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Abstract

Sophisticated robots can greatly enhance the role of humans in space by relieving astronauts of

low level, tedious assembly and maintenance chores and allowing them to concentrate on higher level

tasks. Robots and astronauts can work together efIiciently, as a team; but the robot must be capable

of accomplishing complex operations and yet be easy to use. Multiple cooperating manipulators are

essential to dexterity and can broaden greatly the types of activities the robot can achieve; adding

adaptive control can ease greatly robot usage by allowing the robot to change its own controller actions,

without human intervention, in response to changes in its environment. Previous work in the Aerospace

Robotics Laboratory (ARL) have shown the usefulness of a space robot with cooperating manipulators.

The research presented in this dissertation extends that work by adding adaptive control.

To help achieve this high level of robot sophistication, this research made several advances to

the field of nonlinear adaptive control of robotic systems. A nonlinear adaptive control algorithm

developed originally for control of robots, but requiring joint positions as inputs, was extended here

to handle the much more general case of manipulator endpoint-position commands. A new system

modelling technique, called system concatenation was developed to simplify the generation of a system

model for complicated systems, such as a free-flying multiple-manipulator robot system. Finally, the

task-space concept was introduced wherein the operator's inputs specify only the robot's task. The

robot's subsequent autonomous performance of each task still involves, of course, endpoint positions

and joint configurations as subsets.

The combination of these developments resulted in a new adaptive control framework that is capable

of continuously providing full adaptation capability to the complex space-robot system in all modes

of operation. The new adaptive control algorithm easily handles free-flying systems with multiple,

interacting manipulators, and extends naturally to even larger systems.

The new adaptive controller was experimentally demonstrated on an ideal testbed in the AR/.,--a

first-ever experimental model of a multi-manipulator, free-flying space robot that is capable of capturing

and manipulating free-floating objects without requiring human assistance. A graphical user interface

enhanced the robot usability: it enabled an operator situated at a remote location to issue high-level

task description commands to the robot, and to monitor robot activities as it then carried out each

assignment autonomously.
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Chapter 1

Introduction

This dissertation describes theoretical and experimental research on the nonlinear adaptive control of a

free-flying space robot with cooperating manipulators. The research was conducted in the Aerospace

Robotics Laboratory (ARL) at Stanford University from 1986 to 1992.

1.1 Motivation

Space presents new and exciting challenges. One challenge involves the construction and maintenance

of large space structures. While the space program can rely solely on astronauts to perform these duties,

doing so makes very inefficient use of their abilities. Robots will add great capabilities to the space

program, but only if they possess sufficient dexterity and skill. Multiple cooperative manipulators are

essential to dexterity; adaptive control helps significantly to provide the skill.

1.1.1 What is Adaptive Control?

Adaptive control can change its controller actions to assure that the system continues to perform at

its best despite changes in the environment or to unknown payload and robot parameters. That is, it

adapts.

Adaptive control for robots is useful in several important, common situations: 1) When there is

poor or no knowledge of the payload parameters, 2) When there are incomplete models of the robot,

3) When there are changes in the environment. While a robust, nonadaptive, controller may provide

the same protections as an adaptive controller in these situations, it typically does so with substantially
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reduced performance. The added complexity of an adaptive controller wins back that lost performance.

The most obvious situation in which to use adaptive control is for handling payloads that have

unknown or poorly known physical properties--for example, when handling damaged satellites where

the nature and extent of the damage are unknown. More generally, this capability relieves astronauts of

the duty to inform the robot of the detailed physical properties of each payload the robot is to handle.

While a comprehensive parts database can relieve much of this responsibility, adaptive control provides

protection in cases when the database is not completely accurate or is lacking.

Adaptive control also eases the basic controller design process. There are typically many aspects

of the robot itself that are either poorly modelled or not modelled. It is difficult to develop accurate

models for robots. In many cases, it is impossible to perform system identification to verify models of

space systems on the ground I By providing appropriate adjustable parameters to the controller, adaptive

control can adapt to model uncertainties to render their effects unimportant.

Another important benefit of adaptive control in space robots is its ability to adapt to the gradual

changes that are inevitable in all mechanical systems. Even if friction characteristics are well-characterized

at the outset, they will not remain so as the robot ages. A deterministic change--such as inertial property

variations as a robot uses up fuel--also can benefit from adaptive control. The controller will adaptively

update the controller to track the changes without user intervention or preplanned gain scheduling.

By adapting to system changes with time, servicing and reprogramming of the robots can be reduced

significantly.

1.1.2 What is Task-Space Control?

As a space robot carries out a typical operation, it needs to employ many control modes. For instance,

in acquiring a part for assembly, a free-flying robot would start typically in a joint-control mode, where

each joint is controlled to a known, _home" location. It then would enter base-control mode as the

robot thrusts to approach the part. When the part comes into view of the local cameras or sensors, the

robot would utilize manipulator-endpoint-control to track and grasp the part with the arm end effectors.

After grasping the part, the robot would switch to cooperative object-control mode 2. After assembling

IThe SpaceShuttle RemoteManipulatorSystem(RMS),for example,cannot support its ownweight on the ground.
2Cooperativeobject-controlshould be distinguishedfrom master/slavecontrol, wherecommand inputs must be given

to one *master"manipulator,and the othermanipulatoror manipulatorsfollow the "master"accordingto some heurisdcs,
typicallyignoringthe dynamicsof the payload. In object-control,the commandinputs arespecifieddirectlyin terms of the
desiredmotionsof the objec_The manipulatorsthen cooperativelyeffectthe requestedobjectmotion, taking into account
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and releasing the part, the robot might reenter joint-control while returning home or proceeding with

the next operation.

Rather than distinguishing the different control modes and supplying different controllers for each

control mode, this thesis unifies all the control modes into the task-space framework. The task-space

concept is a generalization of control modes. Task-space encompasses all control objectives, such as

object position, end-effector position, or joint positions. Choosing a particular task-space control vector

is tantamount to choosing the control mode. A task-space control vector, however, does not have to

be restricted to a single type of control mode. A task-space control vector for a multiple manipulator

robot, for example, can represent endpoint control for one manipulator and joint control for the other.

As another example, a free-flying space robot can choose a task-space control vector to represent the

control of the positions of both the payload object and the free-flying base.

This thesis develops a task-space controller that effects control for any choice of task-space control

vector. Because the controller is formulated in task-space, it treats all control modes equally. Switching

control modes essentially entails switching only the task-space control vector. The basic controller

structure is unchanged, and a smooth transition is achieved.

1.2 Research Goals

The goal of this research effort is to develop an adaptive control framework that is sophisticated enough

to control a free-flying space robot, yet broad enough to be generally applicable. The resulting adaptive

control must meet the following requirements:

• The adaptive control must furnish adaptation and control to multiple, cooperating manipulators

from a free-flying base and also to simpler, single-manipulator fixed-base robots within the same

framework.

• The adaptive control must be able to supply object-level control during cooperative manipulation.

• The adaptive control must provide total system adaptation.

• The adaptive control must have task-space control capability to provide multiple control modes

and to allow "graceful" transitions between control modes.

the dynamics of the completesystem.
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• The adaptive control must be impk_ntable.

Multiple manipulators vastly increase the numbers and types of tasks a robot can perform. They

provide dexterity well beyond what a single manipulator is capable of furnishing. Two manipulators

grasping a long object at different locations provides better positioning accuracy than a single manipula-

tor grasping one end or the middle of the object. Moreover, smaller motors in cooperating manipulators

can provide the same torque capabilities as much larger motors of a single manipulator system.

It is equally important that, in providing multiple-manipulator cooperative control, the adaptive

algorithm be able to handle object-level control, wherein the operator directs the motion, or specifies

the destination, of the manipulated object. This eliminates the need for the physically and mentally

demanding tasks of hand-in-glove teleoperation. It permits the human operator to focus totally on the

task to be done.

Total system adaptation is an important goal to achieve. It is more than just _payload adaptation" or

just _manipulator adaptation". Most existing nonlinear adaptive controllers for robots are geared toward

identifying either the robot's physical parameters, or unknown payload parameters, but not both. To

provide maximum flexibility, the new adaptive controller needs to have the capability of adapting to

both types of parameter changes simultaneously, without resorting to separate adaptation controllers.

The adaptive algorithm also should be able to distinguish robot parameters from payload parameters,

to allow for more intelligent setting of adaptation gains. Since robot parameters typically are better

known and change more slowly, heavier weighting phced on adapting to changes in unknown payload

parameters permits faster and more accurate adaptation, while still allowing adaptation to changes in

the robot.

Adaptive control should provide task-space control capability. Doing so makes adaptive control

available at all times throughout a complex operation and ensures that the transitions between control

modes are smooth.

Because the adaptive algorithm must be implementable, the algorithm must not overwhelm the

computational capabilities of present computers. The algorithm must be simple, but effective; and it

must extend easily to even larger systems.
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1.3 Contributions

In meeting the challenging set of research goals, this research has generated an adaptive control frame-

work that is very general and easily extensible to even larger, more complex systems than the free-flying

robot with cooperating manipulators for which it was developed. Yet, this adaptive control framework

is equally applicable to simple, single-arm fixed-base robots.

This research takes advantage of the nonlinear, joint-space adaptive controllers already developed

for single-arm, fixed-base robots [6]. Because a useful robot is expected to be capable of many control

modes--including object-based control, endpoint control and joint control--this research defines task-

space control---encompassing all control modes--and extends the class of adaptive algorithms from

joint-control to task-space control, capable of controlling in any mode utilizing the same adaptive

control framework. To ease implementation of the new task-space adaptive controller for multiple

cooperative manipulators, a new modelling technique called system concatenation is also developed. The

combination of task-space adaptive control and system concatenation results in a generalized adaptive

control framework for rigid-link robotic system.

The research contributions described in this dissertation include:

Framework. Development of a new general adaptive control framework--the adaptive task-space

framework--that is capable of providing full adaptation to a free-flying space robot with two

cooperating manipulators in all modes of operation. The generality allows the adaptive algorithm

to extend readily beyond the scope of a single space robot to handle larger systems, including, for

example, multiple robots with any number of manipulators.

Task Space. Extension and generalization of a joint-space, nonlinear, adaptive control algorithm,

based on inverse dynamics, to control in the task space, which represents a broader class of control

inputs, including, but not limited to, cooperative object control, as well as endpoint control and

joint control. This extension provides a means for the adaptive controller to operate in all robot

control modes.

System Concatenation MethoeL Formulation of the system concatenation approach for efficient,

incremental generation of system models for multiple, interacting systems. System concatenation

takes full advantage of models already developed for each manipulator or robot subsystem to

minimize the additional effort in deriving the total system models used for adaptation. This
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formulation eliminates the need to develop closed-kinematic-chain equations of motion for

multiple manipulators grasping a common object; and it decreases model complexity and increases

computational speed without loss in fidelity.

Graphical-User-Interface Integration. Full integration of the new adaptive control algorithm into

a hierarchical control architecture that includes a graphical user interface and a finite-state-table

programming environment. The graphical user interface provides the user with an easy method

for directly specifying object motions without engaging in fine manipulation details, while the

finite-state-table programming provides a degree of autonomy by handling real-time interactions

and necessary control-mode transitions to achieve a requested task. Modular design for the

adaptive controller allows it to integrate with this hierarchical control architecture without losing

its flexibility in handling multiple control modes.

Experimental Verification. Experimental verification of the new adaptive controller, in the hi-

erarchical control environment, on the Multi-Manipulator Free-Flying Space Robot of the the

Aerospace Robotics Laboratory (ARL), is shown in Figure 1.1. The robot utilizes an air bearing

to reproduce the zero-g, drag-free conditions of space very accurately in two dimensions. This

two-armed space robot is totally self-contained, carrying on-board fuel, power, computers, and

wireless communications. It is capable of executing semi-autonomous tasks at the direction of a

user situated at an off-board computer workstation.

Vision Systen_ The author's development, for the ARL, of the "Point-Grabber II" vision system

that, together with software drivers developed in ARL, is capable of tracking bright spots at 60

Hz with better than 1/20 pixel resolution. Duplicates of this high-speed vision system serve as a

surrogate global positioning sensor, and as a local on-board end-point sensor 3.

1.4 Review of Related Research

The new task-space adaptive control for a space robot presented in this thesis successfully integrates

three control disciplines: cooperative manipulation, space robot control, and nonlinear adaptive control.

Accordingly, this review of the related research is divided into three, albeit intersecting, sections.

3Thissystem hasbeenadopted genericallyfor experimentsthroughout the laboratory.
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Figure 1.1: Multi-Manipulator Ft.-e-Flying Space Robot

This ezperimental space robot is used to veri_/ the performance of the new adapdve controller

developed in this thesis. The robot uses an air cushion to faithfully simulate the drag-free
conditions of space in a two-dimensional plane.
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1.4.1 Object-Based Cooperative Manipulation

The most promising cooperative multiple manipulator control strategies involve object motion control.

They are promising because ofsuco_ful experimental demonstrations, and because of the easy interface

they provide to higher level continUers; specifically, the higher level controller needs to specify only the

object behavior, without having to worry about detailed manipulator motions.

There are roughly three categories of object morion control: object position control, hybrid object

force/position control, and object impedance control. With object position control, only the object's

position is continUed[25, 21], providing a mechanically "stiff ° system. This can be problematic

when coming into contact with the environment 4. Hybrid object force/position control controls the

objects position in certain directions, while controlling the objects contact forces in other directions

[41, 40, 12, 51, 16]. Hybrid schemes, however, are difficult to implement, requiting control _mode _

changes as the object comes into contact, and the continual updating of the force and position degrees

of freedom. On the other hand, object impedance control, developed by Schneider at ARL, provides a

"compliant _ response at all times by maintaining a relationship between the objects position, velocity,

and force on the environment [33, 32, 46]. No control switching is necessary as the object comes into

contact with its environment.

Schneider [32] provides a detailed review of nonadaptive multiple-manipulator control approaches.

1.4.2 Nonadaptive Space Robotics Research

Alexander [1] pioneered at ARL the research in high-fidelity space robotics experimentation with a

demonstration of the control of a single-arm free-floaring space robot. He did not utilize thrusters.

The controller is essentially a computed-torque controller, with special partitioning of the inertia and

nonlinear matrices. This partitioning, unfortunately, is difficult to extend to multiple-arm control.

It is even more difficult to extend to adaptive control, because the partitioning must be performed

symbolically to determine the adaptable parameters.

Umetani and Yoshida [44, 45] introduced the Generalized Jacobian for maintaining zero momentum

of a free-flying base while controlling its single manipulator. Their development did not consider

multiple manipulators, and did not extend the Generalized Jacobian beyond zero momentum control.

4Rather than a smooth contact, the _stiffness" may cause the object bounce offthe contacting surface, possibly damaging
the object.
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Umetani and Yoshida demonstrated their controller experimentally.

Carignan [8] also performed experiments on manipulation from a free-flying robot using a sliding-

mode controller. This controller only partially compensated for the interactions between the manipu-

lator and the robot body. Unfortunately, the performance was limited by the experimental hardware.

Koningstein and Ullman [20, 19] developed at ARL the System Jacobian for controlling a free-flying

robot with multiple manipulators. The System Jacobian is essentially a variation of the Umetani and

Yoshida's Generalized Jacobian that allows the control of the free-flying robot base and the handling

of the constraints in a closed kinematic chain during cooperative manipulation. The System Jacobian

also allows the control of the system momentum to be something other than zero. The controller is

computed-torque, but implemented via Koningstein's efficient recursive algorithm.

UUman [43] further extended the work to a full hierarchical controller, incorporating graphical

user interface (GUI), state-transition modules. Ullman's research culminated in enabling the space

robot to track, chase, and capture free-flying objects and deliver them to operator-specified locations,

all with very simple operator commands. Dickson [10] made additional advances by developing a

multiple-robot controller: Each space robot possesses a pair of arms; and they cooperatively manipulate

a single object.

A more detailed review of space robotics research can be found in Ullman [43].

None of the research described in this section incorporates adaptive control. The goal of this

dissertation is to develop an adaptive control strategy that will retain all the capabilities of Ullman's

controller for a free-flying robot with multiple, cooperating manipulators.

1.4.3 Nonlinear Adaptive Robot Control

Craig [9] pioneered the research in nonlinear adaptive control for robotic manipulators. He developed

a computed-torque adaptive controller that utilized the standard computed-torque controller as the

standard controller block. A drawback of the adaptive portion of the controller is that it required

measured joint accelerations and a time-consuming matrix inverse of the system inertia matrix. Craig

successfully demonstrated the computed-torque adaptive algorithm on a PUMA arm. The computed-

torque adaptive controller applies only to single manipulators under joint control.

Slotine and Li [37, 39] derived the sliding-mode adaptive controller that does not require the
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inverse of the inertia matrix. This controller is also an inverse-dynamics algorithm that attempts to

cancel directly the nonlinear dynamics of the manipulator. The Lyapunov-based stability proof indicates

that the tracking error approaches zero by _sliding _ along a surface in a multi-dimensional phase space.

Additional research extended the algorithm by adding exponentially forgetting least-squares [22] to

improve convergence when there is not enough excitation. Slotine also extended the algorithm to

handle endpoint, Cartesian-space control [38]. Slotine and IA have shown impressive capabilities of

this adaptive controller experimentally, but, again, only for single fixed-base manipulators under joint

control.

Bayard and Wen [48, 6] developed theoretically an entire class of nonlinear adaptive control

algorithms, again based on inverse dynamics. They have demonstrated that the new class of algorithms

incorporates Craig's computed-torque adaptive algorithm. Bayard and Wens algorithms also, in general,

do not require the inverse of the inertia matrix for adaptation. Although these algorithms are more

general, they have been met with much less enthusiasm than Slotine's sliding-mode adaptive control,

mainly because of the complexity of the Lyapunov stability proofs. This added complexity does,

however, allow them to prove the stability for a broad class of adaptive algorithms. Again, Bayard and

Wen developed their algorithms for a single robotic manipulator under joint control. They did not

perform any experiments.

Hsia [13] and Ortega and Spong [26] provide good reviews of the field of adaptive control for

single, rigid robots. They compare and contrast the various approaches, and provide unified views of

these adaptive algorithms.

Zanutta [50] presented the only published experimental research on adaptive control of multiple

cooperating manipulators, which he did at ARL. He utilized Schneider's object impedance control [32]

in conjunction with an inverse-dynamics-based adaptive control that is similar to Slotine's sliding-

mode adaptive control. The object impedance control development, however, separates control into

two parts: the calculation of necessary forces to effect desired object motion, and the calculation of

required actuator torques to effect those forces at the grasp points of the manipulator. The adaptive

control applies only to the first stage, adapting to unknown payloads. Adaptation to unknowns in the

manipulators must be performed separately, by another means. Zanutta experimentally demonstrated

the adaptive object impedance controller on a pair of fully-cooperating manipulators operating from a

fixed base.
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Additionally, Kim, Walker and Dionise [18] and Hu and Goldenberg [14] presented computer

simulations of adaptive control of multiple manipulators. Kim et. al. relied on a master/slave

configuration for the controller, and involved a complex set of equations and constraints to handle

the closed kinematic loops formed by the two manipulators holding an object. Hu and Goldenberg

considered a hybrid position- and force-control scheme, but required the inversion of the inertia matrix.

The research presented in this thesis draws on many of the ideas from these researchers. It builds

and extends Bayard and Wen's class of adaptive algorithms to handle endpoint control--an extension

that is then further developed to handle the more general task-space control. Koningstein's method

of handling a closed kinematic chain in a control system is generalized, and culminates in the system

concatenation concept. The Generalized Jacobian ideas of Umetani and Yoshida, and the Jacobian

augmentation methods of Koningstein, Ullman, et. al., are further extended to the task space.

A final note: In the system modelling arena, parallel theoretical research by Meldrum [23, 24]

develops efficient, order-(N) recursive algorithms for computing control and adaptive update equations.

These algorithms are based on the spatial operator ideas with Kalman filtering techniques developed by

Rodriquez [29, 30].

1.5 Reader's Guide

This thesis is organized into ten chapters and five appendices. Chapter 1 contains the motivation,

research goals, contributions, a review of related research, and this Reader's Guide.

Chapter 2 develops the system modelling. It introduces the notation used throughout the disser-

tation. Chapter 3 describes the control approach by reviewing a nonlinear adaptive control method

developed by Bayard and Wen while they were at JPL. This joint-based adaptive controller serves as a

starting point for the research presented in this thesis. The chapter discusses the basic elements of this

joint-based adaptive algorithm, and highlights the salient aspects of the Lyapunov-based stability and

convergence proof.

Chapters 4, 5, and 6 describe developments that generalize the adaptive control framework: exten-

sions of the joint-based adaptive controller, task-space concept, and system concatenation. Although the

latter two new developments can also stand on their own in a nonadaptive environment, their concepts

enable the generalization of the adaptive control framework without greatly increasing the complexity
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of resulting algorithms.

Chapter 7 merges the developments to formally present the task-space adaptive controller, and

describes its properties.

Chapter 8 presents the experimental system, and briefly describes the hierarchical control architec-

ture. This chapter outlines the process of integrating the new adaptive controller into the experimental

system.

Chapter 9 presents experimental results using the new adaptive algorithm. The controller per-

formance is compared with that of nonadaptive controllers operating either with accurate or with

incomplete knowledge of system parameters.

Chapter 10 brings this dissertation to an end with conclusions drawn from the research and

suggestions for future research directions.

Appendix A provides more detailed calculations used in the Lyapunov stability proofs. Appendix B

includes the user's manual for the Point Grabber II vision system, developed by the author. It describes

the design and the software algorithms that enable it to achieve high-resolution sensing. Appendix C

details the calibration procedures for calibrating the vision system and motor torque constants, and

other sensors. Appendix D supplies the state transition diagrams used for each space robot task. Finally,

Appendix E lists the controller input files, representing system parameters, sensor calibration values,

controller gains and adaptive gains.



Chapter 2

Modelling

This chapter introduces the notation used in this thesis, and it establishes the mathematical model, i.e.,

equations of motion, used to describe a robotic system. Section 2.1 presents the model most commonly

utilized to describe rigid-link robots. Section 2.2 describes an alternate parameterization of the model

that aids adaptive control. This parameterization, shown by An, et. al., [2] to be applicable to rigid

robots, isolates the physical parameters of the robotic system into a single mathematical vector 1. A

simple example of a planar two-link manipulator serves to illustrate key concepts throughout the thesis.

2.1 System Model

The equations of motion of a manipulator system consisting of rigid bodies with n degrees of freedom

(DOF) can be described by the following form:

F = M(q)fi + C(q, u)u + G(q) (2.1)

where q E _n is a mathematical vector of generalized coordinates "u, u E F-n is a mathematical vector

of generalized speeds, 1¢ E IR n is the mathematical vector of generalized active forces 3, M(q) E _n×n

IA mathematical vector is a collection of scalar terms placed into a vector notation. This should be distinguished from
a physical vector, which describes a direction and magnitude in three-dimensional space. Mathematical vector and matrix
notation can greatly simplify the form of the equations presented in this thesis.

2Generalized coordinates are a convenient set of coordinates that is sufficient to describe the configuration of a system.

Although these convenient coordinates are typically measurable quantities, such as angles and lengths, they do not have to be.
In the modelling of systems with distributed flexibility, for example, generalized coordinates *measure" the mode shapes of the
system, which aredifficult to determine with a ruler and protractor.

3This is distinguished from a physical force vector, Each dement of the generalized force represents the sum of the
components of all physical forces effecting motion in a particular degree of freedom.

13
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is the symmetric, positive-definite inertia matrix, C(q, u) E R "x" is the matrix of Coriolis and

centrifugal terms, and G(q) E F,'* is the vector of gravity torques. The actual terms of the mass

matrix, the Coriolis and centrifugal matrix, and the gravity torque vector depend on the choice of the

generalized coordinates and generalized speeds. Additionally, for each choice of generalized speeds,

the matrix C(q, u) is not uniquely defined, although the vector C(q, u)u is unique. An appropriate

choice of C(q, u) can greatly aid the development of an adaptive controller, as Chapter 3 will describe.

The definition for generalized speeds is [15]:

t,

u = W(q)cl + Wt(q) (2.2)

where W(q) is an n x n matrix of functions ofq and time t, and Wt(q) is an r, x 1 vector of functions

ofq and time t. The Wt (q) term is nonzero only if there are time-dependent and uncontrolled forcing

functions, which are rare in robotics.

In robotics, the common choice for the generalized coordinates, q, corresponds with the joint angles

or positions of a manipulator, and u corresponds with the joint speeds 4, c1. The generalized forces, F,

are assumed to be equal to the actuator torques or forces, 7",arriving at the familiar form:

"t"= M(q)_ + C(q, dl)/t + G(q) (2.3)

Stricdy speaking, however, "ris itselfa generalized quantity, and depends on the actuator arrangement

for a manipulator. Each term of'r represents only the net applied force or torque for each degree of

freedom--forces and torques that may be supplied by a combination actuators.

One benefit of the more generalized expression of Equation (2.1) is that appropriate choices for

generalized speeds can ease implementation by simplifying the individual terms in the system matrices 5,

M(q), C(q, u), G(q). In robots with revolute joints, it is beneficial to choose generalized speeds to

correspond with absolute rotational speeds of the links rather than relative speeds of each link with

respect to its inboard link. In this special case,

u = w,i (2.4)

where W is a constant matrix of zeros and ones. For a thorough discussion of generalized coordinates

and generalized speeds, see [15].

4In this situationW(q) is the (constant)identitymatrix,and Wt(q) iszero.
_Ementially,the kinematicconfigurationofa mechanicalsystemmaybedevdopedutilizinga convenientsetof coordinates,

and the dynamicmodel may be developedutilizinga convenientsetof generalizedspeeds,where the generalizedspeedsneed
not be restrictedto be just the time derivativesof the chosenset of coordinates.
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Example

m 2

| / "

Figure 2.1: Planar Two-Link Fixed-Base Manipulator

ql and q2 represent the shoulder and elbow joint angles, ml, Ii, and 11are the mass, moment

of inertia, and length of the upper link, while m2, I2, and 12are those of the lower link. l_ and

l[ represent the center of mass locations of each link, which, for simplici_ are assumed to be

a/ong the central axis of each link.

The simple planar two-link manipulator system illustrates the differences between these two forms

for the equations of motion. The same example will be used throughout the rest of the thesis for

clarifying new concepts. Figure 2.1 introduces the two-link arm system, the notation used for the

physical parameters of the system, and the definitions of the generalized coordinates. The more

standard equations of motion used by roboticists in for form of Equation (2.3) can be written as:

+

rnll_2 + rn21_ 2 + m212 )+2m2111_ cos(q2) + Ii -k/2

ra2l_ 2 + m211l_ COS(q2) "_- -/'2

--m2111_ sin(q2)t_2

m2111_ sin(q2)ql

rrt2/_ 2 -I- m2lll_ cos(q2) q- ./'2

m21_ 2 -k h

o 02
(2.5)
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or

1- = M(q)_ + C(q, dl)dl

Because the arm operates in a plane perpendicular to the direction of gravity, there are no gravitational

torques.

Defining the generalized speeds as the absolute angular rotation of each link gives:

(2.6)

The generalized equations of motion, in the form of Equation (2.1), simplifies to:

[ rnll_ 2 + m212 + I1m2ll l_ cos(q2)

[ o+ rn2lll_ sin(q2)ul

m2ZlZ  s q2 ]]rrt21_ 2 + I2 fz2

(2.7)

or

F = M(q)fi+ C(q,u)u

in which each term of F represents the total torque applied to each manipulator link, rather than the

torque of each actuator:

F2

7"1 -- 7"2

7"2

1

0

--1

1

TI

¢2
(2.8)

2.2 Alternate Parameterization

Researchers have shown that the dynamics of serial-kinematic-chained rigid robots allows an alternate

pararneterization of the equations of motion [2, 17, 4]. This linear-in-the-parameters formulation 6 is

well suited for adaptive control. It separates all the physical parameters of the systemuthe masses,

6Moreprecisely,this isaparameterizadonthat is linearin termsof asetof physicalparametersof the system.Theequations
of motion are unchangedand remainnonfincar. The "parameterization"is simply another way of writing the same set of
equations of motion. This property can beshown relativelyeasilyby examiningthe Newton-Eulerequations for the robotic
system(see [2]). It is not dear whether this property is preservedin generalfor robotic systemsthat indude dosed kinematic
chairt$.
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moments of inertia, centers of mass locations, link lengths--from the states of the system, resulting in

a single vector with p parameters, 0 E Rv:

F = M(q)fl + C(q, u)u + G(q) = Y(q, u, u, u)0 (2.9)

where Y(q, u, u, fi) E _nxv is the regressor matrix 7, containing functions of the generalized coordi-

nates, generalized speeds and their time derivatives. An adaptive controller needs to adjust only this

single parameter vector to adjust its model of the system.

