of loops, the number

varying from two to six from one observation to another. Individual loops

were seen to brighten and fade rapidly on timescales of about six minutes,

which corresponds to the timescale for cooling by radiation and conduc-

tion in a plasma with the observed temperature and density. At any given

moment, the "bright point" is seen to consist of several "independently-

evolving miniature loops". This study concluded that the coronal structures
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Fig. 3. The rapid reorganization of coronal loop structures in response to newly emerging
magnetic flux.

are brightening and fading as fast as they can, and that the observed vari-

ability is consistent with an intermittent delta-function energy input, fol-

lowed by energy redistribution by conduction and radiative losses without

significant additional energy input.

The Yohkoh soft x-ray telescope (SXT) has provided the clearest images

to date of the extremely dynamic and variable nature of the solar coro-

na. While originally designed primarily as a flare mission, this satellite has

proven to be extremely useful for studying the activity of the corona on spa-

tim scales consistent with the resolution (2.5 arcsec pixels) and on temporal

scales from seconds to months, and even years.

One of the finest examples of this variability are the so-called "transient

brightenings" seen in active regions (Shimizu et al. 1992). Some (but not

all) active regions are particularly dynamic in showing repeated, small flare-
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like brightenings, which are clearly seen to take place in closed magnetic

structures, i.e., in "loops". An example of this phenomenon is shown in

Fig. 4, from Shimizu et al. (1992).

The brightenings have a power-law spectrum of energy, from 1029 erg

down to the instrumental threshold at _ 1025 erg, with a slope a = 1.7.

Thus, the larger events blend into the distribution of events which one would

normally call "flares", but the slope is not consistent with the suggestion

that these brightenings make a significant contribution to the heating of

active region coronae (Shimizu 1994).

Flares in x-rays.

Solar flares emit high levels of radiation at nearly all wavelengths, from

the radio to x-rays and even gamma rays. Flares and the large-scale magnetic

rearrangements in the corona associated with flares, eject relativistic elec-

trons, protons, heavy ions and perhaps neutrinos. They produce microwave

radio bursts with timescales of milliseconds and long wavelength radio noise

storms lasting days. Coronal soft x-ray emission may increase temporarily

_)y a factor of 1000 in a flare, and enhancements may last several minutes

up to tens of hours. At the earth, upper, atmospheric disturbances, auroral

displays, ground-level particle events and a host of related phenomena are

produced.
The definition of a flare is somewhat controvertial. An often-used clas-

sification defines a flare as 'a rapid temporary heating of a restricted part

of the solar corona and chromosphere.' However, 'rapid' might mean a few

seconds or it might mean several hours. 'Restricted' may mean a volume so

small that it is below our ability to resolve, or it may mean a volume nearly

as large as the sun itself. If we ask, how much heating must occur for an

event to be called a flare, the possible answers cover a range of six to nine

orders of magnitude.

Of course, some things are considered nearly certain. There is nearly

universal agreement that magnetic fields play a crucial role in controlling

solar activity in general, and flares in particular. We cannot do justice to

the extensive range of ideas in the literature on this subject; for details of

present flare theory the reader is referred to Tandberg-Hanssen & Emslie

(1988) and to the article by Priest in this volume.

As an indication of the possible upper end of the flare size scale in the

solar corona, Fig. 5 shows the coronal brightening associated with a large

filament eruption. This event evolves to a size greater than a solar radius

in extent, and such events often are responsible for major readjustments of

the large-scale coronal structure. The timescale of this event is long, tak-

ing nearly an hour to brighten and several hours to fade away. The latter

timescale typically does not agree with the somewhat shorter times calcu-

lated for radiative and conductive cooling, so that continued energy input
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Fig. 4. A time sequence of x-ray images from Yohkoh, showing successive transient

brightenings in active region loops.
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•Fig. 5. The 'scorpion'flare,a largefilamenteruptioneventobservedby the Yohkoh SXT
on 26 Feb. 1992.

during the flare decay stage is often invoked.

4. Long-Term &: Solar Cycle Variations

The most dramatic difference seen in coronal imaging data between solar

minimum and other phases of the solar cycle is the vast increase in the

number of x-ray bright points (XBP) seen at minimum (Golub 1980). There

is considerable controversy concerning the nature of XBP, i.e. whether they

represent new magnetic flux reaching the surface, or reprocessed magnetic
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flux from previous active region emergence (see Harvey-Angle 1993 for a

thorough review). However, the obervational fact is undeniable that at solar

minimum the low corona is dominated by these small-scale features.

As an example, Fig. 6 shows a comparison between two x-ray images

taken a few years apart. The top image was taken in 1973, during the declin-

ing phase of that cycle and the bottom image was taken in 1976, at solar

minimum. The data were selected at times when the averaged sunspot num-

bers were nearly identical, so that the instantaneous level of flux emergence

was not a factor. Nevertheless, there is a clear difference between the two
observations in the number of small features seen: the solar minimum Coro-

na is seen to have triple the number of small-scale features. It even appears

that there is very little structure in the corona other than that associated

with the XBP.

Finally, the changes in x-ray luminosity and in structural composition of

the corona as a function of phase in the magnetic cycle are again shown

with dramatic clarity by the Yohkoh SXT. Figure 7 shows how the corona

has evolved during four years of observations by the SXT. The overall soft

-x-ray luminosity has decreased by a factor of twenty in that time and the

large-scale structure, representing the evolved magnetic field of large active

regions, has been replaced by the weaker, less organized field structure of

the numerous x-ray bright points.

5. Future Observations

With the launch of the Solar and Heliospheric Observatory (SoHO) by ESA

and NASA at the end of 1995, a major new observational capability is added
to the solar arsenal. Combined with the Yohkoh satellite and with the Tran-

sition Region and Coronal Explorer (TRACE) to be launched at the end of

1997, it would appear that solar physics is in a healthy state and that it can

look forward to a decade of progress as this millenium closes.

While all of this is true, there are still many areas of solar and solar-

terrestrial research which urgently require further attention, both on strict-

ly scientific grounds and because of their direct importance to society. It

is now becoming apparent that relatively small changes in the solar output

can lead to major changes in the earth's climate, even if the direct cause

is not yet clearly understood. Short-term variations, particularly mass ejec-

tions and high-speed solar wind streams, are now known to cause damaging

effects at ground level, in the upper atmosphere, and in the near-earth space

environment. Thus, the activity of the corona has direct consequences for

power distribution networks, for the survival of satellites and astronauts

in space, for long-range communications, and possibly even for long-term

global climate changes.

A wide range of instrumentation will be used in attacking these prob-
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16 August 1973

17 November 1976

Fig. 6. Comparison of the XBP number density during the declining phase of the solar

cycle (top) and solar minimum (bottom).
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Fig. 7. Change in the coronal x-ray emission as a function of phase in the solar cycle, as

seen by the Yohkoh SXT (photo courtesy H. Hara, NAOJ).

lems, including ground-based observing networks, NASA sounding rockets

and other rapid, low-cost methods for putting instruments in space, and

also larger missions such as the planned Solar-B observatory. A Solar Probe

mission would allow direct in situ measurements relevant to coronal heating

and solar wind acceleration, as well as offering the possibility of obtaining

observations of the coronal structure with unprecedented effective spatial
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resolution. It is, of course, impossible to predict how much of this will actu-

ally happen.
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DIFFICULTIES IN OBSERVING CORONAL STRUCTURE

L. GOLUB
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Abstract. There has developed in recent years a substantial body of evidence to indicate that the

temperature and density structure of the corona are far more complicated than had previously been

thought. We review some of the evidence and discuss some specific examples: observations of a
limb flare, showing that the cool Hc_ material is cospatial with the hot X-ray emitting material;

simultaneous NIXT and Yohkoh SXT observations of an active region, showing that loops seen in
one instrument are not seen in the other, and that the effect works in both directions; comparisons of

extrapolated magnetic field measurements to the observed coronal structure, indicating that neither

potential nor constant-c_ force-free fits are adequate. We conclude with a description of two new
instruments, the TRACE and the TXI, which will help to resolve some of these difficulties.