Example

Utilizing the linear-in-the-parameters formulation, the equations of motion 8 for the simple planar arm

example, using the more standard notation for robotics given by Equation (2.3), can be expressed as:

m

/fi /fi + _2

0 _1 + _2

Y(q, el, Cl, q)O

2cos(q2)01 + cos(q2)_2 )- sin(q2)ttl (2ql + 42)

cos(q2)ql + sin(q2)_ 2

mll_ 2 + rn212 + I!

m21_ 2 + I2

rn2lll_

2.10)

or alternatively using generalized speeds and total torques:

F2 (2._) 0 _2 Cos(q2)Ul + sin(q2)u 2 m2l_2 +/2

mElll_

= Y(q, u, u, u)O (2.11)

For both representations,

mll_ 2 + m212 + I1

0 = m21_ 2 + I2 (2.12)

m2ltl_

is the parameter vector. The number of model parameters in 0, three, does not necessarily match the

number of physical parameters, six; and the model parameters can be complicated combinations of

7The two u's in the notation for the regressor, Y(q, u, u, fi), correspond to the u's in the expression, C(q, u)u. It is

sometimes useful to disdnguish between the two vectors to emphasize that Y(q, u, u, fi) is nonlinear in u. Additionally,
continUers that choose to use a control such as F = M(q)fia + C(q, U)Ud+ G(q) can be represented by F = Y(q, u, ua, fid)O.

See [48] for a variety of different of controllers.
SPleasenote that the equations of motion arestill nonlinear.
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the physical parameters. Additionally, utilizing the model parameters, which has rank 3, one cannot

uniquely determine all six physical parameters. This example illustrates that it is therefore often not

possible to identify the individual link masses or moments of inertias or lengths from the model

parameters.

2.3 SunLrnary

This chapter provided two parameterizations for the equations of motion of robotic systems: the

standard formulation used by most roboticists and the linear-in-the-parametersformulation. The linear-

in-the-parameters formulation extracts the model parameters into a single mathematical vector and, thus,

is well suited for adaptive control. Hence, the adaptive control algorithms presented in this dissertation

takes full advantage of this alternate parameterization.



Chapter 3

Control Approach

This chapter lays the groundwork for the development of the new task-space adaptive controller

presented later in the thesis. It also presents the key components of the stability and convergence proof

that will be extended from joint-space control to task-space control. Section 3.1 introduces the set

of control and adaptation laws, developed by Bayard and Wen, that serves as a basis for this research.

The control laws are inverse-dynamics based, similar to the computed-torque control law; the adaptive

parameter-update laws are derived from Lyapunov analysis to guarantee stability. Section 3.2 describes

the properties of the controller, and Section 3.3 concludes with a stability and convergence proof,

based on a Lyapunov function. The limitation to joint-space control of this baseline adaptive control

algorithm will be extended in subsequent chapters.

3.1 A Specific Adaptive Control Algorithm

The Bayard and Wen adaptive control algorithms for robotic manipulators represent a class of inverse-

dynamics-based controllers [5]. Bayard and Wen have shown, with appropriate choices of the control

laws, that this class of algorithms incorporate Craig's computed-torque adaptive controller [9]. Most

controllers in their class of algorithms, however, are easier to implement than the computed-torque

adaptive controller, became they do not require measured accelerations or the inverse of the inertia

matrix. In computer simulations, the Bayard and Wen algorithm also showed less sensitivity to

sampling rate and velocity measurement noise than the Slotine and Li sliding-mode adaptive control

[7]. Additionally, Bayard and Wen have shown that their algorithms, in the nonadaptive case, are

19
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exponentially stable [48].

This thesis concentrates on extending the Bayard and Wen algorithms to task-space control needed

by the space robot. It should be noted, however, that similar extensions to the other adaptive algorithms

will make them equally suitable for task-space control.

Because most of the robotic adaptive control literature uses the more specific form of equations of

motion defined by Equation (2.3), initial development of the adaptive control algorithm in this thesis

will also use this form. Chapter 4 will generalize the results to utilize generalized speeds for equations

of motion given by Equation (2.1).

The development of the adaptive algorithm is illustrated with the following control law I .

-r = M(q)cld + C(q, qd)qd -_-G(q) + Kv_I + Kp_

where ('d) are the desired trajectory quantities and

(3.a)

are the trajectory errors. Kp > 0 is an n x n diagonal, position gain matrix, and Kv > 0 is an n x n

diagonal, velocity gain matrix. This is an inverse-dynamics controller, where the first three terms of

Equation (3.1) represent feedforward 2 terms that cancel much of the dynamics of the plant, and the

last two terms effectively provide proportional-derivative (PD) feedback to the system to account for

residual trajectory-tracking errors.

For adaptive control when the parameters are unknown, M(q), C(q, Cld), and G(q) are replaced

by their estimates, M(q), C(q, qd), and G(q). Using these estimated quantities and the linear-in-the-

parameters parameterization given in Equation (2.9), the adaptive control of Equation (3.1) is modified

to:

7" = M(q)qd + C(q, qd)qd + ¢_(q) + Kv_I + Kp_ (3.3)

This control law can also be written in terms of the parameter vector as either of the following:

"r = Y(q, Cld,Cld,_)0 + Kv_I + Kp_ (3.4)
(2.9)

-- Y(q, qd, qd, qd) 0 "_ Kvq "_-Kpcl - Y(q, Cld,Old,/td)0 (3.5)

1Thisis Control Law5 in [6] or Control Law9 in [47].

2It can be argued that these are actually feedbackterms, since they include measuredstates, q, but this author adopts a
definitionthat a term is =feedback"only if it indudes error_i.e., the d/fferencesbetweencommandedand actual quantities.

g ('d)- (') (3.2)
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where the number, (2.9), beneath the equality sign is an equation reference, and

=0-_

is the parameter error vector.

(3.6)

The last term in Equation (3.5) represents the difference between the

nonadaptive and adaptive control laws. Note that all the unknowns in the system are contained in the

parameter estimate vector, 0.

The parameter adaptation law is:

=rY T q,qd,qd, +  3.7/

where/" > 0 is an r x r diagonal, positive-definite matrix of parameter update gains, and c > 0

is a scalar weighting between the velocity and position errors. This adaptive update law results from

Lyapunov analysis, and is derived to guarantee the convergence of trajectory-tracking errors.

3.2 Controller Properties

The block diagram in Figure 3.1 illustrates the structure of the adaptive controller. Following are some

properties of this controller:

Inverse-dynamics controlle_. The full nonlinear dynamics of the manipulator system is included

in the "Inverse Dynamics" block. These calculations compensate for much of the nonlinear

plant behavior, minimizing trajectory errors. This eases the burden on the PD "Feedback" block,

allowing for more aggressive PD gains to handle any residual errors. The parameter vector, 0, of

the "Inverse Dynamics" block is adaptively updated to change the plant model.

Joint-space control. This standard controller applies for only joint control. The feedback is taken

in joint-space. The controller thus operates to reduce errors in joint trajectories. The adaptation

law also updates the parameters based on joint-space errors.

Tracking-error adaptive algorithm. The Bayard and Wen adaptive algorithms are tracking-error-

based algorithms. The algorithms provide asymptotic convergence of the tracking error to zero,

but do not guarantee parameter convergence. Parameter convergence requires sufficient excitation

in the trajectories. This limitation poses no serious problems for most robotic activities where

minimizing tracking error is the prime objective.
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Figure 3.1: Block Diagram of Bayard and Wens Adaptive Controller

This is an inverse-dynamics joint-space controller. The plant model is used to feedforward
the nonlinear dynamics to cancel much of the plant nonlinearity. The PD feedback and the
adaptive updates are based on the joint trajectory errors.

Controller insensitivity to sensor noise. The inverse dynamics block of the controller uses the desired

generalized speeds, rather than the measured values. This provides for lower sensitivity to minor

sensor noise during regulation. Since there is no requested motion, the desired generalized speeds

and accelerations are zero, which in turn causes all terms of the regressor, Y(cl, Cld,Old,/_d), to be

zero. This effectively disables the inverse dynamics feedforward block. During motion, feedback

keeps the actual trajectories close to the desired ones, ensuring that the inverse dynamics block

still produces adequate compensation for the nonlinear plant dynamics.

• Adaptation insensitivity to sensor noise. Because the parameter adaptation law uses the same

regressor, the adaptation is equally insensitive to minor sensor noise during regulation. There is

no fear of parameter drift caused by measurement noise or small sensor biases. There is also no

need for explicidy enabling and disabling parameter updates during operation.
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3.3 Lyapunov Proof

Bayard and Wen proved the stability and convergence of their adaptive algorithms based on a Lyapunov

Function [6, 48, 47]. One typically chooses as candidate a Lyapunov Functionma scalar function--

to represent the positive-definite _energy" contained in the tracking and parameter estimation errors.

Proving that this energy is always decreasing demonstrates that the tracking and estimation errors

converge to zero. This is equivalent to showing that the time-derivative of the chosen Lyapunov

Function is always negative, which in turn establishes that the system is stable.

Because the development of the task-space adaptive controller in subsequent chapters is based on

the adaptive algorithm given in this chapter, the stability and convergence proof found in [47] will

be repeated here, with some minor corrections and modifications. An outline of the proof describes,

in words, the major steps involved in the proof. It also illustrates the typical process of developing

Lyapunov proofs. The detailed steps of the stability proof follow in a separate section, with supporting

calculations appearing in Appendix A.

3.3.1 Proof Outline

The stability proof starts by examining the controller with exact plant knowledge and no adaptation.

Consider the following Lyapunov Function for the system operating with the nonadaptive control law

given by Equation (3.1):

1 . T - 1 -T
V(_, q, t) = _ U(q)q + _q (Kp + cKv) _1+ cqTM(q)q (3.8)

The first term is square in the joint-velocity tracking error, and as such represents the "energy" in the

velocity errors 3. Similarly, the second term is square in the joint-position tracking errors, and represents

the "energy" in the position errors. Since the first two terms are squared terms, they are always positive.

The third term is a cross product term between the velocity and position errors--this term is not

guaranteed to be positive, so the positive-definiteness of Equation (3.8) must be shown. The scalar,

c > 0, is a weighting on the cross term---c is the same weighting that appears in the adaptive parameter

update law in Equation (3.7).

Noting that i(q), Kp, and Kv are symmetric, the time-derivative of the Lyapunov Function can

3RecaUthat ½dlTM(q)/lis the kineticenergyof the manipulator system,and note the similaritywith the first term of the
LyapunovFunctionof Equarion (3.8).
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be wri_en _:

_(_,_,t) 1 -T . _IT_ITM(q)_t + _q M(q, tl)_t + (Kp+cKv)_t

+cqTM(q)fi:l + c_T1VI(q, dl)fi::l+ cqrM(q)q (3.9)

The stability proof involves showing that the chosen Lyapunov Function, Equation (3.8), is positive-

definite; and that its derivative, Equation (3.9), is negative-semi-definite. It follows these steps:

1. Show that the Lyapunov Function, V(_, _l, t), is positive definite with the proper choice of

c. Determine the appropriate bounds on c: any c that satisfies the bounds can be used in the

parameter update law of Equation (3.7).

2. Show that the Lyapunov Function is bounded if the velocity and position errors are bounded.

3. Compute the time-derivative of V(_, q, t) in order to show with the following steps that it is

never positive:

(a) Use the definitions for trajectory errors, equations of motion, and the control law in

Equations (3.2, 2.3, 3.4) to expand "_(_, _l, t).

(b) Define a specific representation of C(q, dl) that will eliminate and simpli_/ terms in

f'(_,_,t).

(c) Determine the bounds on the remaining terms and show V(_, (t, t) is negative-semi-

definite. Doing so places requirements on the gain matrices, Kp and Kv.

This proves that if the initial errors are bounded, V(_, _1,t) remains uniformly bounded, which

in turn implies that the trajectory errors remain uniformly bounded.

4. Giventheabove,u_eBarbalat'_theorem[271andtheboundednessof_ toshowthar_ and

tend to zero as t ---*oo, proving stability.

The stability and convergence proof for the adaptive controller requires a modification of the

Lyapunov Function to include a term that represents the "energy" in the parameter errors:

v,(_, _,_,t) = v(_, _,t) + ½_Tr_,_ (3.a0)
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Using the adaptive control hw in Equation (3.5) and taking the time-derivative of the new Lyapunov

function, V1 (q, _l, O, t), yields:

_rl(_l,_,O,t)=_r(_,_l,t)+oTF-lo+oTyT(q, qd, qd, Ctd)(_+C(t) (3.11)

-- A.

Noting that 0 = -0 and _0 = O, substitute the adaptive update law, Equation (3.7), to eliminate

the last two terms of Equation (3.11). This reduces the adaptive case to the nonadaptive case of

Equation (3.9). Making the same arguments shows that once again, _ and _l tend to zero as t --. oo,

proving stability for the adaptive algorithm.

3.3.2 Proof Details

This section presents the proof in some detail. The steps follow those derived in [47], but with the

notation utilized in this thesis. They also correct some minor errors. It is useful to examine first the

structure present in the equations of motion for a system of rigid bodies.

The Lagrangian formulation of the equations of motion starts with the kinetic and potential energies

for a system of rigid bodies:

T = ½_lTM(q)_l (3.12)

v = -qTr + o(q)

where T is the kinetic energy, U is the total potential energy, of which g(q) is the gravitational potential

energy component. Using the Lagrangian, L = T - U, and applying Lagrange's Equation:

0 - dt Oq

= d (M(q)cl) 1 c9 (_ITM(q)) Cl -- r + _0g(q)
dt 2 aq aq

1 (.0 (M(q)_l)'_ T= -'r+M(q)cl+M(q,4)_l-_ _qq ] q+G(q) (3.13)

This results in the equations of motion in the form of Equation (2.3), which can be rewritten as:

where

M(q)/i = 7"- C(q, _1)_1- G(q) (3.14)

A
C(q, _l)_l =

G(g) zs

1VI(q, _1) - _ _qq /

Og(q)

Oq

(3.15)

(3.16)
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The stability proof uses the structure of the equations of motion demonstrated by Equations (3.13-3.16).

Step 1: Positive-Definiteness of V.

Define the following notation for bounds on matrices'l:

/x
#M = info'ra,,, (M(q))

q
A

t_v = a.,i,, (Kv)

A

A (M(1)q'M = sup amaz q
q

A
7v = Vmax (Kp)

A
7,, = a..,_ (Kv)

where crmin and amaz denote the minimum and maximum singular values, respectively. Roughly, these

singular values give the minimum and maximum "gain" of a matrix 5.

With these definitions, a lower bound on the Lyapunov Function of Equation (3.8) is6:

• 1 1
(3.17)

Using "perfect squares", the cross term can be written as:

II_ll= _ (¢,,_,,-_' _I)_- _= ,,_,,_-_¢_ _I=_2_M I1_11

-_ ,,_,,_-_= I1_11__> (3.18)

4The inf"notation representsinflmum, which is the lowerbound of the specifiedset, but this bound does not have to be a
member of theset. For example,inf 1/z = 0, but 0 does not belong to the set {1/x}. Similarly,sup representsthempremura,
or the upper bound of the specifiedset.

_The maximumand minimumsingularvaluesof a matrix, K, givethe maximumand minimum"gain"of K, respectively,
in a 2-normsense. That is,

_..o_ = sup I{K_I{
. {{,,{{

= inf
v.,. " I"{{

6The notation, I1.11, denotes the 2-norm, or magnitude, of(.). It is defined by:

IlUJl _ (uTu) ½ .
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for any e E RK. Thus,

v(_,_,t) >
(M_,M8)

_ 1 (#M_C.YMe_2) q 21 (#p + cl.tv _ c"/Md)I1_112 +2

Ilal(_> 0", II_ll2 + 0"2 (3.19)

where,

0"1 = #p+ c#v- CTMe 2 (3.20)

0"2 = _M -- ¢')'M ¢-2

To ensure V(_, _, t) is positive definite, 0"1 and O' 2 must be greater than zero. Solving each inequality

in terms of¢ 2 gives:

C'yM < ¢2 < #v + c#v
#M CTM

=_ c2"y_I < #M (tAp+ ClAy) (3.21)

Solving the quadratic in Equation (3.21) for ¢ yields:

c< 272 1+ 1+ pMlA2v] (3.22)

Thus, choosing c to satisfy Equation (3.22) guarantees that V(_, _, t) is a positive-definite function.

Step 2: Boundedness for V.

Following similar procedures as the above, an upper bound on the Lyapunov Function is:

• 1 1
V(Fl, Ft, t) _< _ (Vp +CVv)Ilqll 2 + _'rM q 2 +CTMIIqll q (3.23)

Using "perfect squares" again, the cross term can he written as:

2_MII_ll_ = -¢_M(,,_,-,-' q )2+_,,_,_ll_+
_< CVM,72 I1_112+ CVM.-2 1142 (3.24)

for any r/E P-. Thus,

v(_,q,t) <
(3.2_3.24)

1 (Tp + CTv + cTMr/2) II_.ll2 +2

_< 31 Ilrqll2+ & q 2 (3.25)



28 Chapter 3. Control Approach

where,

31 = "rp+cT,,+cTM_
(3.26)

/32 = 7M + OVM_ -2

Noting that/31 and/32 are guaranteed to be greater than zero, Equation (3.25) shows that V(0 , _l, t) is

uniformly bounded if the position and velocity errors, 0 and _l, are uniformly bounded.

Assuming that II0(t)]l and _l(t)] are uniformly bounded, the lower bound on v(o,_t,t), leads

to the following:

where

H0(t)II2
(3.19)

> supIIO(t)ll (3.27)
t

V = sup q, t). (3.28)
t

Step 3: Negative-Semi-Definiteness of 1/.

Using a particular representation for the Coriolis and centrifugal matrix, C(q, Cl), and the identities

in Equations (3.31-3.34), this section proves that V(q, _1,t) is never positive, showing that V(_, _l, t)

never increases. Thus if the initial trajectory errors are bounded, they remain uniformly bounded.

Step 3a: Expanding V. Using the definition for trajectory error in Equation (3.2) to expand _l, and

equations of motion in Equation (3.14) to substitute for M(q)_, and the control law in Equation (3.1)

to substitute for r, the rime-derivative of the Lyapunov Function in Equation (3.9) expands to:

'?(0,q,t) D

(3.2,3.14)

(3.1)

1 . ' + Kp0)-r (M(q)cla r + C(q, Cl)Cl+ G(q) + _M(q, cl)qq
J

+cqTM(q)q

+cq T (IVI(q,cl)_l+ Kv_l + M(q)/_d - 7" + C(q, cl)cl+ G(q))

-T 1 . •
q (-C(q, qd)qd -- Kvq + C(q, _1)_1+ _M(q, cl)q)

+c_TM(q)q

-[-cOT (M(q, dl)_ - C(q, qd)Od -- KpO + C(q, dl)_l)

-'T

--cqTKpq--q (Kv -cM(q))_l

(3.29)
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. °

+_1T (-C(q, 4d)qd + C(q, 4)4 + _i(q, 4)_q)

+c_ T (IVI(q, 4)_t - C(q, 4d)4d + C(q, 4)4)

Choosing a _good" representation of C(q, 4) will help further simplify this expression.

(3.30)

Step 3b: A Representation of C. Begin by first defining a matrix, MD, such that

MD(q,y) =_ _ OM(q)ye_
i----1 0qi

where ei E _n is the ith unit vector. Following are some useful identities for MD(q, y)7:

Iden t/ty h

Identity 2:

(3.31)

0 (M(q)y) _ MD(q,y) (3.32)
0q

Identity 3:

1VI(q, q)Y = MD(q, Y)q

MD(q, y)z = MD(q, z)y

Now choose C(q, 4) to be the followingS:

C(q, 4) = Mn(q, 4) - 1M_(q, q)

(3.33)

(3.34)

.:.'T
= --c_iTKpct -- q (Kv - cM(q)) _1Y(q'q'*)  3.3 ,3.35)

- (q + cq)T C(q, qa>4d

+_1T (_iD(q,q>4 + iD(q, 4)q--1i_(q, 4>4)

1 r 4)4)+c_t T (MD(q, q)q + Mo(q, 4)4 - _MD(q,

-T 1 :T M ,
= --cctTKpct--q (Kv - cM(q)) q- _q Dr,q, qd)q

(3.2,3.34,3.35)

1 T _l)_l) (3.36)+c_ T ((i_(q, 4d>- MD(q, qd>) _1-- _MD(q,

7See Appendix A.1 for the proofs.

8This representation does not satisfy the skew-symmetric property required by the sliding-mode adaptive controller [37].

See Appendix A_2 for more details.

Appendix A.2 shows that this is a valid choice by satisfying the condition in Equation (3.15). Using

this representation in the Lyapunov derivative of Equation (3.30) yields:

(3.35)



30 Chapter 3. Control Approach

Step 3c: Upper Bound for 1)'. This step shows that the upper bound for 1_(_, q, t) is never positive

for proper choices of Kp and Kv. First determine the upper bound on the last two terms of

Equation (3.36):

1___.,1.,,11_2 (3.37)

where

71
/x sup( oM q,q
/x

73 = sup Iqal
t

(3.38)

(3.39)

Similarly,

(3.40)

Note that the "perfect squares" expression similar to Equation (3.18) is used once again to eliminate the

cross term, 2c7173 ]]_[[ _l • Combining these results gives:

v<_,_,,) _< -_,,,_e-_ __+½_,,_,sll_ll_ (3.41)
(3.36,3.37, 3.40)

where

_-_ ( )c #v -- 7173_ 2

#v -- ¢'7M -- ')'173 + C_ -2

(3.42)

(3.43)

Both A1 and A2 must be positive. This leads to the condition:

1 c7173 _.2 #v
2/-*,, -- eTM -- 17172 < < --7173

1

122 (#v O')'M _7172)

. c < #p("_- ½717_)
1_22_2

[ApTM + _I1 I3

(3.44)
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Since e > 0, the last inequality shows Kv must be chosen large enough to satisfy:

1

v,, > ]'y_'y3 (3.45)

to ensure that V(q, q, t) in Equation (3.41) has some negative definite terms.

Now assume that llgll and _1 are bounded such that V defined by Equation (3.28) exists, choose

Kv large enough such that:
1

:_2- _ _ > 0 (3.46)

Then

1
_2 _ _2 - _, 11911 > 0 (3.47)(3.27,3.46)

The upper bound on 1)'(9 , q, t) can now be written as:

_(9,q,t) _ -_a119112-_2 q2_0
(3.41,3.47)

(3.48)

Thus given K v large enough, 1)"(q, q, t) is never positive, so V (q, _1,t) is never increasing, such that

V= V(9(to),q(to),to). (3.49)

This in turn implies, from Equation (3.19), that the trajectory errors, 9 and q, are uniformly bounded.

If the initial errors, 9(t0) and _l(t0), are small enough--so V is small enough--then the assumption

in Equation (3.46) can be satisfied easily.

Step 4: Stability

Application of Barbalat's theorem at this point shows that if the trajectory errors remain bounded, then

they, in fact, also tend to zero. The theorem is stated as follows [6]:

Barbalat's Theorem

IfW(t) is a real function of the real variable t, defined and uniformly continuous for t > 0, and if

the limit of the integral

exists and is a finite number, then

lim [tW(tt)dt'
t-+oo Jo

lim W(t) = 0.
t.--,OO
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In other words, if the integral of a continuous fimction approaches a limit and does not grow without

bound, then W must approach zero, because it cannot continue to add to the integral.

To show stability of the controller, let

such that

(3.50)

l_'(9,_l,t ) < - W(t). (3.51)
(3.48)

Integrating both sides of Equation (3.51) from 0 to t, yields upon rearranging,

fotW(t')dt t < - V(_l(t),q(t),t) (3.52)v(9(o), _t(o), o)

Since V (q( 0 ), q(0), 0 ) is bounded, and V (q, _l, t ) is nonincreasing and bounded below, it follows that

Also,since9d ischosentobe bounded,and sincerigid-bodydynamicsdictatethat9 isbounded for

bounded input forces and torques, ft'(t) is bounded, which implies that W(t) is uniformly continuous.

Applying Barbalat's Theorem, therefore, gives

(3.54)

lim W(t) = 0
t--,,oo

11911--, o
=_

-" o
This proves the asymptotic stability of the nonadaptive controller.

3.3.3 Adaptive Controller Stability

As the previous section showed, modifying the Lyapunov function to indude the parameter-estimate

errors, and applying the adaptive update law of Equation (3.7), makes the above proof equally applicable.

Thus this section has also proved the asymptotic stability of the adaptive controller.

Finally, it should be noted that the above proof used rather loose bounds to derive requirements on

the gains, c, Kp, Kv. These requirements are sufficient, but not necessary, so one can use them for

initial design. In practice, the gains that achieve the best controller and adaptation performance may

not meet these criteria.



Chapter 4

Adaptive Control Extensions

The Bayard and Wen class of adaptive control algorithms is applicable in a relatively restricted realm--

single-arm joint control. This chapter describes the first steps in extending the adaptive control

algorithm to task-space control: 1) extension to utilize equations of motion developed using generalized

speeds to ease the design procedure and 2) extension to endpoint control. These extensions provide the

essential building blocks for developing the task-space adaptive controller in Chapter 5.

Section 4.1 extends, in a limited fashion, the adaptive algorithm to handle the more generalized

modelling method using generalized speeds. This extension benefits controller implementation by

simplifying the terms that appear in the equations of motion. The approach is straightforward and,

except for a transformation from actuator torques to generalized forces, involves little change from the

original adaptive controller.

Section 4.2 further extends the algorithm to handle endpoint control. This extension utilizes the

end-effector Jacobian matrix for transforming endpoint motions in Cartesian space to variations in

the generalized coordinates and generalized speeds. Once again, the changes to the original controller

structure are minor; this section furnishes a summary of the differences.

Section 4.2.3 offers an oudine and the detailed stability proof for the new endpoint adaptive

controller. The Lyapunov function must be altered for endpoint control, and includes the Jacobian

matrix. The proof follows the same steps as the original proof by Wen, with an additional stability

requirement that the manipulators must stay away from kinematic singularity. Since endpoint control

perse also makes this requirement, this condition does not pose a serious limitation to the new endpoint

adaptive control algorithm.

33
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4.1 Extension to Generalized Speeds

Appropriate choices for generalized speeds can simplify the terms in the equations of motion for a

system. This aids implementation by reducing the number of calculations 1. For instance, the two-link

arm example in Chapter 2 illustrated that for a planar robotic system with revolute joints, it is beneficial

to choose generalized speeds that correspond with the absolute rotation rates of the links, rather than

the joint rates. This section, therefore, extends the adaptive controller given by Equation (3.4) and

Equation (3.7) to this useful, albeit limited, case.

For generalized speeds chosen to correspond with absolute angular rates for the rotational degrees of

freedom, the generalized speeds and the joint rates are related by a constant matrix of zeros and ones2:

u -a Wdl (4.1)

where W is the n x n constant matrix. The new joint-space adaptive control law can be expressed as:

F = M'(q)dd + C'(q, Ud)Ud + (_'(q) + Kv_ + W-TKp_t (4.2)

r = WTF (4.3)

or in terms of the parameter vector:

F (_) Y'(q, ud, ud, fia)O + Kvfi + W-TKpq (4.4)

= Y'(q, Ud, Ud, Ud)O + KvCt + W-TKpq -- Y'(q, Ud, Ud, fltd)0 (4.5)

The corresponding new parameter update law is:

= Fy'T(q, Ud, Ud,/*d) (U + cWTq) (4.6)

where the t notation is used to distinguish the system equations from those derived not using generalized

speeds. That is, M'(q), C'(q,u), G'(q), and Y'(q, ud, Ud, tid) are the matrices defined by the

generalized equations of motion,

F - Mt(q)fi + C'(q, u)u + Gt(q) = Yt(q, u, u, u)0. (4.7)

Figure 4.1 shows the block diagram of the new controller. Application of the control law,

1Theexamplein Chapter 2 demonstratesthis.
2Seethe examplegivenbyEquation(2.6).
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Feedback _ Manipulator
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iq
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Figure 4.1: Block Diagram of the Adaptive Controller using Generalized Speeds

This controller allows the use oFa system model that was developed with generalized speeds.