1. Overview

The importance of magnetic fields in determining the structure of the solar outer

atmosphere has long been recognized. Billings (1966) notes that magnetic fields

'are employed, as a matter of fact, to explain all departures from a nonspherical [sic]

distribution of matter in the corona, including the loop structure of the corona over

active regions...' Observations from sounding rockets in the late 1960s and early

1970s provided convincing evidence that loops structures, apparently outlining the

magnetic field direction, are fundamental (Vaiana, Krieger, and Timothy, 1973) and

the Skylab observations in 1973-1974 provided the impetus for constructing atmo-

sphere models in which loop 'mini-atmospheres' are the fundamental constituent

of the inner corona (Rosner, Tucker, and Vaiana, 1978; Craig, McClymont, and

Underwood, 1978).

This atmosphere is dynamic and constantly varying. Low (1990) notes that the

solar atmosphere is never truly quiescent or static, but adds that for the purpose

of building models idealized static states may be used as an approximation to the

physics underlying the apparent stability of long-lived structures. The extremely

dynamic nature of the corona has been shown most effectively by the Soft X-ray

Telescope (SXT) aboard the Yohkoh satellite: repeated transient loop brightenings

in active regions (Shimizu et al. 1992), continual rapid expansion outward of

structures at the tops of active regions (Uchida et al., 1992), jets of X-ray emission,

apparently associated with reconnection events (Shibata et al., 1992), among others.

Thus, it is already clear that the simplest models of the corona - spherical or

plane-parallel - are of limited applicability for interpreting the actual observations,

and that the simplest loop atmosphere models - static loops - are also of limited

usefulness. To these complications, we will add an additional set of worries, by

Solar Physics 174: 99-114, 1997.
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Table I

Observational questions about the solar corona

Q 1. Is the corona hot or cold

at a given point in space?

Q2. Where is the 'base' of

the corona?

Q3. What is the transverse scale

size of coronal structures?

Q4. What is the relation between

the coronal B and X-ray emission?

Q5. What does the hot corona

look like?

A1. Depends on the viewing method.

A2. Meaningful only for individual loops

and probably unanswerable.

A3. Our knowledge is limited by present

instrumental resolutions.

A4. Data do not provide sufficient

constraints.

A5. Depends on the viewing method.

showing that it is not at all clear that we are even now in a position to say that we

know what coronal loops look like, or to know how the real corona is constructed

of such loops.

2. Case Studies

In order to illustrate the difficulties alluded to in the Overview, we will examine five

specific 'case studies,' each involving a seemingly reasonable question about the

corona. The questions addressed by these studies are listed in Table I, along with

the answer to each question. The latter will be explained in the course of discussing

each case. These examples are all taken from work related to flights of the Normal

Incidence X-ray Telescope (NIXT) sounding rocket payload (Golub et al., 1990)

during the years 1989-1993.

2.1. A LIMB FLARE

On 11 Sept. 1989, the NIXT rocket was launched at the start of a small flare (GOES

classification C5). However, during the five-minute flight, a second flare began in

an active region at the limb (Herant et al., 1991). Examination of the GOES X-ray

light curves (Figure 1) indicates that the limb flare began at about 16:36 UT during

the decay phase of the larger on-disk flare. The NIXT observations also began at

16:36 UT, with the last image taken at 16:41:35 UT; the peak of the limb flare in

X-rays is at --_16:42 UT. Thus, the NIXT coverage could not have been better-timed.

Figure 2 shows simultaneous Ha and X-ray images of the flare at the time of

the peak. The most striking aspect of this event seems to be the nearly identical

size, shape and location of the flare in the two wavelength regimes. This similarity

is confirmed by a cross-correlation between the two datasets, shown in Figure 3.

The contour lines show the X-ray brightness and the shaded region shows the H

brightness: the two overlap to within the accuracy of alignment. Thus it would
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Figure 1. GOES 1-8 A and 0.5-4 _ X-ray plots for 9 November, 1989.

Figure 2. Simultaneous Hot and NIXT X-ray images of a limb flare.

appear that the corona is both hot (X-ray) and cool (Ha) at the same place at the

same time.

Possible explanations exist, of course, for this apparent contradiciton. It is

possible that the X-ray emission originates from a thin shell ahead of the advancing

Ha region. Alternatively, hot and cool material may be intermingled on small spatial

scales within the observed regions. The problem is not to come up with an answer,

it is to come up with a correct answer.
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Figure 3. Relative positions of X-ray event and Ha material.

2.2. SIMULTANEOUS WHITE-LIGHT AND X-RAY IMAGING

Plane-parallel, or spherically symmetric models of the outer solar atmosphere treat

the relation between temperature and height as one-dimensional, although not

monotonic since the temperature at first increases with height but then decreases

again. With the advent of loop model atmospheres, as described above, this fun-

damental view did not change in essence, but the temperature vs height relation is

transplanted into each loop instead of into the atmosphere as a whole. However,

a flight of the NIXT payload on 22 February 1991 provided a unique dataset

which shows that a more complicated geometry is required in order to explain the

observations.

The multilayer mirrors used in the NIXT to provide X-ray imaging also reflect

visible light with ,_ 50% reflectivity. In order to record only the (much fainter) X-

ray image, two stages of visible-light rejection are employed: an entrance aperture

filter, which cuts the visible to _, 1% and a focal plane filter, which provides

10 9 reduction in the visible. During the launch phase of the February 1991 flight, a

portion of the entrance aperture filter broke. The instrument, however, was designed

so that the focal plane filter acts as back-up in the event of just such a failure. Thus,

because the X-rays and the visible are reflected in the same way from the same

mirror at the same time, we obtained simultaneous images of the visible disk and

the corona. These are automatically coaligned and have the same plate scale, so

that high precision (< 1 arc sec) comparison between the two can be made.

Figure 4 shows a portion of the east limb from one of the exposures obtained

on that flight. Note that there is a dark band at the limb, between the white-light

solar limb and the bright coronal X-ray emission. We note several features of this
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Figure 4. Portion of a combined NIXT/white-light image, showing a gap between the visible limb
and the 'base' of the corona, 22 February, 1991.

gap: (1) it is most clearly evident when there is an X-ray emitting region behind

the limb and no emitting region in front of the limb; (2) the thickness of the gap

varies between equator and poles, or between active regions and large scale 'quiet'

regions; (3) at both the inner (white light) and outer (X-ray) heights, the gap is

quite sharp. The question we will address is, how is this gap to be interpreted?

The data from this flight have been analyzed by Daw, DeLuca, and Golub

(1995), who find that a model in which the corona is viewed as consisting of a

homogeneous set of loops, with temperature varying as a function of height in a

uniform manner (Figure 5(a)) is not consistent with the data. In order to explain

what is seen, it is necessary to use a model in which hot loops penetrate downward

into an atmosphere having cool spicular material penetrating upward (Figure 5(b)).

The two types of loops do not connect physically, but are interspersed along the

line of sight. Thus, the gap is interpreted as the upward extent of spicular material,

viewed along the line of sight at the limb and absorbing the X-rays emanating from

loops behind the spicules.
We note that the soft X-rays in the NIXT data are strongly absorbed in spicular

material, with about 10 arc sec path length required for e- 1absorption. The variation

in thickness of the band indicates that spicules may extend farther in open field (e.g.,

coronal hole) regions than in higher temperature closed-loop regions, as reported

by Huber et aL (1974). This interpretation of the NIXT data suggests that the

footpoints of coronal loops cannot, in principle, be seen. When viewed at the limb,



104 L. GOLUB

l
I

t
r

.................. i .......

I

............. ._..._...__.._.L

Cool

' /
Cool lCat©rial /

II |

lit
_ II Ii

m|

Figure 5. Two loop model atmospheres offering alternative explanations of the gap seen in Figure 4.

Modified plane-parallel model on left does not fit the data.

they are obscured by the intervening spicule material; when viewed from above,

the projection angle is such that the height of the coronal 'base' is very poorly

determined. Depending upon the relative spatial density of hot vs cool structures,

there may be a small range of locations near the center of the disk which allow for

both viewing the loops at an angle and for viewing them unobstructed. However,

this is not yet known.

2.3. ACTIVE REGION FINE STRUCTURE

The progress in X-ray optics, when applied to solar coronal imaging, has consist-

ently revealed coronal fine structure down to the resolution limit of the observing

instruments (see, e.g., articles by Giacconi, Golub, and Walker et al. in Linsky and

Serio, 1993). An example is shown in Figure 6, a coronal X-ray image from the

NIXT instrument, obtained on 11 July, 1991. There is clearly fine structure preval-

ent everywhere in the image and photographic analysis indicates that it reaches the

combined limit set by the film and by the pointing stability of the rocket.