The controller structure is almost identical to the original controller, Figure 3.1, with the

exception of tile transformation block, ,_r, to bring generalized forces in to actual join r torques.

Equation (4.4), results in a mathematical vector representing the desired generalized forces to apply to

the system. Implementation, therefore, requires the transformation of this vector back into actuator

torques. Other than this transformation, there is little change from the original adaptive controller.

4.1.1 Transforming Equations of Motion

Examining the relationship between the two forms of equations of motion defined by Equation (2.1)

and Equation (2.3) is useful for simplifying the stability proof.

Differentiating the generalized speeds in Equation (4.1) with respect to time yields:

= (4.8)

Substituting Equation (4.1) and Equation (4.8) into the equations of motion using ClS results in:

3-
(2.3)

(4.1,4.8)

M(q)cl + C(q, _1)_1 + G(q)

M(q)W-lfi + C(q,W-'u)W-lu + G(q) (4.9)
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Premultiplying both sides of Equation (4.9) by W -T gives:

w-T'r "- W-TM(q)W-ld + w-Tc(q, W-lu)W-lu + W-TG(q) (4.10)

Matching terms of the generalized equations of motion in Equation (2.1) with those in Equation (4.10)

yields:

F = W-TT

Mr(q) = W-TM(q)W -I

Ct(q,u) -- w-TC(q,W-lu)W -!

G_(q) = w-TG(q)

It also follows from Equation (4.10) that,

(4.11)

Y'(q, u, u, u)0 = w-Ty(q,W-lu, W-lu, W-lu)0 (4.12)

The equations in (4.11) and (4.12) represent the transformation between the two forms of equations

of motion and the transformation between generalized forces to actuator torques.

4.1.2 Stability Proof

The stability proof for this case is rather straightforward. Substituting the transformations in Equa-

tion (4.11) into the control and adaptive laws of Equation (4.4) and Equation (4.6), results in exact/y the

original Bayard and Wen control and adaptation laws3. The same Lyapunov Function, Equation (3.10),

therefore, can be used to prove stability.

For completeness sake, the Lyapunov Function and its derivative can be written in the ! notation

and in terms of generalized speeds as:

1- T
V(_,fi, t) = l_TMt(q)_+ _q (Kp+cKv)_t+c_TWTMt(q)Ct+2oTF-IO (4.13)

and

U,t) = uTMt(q)u+ 2uTMt(q,u)u+_l T(KP+cKV)_t

+cuTMI(q)u + c_tTwTlvlt(q, U)_ + c_tTwTMt(q)u

+bTF__ _ + _Ty/T(q, Ud, Ud, Ud ) (_ + cW_l ) (4.14)

Using the transformation equations also will reduce these to the original Lyapunov function and its

derivative.

3,_e Appendix A.3 for the proof.
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4.2 Extension to Endpoint Control

While endpoint control can benefit a fixed-base industrial robot performing precise, dextrous manip-

ulation, it is crucial for a mobile robot that needs to perform acquisition before any manipulation.

With no fixed base from which to reference the location of the parts it is to acquire, the mobile robot

controller must use feedback directly on the manipulator endpoint positions relative to the part. The

space robot capturing a free-flying satellite, for example, must use endpoint control to track the grasp

points on the satellite before capture.

Hence, this section further extends the adaptive control algorithm to endpoint control. The desired

trajectories a manipulator must follow are given in terms of endpoint Cartesian coordinates. The

adaptive law also updates the parameters based on the endpoint tracking errors. Although at this point

this extension is still applicable only to a single-manipulator robot, the results can be quite useful for

later extension to the full cooperating-manipulator space robot.

4.2.1 Endpoint Jacobian

The extension from joint control to endpoint control utilizes the Jacobian matrix. Figure 4.2 illustrates

the relationship between the endpoint and joint positions. In general, the Jacobian matrix arises

when differentiating mathematical vector fields4. It is composed of the partial derivatives of the vector

function. In robotics, the term, Jacobian, has taken on a more specific meaning, namely, the relationship

between joint rates and the manipulator end-effector velocity (a physical vector) and orientation rates.

Simple kinematic analysis gives the endpoint position and orientation as functions of the joint

angles, represented by:

x = k(q) (4.15)

where x E R ra contains the endpoint position and orientation, and k : p,n ____m are the kinematic

equations. When rn = n, the robot is said to be nonredundant, and when rn < n, the robot is

redundant.

Taking the time-derivative of both sides of Equation (4.15) gives:

/c = 0k(q) dl + 0k(q__) (4.16)
cgq at

4Not to be confused with the physical position (x) and velocity (i) vectors which are of course also the centerpiece of

Figure 4.2.
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i

/

ql

Figure 4.2: Cartesian Endpoint Position and Velocity

ql and q2 represent rile shoulder and elbow joint angles, x is tile position vector of the
manipulator endpoint and i represents the endpoint velocity vector.

Defining the Jacobian to be:

and a time-dependent term to be:

j(q) = Ok(q)
Oq (4.17)

Jr(q) = 0k(q)
Ot (4.18)

yields the endpoint Jacobian relationship for robotics:

= J(q)d 1+ Jr(q) (4.19)

When there are no prescribed 5 motions in the system, Jr(q) is zero, which yields the more common

relationship:

= J(q)q (4.20)

5Aprescribedmotionisa motion that thesystemisforced toundergo in responseto unmodelledexternalforcingfunctions.
In roboticsystems,whereall forcesaremodeUed,thereare no prescribedmotions.
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The inverse Jacobian relationships are:

cl = j-l(q))__ J-'(q)Jt(q)

/i = j-l(q) (__.j(q,_l)j-,(q))k_.jt(q))

To make use of generalized speeds, additionally define a tram'formed Jacobian, J'(q), as:

a'(q) _ a(q)W -1

(4.21)

(4.22)

(4.23)

such that the following are true:

u = Wq (4.24)

= J'(q)u + J_(q) (4.25)

u = j,-l(q)__ j,-l(q)j_(q) (4.26)

d = j,-l(q)(__ j,(q,u)j,-l(q))k_ j_(q)) (4.27)

Example

The two-link arm example illustrates that using generalized speeds can also simplify the terms in the

Jacobian. The physical position vector for the endpoint can be written as (See Figure 4.2):

x= (l, cos(ql) +12cos(ql +q2)+ :co)al + (llsin(ql)+12sin(ql +q2))a2 (4.28)

where al and a2 are mutually orthogonal unit vectors, and xo is a constant offset of the shoulder from

the origin of the coordinate system. Taking the partial derivative with respect to q gives the Jacobian:

J(q)(4.=]7)

--ll sin(q1) -- 12sin(q1 + q2)

lx cos(ql) + 12cos(q1 + q2)

--12 sin(q1 + q2)

12cos(q1 + q2)
(4.29)

where it has been expressed in the coordinate system aligned with al and a2. The transformedJacobian

for use with generalized speeds, utilizing W from Equation (2.6), is:

"1

-11 sin(q1) -12 sin(q1 + q2) / <430)

l, cos(q,) 12cos(q, + q2) ]

Because there are no prescribed motions, at(q) and a_(q) are zero.
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4.2.2 Endpoint Adaptive Control

Using the trans_rmed Jacobian matrix defined above, the endpoint adaptive control law can be mitten

in terms of generalized speeds as:

F = NI'(q)da+__,'(q,ua)ua+_,'(q)+a'T(q)(Kvxx+Kex_) (4.31)

r = WTF (4.32)

or in terms of the parameter vector:

V = Y'(q, ua,ua,fid)O+ a'T(q)(Kvxx+ Kpz_) (4.33)
(2.9)

= Y'(q, ud, ud, dd)O+j'T(Kvxx+Kexx)--Y'(q, ud, ud, dd)O (4.34)

The corresponding adaptive update law is:

= rY 'T(q,Ud,Ud,ua)a'-I(q) (x + c_) (4.35)

Inaddition,thedesiredgeneralizedspeedand itsderivativearegivenby:

Ud (4.2% J'-l (q)xd -- Jr-1 (q)J_ (q) (4.36)

_d (4._7)a'-1(q)( _'_a-'j'(q'u)a'-1(q)_:

- jr(q,u)a'-l(q)a_(q)- ,J_(q)) (4.37)

The key differences between the new endpoint adaptive controller and the joint controller can be

described as:

• Endpoint-trajectory tracking. The controller tracks endpoint trajectories, because it performs

feedback directly on the endpoint tracking error. The adaptive parameter update is also based on

the endpoint tracking error.

• Jacobian calculations. The Jacobian calculation blocks are the only real structural changes in

the controller. They are needed to convert the desired endpoint trajectories into equivalent

desired joint-space trajectories for use by the inverse-dynamics feedforward block. The Jacobian

also translates the feedback forces, expressed in Cartesian space, into the mathematical space

represented by the generalized forces. Finally, the adaptive update block also uses the Jacobian to

map the tracking errors to the joint space, in which the adaptive model is derived.
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____ _ _ Manipulator q,x

Feedback Fr"
xa (Kw_+K_i) System

_, Adaptive Law
h _ 1 •
O=-FY'J- (_+c'_)

*--X
v

Figure 4.3: Block Diagram of the Endpoint Adaptive Controller

The endpoin t adaptive conrrol tracksendpoint trajectoriesby performing feedback direcdy on
the endpoint errors, _. Note that the adaptive parameter update is also based on the endpoint
tucking error. This controller structure is once again very similar to the original controller,
Figure 3.1. The only additions are the Jacobian blocks that transform the endpoinr quantities
into equivalent joint-level quantities. The transformation block, W, is still required to bring
generalized forces into actual joint torques.

• Torque tranqbrmation. Since the control law is given in terms of generalized speeds, the transfor-

mation block, W, is still required to transform the commanded force into actuator torques.

4.2.3 Stability Proof

The stability proof involves choosing a new Lyapunov Function to represent the "energy" in terms of

the endpoint tracking errors and then showing that it goes to zero, implying that the tracking errors also

go to zero. In doing so, the proof places an additional requirement on the controller: the manipulator

must remain away from geometric singularity, which equates to the matrix inverse of the Jacobian being

bounded. This is a very natural requirement, since the controller becomes ill-behaved near kinematic

singularities; it is also a requirement whenever one implements a Cartesian-space controller. In practice,

kinematic singularity is easy to detect 6. If it cannot be avoided, the controller can change control modes

6Typically,kinematic singularitiesoccurwhen two or more degreesof freedomof the manipulator *line up", where the
manipulator losesdegrees of freedom. For the two-link manipulator, kinematic singularity occurswith the arm straightout
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to bring the manipulator into a more favorable configuration.

This proof starts with the nonadaptive controller by choosing the Lyapunov Function and calculating

its derivative. It then follows steps similar to that of the original proof in Chapter 3:

1. Show that the Lyapunov Function, V(_, x, t), is positive definite with the proper choice of c.

Determine the appropriate bounds on c.

2. Show that the Lyapunov Function is bounded if the velocity and position errors are bounded.

3. Show with the following steps that the time-derivative of V(_, x, t) is never positive:

(a) Use the definitions for trajectory errors, equations of motion, and the control law in

Equations (3.2, 2.1, 4.33) to expand "_(_, x, t).

(b) Use the Jacobian relationships, Equation (4.25) and Equation (4.26), to simplify terms in

This reduces the form of V(_, x, t) to the same form as in the original proof. Thus, the rest of

the stability proof follows the original, with minor changes to the necessary bounds.

This proves that _ and x tend to zero as t -* oo, showing stability.

4. The Lyapunov Function is then modified to include adaptation. The application of the adaptive

update law, Equation (4.35), reduces the stability proof for the adaptive algorithm once again to

the nonadaptive case, where stability has been shown already.

Endpoint Lyapunov FunctionmNonadaptive

The new Lyapunov Function for the system operating the nonadaptive endpoint controller is:

+c_ T (Jt-T(q)Mt(q)J'-](q)) x (4.38)

The first two terms represent the "energy" in the endpoint velocity and position errors. They are squared

terms, so they are always positive. The third term is a cross product term between the velocity and

position errors---this term is not guaranteed to be positive, so the positive-definiteness of Equation (4.38)

such that the links liealongthe sameline. Inthis situation, theendpointof the arm can traceout onlyan arc--defined bythe
shoulderangle and the total lengthof the arm--which isonly onedegreeof freedom.
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must be shown. The scalar, c > 0, is a weighting on the cross term--c is the same weighting that

appears in the adaptive update law in Equation (3.7).

Using the inverse Jacobian relationship, Equation (4.26), and replacing x with fi, the Lyapunov

Function also can be expressed asT:

V(_, x, t)(4.=2 lfiTM'(q)fi + lx T (Kpx + cKvx)x + cxTJ'-T(q)Mt(q)u (4.39)

Noting that Mr(q), Kp, and Kv are symmetric, the time-derivative of the Lyapunov Function can be

written as:

12 "T Kl)'(_,x,t) = fiTM'(q)u+ firM'(q,u)fi+_ ( Px + cKw)

+cx TJ,-T (q)M' (q)fi + c"2T,j'-T (q, u)M' (q)fi

+c_¢Tj'-T(q)lVI'(q, u)fi + _Tj'-T(q)M'(q)u (4.40)

Positive-Definiteness of V

Using the first expression for V(_, x, t) in Equation (4.38) and following the same progression as in

Step 1 of the proof in Section 3.3.2 show that:

V(_.,x,t) > al[[_[[2+a2 Ix 2 (4.41)
(4.3_3._9)

where,

O_ 2 _- -- C _--2

with the following definition of the limits:

(4.42)

7Note that:

2..

such that,

ix

#M = info'm,n (M'(q))
q

Ax

US = inf amln (J'(q))
q_S

= id--i

= 0'(,)._ +J;(q)) - O'(q)-+J',(q))

= J'(q) (-a - -)

= j'(q)_
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#p = ami,_(Kp)

A
#v = ami_(Kv)

A

7M -- supa,n_z (M'(q))
q

A

3'J = supamaz(J'(q))
q¢S

g_

_p = a,,,_ (Kp)

%, = a,_(Kv)

S represents a set of regions around singularities. That is, the limits for J'(q) are defined for manipulator

configurations that exclude finite regions around singularities. For V(_, _, t) to be positive definite,

both or1 and or2 must be positive, which puts a condition on c:

41"tp"/M3_J_ ½#M/Z}/_v I + 1 + (4.43)
27._7j

The additional terms, #j and 7J, are the main changes these bounds. It is clear from Equation (4.43)

that for c to have a non-trivial solution, the manipulator must remain away from singularity such that

us¢0.

Boundedness for V

Following the same procedure as Step 2 of the proof in Section 3.3.2 shows that:

< I1 11:+ x : (4.44)
(4.38,3.25)

where,

(4.45)

It is again clear that if the robot remains away from singularity such that #j # 0, then V(_, x, t)

remains bounded.

Negative-Semi-Definiteness of 1I

Using the definition for trajectory error, Equation (3.2), to substitute for u, and using the equations of

motion, Equation (2.1), to substitute for M'(q)fi expands the Lyapunov derivative in Equation (4.40)
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tO:

1 "rIF(R, x, t) = uT M'(q)fd - F + C'(q, u)u + G'(q) + _M (q, u)fi(4.40,32,2.1)

+ JtT (q)Kexx) + c_TM'(q)f + c_T jr-T (q, u)Mt(q)f

+c_TJ '-T (1VI'(q, u)f + M'(q)_ta - F + C'(q, u)u + G'(q)

IT
+ J Kv.x) (4.46)

where the Jacobian relationship, Equation (4.25), is used for the Kpz term. Substituting the control

law in Equation (4.31)massuming an ideal model--for F yields:

( tT " 1., )17(_, x, t) = uu T -C'(q, Ud)U d -- J (q)Kyzx + C'(q, u)u + _M (q, u)fi
(4.31)

+cfTM'(q)f + c_Tj'-T(q, u)M'(q)u

,r u)u)+c_Tj'-T(q) (M'(q, u)f - C'(q,Ud)Ud --J Kpx_ + C'(q,

-T (Kyx - cj'-T(q)M'(q)jt-l(q)) x:-- --cxTKpzx -- X
(4.25,4.26)

+c_T,j'-T(q, u)M'(q)f

_MI., u)f)q_fiT (-C'(q, Ud)U d "]- C'(q, u)u + (%

+c_Tj,-T (q) (-C'(q, Ud)U d + C !(q, u)u + IVI'(% u)f)

-T (Kv. - cj'-T(q)M'(q)J'-i(q)) x= --c_TKpxx -- X
(4.11,4.26)

+c-2Tj'-T(q, u)M'(q)J'-I (q)x

,.+xTj'-T(q)W T (-C(q, qd)_ld + C(q, _l)Cl + _M(q,

+c_Tjt-T(q)W T (--C(q,dld)_Id+ C(q,q)Cl + l_I(q,dl)q) (4.47)

The last two terms of Equation (4.47) are almost identical to those in Equation (3.36), except for the

J'-T(q)WT premultiplier. Assuming once again that the manipulator stays away from singularity and

noting that W is a constant matrix of zeroes and ones, the development in the original proof can be

used once again to state:

< - A,II ll2- A2 [X ]2 + _1c71_ II ll1[ 2 (4.4S)

where

A
74 = sup Ixdl (4.49)

t
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o (j,,))7j-, = sup cr,,mx (q (4.50)
qeS

:_ -_ _ "_ - _s (74+'Yj-,) _2 (4.51)

= /Av -- O"/M /ad

The dependence on "1')-, comes from the extra term in the Lyapunov derivative involving JI-T(q, u). It

can be argued again that if the manipulator does not go through singularity, then jt-z (q) is continuous,

and thus its derivative is bounded. Requiring both As to be positive gives the requirement:

> (4.53)
(3.44,3.45) Z/Aj

Choosing Kvx large enough such that:

1 7z (..____½
- > 0 (4.54)

gives:

- 1 71
,_2 -_ _2 -- _c--Hill > 0 (4.55)#d

which yields the upper bound on the Lyapunov derivative:

l_r(:K,X, t) _< -- )_1 HxH 2 - X2 x 2 _< 0 (4.56)
(4.48, 4.55)

Thus, the Lyapunov Function, V(_, x, t) is never increasing, showing that if the initial errors are

bounded, they remain bounded. Again applying Barbalat's Theorem shows that _ and x tend to zero

as t _ oo, proving stability.

Endpoint Lyapunov Function--Adaptlve Case

The Lyapunov Function for the system utilizing the adaptive endpoint controller follows the example

of the original proof by adding a term representing the energy in the parameter estimation errors:

v, (_, x, t) = v(_, _,,t) + ½_Tr-' _ (4.57)

Using the adaptive control law in the form of Equation (4.34) to substitute for F' after expansion (see

Equation (4.46)) and taking the time derivative of Equation (4.57) gives:

_(i,x,O=?(i,x,O+bTF-'o+bTy'T(q, ua, ua, ae)J'-'(q)(x+_) (4.58)
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Noting again that 0 = -0 and substituting the adaptive update law, Equation (4.35), eliminate the

last two terms, reducing V1 (_, x, t) to V(_, x, t). Employing the proof developed for the nonadaptive

case proves the stability of the endpoint adaptive controller.



Chapter 5

The Task-Space Concept

The extension of the adaptive controller to endpoint control in Chapter 4 provides the essential

components for further extensions to task space. This chapter presents the task-space concept in terms

of a generalized Jacobian. It also shows that, utilizing the generalized Jacobian approach, the new

endpoint adaptive control algorithm can be extended to task space with almost no modifications.

This chapter takes full advantage of the power in the generalized forces and generalized speeds

concepts found in Kane's dynamical equations [15] to derive the expression for the generalized Jacobian.

Section 5.1 presents the task-space adaptive control law for single-manipulator robots, showing that

endpoint control is just a special case of the task-space adaptive control. Section 5.2 develops and

formalizes the relationships between two different sets of generalized speeds chosen for a system. It also

examines the relationships between the two sets of generalized active forces and equations of motion

associated with the choices of generalized speeds. These generalized relationships show that the time

derivative of the task-space control vector is equivalent to a set of generalized speeds, which leads to an

intuitive validation of the task-space adaptive controller.

The chapter concludes with several sections providing specific examples of task-space control

objectives:

Noninertial reference-J_ame control. This control mode is important for mobile robots that must

rely on local sensing. If the robot base rotates or accelerates during manipulation, the local

sensors will be providing sensing in a noninertial frame; the controller must of course take this

into consideration.

48
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Fuelsavingsis anotherbenefitof noninerdal reference frame control for space robots. The

controller decouples the feedback of the noninertial frame control of the manipulators from the

feedback of the free-flying base control. Thus manipulator tracking errors during regulation do

not cause the thrusters to fire. The thrusters will activate only in response to base regulation

errors 1. The implication is that the manipulator control gains may be increased to improve

manipulator tracking without incurring unnecessary thruster firings during regulation.

Single-manipulator space robot control. This example describes how task-space control may be

utilized for control of a space robot. This example uses a single-manipulator space robot, because

the task-space adaptive controller for multiple-manipulators has not been presented yet2. The

characteristics of space robot control remain the same regardless of the number of manipulators.

Control subject to motion constraints. Motion constraints arise when a manipulator comes into

contact with its environment. Understanding the issues in control of constrained motion is

critical to understanding multiple-manipulator control.

System-momentum control. System-momentum control is another control mode for providing

fuel saving control for space robots. Maintaining constant system momentum during local

manipulation ensures that the manipulators will compensate appropriately for the reactions in

the base to prevent thrusters firing, conserving precious fuel. System-momentum control has been

presented by Umetani and Yoshida [44] and Koningstein [19], and this example demonstrates

how task-space control may be used to achieve the same control mode. The added complexity

of deriving symbolically the momentum equations, however, may make this control mode too

costly to implement, in a given application, compared to the noninertial-reference-frame control

for minimizing fuel usage 3.

• Redundancy Management. The task-space controller can be employed to control a limited class of

redundant manipulator systems. The difficulty typically arises because the endpoint Jacobian is

not square: There are more degrees of freedom in the robot than there are in controlled states of

the end effector. Since a nonsquare Jacobian cannot be directly inverted, much of the redundancy

IThere is fixU coupling in the feedforward portion of the controller.

2Multiple-manipulator control will be presented in Chapter 6.

3The complexity should be examined for each given application to determine the feasibility of implementing system-
momentum control.
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research has concentrated on the choice of appropriate, but computationaUy intensive, generalized

inverses for the Jacobian.

Task-space control offers another solution by including auxiliary control objectives in the task-

space control vector to generate a square generalized Jacobian. For example, the auxiliary control

objective may be the height of an elbow in a 7-degree-of-freedom manipulator; the elbow height

may be controlled directly to avoid obstacles while simultaneously controlling the end-effector

position and orientation. Thus if suitable and valuable auxiliary control objectives can be added,

task-space control offers a good alternative to the standard redundancy controllers.

Armed with the capabilities developed in this chapter, Chapter 6 will provide the final extension to

multiple-manipulator task-space robot control.

5.1 Task-space Adaptive ControllermSingle-Arm Case

For a robotic system, choose ytaSk as any set of task-space quantities to be controlled, physical quantities 4

that may be expressed as n linearly independent functions of the generalized coordinates, q:

ytaSk= h(q) (5.1)

where h : _,n _, _,,. Its time derivative can be expressed as:

_task = Wt(q)q + W_(q) (5.2)

where W'(q) is a n x n matrix and W_(q) is a n vector of functions ofq and time t 5. Also choose

for the system a set of generalized speeds, u, related to the generalized coordinates by:

u = W(q)dl + Wt(q) (53)

4Aswillbe shown,these physicalquantifiescan includenot onlylineartranslationsandangularrotations, butanyphysical
quantities that can be expressedasfunctions of the generalizedcoordinates. Keepingthe arms ina high-leverageconfiguration
and awayfrom singularity,and minimizingthruster use are two cogentexamples.

In particular,

W'(q)- Oh(q)
Oq

and
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where W(q) is a n x n matrix and Wt(q) is a n vector of functions ofq and time t. Let the equations

of motion for the robotic system, using this set of generalized speeds, be expressed as:

F = M'(q)d + Ct(q,u)u + G'(q) + ft= Y'(q,u,u,u)0 + ft (5.4)

where ft is added to represent the effects of prescribed motions.

Now define the generalized Jacobian 6 as:

fi(q)--_Wt(q)W-1(q) (5.5)

and a time-dependent vector, fit (q), as:

fit(q)-_ (Wit(q)- W'(q)W-1(q)Wt(q)) (5.6)

such that,

ytaSk= fi(q)u + fit(q) (5.7)

Then the task-space adaptive control law is:

[ -task )V = Mt(q)da + C'(q,us)us + Gt(q) + ft+ fiT(q) _Kvyy + Kp_9 ta'k (5.8)

-r = W(q)TF (5.9)

-task _tdask _rtask. The control law can be expressed in termswhere _,taak= ytaaSk_ ytaakand y = -

of the parameter vector as:

{K -t,,sk K _-.taak_
F(2.9)=Y'(q' us, Ud, Ud)O + ft + fiT(q) _, VuY + PuS ) (5.10)

The corresponding adaptive update law is:

rY (q,ud,ua,da)fi-1(q)

Inaddition,thedesiredgeneralizedspeedand itsderivativearegivenby:

(5.11)

Ud =
(5.7)

fi-1(q)y_a_k_ fi-l(q)fit(q) (5.12)

fi-l(q) (:p_ask _ ,._(q, u)fi-l(q)jttaskua
(5.7)

\

- ._r(q,u)fi-1(q)fit(q)-.._t (q)) (5.13)

6The generalized Jacobian presented in this thesis is a more formal definition than that presented by Umetani and Yoshida

[44]. The generalized Jacobian is generalizeg because it relates two sets of generalized speeds, and its terms obviously depend

on the choice of the sets of generalized speeds.



52 Chapter 5. The Task-Space Concept

The only requirement is that the configuration of the system must be monitored to ensure that if(q)

stays away from singularity 7.

-k _ ,-'_ _*_'_.] Feedback ] r-_-_ _ r:-,

I ] _ Ud ' [_id

Adaptive Law

F_ ManipulatorSystem _-_

Inverse
Dynamics

y,_

Figure 5.1: Block Diagram of the Task-Space Adaptive Controller--Single-Manipulator Case

The task-space adaptive control tracks task-space trajectories by performing feedback direcdy

on the task-space errors, T ask . Note that the adaptive parameter update is also based on the

task-space ttac/a'ng error. This controller structure is once again very similar to the original

controller, Figure 3.1, and almost identical to the endpoint adaptive controller Figure 4.3.
The only changes are the use of the generalized Jacobian blocks that transform the task-space

quantities into equivalent generalized speeds. The transformation block, W(q), is still required

to bring generalized forces into actual joint torques.

Figure 5.1 shows the structure of the task-space adaptive controller. Note the similarity with the

endpoint adaptive controller of Figure 4.3.

In fact, comparing the task-space adaptive controller (Equations 5.7-5.13) with the endpoint

adaptive controller (Equations 4.31-4.37) shows that choosing ytaSk to be the end-effector position

and orientation s , the two controllers are identical.

The task-space adaptive controller represents a generic controller structure, capable of handling

7For the general t,uk-spac.e vector--_ne that does not correspond only to end-effector position and orientation--the
singularity points of if(q) can be caused by either kinematic singularity or algorithmic singularity. Kinematic singularity
occurs when the physical configuration of the system is such that there is a loss of degree of freedom, e.g., when two links are

aligned. Algorithmic singularities areall other configurations, q, such that tank (if(q)) < n.
'Note that althoughthe planar examples in this thesis do not show the end-effector orientation, a general manipulator

end-effector configuration is described by its position and orientation.
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any number of control modes just by switching the task-space control mathematical vector. Switching

control modes essentially involves only the switching of the generalized Jacobian blocks and the trajectory

generators to produce trajectories appropriate for the new task-space control quantities. The feedback

gains also should be changed appropriately for the controlled quantities; but none of the inverse

dynamics controller, the adaptive update blocks, or the system parameters need be modified. Because

the system model does not change during control mode switches, there will be no transient response in

the system.

5.1.1 Proof

The stability proof for the endpoint adaptive controller in Chapter 4/s the stability proof for the task-

space adaptive controller. At each step in the proof, simply replace x with ytask, and jr(q) with J(q).

All that remain are the justification for the definition of the generalized Jacobian and its relationship to

task-space quantities.

5.2 Generalized Relationships

This section establishes the relationships between two sets of generalized speeds, partial velocities, gen-

eralized active forces, and equations of motion. Utilizing these generalized relationships, Section 5.2.5

provides additional validation of the task-space adaptive controller--this time on an intuitive levelm

showing the similarity between the task-space adaptive controller and the original Bayard and Wen

controller.

5.2.1 Generalized Speeds

Define two sets of generalized speeds as:

u = W(q)dl + Wt(q) (5.14)

and

u'= W'(q)cl + W_(q) (5.15)
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Solving for dl in Equation (5.14) and substituting into Equation (5.15) givesg:

u' = Wt(q)W-'(q)u + (W_(q) - W'(q)W-l(q)Wt(q)) (5.16)

where the terms in the parenthesis are independent of both sets of generalized speeds, u and u _.

Making the generalized Jacobian definitions,

if(q) --_Wt(q)W -' (q) (5.17)

and a time-dependent vector, fit(q), as:

fit(q) =_ (W_(q)- Wf(q)W-l(q)Wt(q)) (5.18)

Equation (5.16) becomes:

u t = ff(q)u + fit(q) (5.19)

Comparing u I in Equation (5.15) with the time-derivative of the task-space vector in Equation (5.2),

shows that _,task/s simply another choice ofgeneralized speedscorresponding to u'. Thus, Equations (5.16-

5.19) prove the generalized Jacobian relationships of Equations (5.17-5.7).

Using the generalized Jacobian notation, the relationships between the two sets of generalized speeds

and their derivatives can be given by the following equations:

u' = J(q)u+ Jr(q)

u = ,.7"-I(q)(u'-..'Tt(q)) (5.20)

0 = ,.q,-l(q)(IY-ff(q,u),.q'-1(q)u'- J(q,u),.7"-1(q)..q't(q)-,._t(q,u))

The equationsin5.20justifythecalculationsinEquation(5.12)and Equation(5.13)toderivedesired

generalizedspeedsand theirtime-derivativesfrom desiredtazk-spaccquantities.

5.2.2 Partial Velocities

Partial angular velocities and partial velocities play large roles in the development of Kane's dynamical

equations for generating the equations of motion of a system. This section examines the relationship

between two sets of partial angular velocities and partial velocities that result from any two choices of

generalized speeds.

9In a holonomic system, the number of generalizedspeedsequal the number of generalizedcoordinates,such that W(q)
andW'(q) areboth squareand invertible.
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The angular velocity in reference frame N of a rigid body B and the velocity in N of a point P on

B can be expressed uniquely as [15]:

and

lri

w= _ o.'ru_ +_ot (5.21)
r=l

li

v = _ vru_ + vt (5.22)

where o.'r, vr, o.'t, and vt are functions a° of q and time t, and UF is the rth generalized speed. The

vector, _or, is the rth partial angular velocity of 17 in N, and v, is the rth partial velocity ll of P in N.

Again, when there is no prescribed motion, wt and vt are zero.

Rewriting Equation (5.21) and Equation (5.22) in matrix notation gives:

,, = [w.] u + wt (5.23)

and

v = [v,] u + vt (5.24)

where the rth column of the matrix [wr] contains the rth partial angular velocity, and the rth column

of the matrix [vr] contains the rth partial velocity 12.

Using the two sets of definitions for generalized speeds in Equation (5.14) and Equation (5.15), the

expressions for _o and v can be expressed as:

w = [_or] u + wt = [wry] u' + ov_ (5.25)
(5.23)

and

' (5.26)v = [v,lu + v, = Iv']u' + v,
(5.24)

i°Because of the dynamics of physical systems, these partial-vdocity functions are independent of the generalized speeds.
11Note that the partial angular velocities are the partial derivatives ofw with respect to the generalized speeds, and the

partial velocities are the partial derivatives ofv with respect to the generalized speeds. That is:

z_ Ov
_ Vr___

o)r = Ou,.

In practice, _a_ and v_ can be derived by inspection, since they are simply the coefficients ofu_ in the expression for _o and v,
respectively.

tZThe brackets notation represents the matrix comprised of all partial velocity vectors, respectivdy:

... ] t-,l=C-, ... vo]
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where [_r] and [v_r] are the partial angular velocities and partial velocity matrices, respectively, associ-

ated with u t.

Utilizing the relationship between the generalized speeds, substitute Equation (5.16) for u' into

Equation (5.25) and Equation (5.26) to give:

[U,'r]U + O_t = [o.,Ir]Wt(q)W-I (q)u

+ [wl.] (W[(q) - W'(q)W-l(q)Wt(q)) + w_ (5.27)

and

[vr]u+vt = [vlr]W'(q)W-1(q)u

+ [v_](Wlt(q)- W'(q)W-1(q)Wt(q)) v_ (5.28)

Equatingthecoefficientsofu resultsintherelationshipbetweenthetwo setsofpartialvelocities:

[_o,] = [_otr]W'(q)W-l(q)(5._z ) [_otr].,q'(q) (5.29)

[Vr] = [v',]Wt(q)W-l(q)(5._7)[vtr]J(q) (5.30)

Theserelationshipswillbe usedtorelatethesetsofgeneralizedactiveforcesassociatedwiththetwo sets

ofgeneralizedspeeds.

5.2.3 Generalized Active Forces

This section develops the relationship between any two sets of generalized active forces. The generalized

active force acting on a rigid body B is defined in Kane [15] according to the following:

If B is a rigid body belonging to a holonomic system 5' possessing n degrees of freedom in a

reference flame N, and a set of contact and/or distance forces acting on B is equivalent to a couple of

torque TB together with a force RQ whose line of action passes through a point Q of B, then (Fr)B,

the contribution of this set of forces to the generalized active force Fr for S in N is given by

B TB+v_ 1_ (r 1, n)(Fr)B -- _r " " = "", (5.31)

where w_B and v_ are, respectively, the rth partial angular velocity of B in N and the rth partial

velocity of Q in N.
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Note that the dot-products are equivalent to the following:

B T

_'TB = _or TB (5.32)

v_. P_ = ,,_TaQ

Stacking the contribution of B to the n generalized active forces into a column vector re-expresses

Equation (5.31) in matrix notation as13:

m

(5._:)

w_'TB

_TT B

B T
_n TB

v?.l_

+

v_.V_

v_TI_

+

v_TV_
_ qT+ ] ,5..>

where the [(Fr)B] is the set of generalized active forces contributed by forces acting on body B.

Summing over all bodies in system S' yields the generalized active force vector for the system:

v = _ _, TB+ v 1% (5.34)
(5.33)

all
bodies

Using the alternate set of generalized speeds, u I, the generalized forces given by Equation (5.34)

becomes:

= E
(5.34,5.25, 5.26) all

bodies

where the primed notation indicates the generalized active forces and partial velocities associated with

U t .

To derive the relationship between F and F _, substitute the partial velocity relationships of Equa-

tion (5.29) and Equation (5.30) into Equation (5.34):

F = _ ([_o_] Wl(q)W-l(q))TTB + ([Vlr Q] Wl(q)W-l(q))Tl_
(5.34,5.29, 5.30) all

bodie_

13The matrix notation is defined as:

[ (F1)u ]
[_F,)B]-_ :

(F,_)B
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(Wt(q)W-l(q)) T [wtrB]T T B + (Wl(q)W-l(q)) T [v_]T RQ
all

bodies

(W'(q)W-'(q)) T _ [w_B]TTB+[v_]TRQ (5.36)
all

bodies

Using Equation (5.35) as the expression for generalized forces results in the relationship:

F,5 

Hence, taking the definition of generalized Jacobian in Equation (5.17) gives:

v = J(q)TF'
(5.37,2.17)

(5.37)

(5.38)

Equation (5.38) is a general relationship between two sets of generalized active forces for any two sets

of generalized speeds.

Utilizing the following definitions for generalized speeds of a single-manipulator robot:

u=q

U t = xtiP

the corresponding generalized active forces are:

F=T

F t = Ftip

Substituting these into Equation (5.38) and utilizing the endpoint Jacobian gives:

r = jT(q)FtiP (5.39)

This is the familiar relationship relating actuator torques to endpoint forces. The development in this

section provides a more formalized proof of this relationship than the usual proof involving statics and

virtual work 14.

5.2.4 Equations of Motion

The equations of motions for a system of rigid bodies, such as a rigid-link robot, in terms of a set of

generalized speeds, u, as:

F = M(q)u + C(q, u)u + G(q) + ft (5.40)

'4SeeAppendix A.4 for the virtual work proof.
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where the vector, ft, has been added to include possible forcing functions that keep the system in some

prescribed motion. Using another set of generalized speeds, u', the equations of motion are equivalently

expressed as:

V'= S'(q)1i'+ C'(q,ut)u'+ G(q) + f_ (5.41)

This section demonstrates the relationship between the terms in the two sets of equations of motion. It

also demonstrates the motivation behind the choice for the task-space adaptive control law.

Using the generalized Jacobian relationships defined in Equation (5.20) to substitute for d and u

in the first set of equations of motion gives:

F = M(q)fi-l(q)d ' + (C(q,u) + M(q)..q'-l(q)._'(q,u)) fi-lu' + G(q)

+it - M(q) (d(q, u)fi-1(q)fit(q)+ ,.q't(q,u))

-C(q, u)fi-i(q)fit(q) (5.42)

Premultiplying Equation (5.42) by fi-T(q), and using Equation (5.38) to substitute F' for F gives:

F_ = fi-T(q)M(q)fi-1 (q) fit

+,.q.-T(q) (C(q, u)+ M(q)fi-l(q),9"(q, u)) fi-l(q)ut + fi-T(q)G(q)

+fi-T(q) (ft -- M(q)fi-l(q)(._(q, u)fi-l(q)fit(q)+ Jt(q,u))

- C(q, u)fi-I(q)fit(q)_ (5.43)
/

When there are no prescribed motions, ft and fit(q) are zero, thus, Equation (5.43) simplifies to:

Ft = fi-T(q)M(q)fi-' (q)d'

+fi-T(q) (C(q, u)+ M(q)fi-1(q)J(q, u)) fi-1(q)u'

+fi-T(q) G(q) (5.44)

Hence, without prescribed motions, there is a simple transformation between the terms of two sets

of equations of motion. Comparing terms in Equation (5.44) with the equations of motion in

Equation (5.41) developed for u r gives:

Mt(q) = ..q'-T(q)M(q)fi-1(q) (5.45)

C'(q,u') = fi-T(q) (C(q,u) +M(q)fi-1(q)J(q)) fi-1(q) (5.46)

G'(q) = fi-T(q)G(q) (5.47)
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Similarly, one can show that:

Y'(q,u',u',dr) = ff-T(q)y(q, u,u,d) (5.48)

where Equations (5.20) are used to express u and it in terms ofu ! and d I.

Equation (5.43) and Equation (5.44) demonstrates the relationship between the equations of motion

developed with any two sets of generalized speeds. When there are no prescribed motions, as is usual

in most robotic applications, there exist direct one-to-one mappings between the two sets of inertia

matrices, nonlinear matrices, and gravity torque vectors, given by Equations (5.45-5.47).

5.2.5 Task-Space Control Law Revisited

Employing the generalized relationships developed in this section, the task-space adaptive controller

given in Section 5.1 can be written in a simple form_5:

F task

sr

_,ta,kl_ -task_:taak _task(q).+.fttssk

+ _,{Kv_Y-ta'k + Key_ ta'k ) (5.49)

W (q)TffT(q)Ftask (5.50)

where,

F task = ff-T(q)F

Mr(q) = ..7"-T(q)M(q)ff-l(q)

C'(q.u _) = ..7"-r(q) (C(q,u)+ M(q)..7"-l(q).ff(q)) ,7"-1(q)

G_(q) = ff-T(q)G(q)

The control law can be expressed in terms of the parameter vector as:

Ftask = yta.kt_ ¢ ta.k - ta,k ytdaSk)_ + f_a,k /K -task )(2.9) ka, Sd , Yd , + _ vvY + KPy_ "task

The corresponding adaptive update law is:

_ = FytaskT (q, Ud, Ud, fld) (_rtask -l- c_ctask )

_Just premultiplyEquation (5.8) by ff-T(q).

(5.51)

(5.52)
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Comparing Equations 5.49 and 5.52 with the originaljoint-space control law,

-r = M(q)qd + C(q, Cld)Ctd+ (_(q) + Kv_ + Kpct (5.53)

and the parameter adaptation law,

=/"yT(q, Cld,did, qd)(_1 + c_) (5.54)

shows that the task-space adaptive controller is completely analogous to the original control law, except

for the additional term, T ask , to handle prescribed motions. Equations (5.49) through (5.52) show

very effectively that control is performed completely in task space. This provides a satisfying justification

for the form of the task-space adaptive controller, at least on an intuitive level 16.

Although the form of the adaptive controller given in Equations (5.49-5.52) appears much simpler

than that offered in Section 5.1, it is, in general, actually much more difficult to implement. Depending

on the choice of the task-space objectives, the terms in the equations of motion developed in task

space, _/ItaSk(q), _task(q, yta,k), and _task(q), can be much more complex than those derived for

another set of generalized speeds. Thus, the task-space adaptive controller given in Section 5.1 provides

maximum flexibility for implementation. One can derive the system model utilizing a set of generalized

speeds that minimizes the complexity, while still able to control the system in any other choice of

task-space objectives 17.

The following sections provide examples of valid task-space control objectives other than simple

endpoint control.

5.3 Control in a Noninertial Reference Frame

Controlling in a noninertial, or accelerating, reference frame is an important control mode for a free-

flying space robot is. This mode is useful when manipulating in the frame of the robotmfor example,

when performing docking or assemblywhile sensing both mating parts from the mobile robot base. The

16As Chapter 4 shows, however, the stability proof did not not carry through to task-space quite as readily: An additional

condition that the manipulators stay away from singularity was required.

1;'This is also why this dissertation continues to distinguish between task-space vectors and generalized speeds, despite

showing that the derivative ofy t**k/s simply another set of generalized speeds.

*SPlease note that controlling in a moving or noninertial reference frame is a separate issue from simply controlling from a

moving base. One can perform control from a moving base in a inertial reference frame as well as from an noninertial one.
The difference is whether the desired trajectories are specified as fixed in an inertial or noninertial frame.
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robot base may be rotating or otherwise accelerating, making the robot frame a noninertial reference

frame.

Although all development up to this point has assumed an inertial reference frame, this section

shows that control in a noninertial reference frame can still be expressed as a task-space objective, making

direct application of the task-space adaptive control law feasible. This section also presents an example,

based on the familiar two-link arm, that demonstrates the differences between inertial and noninertial

frame control: it shows that for a space robot, the noninertial-reference-frame controller can be more

fuel efIicient than the inertial-frame controller.

5.3.1 Adaptive Endpoint Control in Noninertial Frame

The adaptive endpoint control in a noninertial frame also utilizes a generalized Jacobian--but one

derived in the noninertial frame. The kinematic relationship, from Equation (4.15), is:

x = k(q) (5.55)

which is independent of reference frames 19. Differentiating this relationship /s dependent on the

reference frame in which the derivative is taken. Doing so in a noninertial frame, B, and expressing it

in terms of generalized speeds gives:

Bx = Bj,(q)u (5.56)
(4.23)

where Bj,(q) is the endpoint Jacobian with respect to the B reference frame. FoUowing the same

development as the original Jacobian yields the following inverse relationships:

u = Bj,-l(q) B± (5.57)

fl = Bj,-l(q) (B_:_ Bj,(q,u ) Bjt-l(q) Bx) (5.58)

Thus, choosing the generalized Jacobian to be:

if(q) = Bj,(q) (5.59)

allows direct application of the task-space control law in Section 5.1.

Note that although the noninertial Jacobian does not contain any information about the motions of

the noninerdal reference frame, the centrifugal and Coriolis effects of the the accelerating reference frame

:gThe physicalposition vector to the endpoint may be expressed in terms of different coordinate systems; but, as a physical

vector, it is of course independent of the refrrenceframe.
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are still being compensated by the C'(q, ua)ua and ft terms in the control law (see Equation (5.8)):

Those terms do include the motions of the reference frame.

Example

The modified two-link arm example illustrated in Figure 5.2 is used to compare the difference between

inertial- and noninertial-frame control. The familiar two-link arm is placed on a mobile base with

a single rotational degree of freedom, represented by q3. The center of both coordinate systems is

2

X

Figure 5.2: Two-Link Arm on a Turntable

ql and q2 represent the shoulder and e/bow joint angles, and q3 is the rotation angle of
the turntable, xfly is the Onvariant physical) position vector from the shoulder to the the

manipulator endpoinr, al and a2 are mutually orthogonal unit vectors luted in the inertial
frame, wh//e bl and b2 are mutually orthogonal unit vectors Eucedin the turntable frame.

assumed to be at the shoulder. The inertial reference frame is defined by the mutually orthogonal unit

vectors, al and a2, the rotating reference frame of the turntable base is defined by the unit vectors, bl

and b2.
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Define the generalized speeds as:

A
'Ul --" ql

A
**2 = + (5.60)

A
zt 3 = t13

Also define ytask for inertial control as a combination of the endpoint position---expressed in the

inertial coordinate system--and the base rotation:

X tip "al

ytaSk A x *ip" a2 (5.61)

q3

For noninertial frame control choose a combination of the same endpoint position--but expressed in

the noninertial coordinate system--and base rotation:

x tip • bl

ytask _= x t_p "b2 (5.62)

q3

The inertial reference frame Jacobian can be expressed as:

-11 sin(q1 + q3) --I2 sin(q1 + q2 + q3) -ll sin(q1 + q3) - 12sin(q1 + q2 + q3)

J'(q) = ll cos(q1 + q3) 12cos(q1 + q2 + q3) ll cos(q1 + q3) + 12cos(q1 + q2 + q3)

0 0 1

and the base-relative Jacobian is:

(5.63)

-11 sin(q1) -12sin(q2 +q3) 0

By(q)= llcos(ql)12cos(q2+q3)0 (5.64)

0 0 I

Both controllerscompensateforinertialeffects,sinceeachsetofdesiredtask-spacemotionsisresolved

firstintoequivalentdesiredgeneralizedspeedsand generalized-speedderivativesbeforeincorporating

them into the dynamics equations (see Equation (5.8)). The main difference appears in the feedback

portion of the controllers. The last term in the control law of Equation (5.8),

f K -u,,_, Kpvytask' )
fiT(q) _, vyY + (5.65)

/
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illustrates the difference between the controllers.

Consider the effect of a pure endpoint error given by:

= Axbl (5.66)

= Axcos(q3)al +/kxsin(q3)a2 (5.67)

Also consider, without loss of generality, that the position gains are all unity.

The feedback law of the inertial frame controller asks for a compensating generalized force given by

(see Equation (5.8):

jt(q)T_ =
(5.63,5.67)

--ll sin(q1)

--l 2 sin(ql + q2)

--ll sin(q1) -- 12sin(q1 + q2)

zxx (5.68)

The compensating generalized force called for by the base-relative controller is (see Equation (5.8)):

Bjt(q)r_ =
(5.64,5.66)

--ll sin(q1)

--12 sin(q1 + q2)

0

/Xx (5.69)

The first two terms in the generalized-force (mathematical) vector represent output from the

shoulder and elbow motors. Equation (5.68) and Equation (5.69) show that both controllers will

request the same amount of arm motor torques to compensate for the error. The difference is in the last

term of the generalized-force vector, which represents the torque on the mobile base. Equation (5.68)

shows that using the inertial reference frame Jacobian, the controller will compensate in the turntable

for the effects of applying torques to the two-link arm. Equation (5.69) shows that the controller using

the noninertial Jacobian ignores this effect. The base motor is actuated only in response to errors in the

base orientation or angular rate, but not to endpoint-error feedback.

Although one can argue whether the latter is the desired behavior one would expect from a

noninertial frame controller, this behavior is actually beneficial for space-robot control. The controller

can place relatively high feedback gains on the base-relative position and velocity of the end effectors

or a manipulated payload to cancel small tracking errors without incurring thruster firing 2°, saving

2°The thrusters wi//fire in response to base position and orientation errors.
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precious fuel. The inertial-frame controller will always fire the thrusters 21 to compensate as needed for

the feedback torques applied to the arms.

5.4 Space-Robot Control--Single Manipulator

The control of a space robot involves controlling the robot base and the manipulator simultaneously

to achieve some desired trajectory of the payload, end effector or arm joints. For payload control, a

natural task-space control mathematical vector is simply the one containing both the payload and robot

base positions and orientations. Additionally, the payload motions can be expressed in either an inertial

reference frame or the base-relative frame.

Figure 5.3 shows an example utilizing a planar, one-arm space robot. The base has three degrees of

freedom--two in translation and one in rotation--and the arm has two degrees of freedom, totalling

five for the system, as represented by ql through qs.

For endpoint control in the inertial reference frame choose22:

ytask =

x OQ •al

x °Q ' a2

q3

q4

q5

(5.70)

such that,

. a,

AxQ . a2

9 'aak= 43 (5.71)

44

45

Implementation of task-space adaptive controller, therefore, will provide adaptation while simultane-

ously controlling the manipulator endpoint position and the robot base position and orientation.

"lActuaUy,the thrusterswillnot fireunlessthe compensatingforcesareabovethe thresholdof the on/offthrustercontroller.
This, however,preventsthe useof higher gainsfor the control ofendpoint orpayload positions.

"For the specialcase that the end effectorgraspsthe objectat its center of mass,endpoint control is the sameas object
control.
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O

-q

Figure 5.3: One-Arm Space Robot

ql and q2 represent tile shoulder and elbow joint angles, q3 and q4 represent the position of
point B on the robot base, resolved into components along al and a2, respectively, q5 is the
orientation oF the robot base. xOQ is the position vector From the center oF the coordinate
system Eucedin A to the manipulator endpoint, while xBQ is the position vector From the
center of the robot base ro the enclpoinc az and a2 are mutually orthogonal unit vectors F_xed
in the inertial Frame,while bz and b2 are mutually orthogonal unit vectors fixed in (painted
on) the robot base frame.

On the other hand, for endpoint control in a useful combination of frames, we can choose the

task-space vector to be:

ytask __

x BQ • b_

XBQ • b2

q3

q4

q5

(5.72)
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such that,

VxQ . bl

B_Q . b2

45

(5.73)

which generates a controUer that simultaneously controls the endpoint in the baseframe and the robot

base in the inertialJ_ame. A significant benefit of the base-relative controller, as mentioned in Section 5.3,

is that higher feedback gains can be used on the endpoint tracking errors without incurring excessive

thruster firings, thereby saving fuel.

5.5 Control with Motion Constraints

Motion constraints occur when the manipulator comes into contact with a surface or another object.

These constraints can often be incorporated into the task-space vector by considering the relative velocity

between the endpoint and the surface or payload object. Figure 5.4 shows a planar arm about to grasp

an object. The payload is modelled as part of the system, where its position is described by q3 and q4.

The object is assumed, for simplicity of presentation, to be circularly symmetric, and the grasp point,

x OQ', is at the center of the object 23.

For this situation it is advantageous to let the task-space vector be composed of the endpoint position

and the relative position between the endpoint and the grasp point on the object:

x OQ - x OQ') ' al

(xOQ -- xOQ') • al

(5.74)

Z_The only reason for this requirement is because, with only two manipulator joints, and no orientation control at the end

effecxor, the orientation of the object is uncontrollable. The problem can be expanded readily to include a rotational joint at

the gripper.
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/// ......

Figure 5.4: Motion Constraint

ql and q2 represent the shoulder and dbow joint angles. The object is modelled as part of the
system, and its position is given by q3 and q4. Q marks the endpoinr of the manipulator, and
Qt is the grasp point on the object. When the manipulator grasps the object, Q coincides with
Q'. al and a2 are mutually orthogonal unit vectors fixed in the inertial frame.

such that

ytask

-- [ J(q)J(q)

xQ • al

:xQ • a2

_q - ±q') • al

(xQ - _Q') " al

0
u

= ff(q)q

-I2×2

(5.75)

(5.76)

(5.77)

where J(q) is the endpoint Jacobian, I2x2 is the 2 x 2 identity matrix, u = dl, and if(q) is the

resulting generalized Jacobian. To enforce the motion constraints, the controller simply specifies that

the last two terms of the desired trajectories, y_ask, _ask, and _a_k, be zero.

This example will be useful when formulating multiple-manipulator cooperative control in Chap-

ter 6. The force constraints that occur at the grasp point will also be examined in Chapter 6.
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5.6 System-Momentum Control

Control of the total system momentum can be useful for space robots as a fuel savings measure. By

controlling endpoint or object motions while maintaining constant system momentum, no thrusters

will be fired, ensuring that no fuel is expended. With no thrusters, the robot base will of course react

to the motions of the manipulators. The controller compensates appropriately for these base motions

to allow accurate trajectory tracking of the endpoint or payload object.

This section shows that the system linear momentum and angular momentum can be expressed

as yet another set of task-space objectives. In particular, they are shown to be a linear function of

generalized speeds 24.

The linear momentum L s of a system ofp bodies is the sum of the linear momentum of each body

i in the system25:

P

L s = _L _ (5.78)
i-----1

P

= _ miv i_ (5.79)
i=1

where v i" is the velocity of the center of mass of body i.

Expressed in terms of generalized speeds, Ls becomes26:

L S =

where Lr$ is the partial linear momentum given

i=1 r=l

p n
i*

-- EEmiVr_tr

i=1 r=l

n p
i •

= __,EmiVrUr

r=l i=1

r_---]

= u
by-

P

L_ = _ miv_
i---I

USee Koningstein[19] for moredetails.
25Formally,this is the linearmomentum of S in frameA if the velocitiesarealso in A.

_Because the wholesystemisbeingmodelled,there areno prescribedmotions,makingv_"zero.

(5.80)

(5.81)

(5.82)

(5.83)

(5.84)

(5.85)
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and the matrix notation, [LrS], is given by:

Similar arguments follow for the central angular momentum H s/s" of a system ofp bodies about

the system mass center S*:

HS/S*
P

= _ Hi/i' + Hi� s" (5.87)
i=l

P

= ZIi/i'wi + xS*i* X mlV i_ (5.88)

i=1

p n B

E ii/i" _-_ i __vir'Ur (5.89)= 60rU r + X S*i* X r/2 i

i=1 r=l r=l

= 1 O_r + X S*i* X miv r Ur (5.90)

r=l i----1

n

__, T4s/s" _, (5.92)
r=l

= [HS/S'] u (5.93)

where x s'i° is the position vector from the system center of mass to the center of mass of body i, and

HSr/s" is the partial central angular momentum of the system given by:

P

Hs_/s" = _Hi/i" + x s'i" x L i, (5.94)
i=1

The matrix notation, [HS/S'], is given by:

(5.95)

Thus both L s and H s/s" can be viewed as alternate generalized speeds (see Equation (5.15)). As

such, they are valid choices for elements in the task-space vector 27.

When no adaptation is required, the task-space controller presented in Section 5.1 can be used

direcdy to control system momentum. That controller, however, cannot in theory be implemented for

27Since the task-space vector needs to have n dement.s---matching the degrees of freedom in the system--the system linear

momentum and angular momentum by themselves do not of course provide sufficient degrees of freedom to complete a

task-space mathematical vector.



72 Chapter 5. The Task-Space Concept

adaptation, because the terms in the generalized Jacobian corresponding to [LrS] and [Hrs/s" ] contain

unknown parameters, such as masses, moments of inertia, and the center-of-mass location for each body

i. In this case, the adaptive controller formulated completely in task space, as given in Section 5.2.5,

may be required. Utilizing this form of the controller, however, increases controller complexity. The

noninertial reference frame controller may be a better candidate for fuel-efficient control.

The one-arm space robot illustrates the control of system momentum. Figure 5.5 depicts the system.

Since this is a planar system, the system linear momentum involves two degrees of freedom in the plane,

|12

i'

Figure 5.5: One-Arm Space RobotDMomentum Control

ql and q2 represent the shoulder and e/bow joint angles, q3, q4, and q5 represent the position
and on'enta6on of the tabor base. Q marks the manipulator end/mint, and S* marks the
system mass center at this instant, al and a2 are muma//y orthogona/unit vectors fixed in thile
inert/a/frame, while bl and b2 ate muma//y orthogona/unit vectors Eucedin the robot base
frame, a3 and b3 are unit vectors perpendicular m the plane and point out from the plane.

and the angular momentum only involves one degree of freedomDrotation about an axis in a direction
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perpendicular to the plane. Choose the task-space mathematical vector such that its derivative is:

A_:Q. al

A:_Q . a2

rtaak = L s" al (5.96)

L $ • a2

H s/s" . a3

J(q)

= u
]

= J(q)u (5.98)

where J(q)is the 2 × 5 endpoint Jacobian in the inertial frame, [L_] is the 2 × 5 partial linear

momentum matrix, and [H_/8.] is the l× 5 partial angular momentum matrix.