A quantitative analysis of the fine structure of several active regions observed

by the NIXT was carried out by G6mez, Martens, and Golub (1993). By Fourier

analyzing the images, they find a broad, isotropic power-law spectrum for the

spatial distribution of soft X-ray intensities. The spectrum has a slope of a m -3,

which extends down to the resolution limit of the instrument at m 0.75 arc sec.

A similar result has been obtained by Martens and G6mez (1992) from analysis

of Yohkoh SXT data: the Fourier transform distribution is a power law (with

somewhat smaller slope of m -2.4) which extends down to the Nyquist frequency.

Thus, for both cases in which the procedure has been carried out, the spatial

structuring of the corona is seen to be limited by the resolution of the imaging

instrument. The implication, since the Sun does not know what instrument we are
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Figure 6. 11 July, 1991 NIXT image.

using to observe it, is that we have not yet fully resolved the coronal fine structure.

Thus, the answer to Question 3, 'What is the transverse scale size of coronal

structures?', is that we do not yet know.

2.4. MAGNETIC FIELD EXTRAPOLATION VS OBSERVED STRUCTURE

There have been only a limited number of attempts in recent years to carry out

direct comparisons between high resolution coronal observations and magnetic

field extrapolations, if we exclude attempts to explain the onset of flares by testing

the non-potentiality of fields. For non-flaring regions, i.e., normal coronal structure,

Poletto et al. (1975) and Sakurai and Uchida (1977) had reasonable success at the

level of late 1960s and early 1970s resolution. More recently Sams, Golub, and

Weiss (1993) found a general agreement between extrapolations and the structures

seen in the NIXT, although close examination shows that the agreement is quite poor

in detail. Metcalf et al. (1994) conclude, from comparison of vector magnetograph

data (giving the locations of vertical currents) with Yohkoh SXT coronal data, that

there is a very poor spatial and temporal correlation between the locations of the

currents and the locations of bright coronal structures.
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Figure 7. NIXT X-ray image of AR 6718 and KPNO magnetogram of the region.

i°-, _
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Figure 8. Magnetic field extrapolations of AR 6718, with three values of a.

In a recent study, Schmieder et al. (1996) have used high resolution NIXT data

combined with Kitt Peak magnetogram and Multi-channel Double Pass (MSDP)

spectrogaph data, to study in more detail the relationship between the observed

structure and the type of magnetic field extrapolation employed. The extrapolation

code is based on the work of Alissandrakis (1981) as modified by D6moulin et al.

(1996). A single active region, AR 6718 on 11 July, 1991, was chosen for study;

an X-ray image of the region and the corresponding portion of the magnetogram

are shown in Figure 7.

The first result is that a potential-field extrapolation does not represent the

observed coronal structure at all, and that even a constant-a force-free field extra-

polation is not adequate. Figure 8 shows extrapolations using three values of a.

The left-most panel shows a = 0, i.e., a potential field. Note that the connectivity

of the field lines is entirely different from that of the observed structures. The two

force-free fits in the middle and right-hand panels match portions of the region,
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Figure 9. Comparison between Yohkoh (top) and NIXT (bottom) observations of an active region;
arrows indicate structures seen in one of the instruments but not seen in the other.
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but neither one in itself is a good fit. What we find is that the inner portion of the

active region is well matched by the larger value of a while the outer portion of

the region is matched by a lower a.

A possible interpretation of this result is that there is, with time, a relaxation

of the magnetic field, as proposed by Heyvaerts and Priest (1984). In a highly-

conducting plasma, small-scale processes dissipate magnetic energy much more

rapidly than helicity H -- f A • B dV (Taylor, 1974; Berger, 1985). With this

constraint the magnetic field does not relax to a potential state, but to a linear

force-free state. The gradient of a found in this region may be indicative of this

ongoing relaxation process.

2.5. Yohkoh SXT vs NIXT COMPARISON

In April 1993 the Yohkoh SXT carded out a special observing sequence simultan-

eous with a flight of the NIXT rocket. An inital comparison of the two datasets

was carried out by Yoshida et al. (1995) for a quiet corona region. Because the

SXT temperature response is somewhat harder than that of the NIXT (>2.5 MK

for SXT vs 1-3 MK for NIXT) it was expected that the SXT would see the hotter

top portions of coronal loops while the NIXT would see the lower portions or the

footpoints. This was indeed generally seen to be the case in that study.

However, subsequent evaluation of the one active region on the disk on that day

is showing a completely different and unexpected result. One expects that 'all X-ray

images are alike,' so that the two should show roughly similar structures. Viewed

from a distance, the two observations seem to be showing the same coronal features.

However, detailed examination shows some remarkable discrepancies between the

two.

Figure 9 shows the comparison of NIXT and Yohkoh SXT observations, with

arrows pointing to three locations in the region. These are places where a structure

or set of structures is visible in one of the images and entirely invisible in the other;

the effect works both ways. Thus, if only one of these images were available, we

would draw reonneous conclusions about the coronal structure, since there would

be no indication at all that some structures are present.

The seriousness of this problem is obvious: if we intend to study the formation,

stability and dynamics of coronal structures, one must first be able to see them. A

partial solution to this problem is described in the next section.

3. Some Partial Solutions

The above discussion provides only a partial listing of some of the problems we

are encountering in attempting to study the formation, heating, structuring and

dynamics of the solar corona. In this section we describe two new instruments

which will help to solve, or at least advance, some of these problem areas. The
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TRACE instrument will have the highest spatial resolution ever used to observe the

corona, as well as the ability to discriminate multiple temperature regimes and to

view the atmosphere from the upper chromosphere up into the active region corona.

The TXI is a rocket-borne payload which will have the capability of observing the

entire sequence of successive ionization stages of a single element from < 10 6 K

to >3 x 106 K, and will also determine flow velocities at these temperatures.

3.1. TRACE

The Transition Region And Coronal Explorer (TRACE) is designed to explore

quantitatively the connections between fine-scale magnetic fields at the solar surface

and the associated plasma structures in the solar outer atmosphere. The TRACE

instrument uses multiple UV and normal-incidence XUV channels to collect images

of atmospheric plasma from 104 K to 10 7 K. Many of the physical problems

that arise in this portion of the atmosphere - plasma confinement, reconnection,

wave propagation, plasma heating - arise throughout space physics and much of

astrophysics as well. Although recent progress in, e.g., numerical MHD simulations

has been substantial (viz., Low, 1990), use of these models requires close guidance

by the observations, because the enormous range in parameter scale sizes cannot

be realized in the computations.

The telescope provide.s true 1 arc sec resolution (1 pixel is 0.5 arc sec) and

temporal resolution as short as a fraction of a second for bright sources. Table II

lists the operating spectral bands, the associated temperatures and the portions of the

atmosphere covered. The instrument uses four normal incidence coatings, one for

broadband UV and three for narrow band XUV operation. The UV channel includes

a set of narrow-band filters at the focal plane, thereby allowing sub-channels which

detect portions of the atmosphere from the photosphere to the transition region.

Selection of the XUV channels is based on a thorough analysis carried out by

Golub, Hartquist, and Quillen (1989), who analyzed the spectral region accessible

to normal incidence techniques and determined the best lines to use for particular

atmospheric features of interest.

TRACE is launched on a Pegasus-XL into a polar, Sun-synchronous orbit,

thereby providing continuous observation of the Sun. Continuous observing for

about 8 months is planned over a 1-year baseline mission. TRACE produces data

complementary with SOHO, and planning of the TRACE daily observations is

being coordinated with those of SOHO.

The main components of the TRACE instrument are shown in Figure 10. The

TRACE instrument consists of a 30-cm diameter Cassegrain telescope and a filter

system feeding a CCD detector. Each quadrant of the telescope is coated for

sensitivity to a different wavelength range. Light entering the instrument passes

first through an entrance filter assembly which transmits only UV and soft X-ray

radiation, thus blocking the solar heat from reaching the mirrors. A large rotating
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Table II

TRACE spectral regions and observing parameters

Central wavelength (/_,) Width (]k) Ion Location

2500 Broad Continuum Photosphere

1700 Broad Tmin/Chrom.

1570 30 C I, Fe II, Cont. Photosphere

1550 30 C Iv Transition region

1216 84 H Lc_ Chromosphere

284 14 Fe xv Corona

195 10 Fe xII Corona

(+Fe XXlV) Flares

171 9 Fe Ix Corona

Figure 10. Major system components of the TRACE instrument.

quadrant shutter selects one quadrant at a time for viewing. The secondary mirror

of the telescope is active, to correct for pointing jitter to better than 0.1 arc sec.