To maintain zero system momentum while controlling the endpoint, simply set the last three terms

in the desired task-space trajectories, y_a.k, y_aSk, and _rtda'k, to zero.

Base-relative endpoint control can be achieved by choosing to use the base-relative endpoint Jaco-

bian, Bj(q), in _ rtask28.

5.7 Redundancy Management

Task-space control offers a limited solution to the control of redundant mechanisms. Whether a system

is redundant involves consideration of the number of degrees of freedom (DOF) in the system versus

the number of degrees of freedom to be controlled. If the number of controlled degrees of freedom is

less than that of the total system, the control is said to be redundant.

The classic example is the control of a manipulator end effector in six degrees of freedom--three in

position and three in orientationmwith a 7 DOF manipulator. The endpoint Jacobian for this system is

nonsquare, so the direct matrix inverse used to derive joint rates from endpoint velocities is unavailable.

Most redundant-control research has concentrated on utilizing the generalized inverse of the Jacobian:

_In actual implementation, proportional or pulse-width-modulation thruster control would still use a significant amount

of fuel, became the base-relative endpoint errors, while small, do not stay exactly zero. Combining this control mode with

on-off thruster control, on the other hand, would keep fuel use zero for extended periods.
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where xt can be any vector. The last term represents motion in the null space of J(q); that is, internal

motion that will not affect the endpoint motion. Without xt, the desired set of joint rates did minimizes

the energy expended in meeting the desired endpoint trajectory _kd. Many researchers argue of course

for the attractive option that adding xt can make the manipulator achieve additional objectives, such as

singularity avoidance or obstacle avoidance, while tracking endpoint trajectories. In practice, however,

it often occurs that choosing xt to achieve the additional objectives is difficult. Moreover, solving the

T -1
generalized Jacobian inverse, JT(q) (J(q)J (q)) ,can be computationally expensive.

The task-space control approach, however, allows direct choice of the additional objectives. In the

one-arm space robot example, the additional objectives are represented by either the direct control of

the robot base motions or the system momentum 29. For those tasks involving redundant manipulators

where additional control objects can be appropriately chosen, task-space control offers a simple solution.

5.8 Condusions

Task-space control is a powerful concept for use in the control of robotic systems. It allows the

control engineer to develop the system model, or equations of motion, in its simplest form utilizing an

appropriate set of generalized speeds; yet it allows him to control any variables that can be expressed

as functions of the generalized coordinates. The task-space control vector can contain a mixture of

physically dissimilar quantities, containing joint motions, Cartesian motions, motion constraints, and

even system momenta, as long as the size of the task-space vector matches the total number of degrees of

freedom of the robotic system. Finally, utilizing the stability proof for the endpoint adaptive controller,

one can show with negligible effort that the same proof demonstrates the stability of the task-space

adaptive controller.

'gThis is also the approach chosen by Seraji [35] for the control of single-manipularor robots.
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System Concatenation

Multiple manipulators grasping a common object form closed kinematic chains. Given the fully reduced

set of equations of motion for such a system, the new task-space controller may be used directly for

control. The closed-kinematic-chain equations of motion, however, can be very complex to derive,

hampering implementation. System concatenation is a concept that eliminates the requirement for

deriving the complex closed-chain equations, but can still work well with the new task-space adaptive

controller to provide cooperative control for multiple manipulators.

System concatenation is a modelling technique that provides for efficient, incremental generation of

total system models for multiple, interacting system, such as multiple arms cooperatively manipulating

an object. It takes full advantage of models already developed for each manipulator or robot subsystem

to minimize the effort in deriving the total system models. This formulation eliminates the need to

develop and solve for the closed-kinematic-chain equations of motion, simplifying implementation. It

also keeps separated the parameters of each robot subsystem, allowing the ability to separately "tune"

the adaptive control for each subsystem.

Essentially, system concatenation simply stacks, or concatenates, the equations of motion of each

subsystem into a larger, total system model. The coupling between each subsystem is handled through

constraints--motion constraints and force constraints. This idea is not new. Many simulation tech-

niques are based on this concept. Its use in controls in its generalized form, however, is to the author's

knowledge, novel. System concatenation does of course increase the order of the set of system equations.

This disadvantage, however, is offset by the ease of forming the equations of motion, minimizing the

possibilities for error when the algorithm is implemented on a digital computer.

75
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The System concatenation approach utilizes task-space control to incorporate the motion constraints

into the task-space control objective, and specifies desired task-space trajectories that are consistent with

these constraints. Explicit modelling of the force constraints also allows the controller to specify load

distribution amongst the manipulators in addition to specifying internal forces to be applied on the

manipulated payload.

Section 6.1 defines the structure of the equations of motion for the concatenated system. Sections 6.2

and 6.3 derive the motion and force constraints in terms of the generalized Jacobian, allowing them

to be incorporated into the task-space controller. Section 6.4 utilizes the constraint forces to derive

the mapping from object forces and torques to end-effector forces and torques--a mapping that allows

the specification of load distribution and of the "squeeze" forces experienced by the object being

manipulated.

6.1 Modelling

A pair of manipulators grasping a common object form a dosed kinematic chain. The motion

constraints at the grasp points reduce the number of degrees of freedom for the system. The equations

of motion for the reduced-order system involve solving the closed-kinematic equations--a very complex

set of equations in general. Moreover, to perform adaptive control, these equations must be solved

symbolically in order to determine how the equations of motion depend on the physical parameters of

the system. While this can be done for any system, updating the model as the system changesmadding

manipulators, for example--can be extremely costly.

As Koningstein [19] demonstrated at ARL, however, a well-designed controller did not require the

reduced order equations of motion. The controller treated the system as an open-chain system by

breaking the kinematic chain at a grasp point and modelling the payload as an additional link on one

of the manipulators. The controller continued to enforce the motion and force constraints at the grasp

point by specifying desired trajectories and desired forces that were consistent with the constraints.

Doing so allowed the manipulator system to perform its task without putting undue stress on the

manipulated object.

System concatenation carries this approach a further step. It breaks the kinematic chains at all grasp

points I . One benefit is that the controller can take advantage of the system models already developed

IIf there are more than two manipulatorsthereare more than onekinematic chain.
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for individual manipulators and objects. It does not have to modify the equations of motion of a

manipulator to include the object as an additional link. All manipulators are treated equivalently. Most

importantly, this approach is applicable for any number of manipulators and objects.

Another benefit of system concatenation for adaptive control is that the physical parameters of

individual manipulators and objects are kept separated. This allows the adaptive controller to isolate the

physical parameters associated with each subsystem into separate portions of the adaptable parameter

vector. If only a subsystem, such as the payload object, is unknown, the parameter separation property

minimizes the number of parameters that must be adapted. The parameter separation property also

ensures that the controller can take full advantage of all that are known in the system. At the same

time, separable parameters does not prevent the adaptive controller from simultaneously adaptive to all

the parameters for the entire system.

6.1.1 System Concatenation Formulation

System concatenation considers individual robots and objects as subsystems of the entire manipulation

system. Let each of these subsystems i be modelled as:

Fi = Mt,(qi)ui + Cti(qi, ui)ui + Gti(qi) = Yti(qi, ui, ui, ui)0, (6.1)

where qi E R r'* is a vector of generalized coordinates 2, ui C R n* is a vector of generalized speeds, Fi E

]R'*i is the vector of generalized active forces, Mti(qi) E _n, xni is the symmetric, positive-definite

inertia matrix, Cti(qi, Ui) E F,.n_xn_ is the matrix of Coriolis and centrifugal terms, Gti(ql) E _n_

is the vector of gravity torques, Yti(qi, ui, ui, fh) E R n_xw is the regressor 3, and 0i E lRW is the

parameter vector, all defined for the subsystem i. The equations of motion for an entire system with m

subsystems can be expressed as:

+ Fc =

FI

F,_

Mq 0 0

0 "'. 0

0 0 Mr,,,

Ctl

+ 0

0

0 0

"°* 0

0 Ct,n

Ul

um

(6.2)

2Geneta]ized coordinates are used in the development for maintaining mathematical generality to facilitate implementation

on a digital computer. In all the examples, the generalized coordinates are simply chosen to be convenient geometric coordinates

thatcan be easilymeasured.

SThe term "regressor" is typically used in system idendfication to refer to the mathematical matrix that contains the states

of the system and none of the plant parameters.
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+

GSl

GIm

(6.3)

0 = 9_" (6.4)

where _ e p,.lv represents N motion constraints, Pc e _'* is vector of generalized constraint forces

that result from the motion constraints, and n = rq +... +nm is the degrees of freedom for the entire

system. The equations of motion can be expressed in terms of the regressor and parameter vectors as:

F1

Fm

+ Fc

Ol

Om
Y'] 0 0

= 0 "'. 0

0 0 Y'm

= ic

(6.5)

0 (6.6)

Note how the individual parameter sets, 0i, are kept separated.

This demonstrates that the equations of motion for the entire system is almost trivial to form, given

the individual equations of motion. What remains are the examinations of the motion constraints and

the generalized constraint forces.

6.1.2 Example

The example in Figure 6.1 illustrates the system concatenation approach 4. The picture at the left

represents the separate subsystems and the one at the right represents the entire system when connected.

The individual equations of motion, ignoring gravity, are listed with each subsystem. When not

grasping the payload, the system has seven (7) degrees of freedom. When grasping, the constraints

reduce the system to three (3) degrees of freedom, most easily seen as the position and orientation of the

object. That is, given the position and orientation of the object, all the arm joint angles are uniquely

determined.

The generalized coordinates, qarml 6 _.2 and qcrm2 6 IR 2, correspond with the joint angles

for the two manipulators, and qobj 6 l_ 3 represents the position of pBthe center of mass of the

4The example show3 that system concatenat/o, simply utilizes D'Alembert's Principle to combine the equations already

developed for the individual systems to form the fiill syltem equations of motion. One could have started with D'Alembert's

Principle, ofcoume, to dedve the full equations of motion from scratch.
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(-_a_- _ F.j--IVI'.jO.j_ ' // -o

arm 2 _"._ _/ arml __f

//////_-////////////_-///// _,_//////
FnFMZ i_n+C'n u_, F_.=MZun,+C'_,u_.,

Figure 6.1: System Concatenation

The system of two manipulators and the not-yet-captured payload object is illustrated at the/eft
as separate subsystems. Their individual equations of motion are listed below each subsystem.
System concatenation brings the separate subsystems together m model the complete system
after the object is grasped, i Q' and i Q2 are the endpoint velocities, i Q_ and i Q'2are the
velocities of the grasp points, fO, and fQ2 represent forces on each manipulator at its endpoint,

and fO[ and fQ'2represent forces on the object at each grasp point.

payload and the orientation of payload body D:

qobj =

X P .a I

X P • a2

_D

(6.7)

Define the generalized speeds as the time derivatives of the generalized coordinates:

UGrIlrg I _--" qal'ml

Uo,m2= q_._, (6.8)

uobj = ila, j

Rather than generating the reduced set of equations of motion, system concatenation retains the full

seven degrees of freedom and additionally models the constraints, resulting in the following equations
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of motion:

Farml

Farm2

Fobj

and motion constraints:

+ Fc

+

Mtarmi

0

C/o.rW'_l

0

0

Ytarml

0

0

04x I =

where 04x 1 represents a 4 x 1 vector of zeroes.

0 0

M'arm2 0

0 M'o_j

0 0

C'a_m, 0

0 C'obj

0 0

Y'*,_2 0

0 Y'obj

Uarm2

dobj

][_7"l-ft 1

U_f'!rn2

Uobj

OgrD_ 1

00, T'!tTt2

0o#j

(6.9)

(6.10)

(6.11)

(6.12)

6.2 Motion Constraints

The motion constraints in a system of multiple manipulators grasping an object are best represented by

constraints on relative velocities--in both translation and orientation--between each manipulator end

effector and its grasp point on the object. Specifically, the relative velocities are constrained to be zero.

As Section 5.5 showed, these constraints can be adequately represented by task-space control objectives.

The relative velocity between eachFigure 6.2 illustrates the constraints for multiple manipulators.

end effector Qi and its grasp point Q_ satisfies the relationship:

RC, = ±Q' - _:Q_ (6.13)
n n

(5.=22) EvQr'ur- _ vQr:ur (6.14)
r=l r=l

= v _ u- v ' u (6.15)
(5.24)

= (Ivy,I-Ivy:I) 
where_,_, 6 _x 2 is the relative velocity between the two points, and [v_'] 6 R2xy and [vrQ:] 6 IR2xy

are the matrix of partial velocity vectors associated with Qi and Q_, respectively.
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_L_a s //////////_///__//

_xQ, iQ',ic,- -

=.I_(q) u

=0

Figure 6.2: Motion Constraints

A motion constraint exists at each grasp point. Qi is a endpoint of manipulator i, and Q_ is

the associated grip port on the payload object, i ct' is the endpoint velocity, and i c_ is the

velocity of the grip port. When the object is grasped, the relative velocity between Q, and Q_
is constrained to be zero. The constraint velocityic, can be expressed in terms of a generalized

Jacobian ..qc, and the generalized speeds u. al, a2, and a3 aremutually orthogonal unit vectors
Fotedin the inertial Frame.

Defining a generalized Jacobian component for the ith relative velocity ±c, as

o _j'rC'/q' n , ,= V -- V (6.17)

endj

r----1 r=l

(6.19)

(6.20)

(6.21)

the relative velocity can thus be expressed as:

±c,(6._._7)g "c' (q)u (6.18)

In general, there also may be rotational constraints at the end effector. If the manipulator has a

solid grasp of the object, for example, then the relative angular velocity between the end effector endj

and the payload D must be zero. These can be represented by:

0;CJ = t.oendj -- _D

n n
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(r e_,l u (6.22)I ¢,,Or --

- b

= ,_T_J (q)u (6.23)

The expression for angular velocity constraints is completely analogous to that of the linear velocity

constraints of Equation (6.18). Hence, angular velocity constraints also can be incorporated into the

task-space control vector.

When the payload is grasped, these relative velocities are constrained to be zero. To enforce these

constraints, the task-space controller incorporates these equations into the task-space control vector

along with the payload object motions:

Xobj

XC_

Rc_ (6.24)

¢.oc_

O-3CI¢

The only requirement is that ytask has the same degrees of freedom as the open-chain system.

By specifying zero for the constraint terms in the desired task-space vectors--y_ ask, _r_"sk, and

_r_a'k--the trajectory generator requests motions in the system that are completely consistent with the

motion constraints. The controller simultaneously enforces these constraints and the desired payload

motions.

Example

Using the same example in Figure 6.2 with a pair of planar arm and a rigid payload object, choose the

task-space control velocity vector to be a combination of the payload Cartesian and angular velocities

and the relative velocities between the end effectors and their grasp pointsS:

ud,./

_,taak = 3h::, (6.25)

XC2

_Assurne that the end effectors have pin connections, so that there are no rotational motion constraints at the end effectors.
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where uobj are the generalized speeds associated with the object, and xc_ and _:2 are the motion

constraints for the two manipulator end effectors. The associated generalized Jacobian is:

J(q) =

1 0 0

04x4 0 1 0

0 0 1 (6.26)

which utilizes the constraint Jacobians of Equation (6.17).

Since the relative velocities between each end effector and its grasp point is constrained to be

zero, the controller simply sets the last four elements of the desired task-space position, velocity, and

acceleration vectors---y_ ask, _r_ask, and _'_ask--to zero.

6.3 Force Constraints

In addition to motion constraints, there are constraint forces at the manipulator end effectors. The end

effectors must exert forces on the object to make it move. This section determines the nature of those

constraint forces.

Figure 6.3 shows the two resultant forces at each grasp point. The endpoint exerts a force fQ_

on the object at Q_, and the object exerts a force fQ' on the endpoint Qi. These forces are equal but

pointing in opposite directions:

fQ: = -fQ, (6.27)

Analogous relationships exists for constraint moments m. These constraint forces and moments can be

expressed as generalized constraint forces:

Fc (5._) X [v_] Tfk+ X [w_] Tm' (6.28)
_1 all

comtraint oomtraint

forc,_ k moments I

Combining the two forces at each grasp point halves the number of terms in its sum, and combining

the two moments at each grasp point points also halves the number of terms in its sum. These are
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fa; = --fQ,

fQ' fc, =-Y_(q)fQ'

Q,

a2

//////////

Figure 6.3: Force Constraints

Qi is a point coincident with the ith end effector, and Q_ is coincident with the ith grasp point

on the object, fQ' is the force on the end etK, cror passing through Q_, and fQ_ is the force on

the object passing through Q_. The constraint force Fc, can be expressed in terms of the same
generalized Jacobian ,.3" ' utilized for the constraint velocities.

indicated by the changes in the summing indices from k to i and I to j:

I
w

(6.27)

, T ,

all
constrained

grasps i

+ _2
all

constrained
graspsj

Z

[w_"dJ]r m_"a_ + [w_]r m°'asvJ

all
consn'ained

grasps i

+ 2;
all

cor,_w_ined

graspsj

Z
all

constrained

grasps i

- L_'j)fQ'
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m

(6.17)

+ _ ([w_e"%]T-- [v_]T) m_'%

consmained
graspsj

_._ ff c'T (q)f_' + Y_
all all

constrained constrained
grasps i graspsj

..7"_Jr(q)m _'dj (6.29)

The generalized Jacobian components, ,;Tc_ (q) and .._ (q), in Equation (6.29) are the same ones

that appear in the velocity and angular velocity constraints (see Equation (6.18) and Equation (6.23)).

Hence, for a system with N end effectors, the generalized constraint force can be written in matrix

...... TFc(6._9) [ jC,(q) jCp(q) j_,(q) ..q-_,(q)

notation as:

fQ,

fQ_

mend,

m e r_dlv

(6.30)

Define the constraintJacobian jC(q) as the first matrix of Equation (6.30):

,.q-C(q)A [..q.C,(q)... jC,(q) ..q-_,fq).....7"_,(q)] (6.31)

Those termscorrespondingtoend-effectordegreesoffreedomthatarenotconstrainedmay bedropped.

Example

For the example in Figure 6.3, the generalized constraint force vector is given by:

 [fo]Fc = [ ..q'C,(q)ffC2(q) ] fQ2
(6.32)

where g.c, (q) and ,.q-c2(q) are the constraint Jacobians for the two end effectors, and fQ' and fQ2 are

the end-effector forces.

6.4 Force and Torque Mapping

The task-space adaptive controller of Equation (5.8), however, cannot be implemented directly with

multiple-manipulators utilizing system concatenation. One small modification remains. Because system
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concatenation model represents the payload object as a separate system, the commanded generalized

active forces resulting from the control law contain elements that correspond to forces and moments

on the object. Since the object does not have actuators of its own, these forces and moments must be

supplied by the manipulators. An additional mapping is required to map the commanded forces and

moments on the object to commanded manipulator forces and moments.

Consider the two planar arms and object in Figure 6.1 as an example. The generalized active force

for the system is (see Equation (6.11)):

o, r_l

F= (6.33)

Fobj

The generalizedforceson theobject,representedby Fobj,must be mapped backto thegeneralized

activeforcescorrespondingtothemanipulators,Farml and Farm2.

Thissectiondevelopsthisforceand moment mapping by explicitlymodellingtheconstraintforces

and moments atthemanipulatorend effcctors.Thisapproachfirstsolvesfortherequiredend-effector

forcesand moments requiredtogeneratetherequestedforceand torqueon theobjectresultingfromthe

controllaw,itthenusestheresultfromSection6.3totransformtheend-effectorforcesandmoments into

generalizedconstraintforces.The sum ofthegeneralizedactiveforcesand thegeneralizedconstraint

forcesforms a pseudo-generalizedactiveforcevector_" such thatthe systemconcatenatedmodel in

Equation (6.3) can be used directly in the task-space adaptive control law, Equation (5.8), with F

replaced by 3c'.

6.4.1 End-Effector Constraint Forces and Moments

The required end-effector forces and moments needed to apply the desired force and torque on the

object is not unique, as the free-body diagram in Figure 6.4 illustrates. The vector R E _3 represents

the resultant of all the end-effector forces and acts on a line passing through the center of mass of the

object _;, and T E R 3 is the total torque placed on the object by the end-effector forces and moments.

At each grasp point Q_, there may be a force fi E p3 and a moment m_ _ l_?, and each pl E IR3

represents the position vector from the center of mass to the associated grasp point Q_.

6If the task-spacecontrolobjectiveis to control the position of some other point P on the object, then the analysis uses

the point P ratherthan the centerof mass. P is commonlyknown as the remotecenterofcompliance[32,49].
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R

Figure 6.4: Object Free-Body Diagram

R is the resultant ofdl forcesacting on the object whose line of action passes through the
center of mass of the object, T is the total torque on the object, fi and mi are the forces and

moments applied at point Q_, and p, is the position vector from the center of mass to point
Q_. The vectors al, a2, and a3 are mutually orthogonal unit vectors fixed in the inertial Frame.

For a manipulator system with N end effectors, the resultant force R and the torque T can be

related to the end-effector forces and moments as:

T _Y=1 mj + _=1Pi x f,

=[i3xi3x3ox3o3x3]Pl ... P/v 13×3 ... I3x3

fl

ml

j
I

LmN

(6.34)

(6.35)

where Pi E R_.3x3 is the cross product matrix,

Pi =

0 -Pi • a3 Pi ' a2

pi ' a3 0 -pi • al

--pi.a2 Pi'al 0

(6.36)

Equation (6.35) represents an under-constrained set of equations, such that there is no unique inverse

mapping from the resultant force and torque to end-effector forces and moments.
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Let the Wobj E _6×6N denote the mapping matrix:

/, 13x3 ... I3x3 03X3 ... 03X3

wobs= (6.37)
P1 ... PN 13x3 ... 13x3

and let W_j E 1:(6Nx6, the weighted pseudo-inverse of Wobj be:

W_j -_ A-lWo_j (W_jA 1W_j)-' (6.38)

where A E It. 6Nx6/¢ is any weighting matrix and represents the desired manipulator load distribution.

When A is the identity matrix, the solution weights all manipulators equally. The general solution for

end-effector forces and moments now can he expressed as:

fl

In 1

nlN

= +
T

J

where fauz E lq.6N is any optional auxiliary input. Those terms in Equation (6.39) corresponding

end-effector degrees of freedom that are not constrained may be dropped.

The premultiplier of fauz chooses the portion offauz in the null space ofWobj; this term represents

internal loading on the object that generates no motion. Usually, this entire term can be replaced by

lint that is chosen to represent the desired internal object "squeeze" forces.

Utilizing the generalized constraint force of Equations 6.30 and the constraint Jacobian of 6.31,

Equation (6.39) can be expressed as:

F C =

fl

jCT(q) f/v

ml

mN
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(6.3=9)DT'CT(q) W +fir,, (6.40)
T

Hence, given the desired generalized active forces for the payload computed by the task-space control

law (Equation (5.8)), Equation (6.40) produces the equivalent set of generalized constraint forces. This

relationship is used in the following chapter to round out the development of the complete task-space

adaptive controller.



Chapter 7

Task-Space Adaptive Controller

Combining system concatenation and task-space control into the same framework resets in a very

general adaptive controller for rigid-link robotic systems that can contain any number of cooperating

manipulators and payload objects, operating in any number of control modes. This chapter formally

presents the control and adaptive laws of the task-space adaptive controller, and summarizes its properties.

7.1 Control Law

Utilizing system concatenation, partition the robot system model into M actuated subsystems denoted

by the subscripts arm, and m unactuated subsystems denoted by subscripts obji. The system model

can be expressed as1:

F + Fe = Mt(q)d + C'(q,u)u + G'(q) (7.1)

0 = _? (7.2)

IThis control frameworkis equallyapplicablefor simplerroboticsystems. Fora single-manipulatorsystem,there would
be only one partition and no constraint equations.

90
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where _ E R N are N motion constraints and the partitions are:

q =

U

F

Mr(q)

q_r_l

qarm M

qobjl

q_oj_

Uarml

UarmM

Uobj_

Uobj.,

Farml

FarmM

F obj_

Fobj._

Mf6gTTD,

0

0

0

0

0

0 0 0

"'. 0 0

0 MlarmM 0

0 0 MIobj_

0 0 0

0 0 0

0

0

0

0

...

0

0

0

0

0

0

MIobjm

(7.3)

(7.4)

(7.5)

(7.6)
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C'(q, u)

Ctarm, 0 0 0 0 0

0 "'. 0 0 0 0

0 0 Cl_rmM 0 0 0

0 0 0 CIobjt 0 0

0 0 0 0 "'. 0

0 0 0 0 0 Ctobs'm

G'(q)
GtarmM

GIobjl

Gtobjm

Additionally define the pseudo-generalized active force ._" to be:

(7.7)

(7.8)

._" -_ F + Fc (7.9)

The control law for the task-space adaptive controller now can be expressed as:

{K -task )-_" = Mt(q)tld + _2'(q, Ud)U d + G'(q) + ft + fiT(q) _, VyY + Kp_ *a'k (7.10)

"I"= WT(q) [ IMxMO -- fiCT(q)W_J l ('7:-- fiCT(q)fint)Ir.×m (7.11)

where _rtask includes the motion constraints iv and the corresponding terms for the constraints in

the desired task-space trajectories--y_ _sk, y_a,k, and 9_a°k--are set to zero. SeeSection 7.3 for the

derivation of the actuator mapping of Equation (7.11). The control law can be expressed in terms of

the parameter vector as:

{K --task ) '= 2.9)Y'(q'ud'Ud' td)b+ft+fiT(q) +KeyY t 'k (7.12)

The adaptive update law is:

b =/-,ytT(q, Ud,Ud, dd)fi-l(q) (_task+ c_,ask ) (7.13)
\ /
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Yd_')--:2' - i(K_y_k+Keyy_k)l _t_.__r ,

_Ud'Ud

i Adaptive Law
A

Iq

('Payload IJJ I'/_'Ianipulator JJJ

Actuator pulato ,_k

Mapping _ System / t_y'_'k

Dynamics
g8

Figure 7.1: Block Diagram of the Task-Space Adaptive Controller

The task-space adaptive conrrul tracks task-space trajectories by performing feedback d/reedy
on the task-space errors, _,k. The adaptive parameter update is also based on the task-space

rrack/ngerror. This controller structure da'ffersfrom the single-manipulator task-space adaptive
conrm//er, Figure 5. I, by the more sophisticated actuator mapping, given by Equar/on (7. I 1).
The desired inrerna/forces on the payload, f,,t, a/so may be specified. Generalized Jacobians
transform the task-space values into equivalent generalized speeds values.

Figure 7.1 shows the block diagram of the complete task-space adaptive controller, incorporating

multiple-manipulator control. The grayed manipulator system blocks indicate that the task-space

adaptive controller is capable of handling any number of manipulators and objects, and they may be

added to the system at any time, as long as the associated Jacobians are updated accordingly. The

cooperative manipulator also requires a more sophisticated force- and moment-mapping block given by

Equation (7.11) to derive the actuator forces and torques from the control law. This actuator mapping

reduces to the identity matrix when the robot is not performing payload object manipulation, so this

controller structure is a superset of the single-manipulator task-space adaptive controller of Figure 5.1.

The internal "squeeze" force, f,nt, on the payload object may be specified, a most valuable capability

when handling fragile objects.

The block diagram also indicates that switching control modes is a simple matter of switching to the
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appropriate Jacobian and the appropriate force- and torque-mapping blocks. The valid control modes

can range from single manipulator joint control to cooperative multiple-manipulator and multiple-

payload object control from the free-flying base of a space robot.

7.2 Controller Properties

The following items summarize the features of the task-space adaptive controller.

Task-space control The task-space is an abstraction of control modes. The controller changes

control modes by changing the definition of the task-space control vector. Thus, the task-space

controller is capable of handling any number or mixture of control modes from cooperative

multiple-manipulator control on a free-flying base to single-arm joint control. The feedback is

performed directly in the chosen task-space to minimize task-space trajectory tracking errors.

Inverse-dynamics controller. The task-space adaptive controller is a model-based controller. The

"Inverse Dynamics" block compensates for the inertial effects and the nonlinear Coriolis and

centrifugal force terms. The adaptive controller updates this inverse dynamics model to minimize

trajectory tracking errors. For closed-kinematic-chain systems, system concatenation is utilized to

simplify the inverse-dynamics model.

Tracking-error adaptive control The parameter vector 0 used in the inverse-dynamics block of

the controller is adaptively updated. The parameters, and thus the plant model, are updated to

minimize task-space trajectory tracking errors.

Separable adaptation parameters. For complex systems with multiple subsystems, system con-

catenation modelling keeps separate the adaptable parameters of each subsystem. Doing so

allows separate adaptation of each subsystem without sacrificing the capability for simultaneous

adaptation of the entire system.

GeneralizedJacobian. The generalized Jacobian is the key to task-space control. Any quantity that

satisfies the generalized Jacobian relationship (see Equation (5.7)) can be utilized as a task-space

control vector. Changing control modes requires changing the generalized Jacobian blocks to

match the new task-space control vector.
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• Actuator mapping. For implementation, an additional mapping is required to transform general-

ized active forces--_r pseudo-generalized active forces for closed-kinematic-chain systems--into

actuator forces and torques.

Controller insensitivity to sensor noise. As with the original joint-space adaptive controller, the new

task-space controller is insensitive to sensor noise during regulation. Because the the inverse-

dynamics feedforward block utilizes desired, not measured, trajectory velocities and accelerations,

sensor noise does not produce unwanted feedforward actuation.

• Adaptation insensitivity to sensor noise. Since the adaptation update law also utilizes the regressor,

Y(cl, ud, ud, de), that contains desired velocities and accelerations, it is not sensitive to sensor

noise during regulation. The parameters do not drift.

7.3 Actuator Mapping

The actuator mapping utilizes the generalized-constraint-force expression of Equation (6.40) to replace

Fc in the expression for the pseudo-generalized active force ._':

3r D

(6.30,6.39)

F_rTr_ M

F obA

Fobj,.

Fobj,,,

IMxM0

IMxM0

FGr_l

Imxm Fobjl

F_j,.

ffcT (q)W_j ] F + ,3"CT (q)fint
ItI_ X _

+ ..g'CT(q)fint

(7.14)
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where .9"C(q) is the matrix of constraint Jacobians defined in Section 6.2. The inverse relationship

needed in the control law is2:

I"- WT(q)F

wr(q) [ IM×MO --"q'Cr(q)W_J ] ('_-'cr(q)f_'OI,,,×,n

7.4 Conclusions

(7.15)

The system concatenation concept furnishes to the task-space adaptive controller the ability to control

multiple cooperating manipulators. Moreover, it does so in an e_cient manner by not requiring the

complex dosed-kinematic-chain equations of motion. Cooperative manipulator control incorporates

motion constraints at the end effectors into the task-space control vector, and utilizes the explicit

modelling ofend-effector constraint forces and moments to generate a mapping from generalized active

forces and generalized constraint forces to actuator forces and torques.

The resulting control law equations are of higher order than those resulting from the use of the

closed-kinematic-chain equations of motion, but the simplicity of the block-diagonal nature of the

concatenated system equations more than offsets the disadvantages of the increased order. Additionally,

the generalized Jacobians tend to be sparse matrices, and sophisticated matrix computation algorithms

can take advantage of that to reduce further the computational burden. Finally, the use of system

concatenation does not prevent the task-space controller structure from handling simpler single-arm

control: All that is needed is the appropriate generalized Jacobian.

2The followingmatrixrelationshipis true for any matrixW 6 R" ×'n:

0 l,_xm = 0 l,,nx_



Chapter 8

The Experimental System

This chapter briefly describes the experimental system. More details can be found in Ullman's thesis[43].

Adaptive control of a free-flying space robot motivated the development of the new task-space

adaptive control framework. Therefore, the task-space adaptive controller has been implemented on

the Multi-Manipulator Free-Flying Space Robot experiment in the Aerospace Robotics Laboratory

(ARL) for verification. Utilizing air-bearing technology, this facility has pioneered the research in space

robotics by simulating the drag-free conditions of space with high fidelity in the laboratory[43, 19, 1].

The Multi-Manipulator Free-Flying Space Robot was designed to meet some very specific goals:

• The robot must be completely self-contained and free-flying, containing all the key components

to be found on a real space robot.

• The space robot must be capable of autonomous operations.

• User interaction with the robot must occur at a high level to ease the burden on the human

operator.

These goals resulted in a relatively sophisticated experimental system, of which adaptive control is only

a small part.

Because of the system complexity, modularity in both hardware and software design became a

necessity.

The Multi-Manipulator Free-Flying Space Robot is self-contained, containing its own pressurized

gas system for floatation and propulsion. It incorporates a pair of arms for performing cooperative ma-

nipulation. The robot contains NiCad rechargeable batteries for use in free-flying experiments. Power

97
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electronics can distribute electrical power utilizing either the batteries or external power. Additional

analog electronics handle sensing and actuation, as well as on-board battery recharging. The robot

also has a camera for on-board vision sensing. The on-board computer system provides the _brains"

for the space robot and is the core of the controls system; the computers also provide on-board vision

processing. Analog-to-Digital (A/D), and Digital-to-Analog (D/A), and Digital Input/Output (DIO)

boards furnish the interface between the computers and the sensors and actuators. A wireless Ethernet

module allows communication with the user and off-board computers 1.

Software modularity and the need to provide a high-level user-interface resulted in a hierarchical

control approach. At the top level is a graphical user interface that allows the operator to view the

robot and payloads and to direct robot actions via simple mouse motions and simple commands such as

_move', _capture', or _release." At the heart of the control system is a strategiccontrollerthat processes the

user input and schedules the necessary control mode changes based upon user and sensor inputs. The

adaptive controller sits at a lower level, along with the trajectory generators. These too are modularized

such that different controllers, trajectory generators, Jacobian calculations, etc., may be swapped in

dynamically at the request of the strategic controller or the user. At the lowest level are the sensor and

actuator nonlinear-compensation calculations.

8.1 Hardware Architecture

The Multi-Manipulator Free-Flying Space Robot is a completely self-contained and modularly designed

robot capable of fully autonomous operation. The space robot floats on a cushion of air atop a 9 foot

by 12 foot granite surface plate that is flat to within 0.001 inch between any two points on its surface.

This results in extremely low friction, providing an accurate representation of the drag-free conditions

of space in two dimensions. The robot operates in a plane perpendicular to the gravitational force; thus

gravity is not a factor.

The space robot carries on board a pair of manipulators, a pressurize gas system for propulsion,

batteries and electrical power systems, a complete set of sensors include a camera for vision sensing,

a computer system, and a high-speed wireless communications system. Figure 8.1 shows a picture of

the space robot 2. The space robot is functionally separated into three layers. At the bottom is the

1Althoughhigh-speedcommunication is not requiredfor usercommandsduringoperation,it greatlyenhancescontroller
developmentcapabilities.

2The spacerobotwasdesignedmainlybyMarcUllmanandRossKoningsteinof theARL.The visionsystemhardware--the
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pressurized gas system. The spherical tanks, capable of holding 3000psi of compressed air, provides the

gas supply for both flotation and propulsion. The middle layer contains the batteries, battery-charging

system, power electronics, and analog electronics for the sensors. The top layer contains the computer

system and digital electronics. It also holds the wireless Ethernet module. At the very top is the vision

camera, sitting on its boom, that provides local sensing of the manipulator end effectors and of the

payload objects. Finall)_ the pair of planar manipulators reaches out from the front of the robot.

The base of the space robot measures 500ram in diameter and, neglecting the camera boom, and

800ram in height. It has 65kg in mass and a moment of inertia about its center of mass of 3.2kg-m 2.

The maximum reach of each arm is 600ram, and the mass of each arm is 2.3kg. Detailed mass

distribution can be found in the initialization files in Appendix E.

8.1.1 Actuators

Free-flying base actuation is provided through eight gas-jet thrusters. The thrusters are mounted

between the two bottom layers on the corners of a square whose diagonal is a diameter of the base (see

Figure 8.2). The thrusters may be fired in combinations to produce translation and rotational motion.

An optimal bang-off-bang thrust-mapping algorithm for the on-off thrusters is used to approximate

linear control [43]. The pressure for the thrusters is regulated nominally at 100psi, and each thruster

supplies 1N of force. Therefore, the maximum force that can be applied in any one direction is 2N,

and the maximum torque is 1N-m.

The manipulators are in a SCARA configuration, each with two degrees of freedom. The actuators

are brushless DC limited-angle torquers 3 mounted at the robot base to minimize link inertias and to

prevent the center of mass of the robot from shifting away from the center of the air bearing. Each

shoulder is connected directly to its motor, and each elbow is connected to its motor through a cable

drive to eliminate backlash. Compensation for the nonlinear torque curve versus angular position

is done in software 't. The maximum torque from each shoulder motor is about 0.SN-m, and the

maximum torque from each elbow motor is around 0.5N-re.

Each end effector is a pneumatically-actuated _gripper" that moves in the vertical direction on linear

Point Grabber II--is designedand built by the author.
3The motors aremanufactured byAeroflex.Model V40Y-6His usedfor the shouldersand model V40Y-5H isused at the

elbows.

_The torque curve is modelled asa fourth-order polynomialconstrained to have only one inflection point at the motor
anglewith maximum torque output.
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Figure 8.1: Multi-Manipulator Free-Hying Space Robot

The Multi-Manipulator Free-Flying Space Robot is a fully sell-contained autonomous robot

with on-board Fuel,power, computers, vision, and wireless communications systems.
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1

2" _ 4

Figure 8.2: Thruster Arrangement

The space robot c_rries eight Kasjet thrusters, mounted on the FourcornersoFasquare in the base
oFthe robot. Two thrusters at each FaceoFthe square can provide pure translational motion, and
when [ired in combination, the thrusters can supply both rotational and translational motions
simultaneously. The numbered pairs oF thrusters provide positive and negative thrust along
the indicated line oFaction. An optimal bang-o_-bang thrust mapping is used to approximate
linear control.

bearings. To grasp a payload object, the "grippers" are lowered into mating _gripper ports" in the

payload. A bearing at the tip of the gripper prevents the gripper from applying a torque on the object,

and an O-ring around the bearing ensures a snug fit in the gripper ports.

8.1.2 Sensors

The manipulator-joint-angle sensors are analog RVDT's (rotational variable differential transformers)

mounted on the motor shafts. An additional analog filter provides band-limited pseudo-angular

rate. The RVDT's are Pickering model 23501-0, each having a range of 150 degrees. The RVDT

position signals are additionally passed through a third-order polynomial in software to compensate for

nonlinearity.

Other sensors provide information on battery voltage and gas tank pressure. These are used

during initialization to determine the health of the space robot system. They can also be monitored

continuously during operation to determine when the robot should return to its dock for recharging

and refueling.
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8.1.3 Vision Subsystem

The position sensors for the space robot and payload objects are vision-based. A vision system consists

of a Pulnix 440S CCD camera, a Point Grabber II vision-processing board s, and a computer board to

process the vision data and to run the VisionServer software 6. The VisionServer utilizes bright targets

to identify and track named objects. Three targets on each object are sufficient for identification and

for providing position and orientation information in two dimensions 7. Objects of interest are marked

by bright targets using either infrared LED's or highly-reflective discs. The PointGrabber locates bright

pixels in the camera's field of view and stores their positions. Postprocessing assembles the bright pixels

into groups corresponding to the targets before passing the information to the VisionServer.

The combination of vision hardware and software can provide at 60Hz resolution of better than

a 1/20 th of a pixel; for a field of view of two meters, this resolution translates to about 0.25mm.

Third-order polynomials correct for the wide-angle-lens distortions to provide good accuracy over the

entire field of view.

Two vision systems provide the global positioning information over the entire surface of the granite

surface plate 8. The cameras are mounted above the table, and two off-board computers perform the

vision processing. The global position and velocity information is sent to the space robot via the wireless

Ethemet link. The space robot base and each payload object are equipped with a triad of infrared LED's,

mounted in a unique pattern. These patterns are registered with the VisionServers, allowing them to

identify and track each body.

The space robot also contains an on-board vision system for local sensing. Because the field of view

is smaller, this vision system provides much higher resolution. The local vision system also enables

high-speed local feedback, and is not affected by possible communication delays and drop-outs from

global positioning systems. Each manipulator end effector also carries an infrared LED, allowing the

on-board vision system to track the endpoints for endpoint control s.

5SeeAppendixB for moredetailson the Point GrabberII.
6The VisionServersoftwarewasdevelopedbyStanleySchneiderat ARL.
7OngoingresearchatARL is investigatingthe useof five targetsper objectfor acquiring the position and orientationin

full threedimensions.

'This "surrogate"globalpositioningsystemmostlikelywillbe replacedinspacebysomecombinationof inertialnavigation
systemand GPS receivers.

SEndpointsensing isof courseabsolutelyessentialfor capturingpayloads,becausethe controllermust matchthepositions
and velocitiesof the end effectorswith those of the gripperports on the payload.
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8.2 Electrical Subsystem

Electrical power is needed to operate the manipulators, the computers, and communications. A fully

serf-contained power subsystem, all the analog and digital electronics, and the computer systems for

control are contained on board the space robot.

8.2.1 Analog Electronics

Analog circuitry is needed to supply electrical power to the robot system, and to process the signals

from analog sensors.

On-board rechargeable NiCad batteries provide electrical power to the the space robot when it is

free-flying. The batteries can supply +12VDC at up to 15 Amps. Connecting external power when

the space robot is docked also provides electrical power and simultaneously recharges the batteries.

Off-board charging is available as well, and the battery packs can be replaced while the space robot is

"live". The batteries may be engaged and disengaged via manual toggle switches or through computer

control. Figure 8.3 shows a simple schematic of the analog electronics subsystem.

Battery Bat

I
IChargerI Cha

I

I
Main Power Bus

__[__

MotorDrivers

ery

ger

Regulated Power

Safety lSwitch
RVDT's Sensor

MUX

Figure 8.3: Analog Electronics Subsystem

The motor drivers use the raw, unregulated, power from the electrical bus. Power converter units
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provide regulated power at 4- 5V to the computer and digital electronics, 4-12V and 4-15V to the analog

electronics subsystem, and +8V to the wireless Ethernet module.

The analog electronics subsystem contains the main power control unit (PCU), battery chargers,

safety disconnect circuitry, sensor electronics, and motor drivers. The PCU contains the master power

switch and the battery engaging switches 1°. It is the main power-<listribution center, allowing any

combination of batteries and external power to drive the power bus. The battery-charging circuits

provide three charge rates and include automatic switching into trickle charge as the batteries reach

their maximum voltage. The thrusters and arm motors are enabled through the safety disconnect switch.

In addition to the manual enable switch, the controller must enable the switch explicitly during every

sample period; otherwise, the safety switch kicks in to disconnect power to the motors and thruster

relays. This effectively kills power to all actuators if the control system fails.

The sensor electronics contain the excitation circuitry and filtering for the RVDT's used for

manipulator-joint-angle sensing. It also supplies power to the infrared LED's at the end effectors.

A multiplexer board takes sensor readings from the battery voltages, gas tank pressure, and the regulated

pressure. Finally, the motor drivers supply current to the arm motors.

8.2.2 Computer Subsystem

The real-time computer systems used in ARL are based on the VMEbus. The VMEbus is widely

supported in industry with both hardware and software products. Using standardized products shortens

development time and ensures robust, well-debugged computer components. Figure 8.4 show a simple

schematic of the computer system.

The main on-board computer is a Motorola MV167 single board computer containing a 25MHz

MC68040 processor. This computer handles all the task-space adaptive control calculations, high-level

strategic control, trajectory calculations, path planning, sensor and actuator signal conditioning, and

nonlinear compensation of sensor and actuator signals. Another computer, the Motorola MV133-

1 with a 16.67MHz MCAS020, performs all the calculations for the on-board vision system. Two

additional off-board computers, Motorola MV147 20MHz MC68030 processor boards, handle the

global vision system calculations. The on-board computer communicates with each other via the

VMEbus backplane, and communication with the off-board computers utilizes the wireless Ethemet.

1°Thebatteriesmay be engagedmanuallyor through computer control. The switchesautomaticallydisengagewhen the
batteriesareremoved.
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Figure 8.4: Computer Subsystem

Each of the vision-processing computers communicate with a Point Grabber II board.

The wireless Ethernet is the Motorola ALTAIR system. It consists of a Command Module and

multiple User Modules. Each module appears as a "node" on the Ethernet, and communicate with each

other at 19GHz microwave frequencies with an effective throughput of over 3Mbits/sec. Each module

contains a six-sector antenna, and each continually monitors all signal paths to determine the best signal

and to reject multipath signals, resulting in a very robust Ethernet connection in the laboratory setting.

The Command Module is directly connected to the laboratory network, and a User Module is placed

on the space robot. Additional User Modules are placed on other space robot experiments in the same

laboratory[10].

The Xycom XVME590 16 differential channel 12-bit Analog-to-Digital (A/D) and the Xycom

XVME595 zi channel 12 bit Digital-to-Analog (D/A) boards translate sensor input and actuator output

to and from digital format used by the computer. A Xycom XVME290 digital input/output board

furnishes a user-settable clock that is used for the sample dock. It also operates the on-off thrusters,

the grippers, and the sensor multiplexers so the computer may monitor the battery voltages, gas tank

pressure, and regulated pressure.
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A SUN workstation completes hardware requirements for the space robot experiment. The work-

station is the software development center for the space robot. All the run-time code is written and

compiled on the w_r_a,ion before sending it to the real-rime computers. The workstation also runs

a graphical user interface for interacting with the space robot. The workstation additionally is used for

data collection and analyses. Because the space robot is hooked up to the Ethernet, any workstation---or

multiple workstations---may be used for these purpose.

8.3 Software Architecture

The software architecture is developed to enable the user to interact with the space robot at a high task

level, such as directing the robot to chase down and capture a free-flying object with a click of a button.

The software is divided into three major areas; the graphical user interface, the strategic controller,

and the dynamic controller. The graphical user interface runs on the workstations and communicates

with the real-time computer systems to acquire position and orientation information for display and

to send commands to the space robot. The strategic controller and the dynamic controller both run

on the main real-time computer on the space robot. The strategic controller takes user inputs and

schedules the necessary controller mode changes to carry out the task; the mode changes may occur at

set time intervals or upon satisfi/ing some conditions based on sensor inputs. For example, when the

end effectors have been tracking the payload object grip ports to within an error tolerance, the grippers

are engaged, and the control switches from end-point control to object control. The dynamic controller

includes all the inverse-dynamics, adaptive update, Jacobian, and trajectory calculations. Both the

strategic controller and the dynamic controller are implemented in the Controlshell real-time software

environment developed by Stanley Schneider ofARL I1[28, 34, 43].

8.3.1 Graphical User Interface

The graphical user interface (GUI) is the user's link to the space robot. It displays the global position of

the robot and other objects of interest, and it allows the user to issue simple commands such as _move,"

_capmre," and _release." This furnishes the desired high-level interface and disencumbers the operator

from the burden of performing continuous hand-in-glove-type teleoperations.

IiExtensions to ControlsheUhavebeen implementedbyMarcUllmanand the author.
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The graphical user interface communicates directly with the global-vision-system computers to

acquire the global positions of the robot and the payload objects for display. Since the user is not in the

high-speed feedback loop, the position display need not occur at high speed; high-performance control

is immune to communications delays 12and graphical display delays.

Figure 8.5 shows a portion of the graphical user interface. The space robot is indicated by the

circle with the cross; the arrow on the cross shows the robot's heading. The payload object is similarly

Figure 8.5: Graphic.a/User Interface

The space robot is represented by"the c/rc3e w/th the cross-ha/rs. The pay/oad object is
represented by"the oval w_th cross-hairs that has the solid outline. The ghost image of the
object, represented by"the dashed outline, shows the desired payload position. The command
buttons for "move,_ "capture,"_release," and _reset" appear in the top port/on of the interface.
Adaptat/on may also be enabled through a command button. The manipulators are not shown,
because their conllgurations are not essential for the user.

displayed, but with an oval pattern. The solid outlines indicate the actual positions of the objects, while

a dotted outline--known as the _ghost image'--represents the desired posidon and orientation of the

12Communicationsdelayis insignificantin the laboratory,but isan issuewith realrobots in space.
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object. The human operator moves this ghost image employing a computer mouse. When the ghost

image has been placed at the desired location and orientation, the operator dicks on the "move" button

to initiate the action. If the object being moved is the space robot, the control system will move the

robot base to the desired location using thrusters. If the object to be moved is the payload, the robot

will first capture the payload, then move the payload to the desired location. The operator may also

issue separate commands to _capture" and *move _ the payload. Clicking on _release" directs the space

robot to release a payload, and clicking on _reset _ resets the robot to a known state. Additionally, the

user may enable or disable adaptation through the graphical user interface.

Became the user directly commands the position and orientation of the robot or payload, he need

not be concerned with the manipulator configurations; task-space control and the strategic controller

manage all the detailed arm manipulation maneuvers. Accordingly, the manipulators are not displayed

in the user interface.

8.3.2 Strategic Controller

The strategic controller is the heart of the controls system and is implemented using state-table program-

ming [32, 43]. A _state" represents the current robot activity, and is typically one step in the execution

of a requested task. State transitions are triggered by external stimuli; each state determines which

stimuli to monitor. When a stimulus occurs, the strategic controller executes the associate transition

routine, and the result from the transition routine determines the next state.

A stimulus may be an edge-triggered or a persistent event. Examples of edge-triggered stimuli are the

expiration of a timer and the completion of a trajectory. These stimuli are active only for an instant. If

they happen when they are not being monitored by the current state, they are lost. Persistent stimuli

typically indicate status, such as the found/lost status of an object or the up/down status of the grippers.

By being persistent, a state need not be monitoring the stimulus when it changes; it also enables a state

to combine stimuli to form a new one, for example UGrippersDown" is formed by URightGripperDown

AND LeftGripperDown." If _RightGripperDown" and _LeftGripperDown" were both edge-triggered,

such a combination would not be possible without forming intermediate states.

State-table programming can be illustrated graphically by a state-transition graph, such as the

example in Figure 8.6. This example is a simplified state-transition graph for the capture of a payload.

The robot starts in the _Ready" state. When it receives the "Capture" command from the user interface,
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Figure 8.6: Sample State Transition Graph

This state transition graph example illustrates the b_sic components of the strategic controller
in performing a payload capture.

it executes the "StartCaptureO" transition routine, and ends up in the "Starting Capture" state. If the

object is not within the view of the local camera, but it has been found by the global positioning system,

the robot plots a trajectory for the robot base to rendezvous with the object and enters the "Moving

Base" state. If when the base trajectory has been completed but the object has not come into view yet,

the robot re-enters the "Starting Capture" state to plot a new base trajectory. When the object comes

into view of the local camera in either the "Starting Capture" or "Moving Base" state, the robot runs

the "CheckRangeO" routine to determine if the object is within the reach of the arms; if out of range,

the robot enters the "Waiting" state; otherwise, it proceeds to the "Slewing to Object" state. While

in "Waiting", the robot continually checks for the object to come into reach before transitioning to

"Slewing to Object." ,

"Slewing to Object" places the manipulators under endpoint control to command the arms to

follow a trajectory to intercept the grip ports on the payload. When both grippers reach the grip

ports, "ArmsAtObject" triggers the transition to "Tracking", where the grippers must track the payload
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grip ports for a set period of time to ensure that the grip tolerance is met. If at the end of the time

period--indicated by the _TrackT'tmer _ stimulus--the tolerance is not met, the manipulators must

continue to track the grip port; otherwise, the robot lowers the grippers. When both grippers are

down, the robot employs object control 13 to execute the _StopObject0 _ transition routine and enters

the _Manipulafing _ state. If the robot receives the _Release" command while _Manipulating _, it raises

the grippers and returns to the _Ready _ state to await further commands.

Error handling is easily implemented with a state-table programming. In any state before the

payload has been grasped, an _ObjectLost _ stimulus from the vision system can bring the robot into

an "Error_ state 14, and eventually back to the "Ready _ state. If, while manipulating the object,

the _GripToleranceExceeded" stimulus occurs---indicating that the robot may have lost grip on the

object--the robot may release the object and attempt to reacquire it.

Similar state transition graphs have been developed and implemented 15 for processing other user

commands to move the robot base, move the payload, and enable adaptive control.

8.3.3 ControlsheU

Controlshell is a software framework developed by Stan Schneider at ARL that aids the development

of real-time control systems. Controlshell enables the user to develop a multiple-processor hierarchical

control system in a modular fashion. It directly supports state-table programming utilized by the strategic

controller. At the lower level, Controlshell incorporates user-defined components for performing any

number of control-system tasks ranging from acquiring sensor values to computing the task-space

control and adaptive update laws. Controlshell also allows definitions of complete configurations of

components-----configurations that comprise all the components that pertain to a control mode. These

configurations may be swapped dynamically to effect control-mode changes under the direction of the

strategic controller or the user. Please see [34, 43, 28] for more details on Controlshell.

The task-space adaptive controller is implemented at this software level. Different Jacobian com-

ponents are defined to correspond with the different task-space control objectives representing different

13Objectcontrol, endpoint control, and joint control areall implementedwith the task-spaceadaptivecontroller.
_4Whenthe object isbeinggrasped,the robotmay infer the objectlocationfrom its joint sensorsand knowledgeof the grip

port locationson the payload, so the visionsystemlosingthe objectshould not cause the robot to abort manipulation. The
grip isalso monitored to determine if the robot/s graspingthe payload.

tSThestate-transitiontableswereoriginallydevelopedbyMarcUllmanof ARL [43]. The authormade modificationsand
added capabilitiesto handleadaptivecontrol.
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control modes. Appropriate torque-mapping components are also defined. There is, however, only one

component for the inverse-dynamics and one for the adaptive update calculations.

As a side note, the real-time computers run the VxWorks real-time operating system from Wind

River Systems. In addition to providing facilities for real-time activities, the operating system supports

networked file systems, allowing each computer to download its run-time code directly from the

laboratory file systems via the high-speed Ethernet connections. Controlshell runs on top of VxWorks.

8.4 Payload Subsystems

Figure 8.7 depicts the two free-flying payload objects used to investigate the performance of the adaptive

controller. They possess inertia properties that differ by an order of magnitude. These differences are

Figure 8.7: Free-Hying Payload Objects

The Free-Hyingpayload objects have mass properties that differ by an order of magnitude, but
they appear identical to the vision system and the space robot, because the LED patterns and
grip port locations are identical.

enough to demonstrate significant deterioration in controller performance were adaptation not used.
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Both payload objects float employing battery-operated aquarium pumps. Each top plate includes

three infra-red LED's for identification and tracking by the vision systems. The patterns are identical

for both objects, such that the vision system and space robot cannot know which object the robot is to

capture and manipulate. The grip ports on both payloads also are located identically. The smaller object

is made of honey-combed aluminum, and its mass is 1.0kg and its moment of inertia is 0.007kg-m 2.

The larger payload is made of solid stainless steel and masses 8.9kg; its moment of inertia is. lkg-m 2.



Chapter 9

Implementation and Experimental Results

The new task-space adaptive controller was implemented on the Multi-Manipulator Free-Flying Space

Robot. This controller, coupled with the strategic controller described in Chapter 8, allows the

space robot to execute complicated control sequences--including the chase, capture, and placement of

free-flying objectsmwith adaptation available throughout all control-modes. This chapter documents

experimental results verifying the performance of the adaptive control for two of control modes, or

tasks:, object control and endpoint control.

Payload adaptation offers the most dramatic results, since changing payloads causes step changes

in the system parameters; and the adaptive controller must respond quickly to these step changes

to maintain good performance. Experimental results of adaptation to two payloads with an order-

of-magnitude difference in inertial parameters is presented. They show the poor performance of a

nonadaptive controller when the controller is given the wrong set of payload inertial parameters. They

also show the improvement when adaptation is activated. The results suggest that adaptive control can

deliver performance equal to or even better than a nonadaptive controller using nominalpayload inertial

parameters.

This chapter also shows the capability of the task-space adaptive controller to adapt to robot

parameters. The inertial parameters of the right manipulator are set to zero, and endpoint control is

enabled. The results indicate that the adaptive controller can also adapt to large changes in the robot

parameters and thereby greatly reduce the endpoint trajectory errors.