The converging beam from the secondary mirror passes through the central hole

in the primary, where it encounters two filter wheels in series, each having three

filters and one open position. These wheels contain both the XUV light-blocking

and the UV passband filters. Finally, there is a focal plane shutter and a 1024 x 1024

CCD, for a field of view of 8.5 × 8.5 arc min. Mosaic observations are planned,

for larger field and daily full disk data-taking. The TRACE launch is late in 1997,

and mission lifetime is at least 8 months. Thus it will be observing during the rise

phase of the new solar cycle.

Some of the scientific objectives of the mission are:

- Magnetic field structure and evolution.

- Coronal heating and magnetic fields.

- Onset of coronal mass ejections.

- Variability of X-ray bright points.
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The mission and its objectives are described in more detail in Tarbell et al.

(1994).

3.2. TXI

The Tuneable X-ray Imager (TXI) is a high-resolution coronal imaging instrument

which has the ability to produce near-monochromatic images tuneable over a range
o

of XUV wavelengths. The present design covers the wavelength range 170-220 A,

which includes the strong series of iron lines from Fe IX through Fe xw, inclusive.

Thus, the problem of 'missing' structures is solved, for the temperature range

log T = 5.8-6.4, because all of the successive ionization stages are isolated and

recorded.

Figure 11 shows a schematic layout of the instrument. Spectral isolation is

achieved by using a double-crystal monochromator, which feeds a broadband tele-

scope, coated with an XUV multilayer having AA ,_ 30 ._ (FWHM). The mono-
o

chromator is made as narrow-band as possible, which in this instance is _ 4 A, and

it is tuned by rotating the two plane mirrors in parallel. A Cowan-Golovehenko

arrangement is used (Cowan, 1983), which has the highly desireable property that

the entrance and exits beams stay fixed during tuning. Thus, there is no image

motion in the focal plane as the wavelength is changed.

Table III shows the strongest lines in the TXI passband. Depending upon line

strength and available exposure time, it appears possible to record data out to

220 fi,; no data below 170 A are recorded because aluminum light-blocking

filters are used at the entrance aperture and at the focal plane. We note that line

multiplets, such as FexII near 193 ._, do not smear the image, because this is a

non-dispersive system.

The TXI sounding rocket program has just received approval from NASA to

begin construction (May 1996). Present plans are to have the payload ready to fly by

the summer of 1998. A summer launch is neccessary in order to reduce absorption

by the residual atmosphere even at rocket altitudes. A minimum altitude of 100

miles is necessary for the wavelengths observed in this experiment, and a line

of sight to the Sun as near normal to the plane of the atmosphere as possible is

required. The launch therefore takes place around local noon in White Sands, NM.

3.3. THE SOLAR RADIO TELESCOPE

Of course, it is not only in the area of space-based instrumentation that solutions

to the present set of problems in solar physics may be sought. In this section we

describe a representative ground-based instrument, designed to map the magnetic

field structure and topology in the corona.

A proposal for a dedicated Solar Radio Telescope which represents a major

advance on current radio facilities is currently being explored (a report by D. Gary

and T. Bastian will be available shortly). The ability to map solar magnetic fields
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Figure 11. Schematic layout of the Tuneable XUV Imager.

Table" III

Strongest lines in the TXI passband

Ion Wavelength (]k) log T

Fe Ix 171.08 6.0

Ov 172.17 5.4

O vl 172.94 5.5

173.08

Fex 174.53 6.1

177.24

Fe x[ 180.42 6.2

Si xt/Fe xI_ 186.88 6.2

Fe x] 188.22 6.2

Fe xxIv 192.03 7.3

Fe xn 192.40 6.2

193.52

195.13

Fe xin 202.04 6.2

203.82

Fe xIv 211.32 6.3

He II 237.35 4.7

SUN
UGHT

above coronal active regions is one of the major goals of this telescope. The features

necessary to carry out such a goal are:
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-- the ability to make radio images of active regions on short time scales with

high spatial resolution and high dynamic range;

- the ability to make images at many closely-spaced frequencies across a broad

frequency range nearly simultaneously; and

- accurate polarimetry.

The proposed instrument which provides these features consists of an array

which contains many small dishes (presently planned to be 40) with full-disk

coverage, three large (,-_25 m) dishes to provide sensitivity and allow accurate

calibration, and receivers which incorporate the frequency agile characteristics so

successfully demonstrated by the OVRO array with a target range from 300 MHz

to 30 GHz. This instrument would have 2.5 times as many baselines as the VLA,

and requires a large correlator to handle them. Recent advances in broadband

microwave components, large correlators and computers make such an instrument

possible for a low cost. Considerable effort will also be expended on software

for real-time processing of the data into a form (images and coronal field maps)

suitable for immediate use by the broader solar community.

3,3.1. Vector Magnetic Fields

Finally, we mention the almost obvious point that vector magnetograms are cru-

cially important in the comparison between surface fields and coronal struc-

ture/stability. Ground-based observations have progressed enormously, but there

still remains the basic question: how much of the observed variability is due to

atmospheric effects and how much is intrinsic to the source? This question has

been answered in part by comparing observations taken simultaneously at widely-

separated sites. However, the best way to answer the question and to obtain the

highest quality observations, is to place a vector magnetograph in orbit.
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TXI

EXPERIMENT WEIGHT SUMMARY

COMPONENT DESCRIPTION

EXPERIMENT

Experiment Section

Optical Bench

Turn Table

Mirror Assembly

Detector Assembly

Ancillary Equipment

SPARC's Sensors

Ha Camera

Vacuum Gauges and Valve

TBD Camera Assembly

Electronics

Electronics

Cables, Connectors, Misc.

TOTAL EXPERIMENT WEIGHT

VEHICLE

Rocket Skin Sections

Thermal Shields

Vacuum Door

Balance Weights

Vacuum Pumping Port

Bulkheads

TOTAL VEHICLE WEIGHT

TOTAL EXPERIMENT AND VEHICLE

WEIGHT (Pounds)

35

27.5

11.5

10.0

4.5

7.0

8.3

12.0

24

12.0

151.8

230

30

38.2

10

3.3

28

339.5

491.3
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TXI TELEMETRY REQUIREMENTS

Command Uplink

1. Serial commands using the RS422 format.
2. Six Set/Reset commands for manual operation.

Downlink for Housekeeping

1. Serial data using RS422 format.

Downlink for Science Data

1.10Mb/sec WFF93 High Rate PCM Encoder

Two TV Transmitters needed

1. _ Camera
2. TBD Camera

Blockhouse

1. Use of 20 Umbical lines for External power, and TM checks
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TXI ROCKET EXPERIMENT

POINTING REQUIREMENTS

ACCURACY:

THE TXI EXPERIMENT REQUIRES A POINTING ACCURACY TO BE

WITHIN ONE ARC-MINUTE OF THE DESIRED POSITION.

STABILITY:

THE POINTING STABILITY MUST NOT EXCEED A PEAK TO PEAK

ERROR VALUE OF ONE-HALF ARC-SECOND IN THE PITCH AND

YAW AXIS WITH A MAXIMUM ROLL RATE OF 0.2 ARC-SECONDS

PER SECOND ABOUT THE ROLL AXIS.

ABSOLUTE ROLL ANGLE ORIENTATION IS NOT REQUIRED. IT

MUST ONLY BE SUFFICIENT TO GUARANTEE THE ACCURACY

REQUIREMENT.
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m

Minimum Altitude (km)
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TXI Observing Sequence

Time Wavelength Exposure (sec)

T+I05 171

T+I30 171

+145 175

+160 178

+185 180

+190 180

+205 182

+220 188

+235 192

+250 195

+255 195

+270 195

+305 203

+320 211

+335 203

+350 195

+365 192

+380 188

+395 175

+400 175

+405 175

+410 175

+425 171

+440 171

+455 171

etc.

20

I0

i0

I0

3

i0

i0

i0

i0

3

I0

30

I0

I0

I0

i0

i0

I0

3

3

3

I0

I0

i0

10



TXI ROCKET EXPERIMENT

LAUNCH WINDOW

THE TXI EXPERIMENTS SCIENCE REQUIRES THAT LAUNCH
OCCUR WITHIN 4- ONE MONTH OF THE SUMMER SOLSTICE

AND WITHIN .4- ONE HOUR OF LOCAL NOONTIME.

GROUND OPERATIONS

THE TXI EXPERIMENT WILL REQUIRE THAT THE EXPERIMENT

BE EVACUATE PRIOR TO LAUNCH AND THAT ITS OVERALL

TEMPERATURE NOT BE ALLOW TO CHANGE MORE THAN

± 10 DEGREES. THESE ARE SIMILAR TO THE NIXT EXPERIMENT

REQUIREMENTS.



TXI ROCKET EXPERIMENT

MILESTONES

1. PROJECT INITIATION CONFERENCE (PIC)

2. PRELIMINARY DESIGN CONFERENCE (PDR)
(CDR-VEHICLE COMPONENTS)

3. VEHICLE DRAWINGS TO WIFF

4. CDR - EXPERIMENT

5. VEHICLE PARTS TO SAO

6. TEST PROGRAM - WSMR

7. LAUNCH

23 MAY 1996

DEC, '96

FEB, '97

JULY, '97

DEC, '97

MAY-JUNE, '98

JULY, '98



TXI ROCKET EXPERIMENT

NASA SUPPLIED EQUIPMENT

1. SPARCS POINTING SYSTEM (DIGITAL OR ANALOG)

2. VEHICLE

A. ROCKET SKINS WITH INTERNAL HEAT SHIELD

B. VACUUM DOOR ASSEMBLY

C. BULKHEADS (2)

D. VACUUM PORT

E. ROCKET SKIN PULLER (VACUUM SEALS)

3. WSMR VACUUM PUMPING SYSTEM

4. WSMR VIBRATION TEST FACILITIES



TXI ROCKET EXPERIMENT

TESTING

THE PRESENT TESTING PHILOSOPHY IS TO PERFORM

SUBSYSTEM TESTING TO ENSURE EXPERIMENT OPERATION

AND CALIBRATION.

THE EXPERIMENT FLIGHT QUALIFICATION TESTING IS

PLANNED TO OCCUR A MONTH BEFORE THE FIRST POSSIBLE

LAUNCH DATE. THE REASON FOR THIS APPROACH IS OUR

DESIRE TO HAVE A LAUNCH OCCUR WITHIN THE SECOND

CONTRACT YEAR. IF THE TESTING PROVES TO BE SUCCESSFUL,

THAN LAUNCH ACTIVITIES COULD PROCEED., IF A FAILURE

OCCURS, THEN THE LAUNCH WOULD BE DELAYED UNTIL THE

FOLLOWING YEAR.
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1.2

DESCRIPTION OF EXPERIMENT

Introduction

We have completed and successfully flown the normal

incidence X-ray telescope (NIXT) designed for very high
spatial resolution studies of the solar corona. The

telescope has been designed to fly on a Terrier/Black Brandt

vehicle, and makes use of multilayer coatings to achieve

usable reflectivity in the soft X-ray regime. The fifth

flight of this telescope occurred July Ii, 1991 at 1726

hours UT as part of an eclipse experiment. With this flight,

we reached our design goal of 1/2 arc-second spatial .

resolution. _ _ "T_ ?_ID_4 4_ _ ___ _ %.The primary reason for using multilayer coatings at XUV and

soft X-ray wavelengths is because no single surface layer

coating can provide acceptable reflectivity at wavelengths
shorter than ~300A when used at normal incidence. For

instance, at 173A the best materials have R~.001. However,

by precise deposition of 50 alternating layers of Mo and Si,

mirrors with R~50% have been produced. When normal incidence

mirror designs are employed, the immediate advantage is

greatly improved image quality. The NIXT telescope recorded

the highest resolution solar corona photographs ever taken

on its last three flights. With the improvements now under

way, we expect to improve on that performance.

Science Goals

The experiment has two purposes associated with a single

scientific goal. We are trying to obtain high spatial
resolution images of the solar corona and to develop a two-

dimensional imaging detector sensitive to X-rays and XUV
radiation.

The overall purpose is to study activity in the solar corona

with sufficient spatial, spectral, and temporal resolution

to understand the physical mechanisms responsible for

coronal heating and dynamics.

Our analysis of NIXT and YOHKOH SXT data from the

simultaneous observations carried out in April 1993, shows
that the coronal structures seen in the two instruments can

be totally different: loops seen in Fe XVI are not visible

at all in Fe XVII, and vice versa. Our goal in designing the
TXI has therefore been to observe all of the successive

ionization stages of a single element (Fe), so that the

plasma has nowhere to hide. By tuning through the range of
x-ray wavelengths, and combining all of the observed

ionization stages, we will build up a complete

characterization of the corona in the temperature range

1
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covered (log T = 5.8 - 6.4). The TXI design also allows

detection of plasma flows by a suitable positioning of the

monochromator passband, and detection of polarization of the
x-rays via a 90 ° rotation of the instrument about the line-
of-sight direction.

Scientific Uses and Expected Performance

The results from our last three NIXT flights and recent

measurements of X-ray multilayer performance have shown that
true sub-arc-second resolution combined with usable

reflectivity are now realistic possibilities in a space

instrument. We are thus in a position to begin implementing

a qualitatively new kind of observing program for solar
coronal studies•

The major strength of the multilayer technique will be
evidenced when several sets of mirrors are flown at the same

time, each one tuned to a different portion of the spectrum.

This will allow simultaneous imaging and spectroscopy for

both qualitative and quantitative analysis. Alternatively,

at wavelengths longer than ~I00A, where the multilayers have

sufficient bandwidth, the addition of a dispersive element,

such as a double-reflection monochromator will permit the

same type of diagnostics to be carried out. At the present
time we anticipate three major areas of solar studies in

which the rocket instrument will have an immediate impact:

I ° Fine Structure of Coronal Loops. Present observations

are insufficient to constrain theoretical parameters in

studies of the heating and dynamics of the hot (>I06K)
plasma-filled magnetic structures that are found in the
corona. At this time we do not know the radiant

temperature and density structure within these loops,
the magnitude of coherent plasma flows within them, or

the relative importance of transient vs. steady-state

heating processes. Additionally, the possible presence

of isolated magnetic islands within a loop may be

amenable to observation at the higher spatial
resolution that we expect to achieve.

• Flare Onset and Reconnection. At the sub-arc-second

level of resolution, the possibility exists,
particularly in the large-scale class of solar flares

known as prominence eruptions, that we may be able to
directly image the reconnection regions in which
magnetic flux is annihilated and converted to the

energy that powers a flare. In a sense these

reconnection boundary layers are purely theoretical

constructs, since they have not been observed on the

Sun. Predicted sizes begin about one order of magnitude

below present observational capabilities. Thus, with
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the order of magnitude improvement in image quality we

may begin to resolve these questions.

. Emerging Magnetic Flux. X-ray studies from Skylab

showed that most of the magnetic flux emerging from the
solar interior is in small scale "shredded" or

intermittent form. The overall balance between large

active regions and small emerging flux regions is a

function of phase in the solar cycle and is such that

the total amount of magnetic flux emerging is nearly

constant; the solar cycle can thus be visualized as an

oscillation in the wave number distribution of emerging
flux.

This observational constraint on magnetic dynamo theories

remains to be tested on smaller spatial scales. Previous

limitations due to the instrumental resolving power have

left undecided the question of how much flux emerges at

scale sizes below -i0 arc-seconds. It is certain that at

some small spatial scale, magnetic diffusion will dominate

so that the size spectrum of emerging flux will be cut off.

However, the presently observed spectrum is such that the

integrated contribution of small regions increases in

importance down to the observational limit. If we are able

to observe the turnover at spatial scales obtainable by this

new instrumentation, then we will be able to directly test

theories for magnetic flux emergence and diffusion.

Scientific Investigation: Flight Results

The most readily observable manifestation of a solar flare

is a brightening in Ha of a well-defined area of the Sun.

Although there is now general agreement that the energy

release takes place in the corona, explaining chromospheric

observations is of capital importance for any model of the

physical processes that takes place in a flare.