113
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9.1 System Model

Figure 9.1 shows the schematic used to model the Multi-Manipulator Free-Flying Space Robot. The

/

Figure 9.1: Multi-Manipulator Free-Flying Space Robot Schematic

The space robot consists of _ve rigid bodies. Each body i has mass mi and moment of

inertia Ii. The center of mass of the base is offset From the geometric center oF the base by

( Leox, Leoy). The shoulder of each manipulator j is located at (Lcjx, Lcjy), measured From

the bat_ centcar. The upper link of each manipulator j is Lit long, and its center of mass/s

located at (Lil,, Lily), measured from the shoulder. The lower link of each manipulator j
is Lj2 long, and its center of mass is located at (Lj2=, Lj2v), measured from the e/bow. The

base-relative coordinate system is fv_ed in the base frame and is centered in the base; the x-axis

is aligned with the unit-vector bt, and the y-axis is aligned with the unit-vector b2.

space robot is a seven-degree-of-freedom system, consisting of five rigid bodies. The free-flying base

has three degrees of freedom_two in translation and one in rotation, and each manipulator link has

one rotational degree of freedom. The mutually perpendicular unit-vectors, bl and b2, are fixed in the
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robot-base frame. The base-relative coordinate system is fixed in the base, and its center coincides with

the center of the base; the body-fixed x-axis is aligned with bl, and the y-axis is aligned with bz.

The payload object is a single rigid body, possessing three degrees of freedom. Figure 9.2 shows

the schematic used to model the payload. The space robot and the payload are combined to form a

complete system model used by the task-space adaptive controller.

_X

Figure 9.2: Payload Object Schematic

Tile payload is a sing/e rigid body with threedegreesof freedom. Ir has mass mobj and moment
of inertia Iobj. The center of mass is located ar (L_, L;), measured from the geometric center
of the object. The grip ports are located at Lol and Lo2 a/ong the cenrer line. The body-relative
coord/nate system is Fixedin the payload, and the x- and y-axes are as indicated.

The robot may be modelled with sixteen (16) parameters, and the payload modelled with another
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four, giving the twenty-term system parameter vectorl:
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Payload adaptation is demonstrated utilizing base-relative control. This is an important capability

for a free-flying robot, because local sensors can provide high-bandwidth, high-resolution sensing that

may not be available from global sensing systems. A typical manipulation task is to extract or insert

the payload from or into a mating part. It is important for the local sensing system to sense both the

payload and the mating _port" during these maneuvers.

To model this situation, a separate _port" object is placed in the field of view of the local vision

system, and the robot is directed to perform slews to, and regulate at positions fixed in the reference

frame of the _port", as illustrated in Figure 9.3. Because the space robot base may move during the

slews, the _port" is not fixed in the robot's reference frame. With relatively low feedback on the space

robot base position and orientation, the base is free to move within a bounded area before the on-off

thrusters fire. This can save precious fuel when performing local manipulation.

Experimental results are shown for handling of the small and large payloads with and without

adaptation. Note that only the last four parameters need to be updated for payload adaptation.

Adaptation to robot parameters is demonstrated with endpoint control: the right manipulator

endpoint is commanded to follow trajectories in the robot-base reference frame. The inertial parameters

of the manipulator are set to zero to compare the performance with and without adaptation. All

IThe derivation is left to the reader.
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Figure 9.3: Payload Slews Relative to Mating "Port"

This schematic shows a typical slew that the space robot performs. The payload is ch'rected ro
follow a trajectory in the _port" reference frame, in the presence of robot base motions. The
cross-hairs in the robot base indicate that the robot base may move during the slew.

the parameters containing the manipulator inertial parameters--m1, ra2, fl, and I2--are adaptively

updated.

9.2 Adaptation to Small Payload

The experimental results for the control of the small payload is separated in four sections: nonadap-

tive control using nominal payload parameters, adaptive control starting with nominal parameters,

nonadaptive control starting with incorrect parameters, and adaptive control with incorrect parameters.

9.2.1 Nonadaptive Control with Nominal Payload Parameters

The results for the nonadaptive control using nominal payload parameters serve multiple purposes; it

represents a baseline controller to which the adaptive controller is compared, and it serves to introduce

the format of the data plots. The payload is commanded to follow back-and-forth slews, illustrated by

Figure 9.4. This time-lapsed "overhead view" of the system is plotted from actual experimental data.
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Figure 9.4: Robot Slew from Actual Data

This plot depicts a typical slew that the robot is commanded m follow. The Mew" is taken
from inertial space. The robot base is undercontrol, but the contml gains are adjusted to allow
small base movements before the on-off thrusters tlre; dose inspection of the plot shows that
the base did rotate severaldegrees.

Figure 9.5 displays the plots for the actual and desired position and orientation of the payload in the

"port" reference frame. The lower right plot shows the Cartesian path that the payload followed during

the slews. These time-histories show that the controller performed reasonably well in trajectory-

tracking. The steady-state offsets are caused by spring forces from tubing inside the manipulators.

Integral control reduces these errors, but it has been disabled to compare the performance of the basic

task-space controller with and without adaptation.
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Figure 9.5: Small-Payload Trajectories--Baseline Nonadapdve Control

The actual and desired payload trajectories measured in the _porr"-ftxed reference frame, which
is flxeclin inertial space for the series of experiments presented here. The solid lines represent
rile actual measured payload trajectories of the pay'load's geometric center and the dashed lines

represent the desired trajectories. The Cartesian trajectories are in the top two plots, and its

accompanying orientation is in the lower left plot. The lower right plot shows the "X vs. Y"

trajectory, representing an _overhead" view of the path traced out by the center of the payload,

as seen from a reference frame fzxed to the "port". The oval icons at the ends of the slews show

the payload orientations at those locations, but the icons do not depict the actual payloadDthe

icons are much smal/er than the actual payload.

9.2.2 Adaptive Control with Nominal Payload Parameters

This section presents results for enabling adaptive control when the payload parameters are at their

nominal values. Doing so allows comparisons of the adaptive controller performance and the baseline

nonadaptive controller under near ideal conditions. It also can show how the parameters will eventually
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conve_.

Figure 9.6 demonstrates that adaptation does not deteriorate the trajectory-tracking performance

(compare with Figure 9.5). The time-histories of the payload-parameter estimates are shown in
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Figure 9.6: Small-Payload Trajectories--Adaptive Control Starting with Nominal Values for Param-

eter Estimates

These actual and desired payload trajectories ate measured in the _port"-t/xed reference frame.

They show the results for the adaptive controller starting with the nominal payload parameter

esrimares. The rime-histories show no signiIicanr difference in performance when compared

to the baseline nonaclaptive controller. The oval icons in the lower-right plot show the payload
orientation at those locations.

Figure 9.7. The payload mass direcdy corresponds to the parameter 017 (see Equation (9.1)); the

center-of-mass locations and the moment of inertia may be solved using the last four parameters of O.

The results show that the mass and center-of-mass estimates do hover around their nominal values; but

the moment of inertia has a larger relative variance around its nominal value. A possible explanation is
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Figure 9.7: Small-Payload Parameter Estimates--Adaptive Control Starting with Nominal Values for
Parameter Estimates

These plots show the rime-histories of the parameter estimates when they are initially given the
nominal values, and then the payload is moved as in Figure 9.5 and Figure 9.6.

that the spring forces in the arms are masking the inertial effects of the payload, since the true moment

of inertia of the payload is small (.007kg-m2). Nevertheless, the sharp changes in moment-of-inertia

estimate do not affect the trajectory tracking performance.

9.2.3 Nonadaptive Control with Incorrect Payload Parameters

The real advantages of adaptive control are evinced when the controller is supplied incorrect parameter

estimates. This section presents results for the nonadaptive controller controlling the small payload

when given the payload parameters of the larger payload. Figure 9.8 shows the payload trajectories.
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Because the controller believes the payload to be an order of magnitude more massive than it is, the
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Figure 9.8: Small-Payload Trajectories--Nonadaptive Control Starting with Incorrect Values for
Parameter Estimates

The actual and desired paytoad trajectories, measured in rile _porr"-Fnced reference frame. They

show the resu/ts For rile nonadaptive controller acrual/y controlling tile smaller payload, but

starting with _he larger-payload values For its parameters. The time history shows that _his is

an unacceptable controller (it sldrts instability).

controller requests too much actuator effort to initiate each slew. The plots demonstrate this by showing

that actual trajectories lead the desired trajectories at the start of each slew. The feedback portion of the

controller finally dominates toward the end of each slew to slow the payload, but causes large reversals

in direction. This is not an acceptable controller. Many times this particular situation leads to violent

instability.
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9.2.4 Adaptive Control with Incorrect Payload Parameters

This time, adaptive control is enabled, with initial payload parameters set to that of the larger payload.

Figure 9.9 shows a dramatic improvement in performance. The adaptive control updates the parameters
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Figure 9.9: Small-Payload Trajectories---Adaptive Control Starting with Incorrect Values for Param-

eter Estimates

The actual and desired payload trajectories, measured in the "porr"-ftxed reference Frame, show

the results for the adaptive con troller actually controlling the smaller payload, but starting with

the larger-payload values For its parameters. The adaptive control adapts fast enough to prevent

significant overshoot by the end oFthe [irst slew, and etK-cfively recovers the baseline controller

performance quality by the second and third slews (compare with Figure 9.8).

quickly enough to prevent significant overshoot by the end of the first slew. By the second and third

slews, the controller performance rivals that of the baseline nonadaptive controller of Figure 9.5.

Figure 9.10 displays the time-histories of the parameter estimates. These plots show the rapid
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Figure 9.10: Small-Payload Parameter Estimates--Adaptive Control Starting with Incorrect Values
for Parameter Estimates

These plots show the time histories of the parameter estimates when they are initially set to the
parameters of the larger payload.

adaptation of the payload parameters. The mass and moment-of-inertia estimates convergedrapidly

toward their true values. The center-of-mass estimates, however, approached a location about 6mm

from the nominal location. This demonstrates once again that, lacking a sufficiendy exciting trajectory,

trajectory-tracking convergence does not imply parameter convergence.

9.2.5 Small-Payload Control Summary

To summarize the resm_ for control of the small payload, Figure 9.11 shows the trajectory-tracking

errors of the baseline controller, the adaptive controller starting with the incorrect parameters, and
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the nonadaptive controller utilizing the incorrect parameters. The plots show that the adaptive
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Figure 9.11: Small-Payload Trajectory-Tracking Errors

These plots show the time-histories of the trajectory-tracking errors of three controllers. The
adaptive controller already performs much better than the nonadaprive controller on the first

sieve, and as well as the baseline controller--which is using the nominal pararneters_afier the

first slew.

controller performed better than the nonadaptive controller, even though they started with the same

set of incorrect payload parameters. By the second and third slews, the adaptive controller performs as

well as the baseline controller.
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9.3 Adaptation to Large Payload

Adaptation m the large payload duplicates the experiment in Section 9.2 using the larger payload. The

first two show the results of the nonadaptive and adaptive controller starting with the nominal payload

parameters (Figures 9.12 and 9.15). The nonadaptive controller represents the baseline controller. The

last two sections show the two controllers starting with the smaller payload parameters (Figures 9.17

and 9.18).

9.3.1 Nonadaptive Controller with Nominal Payload Parameters

This section presents the baseline nonadaptive controller utilizing the nominal set of payload parameters.

The same back-and-forth slews are performed. Figure 9.12 shows the time-histories of the actual and

desired trajectories. The plots indicate that even the baseline controller exhibits some overshoot

characteristics. The adaptive control analysis in the next section shows that the spring forces 2 in the

manipulators are not likely candidates for causing the overshoots. Actuator saturation, however, is a

likely culprit, as Figures 9.13 and 9.14 show. The top right plot in Figure 9.13 shows that the right

elbow torque barely reaches saturation during the second half of each slew. The base force 3 in the X

direction also saturates during each slew. Actuator saturation prevents the robot from providing enough

actuation to slow the payload sufficiently at the end of each slew and causes the trajectory overshoots.

2Thespringeffectsarecaused bydectricaland pneumatic conduits imide the manipulators.
3Thebaseforcesand torques in theplots correspondto requestedvaluesfrom the controller.The actualforcesand torques

aresuppliedby the on-off thrusters,utilizingoptimalbang-off-bangthruster mappings.
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Figure 9.12: Large-Payload Trajectories--Baseline Nonadaptive Control

The actual and desired payload trajectories, measured in the "port'-Fixed reference Frame,

show the results for the baseline nonadaptive controller using the nominal values for payload

parameters. The plots show that even the baseline controller has some overshoot.
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Figure 9.13: Requested Motor Torques---Baseline Nonadaptive Control

These are the motor torques requested by the controller. The elbow motors saturate at .SN-m,
so the requested payload trajectory is right on the border of what the space robot can deliver.

The top right plot shows that the right elbow motor almost teaches saturation during each
slew.
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Figure 9.14: Requested Base Forces and Torque--Baseline Nonadaptive Control

These plots show the base forces and torques requested by the controller. The actual delivered
forces and torques are derived from the optimal bang-off-bang thruster mappings. The base
force in the X direction also saturates. The maximum torque capability is IN-m, so the base
torque, as shown in the bottom plot, is still far from saturating.
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9.3.2 Adaptive Controller with Nominal Payload Parameters

This section shows once again that the adaptive controller, when starting with the nominal set of

parameters, does not deteriorate the controller performance. In fact, the adaptive controller improves

the orientation control, as Figure 9.15 shows. Figure 9.16 shows that the adaptive controller is

es
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Figure 9.15: Large-Payload Trajectories--Adaptive Control Starting with Nominal Valued for Pa-
rameter Estimates

The actual and desired payload trajectories,measured in the "pore-fixed reference frame, show

the results for the baseline adaptive controller starting with the nominal payload parameters.

The orientation-tracking performance seems to improve over that of the baseline controller by
decreasing the overshoot.

increasing the moment of inertia of the payload to decrease the orientation overshoot. That the

moment-of-inertia estimate is monotonically increasing seems to rule out spring forces as the cause

of the overshoots in the baseline controller. Spring forces will tend to aid the controller in certain
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Figure 9.16: Large-Payload Parameter Estimates--Adaptive Control Starting with Nominal Values

for Parameter Estimates

The time histories of the payload parameter estimates show that the adaptive controller is

increasing the momen t-of-inertia estimate to improve the orientation-tracking performance.

configurations, while hindering the controller in other configurations; this will be exhibited in the

parameter estimate time-histories by increases in the estimate for one slew, then decreases for the slew

in the opposite direction. This is not what the moment-of-inertia estimate in Figure 9.16 shows.

Motor saturation, therefore, is the probable cause of the overshoots, and the adaptive controller

compensates for it by increasing the inertia of the payload parameters estimates to improve the trajectory-

tracking performance.
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9.3.3 Nonadaptive Controller with Incorrect Payload Parameters

The nonadaptive controller given the smaller payload parameters performs as poorly as the nonadapdve

controller controlling the small payload using the larger payload parameters. Figure 9.17 shows the

time-histories of the actual and desired payload position. This control is also unacceptable.
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Figure 9.17: Large-Payload Trajectories---Nonadaptive Control Starting with Incorrect Values for
Parameter Estimates

The actual and desired payload trajectories, measured in the "port_-hxed reference frame, show

the results for the baseline nonadaptive controller actually controlling the larger payload, but
using the smaller-payload values for its parameters.

9.3.4 Adaptive Controller with Incorrect Payload Parameters

Enabling the adaptive control improves controller performance, as Figure 9.18 shows. The improve-
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Figure 9.18: Large-Payload Trajectories--Adaptive Control Starting with Incorrect Values for Pa-

rameter Estimates

The actual and desired payload trajectories, measured in the "port'-lured reference frame,

show the results for the adaptive controller controlling the large payload, but starting with

the smaller-payload values for its parameters. The plots show that although the performance

improves over that of the nonadaptive continuer, the improvement is not as rapid as that for

the adaptive control for the small payload

ment, however is not as dramatic as that of the adaptation for the smaller payload (Figures 9.9). The

trajectory-tracking errors during the slews are not large enough to make the parameters converge quickly,

as Figure 9.19 illustrates. These time-histories show that the parameters have not yet converged after

three slews. Higher adaptive update gains will improve the adaptation rate, but may deteriorate the

performance when controlling the smaller payload; for example, a mass estimate change of lkg represent

10 percent of the larger payload mass, but represents 100 percent of the smaller payload mass. Thus a
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Figure 9.19: Large-Payload Parameter Estimates--Adaptive Control Starting with Incorrect Values

for Parameter Estimates

These plots show the time histories of the parameter estimates when they are initially set to the

parameters of the smaller payload.

more rapid adaptation rate for the large payload may be too high for the small payload.

Figure 9.20 shows the trajectory-tracking performance after the parameters have essentially con-

verged. The plot shows that it is betterthan that of the baseline nonadaptive controller (see Figure 9.12).

Figure 9.21 presents the converged set of payload parameter estimates. They show that the estimated

moment of inertia converges to higher values than the nominal values. The adaptive controller, there-

fore, can improve the performance over that of the baseline controller by adjusting the parameters away

from their nominal values. The adaptive controller may be compensating for some unmodelled effects

to improve the trajectory-tracking errors.
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Figure 9.20: Large-Payload Trajectories--Adaptive Control with Converged Parameter Estimates

The actuaJ and desired payload trajectories, measured in the "port"-Fo:ecl reference Frame, show

the results For the adaptive controller after the payload parameter estimates have converged.

The x and y trajectory tracking performance is similar to the baseline nonadaptive controller

(Figure 9.12), but the orientation tracking is better, showing less overshoot.

9.3.5 Large-Payload Control Summary

Figure 9.22 compares the trajectory errors of the adaptive and nonadaptive controllers starting with the

incorrect payload parameters. The time histories show that the adaptive controller performance is

gradually improving over that of the nonadaptive controller.

Figure 9.23 summarizes the overall performance for control of the large payload. It shows the

trajectory-tracking errors of the baseline controller, the adaptive controller with converged parameters,

and the nonadaptive controller utilizing the incorrect parameters. These plots demonstrate that the
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Figure 9.21: Large-Payload Parameter Estimates---Adaptive Control with Converged Parameter
Estimates

These plots show the time histories of the parameter estimates after they have essentially
converged.

adaptive controller performed better than the baseline controller, after the parameters have converged.

The nonadaptive controller using the small payload parameters is unacceptable for controlling the large

payload.
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These plors show the dme histories of the trajectory-tracking errors of aclapdve and nonachpdve

controllers starting with the incorrect payload parameter estimates. The adaptive controller

shows gradual performance improvement over the nonadaptive controller.
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Figure 9.23: Large-Pay{oad Trajectory-Tracking Errors--Overall Performances

These plots show the time histories of the trajectory-tracking errors of three controllers while

controlling the large payload. The adaptive controller--after the parameters have convergedD

performs slighd¥ better than the baseline nonadaptive controller using the nominal payload

parameters. The performance of the nonadaptive controller using rhe parameters for the smaller

payload is unacceptable.
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9.4 Adaptation to Manipulator Parameters

This section presents results of adaptation to manipulator parameters utilizing the same task-space

adaptive control framework. The results show the effectiveness of the adapdve controller in reducing

trajectory-tracking errors. Endpoint control is utilized for this experiment. The baseline controller is

presented first with nominal arm parameters. The inertial parameters of the right arm are then set to

zero and results of endpoint slews are shown without and with adaptation.

9.4.1 Nonadaptive Controller with Nominal Arm Parameters

Figure 9.24 shows the endpoint trajectories of the baseline nonadaptive control using the nominal arm

parameters. The steady-state offset are once again caused by the spring forces from wiring inside the

manipulator. Integral control is disabled to show the performance of the baseline task-space controller 'l.

9.4.2 Nonadaptive Controller with Incorrect Arm Parameters

Setting to zero the estimates for the inertial parameters of the right arm--ml, m2, -]'1, and I2--

effectively disables the inverse-dynamics feed-forward portion of the task-space controller. Figure 9.25

shows the controller performance. The trajectory-following in the X direction is quite good, but there

is noticeable overshoot in the Y direction. The bottom "X vs. Y" plot shows more clearly the path of

the endpoint and the deterioration in performance.

4Integralcontrol is enabledduring actualoperationto enable the captureof the free-flyingobject.



140 Chapter 9. Implementation and Experimental Results

Ri ht_f___int X Position

-0.05 I

._._-0-1I8 -

'_ -0.15

-0.2

0 2 4 6 8 10 12 14 16 18
Time (sec)

-1.1

i -I.15
-1.2

-I.25

-- Actual
......Desired

Position

20 0 2 4 6 8 I0 12 14 16 18

Time (sec)

-1.1

,_ -1.15

_- -1.2

-1.25

Right Endpoint X vs Y Position

-- Actual

-0.2 -0.15 -0.I -0.05

Position(m)

2O

Figure 9.24: Endpoint PositionmBaseline Nonadaptive Control

These plots show the actual and desired endpoint trajectories in inertial space oE the baseline

nonadaptive contro//er using nominal arm parameters. The bottom plot shows the X vs. Y

plot, representing an "overhead" view o£ the path traced out by the endpoint in inertial space.
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Figure 9.25: Endpoint Position--Nonadapfive Control Starting with Incorrect Values for Parameter

Estimates

These plots show the actual and desired endpoinr trajectories in inertial space of the nonadaptive

controller using zero as est/mates for the arm inertial parameters.
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9.4.3 Adaptive Controller with Incorrect Arm Parameters

Enabling adaptive control improves the controller performance, as Figure 9.26 illustrates. Comparing

with the baseline controller performance of Figure 9.24 shows that adaptive control performance is as

good as the baseline controller by the third slew. Figure 9.27, however, shows that the parameters
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Figure 9.26: Endpoint Position--Adaptive Control Starting with Incorrect Values for Parameter
Estimates

These plots show the actual and desired endpoint trajectories in inertial space of the adaptive
contro//er starring w/th zeroasesrimates for the arm inertial parameters.

did not converge toward their nominal values. The PD controller did reasonably well in tracking the

back-and-forth endpoint slews, so there was not enough tracking errors for the adaptive controller to

allow good parameter convergence. Endpoint motions with more excitation is necessary to make the

parameters converge. Nevertheless, the task-space adaptive controller provides good trajectory-tracking
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pcrforn_ance.

9.5 Summary

The new task-space adaptive controller can provide both payload adaptation and manipulator adaptation

to improve trajectory following. For the payload, where there are few parameters, the simple trajectories

provide sufficient excitation to allow identification of the payload parameters to converge close to their

correct values. In addition, an "incorrect" set of parameters can actually improve the trajectory-tracking

performance by compensating for unmodelled effects 5. The adaptive controller also improves endpoint-

tracking errors; but there is not enough excitation to make identification of all the parameters containing

the arm parameters converge.

5Uhlik [42] demonstrated a different aspect of this by showing that the use of an *incorrect" set of parameters for the robot

manipulator can improve the identification of the payload; but that these "incorrect" manipulator parameters cannot, however,

be used for stable high-performance control.
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Figure 9.27: Parameter Estimates--Adaptive Control Starting with Incorrect Values for Parameter

Estimates

These plots showthe time histories of the parameters for the adaptive controller when ml, m2,

I1, and I2 are initially set m zero. There is obviously not enough excitation in the trajectory to

etK-ct parameter convergence.
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Conclusions

This chapter summarizes the results of this research and draws some conclusions. It also describes some

continuing research, and suggests possible future extensions.

10.1 Summary

This dissertation constitutes the theoretical development of a new general adaptive control framework

and the experimental demonstration of the effectiveness of the new concept. This research showed that

the resulting new adaptive controller maintains good stability, without sacrificing performance, in the

presence of unknown or changing parameters.

The new task-space adaptive control framework affords the free-flying space robot--a complex

system containing multiple, interacting manipulators--effective adaptive control in all control modes.

The adaptive control readily handles joint-level control in the same manner ascooperative object control,

needing only the appropriate Jacobian and torque mapping for the control mode.

The task-space adaptive control is a general algorithm for systems with rigid members. The

theoretical development does not restrict the system to be just a free-flying space robot with two

manipulators operating in two dimensions: A system of any number of fixed or free-flying robots

with any number of rigid, nonredundant manipulators in three-dimensions may take advantage of this

adaptive controller.

The system concatenation concept for control yields efficient, incremental generation of system models

for multiple, interacting systems. New manipulators added to the system are typically represented in
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the system models as additional block-diagonal matrices. The models existing before the addition are

unaffected. The block-diagonal system matrices also lend themselves well to parallel computing.

System concatenation also keeps the adaptable parameters of each subsystem separated when in-

corporated into the task-space adaptive algorithm. This allows operators to maximize their intuition

and maximize the utility of a priori knowledge of the controlled system. Applying heavier adaptation

weighting on the parameters of a subsystem that are poorly known ensures a quicker convergence of the

adaptive algorithm. The separable parameters furnish an elegant method of weighting the parameter

subspaces for faster convergence without the need for swapping adaptive controllers.

The modularity of the task-space adaptive controller means easy implementation and multiple-

control-mode support with minimal effort. The basic controller blocks and adaptive update modules

do not change when switching control modes. Only the Jacobian and torque mapping modules, which

typically involve easily derived kinematic relationships, need to change. Since the vector of adaptable

parameters also does not change with control modes, there are no "glitches" during control mode

switches.

The experimental results show that the new adaptive control achieves robustness toward plant

changes with little cost to performance. In fact, the trajectory-following plots indicate that the adaptive

controller performs better than the nominal controller, illustrating that the new adaptive control can

compensate strongly for the effects of mismodelled and unmodelled parts of the system 1.

The system concatenation and task-space concepts, even without adaptation, comprise an elegant

formulation of control of complex systems. They formulate multiple-manipulator control as a complete

system in a more "traditional" manner. This allows the well-known computed-torque or inverse-

dynamics analyses to be performed directly, without separating object control from manipulator control

into two distinct steps.

Perhaps the most significant contribution of the task-space adaptive control framework is that it h

a framework. A particular joint-space adaptive controller was extended to provide the adaptive portion

of the framework; but the framework does not require that particular adaptive scheme. Other adaptive

controllers initially designed for a single-manipulator robot may take advantage of this framework to

be extended to multiple, cooperative-manipulator control.

IThe laboratory'svisionsystems,which the authorbuilt earlyon, were essentialto the successof theseexperiments.
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10.2 Continuing Research

Ongoing research at the Aerospace Robotics Laboratory (ARL) and Information Sciences Laboratory

(ISL) of Stanford University naturally complements the work presented in this thesis. One area is the

use of recursive algorithms to achieve even more efficient controller implementations. Another is in the

control of multiple, cooperating manipulators possessing kinematic redundancy.

The task-space adaptive control framework makes extensive use of Jacobian-like matrices to effect

control in the task space. The algorithm requires both the Jacobian and its matrix inverse. As the system

complexity grows, these computations may become prohibitively expensive. Recursive implementation

of the inverse Jacobian have shown that computations can be greatly reduced even for a moderately

complex system.

Additionally, the system concatenation concept can be carried to the limit, where each link of

a manipulator represents a subsystem. At this extreme, the inverse dynamics control can also be

implemented recursively. Coupled with recursive Jacobian implementation, these order-N algorithms

provide very computationally efficient controllers. Research is progressing on extending these algorithms

to the control of multiple cooperating-manipulator robots.

A redundant manipulator possesses more degrees of freedom than are needed for definitive control.

Additional degrees of freedom afford the manipulator the ability to maneuver around obstacles, to

save fuel, and to avoid kinematic singularity, without affecting the primary control objectives. As one

example of its usefulness, this ability allows a manipulator to work in a cluttered environment with

relative ease. The challenge in controlling a redundant manipulator involves developing an endpoint

controller that will "naturally" avoid obstacles and singularities without operator intervention. Many

researchers have already developed redundant controllers for single manipulators. Ongoing research at

ARL is planned to formulate control for multiple, cooperating, redundant manipulators, but to do so

in a manner that is easily extensible as more manipulators are added.

ARL is also collaborating with the Stanford Computer Science Robotics Laboratory (CSRL) to merge

sophisticated path-planning algorithms with real-world robotic systems. The initial experiments are

performed utilizing fixed-base robots, and the algorithms will be transferred to the Multiple-Manipulator

Space Robot facility in the near future.
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10.3 Suggestions for Future Research

An obvious area of further research is to extend both the recursive algorithms and the multiple redundant-

manipulator control work to the realm of adaptive control. The combination of task-space adaptive

control, recursive algorithms, and redundant-manipulator control capabilities will form a very powerful

and useful control framework.

The task-space adaptive control has been developed for manipulator systems composed of connected

rigid bodies. The applicability to systems possessing flexibility must be examined. Two types of flexibility

can exist in robots: drive flexibility and flexibility distributed along the links of a manipulator. The

former is quite common in industrial robots, and both are important in the Space Shuttle Remote

Manipulator System (RMS); the latter is expected to be a concern in space-based manipulators where

increased link flexibility is traded offfor weight reduction. Since flexibility can severely limit manipulator

performance, controlling well when it is present is important. Major pioneering experimental research

has already been completed at ARL on the quick precise control of very flexible manipulator arms and

on manipulators with flexible joint-drive systems [36, 31, 42].