A two-ribbon flare appears in Ha as the brightening of two

parallel ribbons separated by a dark filament of rising

coronal matter. The standard picture calls for some kind of

catastrophic instability, either triggered by the shear of

the field lines induced by the motion of the footprints in

the photosphere, or generated by the interaction of the

field and the current flowing in the filament (Van Tend and

Kuperus, 1978 and Martens and Kuin, 1989 ). Reconnection of

field lines then occurs beneath the rising filament with the

magnetic energy released in the current sheet being

transported down to the chromosphere either by a beam of

particles or by heat conduction (or both) along the flux

tubes.



In 1989 and 1991 we used real-time satellite data combined

with a t-2 minutes launch hold, which is called a flare-wait

mode. This allowed us to launch during the rise phase of a

solar flare. This mode of operation was highly successful in

that we obtained extremely good X-ray data at the peak of a

solar two-ribbon flare. We also had the good fortune to

observe the start of another separate flare event during our

flight. The data obtained in the September ii, 1989 flight

have provided a totally new view of solar flares in the

corona, and do not fit any present theoretical model of how

flares occur. Our data are thus presenting a challenge to

flare theorists by forcing reexamination of the models.

For flight 36.151 the launch date will be determined by the

presence on the Sun of at least one active region with well-

developed sunspots. This can be predicted with a -50%

confidence one solar rotation (-27 days) in advance, and can

be known with high confidence (>90%) three days in advance.

Thus, a tentative launch date can be set one month prior to

launch, and a go/no-go decision can be made 3 days prior.

SYSTEM DESCRIPTION

Electronic Systems and Telemetry

The Electronic system has three prime functions:

.

2.

.

Control the operation of two CCD detectors. This would

include the exposure and readout sequencing.
Control the operation of the TXI monochromator for

wavelength selection and control the indexing of

aperture mask on the calibration telescope.

Control the command and housekeeping operation.

The electronic design will utilize two on-board computers,

one for the prime science operation, and the second for the

command, housekeeping, and monochromater operation. The

Image Processing Computer (IPC) is based around a Teknor

166Mhz pentium Single Board Computer (SBC) running on a

passive PCI bus backplane. This SBC will control the image
acquisition of both CCD detectors.

The detector on the tunable x-ray imaging side is being

designed by the instrument's co-investigators at the Max

Planck Institute. It is an image intensified detector based

on a Kodak 2k x 2k CCD. The detectors pixel size is 15
microns^2.

The detector on the XUV telescope side is being designed by
SAO. It is based on a Site ik x ik back-side illuminated

CCD. The detectors pixel size is 24 microns. It will be

cooled by a thermal electric cooler (TEC) operating against



a passive cold-block. The cold-block is designed to have

sufficient energy to cover the flight plus up to 1.5 hours
of hold time.

In a pre-programmed sequence, the IPC will initiate

exposures and transfer the image data (after appropriate

processing and formatting by two dedicated PCI bus frame

grabber boards) to the rocket telemetry interface, for

transmission to the ground by two 10Mbit data downlinks, and

to an on-board storage device, for post-flight retrieval.

The housekeeping will use a ISA computer bus backplane, and

will use off-the-shelf data acquisition boards from National

Instruments operating under LabView software.

The TXI block diagram number TXI-5100, shows the TXI

electronic system. The command telemetry, data telemetry,

telemetry interface, flight battery, and video telemetry are

supplied by NASA. The experiment will be powered by a 28V

battery. The power requirements are 28 volts @ 15 amps

steady state, 20amps peak for 1 second. NASA will provide

and service the batteries. A latching change-over relay will

switch the experiment between external and internal power.

The experiment's battery power will be applied a few minutes

before launch. External power will be used for all testing

excepting flight system testing.

The TXI telemetry Requirements are the following:

Command Uplink

i. One RS232 serial command link

2. Six Auxiliary set/reset for manual control

3. Three Momentary pulse commands

Downlink for Science data

i. Two 10Mb/sec WFF93 High Rate PCM Encoders

(Sixteen bits and strobes)

Downlink for Housekeeping

i. One RS232 serial encoder

2. Four 10bit digital words and strobes

3. Thirty two Analog ( 0 to 5V )

One TV transmitter for the H-Camera

Blockhouse (pre-flight operations)

i. 20 Umbical lines between the blockhouse and experiment

for pre-launch check-out.

5



TABLE 2.1 - LATCH COMMANDS

SAO FUNCTION

MANUALMODESET
Lock out Automatic Sequence

Enable Manual Mode

MANUALMODERESET
Return to Automatic Sequence

Disable Manual Mode

START EXPOSURE
Manual Mode (shutter open)

END EXPOSURE
(shutter close- read camera)

RESTART

(terminate exposure in

progress )

Return to normal sequence

SPARE

SPARE

SPARE

SPARE

MASTER RESET ENABLE

MASTER RESET DISABLE

MASTER RESET COMMAND

CAMERA RESET COMMAND

S PARE

SPARCS NOMENCLATURE

AUX-2 Set

Aux-2 Reset

Aux-3 Set

Aux-3 Reset

Aux-4 Set

Aux-4 Reset

Aux-5 Set

Aux-5 Reset

Aux-6 Set

Aux-6 Reset

Aux-7 Set

Aux-7 Reset

Momentary 1 ( Pulsed )

Momentary 2 ( Pulsed )

Momentary 3 ( Pulsed )



2.2 Optical Systems

2.2.1 TXI Experiment

The TXI experiment's optical system is an on-axis
design which employs two flat (multi-layer coated) fold
mirrors arranged to make an X-ray Monochromater of the
Cowan-Golovchenko (Mills and King 1983; Craig et al.

1988) arrangement. In this arrangement, the two flat
mirrors allow the entrance and exit beams to remain

fixed, while the wavelength is changed by their

rotation. The exit beam is directed to a spherical

telescope mirror which focuses the solar image onto a

CCD Detector by passing the beam through a central hole

in the second flat mirror. This allows the telescope

mirror to be used on-axis thereby minimizing optical

aberrations. The optical system is described on SAO

drawing TXI-002, Titled: Optical schematic - TXI.

2.2.2 Calibration Telescopes

There are four calibration telescopes of identical

design, excepting their coatings which set their

wavelength bandpass. The telescopes all share a common

detector where only one telescope is imaged at a time.

An indexing mask with one open aperture provides the

telescope selection while covering the entrance

apertures of the non-active telescopes. The optical

configuration is a spherical telescope mirror tilted

one degree to the incoming beam that focuses the solar

image on a CCD detector; SAO drawing TXI-003, Titled:

Optical schematic-Calibration experiment describes the

optical system. The four telescope mirrors are equally

spaced on a circle centered about the detector. This

allows the tilt angle to be uniform for all telescopes

and minimizes the tilt angle. The system focal ratio is

such that the image tilt on the detector is well within

the depth of focus so that no image degradation is
observed.

2.2.3 H-Alpha Camera

A precision Day-Star Corporation Hydrogen Alpha (H_)

filter unit having a narrow bandpass (-0.6A) centered

on the Ha line (6563.28A) with a 2.5 cm aperture was

selected as the filter. The filter is placed behind a

712.6 millimeter (two lens) EFL telephoto lens system

which images the full Sun on a Sony Electronics model

XC-77 CCD video camera. The optical path is straight

and un-vignetted. The H-Alpha Camera is mounted to the

TXI optical bench and aligned parallel to TXI

experiment. A similar system was flown successfully on

7
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2.2.4

all the NIXT rocket flights and proved that adequate

sensitivity can be attained to record the H_ image with

sufficient resolution to allow sunspot recognition for

aspect determination. This new Camera system has higher

resolution coverage and will produce extremely sharp,

highly contrasted images which will make pointing

confirmation achievable.

SPARCS Pointing Sensors

The TXI telescope will be pointed and stabilized on the

Sun by a SPARCS pointing and control system including a

RIG (Roll Stabilization Gyro) unit. No attempt is made

here to describe the SPARCS system; however, the MASS

and LISS Sensors mounting, and co-alignment both to

each other and to the TXI telescope will be described.

The MASS sensor is mounted by a rigid bracket attached

directly to the rocket vehicle in the WIFF vacuum door

assembly. The MASS Sensor is located on the +Z axis

(285 ° ) so that its control axes are properly aligned to

the vehicle's axis within ±2 ° per Lockheed-SPARCS

Group's instructions. It is positioned 200 mm radially
outward from the vehicle's X-X axis and 25 mm back from

the leading edge of the separation flange. This

positioning guarantees a full unobstructed 70 ° FOV cone
for the sensor.

The LISS (Fine Sun Sensor) assembly is mounted to the

TXI's optical bench and positions the sensing element

on the rocket's central axis, thereby yielding the

largest unobstructed field of view. The control axes

(pitch, yaw) of the LISS sensor are aligned within ±I °

of the control axis per the Lockheed-SPARCS Groups

instructions. The LISS will also be placed behind an

aperture stop that only allows the optical beams to

pass and thereby shields all other components from

being illuminated by the solar beam.

The sensors will be aligned to the TXI telescope either

by centering using an auto-collimation telescope to the

TXI's focal plane and then erecting the sensors

orthogonal to it by standard auto-collimation

techniques or by centering a solar image on the TXI

focal plane and then using the SPARCS pin hole target.



2.3 Mechanical Systems

2.3 .I Telescope Design

The major mechanical design consideration is the

ability to achieve proper optical alignment and

positioning of the optical elements including the

detectors, while not introducing optical distortions or

displacements from either mechanical or thermal

stressing. This requirement must be satisfied for two

environments. The first is in the laboratory where

optical fabrication, testing, image evaluation and

correction are performed. This laboratory environment

is also roughly equivalent to what is expected during

pre-launch activities. The second environment is the

rocket flight. The rocket vehicle delivers severe

vibration, shock and thermal loads to the experiment

during its engine burn phase. The effect of these loads
must be accounted for to ensure a successful

experiment. The environmental design parameters are

stated in Table 2-2, below.

TABLE 2-2 DESIGN PARAMETERS

PARAMETER LABORATORY I LAUNCH

n

m

T

Temperature 72°F ±10OF ±3OF

Vibration 3.0g rms (3-400 Hz) 19.1g rms (20-2000

all axes Hz) all axes

Shock/Transient 3.0g decaying to 0 25g decaying to 5 g

in 6 cycles in 4 cycles

The design developed must satisfy these parameters. The

experiment makes a kinematic attachment to the rocket

vehicle at the main structural joint used to join rocket

skin sections 3 and 4 together. This attachment comes from

the central housing which contains a rigid platform used to

house the Monochromator assembly and the experiment's two X-

ray detector heads and their preamplifier electronics. This

platform forms an optical bench for these components while

also providing an interface for a conical tube made from

Titanium. The Titanium tube has a sufficiently low

Coefficient of Thermal Expansion (CTE) to guarantee that the

telescope mirrors mounted to its end flange will remain in

sharp focus over the expected temperature range while its

conical shape provides rigid structural support. All five

telescope (TXI plus 4 Cal.) mirrors mount to the end flange

and incorporate the necessary motions to align and focus



them. The aperture stops for all telescopes are placed
immediately next to the WIFF vacuum door on a rigid panel
used to light seal the experiment's entrance aperture. The
panel is also used to reject the solar thermal input,
thereby minimizing thermal distortions within the optical
systems. The panel also has an indexing aperture to uncover
one Calibration telescope mirror at a time.

2.3.2 Electronics

The electronics, except for the power system are
enclosed in two (2) computer enclosures. The enclosures
are attached to the vehicle by vibration isolators to
attenuate the vehicle dynamics. The electronic section
will be pressurized.

2.3.3 Ancillary Systems

The telescopes are enclosed within the rocket vehicle
skin sections numbered 2-5 with the ends sealed by a
WIFF vacuum door and an aft bulkhead. This forms a
vacuum tight enclosure. The WIFF vacuum door assembly
allows for automatic opening and closing of the
experiment's entrance aperture and provides protection
from re-entry heating and dirt. The WIFF door requires
a special battery operated unit to recycle the door
during ground testing. The vacuum is achieved through
an experiment valved pull-away port located in section
4. A standard thermocouple gauge and gauge controller
are provided for initial evacuation and pressure
monitoring during ground testing. This gauge will be
compared with a Datametrics 600 internal flight gauge

to determine experiment pressure. The internal gauge is

used to determine experiment pressure during the launch

and flight phases. The experiment must have a pressure

below I000 microns in order to launch. The gauge output

is 0 to 5 volts dc, which corresponds to i-i000 _.

2.3.4 Experiment Weight Summary

The experiment weight summary is shown on table 2-3.

2.3.5 Angular Orientations

The experiment angular orientations are shown in Fibre

2-1. The axis notations are according to the SPARCS

group's drawings for a rail launched vehicle. The X-X

axis is the vehicle's central axis with +X towards the

motor.

I0



2.3.6 Mass Moments of Inertia

2.3.7

The mass moments of inertia and the products of inertia
for all axes are listed in Table 2-4. They are
expressed in SI units of Kg-meter 2 and are about the

experiment center of gravity (C.G.). The WIFF vacuum

door assembly has been included in these calculations.

Center of Gravity

The experiment is composed of five sections having a

total length of 127.68 inches, as shown on Figure 2-2.

The C.G. location is for the TXI experiment including

the WIFF vacuum door. Section 5 has been designed for

attachment of ballast and/or trim weights. These

weights have not been included in our C.G. calculations

because they are intended to be added to trim both the

Spin (X-X) axis and/or to position the Center of

Pressure, if required. Therefore their positioning

within the vehicle is unknown. The WIFF vacuum door

assembly is also included in these calculations as it

is an integral part of the experiment/vehicle.

II
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TABLE 2-3 EXPERIMENT WEIGHT SUMMARY

COMPONENT DESCRIPTION

EXPERIMENT

WEIGHT (Pounds)

Experiment Section

TXI Focal Plane Assembly 41.0

Calibration FP Assembly 28.6

Telescope Tube Assembly 56.5

Forward Aperture Assembly 16.3

Ancillary Equipment

SPARCS LISS Sensor 2.0

Ha Camera 7.0

Vacuum Gauge and Valve 6.5

Electronics

Electronics 23.9

Cables, Connectors, Misc. 12.0

TOTAL EXPERIMENT WEIGHT 194.5

VEHICLE

Rocket Skin Sections 249.2

Thermal Shields 27.0

WIFF Vacuum Door 38.2

Vacuum Bulkhead 13.5

Pressure Bulkhead 13.5

Ballast allotment 15.0

SPARCS Mass Sensor 0.8

TOTAL VEHICLE WEIGHT 367.2

TOTAL EXPERIMENT AND VEHICLE 551.7

14



TABLE 2-4 MASS MOMENTS/PRODUCTS OF INERTIA ABOUT EXP. CG

AXIS

X

X

11.7

Y

-2.0

Z

0

0Y -2.0 241

Z 0 0 243

SI UNITS Kg-M 2

NOTE: WIFF Vacuum Door Assembly included in these
calculations.

15



3 •0 POINTING REQUIREMENTS

The SPARCS pointing accuracy must be within one arc-minute

of the sun center. The pointing stability must not exceed a

peak-to-peak error value of one-half arc-second in the pitch

and yaw axis with a maximum roll rate of 0.2 arc-second per

second about the roll axis. Absolute roll angle orientation

will be specified at the time of flight and needs an angular

positioning accuracy of ± I0 degrees.

4.0 LAUNCH WINDOWS AND REQUIREMENTS

Launch window is mid-April to end of August, and within one

hour of local Noon (solar meridian transit).

5.0 MISSION SUCCESS CRITERIA

The primary purpose of this flight is to obtain extremely

high spatial resolution soft X-ray images of the solar

corona. The design goal of the TXI telescope is 0.25-.5 arc-

second image quality. The exposure duration which is needed

to record an image depends upon the solar activity level on

the day of flight and upon the X-ray reflectivity of the

mirrors and transmission of the filters (throughput). Under

ideal conditions we may obtain images of the bright active

region cores in a 1 second integration time. Under worst

case conditions, we may need up to 30 seconds for an

acceptable exposure.

The second purpose is to provide an in-flight calibration of

the NASA TRACE satellite. We have selected the appropriate

wavelengths to provide this calibration. The telescope

design has been described in section 2.3.2.

5.1 Maximum Success Criteria

This flight's maximum success criterion is to achieve a full

430 seconds of stable solar pointing at the selected solar

coordinates above an altitude of Ii0 kilometers. This will

allow sufficient frames to be exposed onto the flight

detectors based on an experiment initiation signal at 105

seconds. This permits the exposure sequences shown in

Appendices A and B.

5.2 Minimum Success Criteria

The flight's minimum success criterion is to achieve 300

seconds of stable solar pointing at the selected solar

coordinates above an altitude of II0 kilometers. This will

allow a mimimun program to be carried out. The experiment

has a redundant manual override capability which can be used

if the flight experiences problems or the flight time is

16



projected to be shorter than 400 seconds. This allows
selection of the prime flight exposures onto our detectors,
based on an experiment initiation signal at 90 seconds or a
manual override command. Also we must receive a high quality
T/M signal over this length of time.

5.3 Exposure Sequence

The TXI detector flight exposure sequence is listed in

Appendix A.

The Calibration detector flight exposure sequence is listed

in Appendix B.

6.0 SUPPORT REQUIREMENTS

6.1 Instrumentation

One PCM telemetry unit configured to interface per our

drawing number TXI-5100. This PCM unit's configuration and

requirements will be specified at our upcoming working

meeting at NASA-WIFF, currently schedule for 27 Febuary

1997. A TV transmitter and receiver are required to

broadcast our H_ video TV signal in real time. Two i0 mega-

bit channels are required for the prime science. We also

request that a TV monitor displaying our H_ video be located

at the SPARCS control station, and room be provided for

positioning our GSE for both the TXI and XUV recording and

display.

6.2 Vehicle

A Mark 80-boosted Black Brandt vehicle with an S-19 ascent

stage is requested. This vehicle, with its associated launch

support and the launch rail, is expected to be provided.

6.3 Guidance

The pointing and stabilization requirements are specified in

Section 3.0. The experiment has been configured to attach a

SPARCS-MASS sensor directly to the vehicle for coarse solar

acquisition and a LISS sensor attached directly to the

optical bench for fine control. Also a SPARCS RIG is

required for roll stabilization.

6.4 Mechanical

We plan to integrate and test the experiment at WSMR. We

will have portable optical measuring equipment at WSMR to

evaluate alignment and telescope focus. We expect all

fixtures required during integration and flight testing to

be available at WSMR, such as vibration, dynamic balance,

17



6.5

6.6

6.7

6.8

6.9

etc. Experimenter personnel will be available to aid in
these tasks. Also, we anticipate the need to use the SPARCS

group's collimation telescope and Heliostat during the

optical alignent and verification testing.

Recovery

The experiment employs CCD cameras and onboard memory for

storage of scientific data. The CCD is sensitive to noise
from excessive heating, therefore the vehicle has been thick

anodized to minimize solar heating during the recovery

phase. Also, the WIFF vacuum door will be closed during re-

entry heating to keep dirt, brush, etc., from contaminating

the experiment on impact. We request helicopter conveyance
for two experiment team members to recover the payload

quickly and survey possible damage.

Batteries

Battery power during flight is being provided by the SPARCS

TM unit. Our power requirements are 28 volts with an average
current draw of 15 amps, with peak draw of 20 amps for 1
sec.

Vacuum Station

A turbomolecular vacuum pumping system with roughing pump

will be required for experiment evacuation at various WSMR

test facilities, i.e., vibration qualification. The system

must be appropriately valved to allow switching between

pumps with a pumping line valve allowing fine control of the

pumping speed and back-filling the system with dry nitrogen.
The system employed during our NIXT flights is acceptable.

Rail Positioning

The rail position will be as shown in figure 2.1.

Special Considerations

The experimenter plans to provide all equipment (including

spare parts) necessary to test, operate and evaluate
experiment performance. The only specialized facility

required is a collimator with projection target for CCD

focussing.

18



7.0

8.1.i

FLIGHT QUALIFICATION AND/OR OPERATION STATUS OF EXPERIMENT
SUB SYSTEMS

The TXI experiment will be tested to the NASA requirements

for a new payload. We request that all this testing be

performed at the WSMR test facilities. We will provide the

necessary manpower to support the experiment testing
activities.

FIELD OPERATIONS

WSMR ACTIVITIES

Our present plans call for the experiment to arrive at WSMR,

starting in May-June 1998 to begin the flight test program.

We anticipate this activity to take i0 working days.

If sucessful, then we would plan to proceed directly to its

first flight.

Flight Checkout Procedure

The TXI experiment has multiple X-ray imaging

telescopes, all having narrow band prefilters sealing

their apertures. A functional checkout of the X-ray

optical performance cannot be performed at WSMR. This

is because a collimated X-ray source is unavailable.

Our testing and evaluation for flight will be as
follows:

i . Test electronics for correct operation through

telemetry and GSE control.

. Verify position of optical focus by making non-X-

Ray detector images. This also checks detector

operation and image processing.

3. Examine prefilters to assure blemish* free state.

4. Verify vacuum integrity of vehicle.

5. Verify filter status via light leak diodes.

The prefilters must attenuate the solar spectrum

by 10 .4 (focal plane filter must be 10-s). There

cannot be any flaking of the coating or pinholes
in the filter substrate film.

19



8.1.2 Flight Operations

8.1.3

Blockhouse LC36 Area

Smithsonian GSE display equipment will interface to the

Lockheed ITS console. Most of the pre-flight check out

will take place in this configuration.

Equipment needed:

I. One 8 channel Brush recorder.

2. Four i0 bit digital word displays.

ASCL LC-35

Used during the flight and pre launch telemetry

checkout. The following equipment will be needed:

i. Command Console.

2. TV monitor displaying experiment H_ video signal.

3. One 8 channel Brush recorder.

o

.

One I0 bit word selector, with both analog and

digital display capability.

Space for experiment VHS video recorder and

monitor.

6. TVmonitor displaying experiment housekeeping.

7. Quick look GSE for science data.

Pre-Flight and Flight Day Activities

In the evening before launch day, a series of exposures

will be taken using our illumination system to ensure

prefilter performance. Acceptable exposures are

required for approval to launch the following day. An

acceptable exposure means no indication of a light leak

as detected by our detectors, ie increased counts. The

general flight-day checkout procedure is shown in table

8-1.

20



GENERAL FLIGHT DAY CHECKOUT PROCEDURE

TIME EVENT

T-240 MIN Begin Experiment Evacuation.

T-90 All personnel at their stations.

T-80 Perform Tower Functional Checkout

Procedure.

T-60 Close Vacuum Valve.

T-58 Vent Vacuum Probe.

T-59 Verify Vacuum Pressure Steady.

T-30 Remove Vacuum Probe (now or as close to

launch as possible).

T-25 O.K. to Launch.

T-15 Verify All Records Running Properly.

T-5 Experiment and T-M on External Power.

T-4 Verify GSE Telemetry Correct.

T-0 Launch.

T + 30 Verify vacuum valve open

T + 50 Ha Camera on

T + 69 Verify H_ Camera image

T + 89 Verify detectors on

T + 95 Verify Pointing Coordinates using H_

Camera Image.

T + 90 - End of Data Verify Pointing Stability and detector

Taking Sequencing.

T + (IF Required) "Send Abort and manual Mode Commands as

Required.

T +TBD Verify WIFF Vacuum Door Closed.

T + TBD Verify Experiment Power Off.

" Sent only if large pointing excursion or camera malfunction

occurs.

APPENDIX A

TABLE 8 - 1
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Time into flight*
(Seconds)

Wavelength

(Angstrom)

Exposure Time

(Seconds)

T+105 171 20

130 171 i0

145 175 I0

160 178 i0

185 180 3

190 182 10

205 188 i0

220 192 10

235 195 i0

250 195 3

255 195 10

270 203 30

305 211 10

320 203 I0

335 195 i0

350 192 10

365 188 10

380 175 3

3395 175

400 175 3

175405 3
i

Times shown are preliminary and are subject to change based

on NASA's Ballist analysis (Time vs. Altitude).
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APPENDIX B

Time into flight* Wavelength Exposure Time
(Seconds) (Angstrom) (Seconds)

T+I05 171 i0

120 I0

135 30

170 195 i0

185 30

220 284 i0

235 188 30

270 304 i0

285 30

320 171 i0

335 195 10

350 284 10

365 171 10

380 195 10

395 171 i0

410 195 I0

Repeat last 2 steps until reentry

NOTE: We are allowing 5 seconds in between exposures for

readout. This time may be adjusted, based on actual

operation.

Times shown are preliminary and are subject to change based

on NASA's Ballist analysis (Time vs. Altitude).
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APPENDIX C

SAO DRAWING NUMBERS

TXI- 5100 - Titled: TXI - System Diagram

TXI- TBD - Titled: TXI - External Cabling Diagram
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