Although the task-space adaptive control does not yet expressly address distributed flexibility, its

applicability is high for robots with joint flexibility. The successful application already completed of

local joint-torque control in cooperating manipulators with joint flexibility makes one quite optimistic

about the direct application of task-space adaptive control: The joint-torque inner-loop control makes

the actuators behave as perfect torque sources, hiding the flexibility from the adaptive controller.

Experimentation, of course, must be conducted to determine whether further extensions must be made

to handle joint flexibility. Still further research is needed to determine the applicability of the task-space

adaptive control framework for distributed flexibility.

This dissertation demonstrates the task-space adaptive control framework with a specific adaptive

update algorithm. But since this framework does not limit the choice of the adaptive controller,

further valuable study can be made to compare and contrast the performance of other adaptive schemes,

including exponentially forgetting least squares (EFLS) algorithms that take advantage of past data

histories. To illustrate this, the current implementation has difficulties identifying the spring forces

caused by tubing and wiring in our laboratory space-robot manipulators. The EFLS algorithms may be

able to improve the parameter convergence for such terms.

Although the experimental results presented in this thesis indicate that the adaptive controller is
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capable of improving the performance by overcoming effects of unmodelled dynamics, further study

needs to be done to classify the explicit classes of unmodelled effects in which the task-space adaptive

control remains effective.

The task-space adaptive controller can effectively adapt to an unknown payload, but only after

the robot has acquired it. The capture algorithm in the current hierarchical controller plots a straight

intercept trajectory, based on the objects position and velocity. This strategy is valid for objects

significandy less massive than the robot, but may be fatal for very massive objects. Since the adaptive

controller will not get a chance to determine which is the case before the capture, more sophisticated

capture algorithms need to be developed. The intercept trajectory, for example, should parallel that of

the object--matching both position and velocitymto minimize the danger while capturing the object.



Appendix A

Supporting Calculations for Lyapunov

Proof

A. 1 Proof of Identities for MD

The definition of MD is repeated here:

MD(q, y) -_ _ OM(q)ve T
i-----l'---_q/.I i

where ei E IR'* is the ith unit vector.

Identityh

0 (M(q)y)

Oq
= MD(q,Y)

Proof:

0 (M(q)y)

Oq
OM(q)y e_

-- _q/ "
i----1

_-, OM(q) T
= _ _yei

O"
i=1 qt

- MD(q, Y)
(A4)

Iden_ 2:

(A._)

(A.2)

l_)I(q, cl.)Y = MD(q, Y)Cl. (A.3)
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/'roof:

I_dly 3:

Proof:

iVI(q,cl)Y
= Oqi ] y

= MD(q,Y)/I
(AA)

Mo(q, y)z = Mn(q, z)y

MD(q,y)z -- (____l0M(q)ye .T'_(_) Oqi , j z

= (i=_OM(q) z__y iJ

= (i___OM(q)ziy)

: Oqi ze y

= MD(q, y)cl
(A._)

(A.4)

A.2 Representation for C

The representation for the matrix of Coriolis and centrifugal terms, C (q, Cl), in the equations of motion

for a robot with rigid links is not unique, although the vector, C(q, dl)_1, /s uniquely specified. The

stability proof found in this thesis utilizes a particular representation:

1 T
C(q,/l) = MD(q,/t) -- _MD(q, Cl) (A.5)

The following shows that this is a valid choice:

(&5)

m

(A.2,A.3)

C(q,/t)/1 (MD(q,/t) - 1MT(q, /l)) /l

( 1 (0(M(q)Y)) T)1VI(q, dl) - _ 0q q
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C(q,q)q
(3.15)

Please note, however, that:

_IT(MD(q, dl) _MD(q, dl))# 1 (0(M(q)y) (A.6)

This representation for C(q, dl) also does not satisfy the skew-symmetry property needed in the sliding-

mode adaptive controller [37]:

yT (IVI(q,dl)- 2C(q, dl)) y = 0 V y E IRn (A.7)

This property is not required for the Lyapunov proof in this dissertation. Additionally, note that this

representation for C(q, dl), Equation (A.5), is useful only in the stability proof. It is not needed for

implementation of the control or adaptive update laws, which use the combination, C(q, _l)dl.

A.2.1 Example

To illustrate the different representations, use once again the planar two-link arm example in Figure 2.1.

The choice of C(q, el) utilized in Equation (2.5) is:

C(q, el)=

I

-m21d_ sin(q2)42 -m21tl_ sin(q2) (ql + q2) /
(A.8)

Jm2lll_ sin(q2)41 0

which satisfies the skew-symmetric property.

Using the representation defined by Equation (A.5) yields:

0 -m2lll_ sin(q2) (241 + 42) ] (A.9)C(q, dl) = m2111_ sin(q2) (4, - 142) ½m2111 sin(q2)02

Using either representation for C(q, q), the following is true:

C(q, _1)_1=
-m2lll_ sin(q2) (241 + 42) 42m2111_ sin(q2)42

(A.10)

showing that C(q, dl)dl is uniquely specified.
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A.3 Control and Adaptive Law Transformations

This section shows the equivalency of the control and adaptation laws developed for equations of motion

mitten in terms ofq's and those written in terms of generalized speeds.

The the control and adaptation laws derived for equations of motion in terms of generalized speeds

is repeated here as:

F = M'(q)ud + C'(q, ua)ud + ¢_'(q) + K'vfi + W-TKp_ (A.11)
(4.4)

- ( )0 = /-ry (q, Ud ' Ud ' lid) __1+ cwT(t (A.12)
(4.6)

where

F = w-TT (h.13)

(4.3)

A.3.1 Control Law Equivalence

Given the transformation equations derived in Chapter 4,

F

A

M'(q)

C'(q, u)

Y'(q, u, u, u)0

substitute them into Equation (A.11):

w-T1 - =

(4._.8)

= w-T-r

= w-T_(q)W -l

= w-TO(q, W-lu)W -1

= w-TG(q)

= w-Ty(q, W-I u, W-lu, W-I ft)O

(A.14)

W-TM(q)W-ldd + w-TC(q, W-lud)W-lud + w-TG(q)

+w-TwTKIv_I + W-TKp(l

W -T (M(q)/_d + C(q,/Id)Cld+ G(q) + WTK'vW_I + Kp_) (A.15)

Multiply both sides of Equation (A.15) by W T yields the Bayard and Wen control law,

"r = M(q)Cld + C(q, qd)qd "+ G(q) + WTKvWq + Kp_
(3.4)

with a slightly different velocity gain matrix, Kv = WTKtvW.
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A.3.2 Adaptation Law Equivalence

Strictly speaking, the adaptation law in Equation (/L12) is derived from the following condition:

0 = oTF-IO + 0TyT(q, ua, ua, da) (fi +eW_ (A.16)
(4.14)

Substituting the transformation equations into Equation (A. 16) gives:

(4.1, 4.8)

=_ 0 =

=_ 0 =

_Tp_,_ + _TyT(q ' W_lud, W_XU4, w_lud)W_ 1 (U -}- cW_

_-_ +_Y_(q,q_,q_,_) (_+_)

-rYe(q,q.,q_,_)(_ +_)

rY_(_,q.,q_,_.)(_+_)
since 0 = -0. Equation (A.17) h the Bayard and Wen adaptive update law.

(A.17)

This proves that the two sets of control and adaptive update laws are equivalent.

A.4 Torques to Endpoint Forces using Virtual Work

This section shows, using virtual work arguments, the familiar expression relating endpoint forces and

actuator torques:

_" = jT(q)Ftip (A.18)

The work done by the manipulator actuators as they move through a virtual displacements at each

joint,/_q, is:

6W = -rT/_q (A.19)

The work delivered at the endpoint of the manipulator through a virtual displacement at the endpoint,

6X, is:

t_W = F tivT 6x (A.20)

These must be equal, hence:

Y T _q(A.I_.20)F tipT 6X

As the virtual displacements go to zero,

(A.21)

_X
= _q_Sq (A.22)

= J(q)/_q (A.23)
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Substituting Equation (A.23) into Equation (A.21) for 6x gives:

7 "T 6q(A.2_._23)FtipTj(q) 6q

Transposing both sides of Equation (A.24) gives:

6qTr =
(A.24)

::O- -r -_

(A.24)

(A.25)

Thus, showing the relationship in Equation (A. 18).



Appendix B

Point Grabber II Vision System

This appendix includes the User's Manual for the Point Grabber II Vision system, resolution-testing

plots, the schematics, and the PALASM listings of the logic for the PALs (Programmable Array Logic)

used in the Point Grabber II board.

B.1 User's Manual

The user's manual start on the following page.
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PointGrabber I!
User's Manual
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Introduction

Point Grabber II is a specialized single-board VMEbus-based vision processing unit that provides real-

time systems with high speed, high resolution vision information from CCD cameras. It is ideally suited
for applications in a robotics and control environment where high speed sampling is essential to achieve

high performance.

Coupled with non-interlaced CCD television cameras and RTI's Visionserver software, Point Grabber II

can provide frame updates at 60 Hz with resolutions better than 1/40 of a pixel. Over a field of view of 2

meters square, that translates to a resolution of 0.2 mm square.

To decrease the computational burden on host computers, Point Grabber 1I locates, digitizes, and stores

only bright points in the field of view. Bright markers, such as LEDs, placed on objects of interest

allows appropriate software to determine the position and orientation of the objects from Point Grabber II

data. Unlike "Frame Grabbers", Point Grabber II provides data that all correspond directly to markers,
eliminating the need for host computers to perform sophisticated scene analysis computations.

Additionally, each Point Grabber II board can process data from two cameras simultaneously.

System Requirements

VMEbus system

Host CPU card

Non-interlaced CCD camera capable of accepting external horizontal and vertical

synchronization signals
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Figure B. 1: Point Grabber II Vision Board
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General Description

Point Grabber II detects, registers, and digitizes brightly illuminated targets from video signals generated
by up to two cameras. Either active infrared LEDs or passive high reflectance stickers reflecting light
from an incandescent source can provide the bright targets. Visible-cut, infrared-pass filters placed over
the camera lenses will reject ambient visible light. Independent programmable threshold voltages for
each camera video input determine the transition between bright and dark. The vision board "detects" a
bright target when the video input signal from either camera rises above its respective threshold voltage.

Point Grabber II tracks the current horizontal (X) position and vertical (Y) position of the video scan of
each camera. The video board can, therefore, register the position, measured in pixels, of the each bright
image. The X position is measured starting from the left-hand side of the field of view, and the Y
position is measured starting from the top of the field of view. By sending horizontal and vertical
synchronization signals (HSYNC and VSYNC, respectively) to the CCD cameras, and by utilizing the
phase-locked loops (PLL) in the cameras, Point Grabber II provides very stable tracking of the video
scan. This method also ensures that, if two cameras are used, the video scans of both cameras are in
strict synchronization.

Besides registering the position of bright pixels, 8-bit analog to digital (A/D) converters on the vision
board digitize the video signals corresponding to those pixels. The board stores the digitized values with
the position information. Vision processing software may use the digitized values to achieve the 1/40
pixel resolution. The dynamic range of Point Grabber II is user programmable. Point Grabber II
automatically sets the lower reference voltage of each A/D converter to the corresponding threshold
voltage for each camera. By programming the upper reference voltage to be the highest expected video
input voltage, one can maximize sensitivity.

Point Grabber II stores the vision information in four (4) First-In-First-Out (FIFO) registers. One FIFO
(X FIFO) records the X position, one (Y FIFO) records the Y position, and two (7_.0FIFO and Z1 FIFO)
record the digitized values representing pixel brightness as seen by each camera. The vision board keeps
all data in the FIFOs in strict synchronization. That is, for each bright pixel detected by one or both
cameras, Point Grabber II writes data to all FIFOs. If only one camera detects a bright pixel, the
digitized value stored for the other camera is zero. Additionally, the vision board writes an extra data set
to the FLFOs at the end of each video frame. This data set, or frame marker, allows Point Grabber II to
continue storing data for the next video frame while vision processing software is still reading data for
the current frame. The implication of Point Grabber II's storage scheme is that the vision processing
software also must perform FIFO reads in strict synchronization. That is, the FIFOs must be accessed an
equal number of times. In the event that synchronization is lost, the software may reset the FIFOs via a
hardware register.

Point Grabber II functions as a VMEbus interrupter. With interrupts enabled, the vision board generates
interrupts at the end of every camera video frame--typically every 1/60 of a second. The interrupt level
and interrupt vector are user programmable.

Additional registers on Point Grabber II provide separate camera enables, empty/full status of each FIFO,
and board-level reset. Refer to the appropriate sections for more detailed descriptions of the location and
usage of the registers mentioned in this section.
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Installation

Address Jumpers

Point Grabber II can be configured to reside in any 256-byte segment in short 170 space, starting at hex

address 0xFFFF0000 and ending at 0xl-l.Vl-l-l"l"l". The address jumpers, Jl through J8, are located near

the P1 connector. The jumpers represent bits 8 through 15 of the board address. With a jumper installed,

the corresponding bit is set to 0. The default configuration, with only J1 installed, makes the board

appear at the 256-byte segment starting at 0_.

Jumper confi_n'ation Bit value

installed (x) 0

not installed (o) 1

Jumper

Address Bit

Default setting

J8 J7 J6 J5 J4 J3

15 14 13 12 11 10

O O O O o o O

J2 J1

x

Camera Synchronization Timing

No further timing configuration is required to support the Pulnix TM-440S camera.

Point Grabber II provides precise synchronization with its cameras by utilizing the phase-locked-loop

(PLL) circuitry found in many CCD cameras. The PLL locks on to the user configurable horizontal and

vertical synchronization signals supplied by Point Grabber II.

The camera specifications must be available before the synchronization timing can be configured. The

standard crystal oscillator (UI7) provided with Point Grabber II has a frequency of 14.318 MHz. This

value must be twice the frequency of the pixel clock of the camera. From the camera specifications,

make a note of the required number of pixel clocks per horizontal line (horizontal count) and the number

horizontal lines per field (vertical count) produced in the non-interlaced mode. These numbers are

essential to the proper configuration of the vision board.

Use the six 4-position dip switches, S 1 through $6, to configure the camera synchronization timing. The

left group of three switches (S1 through $3) represents the horizontal count, while the right group ($4

through $6) represents the vertical count. Letting the ON position represent logical 1, and letting each

group of dip switches represent a 12-bit binary number, set the switches for the desired horizontal count
minus one and vertical count minus one, respectively.

For example, the default settings on Point Grabber II are for the Pulnix TM-440S camera, which requires

a horizontal count of 455 and a vertical count of 262. The resulting switches settings are:

Switch $11S2I S3 S4[S5t $6Setting (I=ON, {)=OFF) 0001 1100 0110 0001 0000 0101
Decimal value 454 261
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Register Descriptions

The Point Grabber II address space occupies a 256-byte segment selected by the address jumpers (see the

Installation section). The default segment starts at hex address 0xFFFFFF._. The following register

descriptions will give the addresses of the registers in terms of an offset into the selected 256-byte

segment. Addresses not mentioned are unused.

FIFO Registers

Point Grabber II stores its vision image information in four (4) First-In-First-Out (FIFO) registers. Each

FIFO is 9 bits wide and 512 deep. To the VMEbus, these FIFOs are read-only, 16-bit word registers.

The vision board stores the X and Y location of each bright pixel in the X and Y FIFOs, respectively. It

stores the digitized value of a bright pixel from the first camera (Camera 0) in the Z0 FIFO, and that of

the second camera (Camera I) in the Z1 FIFO. Since all the FIFOs are written when a bright pixel is

detected in either or both cameras, the lower 8 bits of the Z0 and Z1 FIFOs will both be nonzero only if

both cameras detect bright targets simultaneously. If only one camera detects a bright target, the data in

the other Z FIFO will be zero. Any vision processing software must perform an equal number of reads
from each FIFO to ensure that the data from all FIFOs on each set of reads refer to the same event.

At the end of each video frame, Point Grabber II additionally stores a data set, called the frame marker,

into the FIFOs. By monitoring the FIFO data for the frame marker, vision processing software can easily

determine the end of a video frame, while allowing the vision board to continue storing vision data for

the next video frame. This scheme takes advantage of the "double-buffering" capability of the FIFOs,

and ensures that no vision information is lost while performing vision processing.

Because the FIFOs have finite depth, it is possible for them to become full. This will happen if too many

bright targets appear in the field of view, which may be caused by excessive illumination or inappropriate

threshold voltages. Similarly, it is possible for the FIFOs to be empty, which indicates that no data is

currently available. When used as a bus interrupter, empty FIFOs also indicate an error, since they
should contain at least a frame marker data set. Either of these conditions indicate error, and vision

processing software should check the status register (see below) before proceeding to read FIFO data.

The recommended action for empty/full error is to reset the FIFOs (see below).

x FIFO(R) (OxDO)

Bits 15-9 [Unused Bits 8-0 ]X position + (511 - horizontal count)

The X FIFO is a read-only register located at offset 0xD0. It should be accessed via 16-bit word reads,

although only the lower 9 bits are significant. Each value obtained from the X FIFO is offset from the

true X field-of-view position by the quantity (511 - horizontal count), where "horizontal count" is the

total number of pixels per horizontal scan line. Consult the camera specifications for the correct
horizontal count value.

Y FIFO (R) (0xD2)

Bits 15-9 ] Bits 8-0

Unused ] Y position + (511 - vertical count)

The Y FIFO is a read-only register located at offset 0xD2. It should be accessed via 16-bit word reads,

although only the lower 9 bits are significant. Each value obtained from the Y FIFO is offset from the
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true Y field-of-view position by the quantity (511 - vertical count), where "vertical count" is the total
number of horizontal scan lines. Consult the camera specifications for the correct vertical count value.

Performing the above offset calculation places the coordinate (1, 1) at the top left comer of the field of
view, as viewed on a television monitor. The coordinate (horizontal count - 1, vertical count - 1) is at the

lower right comer. This is a left-handed coordinate system, and vision processing software will need to
take this into account.

7_,oFIFO(R) (0xD4)
Bits 15-9 Bit 8 Bits 7-0 I

IUnused Frame marker Camera 0 pixel value

The Z0 FIFO is a read-only register located at offset 0xD4. It should be accessed via 16-bit word reads,

although only the lower 9 bits are significant. The Z0 FIFO stores the digitized values of each bright
pixel detected by the first camera (Camera 0) in the lower 8 bits. The ninth bit (Bit 8) is a frame marker.
Point Grabber II sets Bit 8 of the Z0 FIFO at the end of each video frame. Because of the way most CCD

cameras operate, the lower 8 bits of the Z0 FIFO will be zero when the ninth bit is 1.

Zl FIFO (R) (0xD6)

Bits 15-9 Bit 8 1 Bits 7-0 I

1 IUnused Frame marker Camera 1 pixel value

The Z1 FIFO is a read-only register located at offset 0xD6. It should be accessed via 16-bit word reads,

although only the lower 9 bits are significant. The Z1 FIFO stores the digitized values of each bright

pixel detected by the second camera (Camera 1) in the lower 8 bits. The ninth bit (Bit 8) is a frame
marker. Point Grabber 17 sets Bit 8 of the Z1 FIFO at the end of each video frame. Because of the way

most CCD cameras operate, the lower 8 bits of the Z0 FIFO will be zero when the ninth bit is 1. The Z1
FIFO frame marker serves the same purpose as the Z0 FIFO frame marker. Both are provided to allow

software synchronization checks.

Status Register

Status Register (R) (0xD9)

Bit7 [ Bit6 I Bit5 I Bit4 I Bit3 I Bit2 Bitl I Bit0 IZ1 Full Z0 Full Y Full X Full Z1 Empty Z0 Empty, Y Empt}, X Empty

The Status Register is a read-only byte register located at offset 0xD9. Each bit in the register indicates

the full or empty status of each of the four FIFOs. Software should consult this register before

performing any FIFO reads; any nonzero bit indicates an error. If it detects an error, the software should
reset the FIFOs via the FIFO Reset Register (see below) to resynchronize the FIFOs.
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Threshold Registers

Threshold 0 Register (W) (OxD1)

I Bits 7-0Camera 0 threshold

The Threshold 0 Register is a write-only byte register located at offset 0xD1. The 8-bit value represents

a threshold voltage, from 0 V to 2 V, for Camera 0. The threshold voltage indicates the transition of the

video signal from dark to bright. When the Camera 0 video signal voltage is higher than the threshold,
Point Grabber II stores the X and Y scan location as well as the digitized signal strength. The threshold

voltage is also the lower reference voltage of the corresponding A/D converter.

Threshold 1 Register (W) (0xD5)
Bits 7-0

Camera 1 threshold

The Threshold 1 Register is a write-only byte register located at offset 0xD5. The 8-bit value represents

a threshold voltage, from 0 V to 2 V, for Camera 1. The threshold voltage indicates the transition of the

video signal from dark to bright. When the Camera 1 video signal voltage is higher than the threshold,

Point Grabber II stores the X and Y scan location as well as the digitized signal strength. The threshold

voltage is also the lower reference voltage of the corresponding A/D converter.

ADC Limit Registers

ADC 0 Limit Register (W) (0xD3)
Bits 7-0

Camera 0 ADC limit

The ADC 0 Limit Register is a write-only byte register located at offset 0xD3. The 8-bit value represents

the upper reference voltage, from 0 V to 2 V, for the Camera 0 A/D converter. The setting of the upper

reference voltage alters the sensitivity of Point Grabber II. By setting ADC 0 Limit to correspond to the

highest expected voltage of the Camera 0 video signal, one can maximize sensitivity.

ADC 1 Limit Register (W) (0xD7)
Bits 7-0

Camera 1 ADC limit

The ADC 1 Limit Register is a write-only byte register located at offset 0xD7. The 8-bit value represents

the upper reference voltage, from 0 V to 2 V, for the Camera 1 A/D converter. The setting of the upper
reference voltage alters the sensitivity of Point Grabber II. By setting ADC 1 Limit to correspond to the

highest expected voltage of the Camera 1 video signal, one can maximize sensitivity.
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Enable Register

Enable Register (R/W) (OxDB)
Bit 7 Bits 6-2 Bit 1 Bit 0

Interrupt Enable Unused Camera 1 Enable Camera 0 Enable

The Enable Register is a read-write byte register located at offset 0xDB. Logical 1 indicates enable. One

can individually control data collection from each camera via the corresponding enable bits. When a

camera is "disabled", only the data storage for that camera is disabled. The camera is still operational,

and the video signal can still be viewed on a television monitor. Interrupt generation also may be
enabled or disabled using bit 7 of the Enable Register. Bits 6 through 2 are unused.

FIFO Reset Register

FIFO Reset Register (W) (0xDD)

I Bits 7-0 [Don't Care

The FIFO Reset Register is a write-only byte register located at offset 0xDD. Any writes to this address

location will reset and empty all FIFOs. The value written is irrelevant.

The FIFOs need to be reset immediately after enabling interrupts to ensure that the data will be

synchronized. They should also be reset after an error has been detected.

Board Reset Register

Board Reset Register (W) (0xDF)

Bits 7-0 [Don't Care

The Board Reset Register is a write-only byte register located at offset 0xDF. Any writes to this address
location will reset Point Grabber II. The value written is irrelevant. Resetting the board brings Point

Grabber II to the power-on condition, which means that the cameras are disabled, the FIFOs are reset, the

threshold and ADC limit voltages are zero, interrupt is disabled, and the interrupt level and vector are
zero.

Interrupt Control Register

Interrupt Control Register (R/W) (0xE1)

Bit 7 [ Bit 6 [ Bit 5 Bit 4

F [ FAC [ X/IN* IRE

Bit 3 Bit 2 [ Bit 1 [ Bit 0

IRAC L2 I L1 [ L0

The Interrupt Control Register is a read-write byte register located at offset 0xEl. This register controls

the interrupt level, a separate interrupt enable, and fields that determine actions during an interrupt

acknowledge cycle. The fields are defined as follows:
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Interrupt level (L2, L1, L0) -- The least significant 3-bit field of the register
determines the level at which an interrupt will be generated:

L2 L1 L0 IR(_ Level

0 0 0 Disabled

0 0 1

0 1

0 1 1

1 0 0

1 0 1

1 1

1 1

mql
IRQ2

IRq3
IRQ4
toO5
IRQ6

IRq7

A value of zero in the field disables the interrupt.

Interrupt Enable (IRE) -- This field (Bit 4) must be set (high level) to enable the bus

interrupt request.

Interrupt Auto-Clear (IRAC) -- If the IRAC is set (Bit 3), IRE (Bit 4) is cleared during

an interrupt acknowledge cycle responding to this request. This action of clearing IRE

disables further interrupt request. To re-enable the interrupt associated with this

register, IRE must be set again by writing to the control register. Leave this bit unset

during normal operations.

External/Internal (X/IN*) -- Always clear (low level) this bit for Point Grabber II.

Flag (F) -- Bit 7 is a flag that can be used in conjunction with the test and set

instruction of the MC680xx family of microprocessors. It can be changed without

affecting Point Grabber II operation. This flag may be useful for processor-to-processor

communication and resource allocation (i.e., symaphors). This flag is typically not
used.

Flag Auto-Clear (FAC) -- If FAC (Bit 6) is set, the Flag bit is automatically cleared

during an interrupt acknowledge cycle.

Interrupt Vector Register

Interrupt Vector Restster (R/W) (0xE3)
Bits 7-0

Interrupt Vector

The Interrupt Vector Register is a read-write byte register located at offset 0xE3. This 8-bit interrupt

vector is supplied, during an interrupt acknowledge cycle, to the CPU for calculating the location of the

interrupt service routine. For the VMEbus, the routine is located at an address that is four (4) times the
vector value.
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B.2 Resolution Tests

Figures B.2 and B.3 show the steady-state noise characteristics of the Point Grabber II vision system.

The data was taken from the global vision system viewing a single LED. The vision system covers a

field of view of 2.4m in the x direction, and 1.7m in y direction. The noise is about .2mm in the x

direction and about. 1mm in the y directionma resolution of better than 1 in 10,000.
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Figure B.2: Noise Characteristics--X Direction

Figures B.4 and B.5 show the resolution of the vision system by demonstrating the transient

behavior. The LED, mounted on one of the free-flying payload objects, is moved slowly and smoothly

along a diagonal. The plots show relatively smooth, monotonic functions of time for the LED x and

y positions. Although there are no sharp jumps at camera-pixel boundaries, the pixel effect can still be

seen as deviations from a straight line in the plots. The "bumps" in the x direction occur at about every

5mm, and those in the y direction occur at about every 8mm.

There are 380 active camera pixels in the x direction and 190 active pixels in the y direction. The

size of each pixel, therefore, is calculated to be:

xsize = 2400mm/380 = 6.6mm

Ysize = 1700mm/190 = 8.9mm
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Figure B.3: Noise Characteristics--Y Direction

This agrees reasonably well with the observed behavior in Figures B.4 and B.5. Larger targets or LED's

that cover more camera pixels will alleviate this effect.
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Figure B.4: Resolution Test--X Direction
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Figure B.5: Resolution Test--Y Direction
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B.3 Schematics

The schematics start on the following page.
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B.4 PALASM Listings

B.4.1 DTACK Timing

TITLE PG DTACK TIMING

PATTERN 1

REVISION 3.0B

AUTHOR VINCENT CHEN

COMPANY ARL, STANFORD UNIVERSITY

DATE 09-30-90

; This Pal generates several handshaking signals required for the interface

; between the Point Grabber and the VME Bus:

; /VRESET is the VME reset signal, synchronized to SYSCLK.

; /ALATCH is the address latch signal. BSSTROBE initiates the latch.

; The latch is terminated by DS and AS going invalid during a READ cycle

; (ENDC) indicating that the VME Bus has completed the access, so we no longer

; need to address our board registers. On a WRITE cycle, the latch is

; terminated by our DTACK going valid, indicating that we will be ready

; for the next access (almost) immediately after acknowledging the WRITE.

; /DTACK is the data acknowledge signal the board sends the VME Bus

; indicating that the data is ready on READ cycles or that the data has

; been stored on WRITE cycles. The basic timing for /DTACK is through

; the CYCLE and DxCYCLE signals. Together, these guarantee a minimum of

; one (i) SYSCLK cycle (62.5 ns) between addressing board registers

; (DATAIO or IMIO valid) and lowering /DTACK, or four (4) SYSCLK cycles

; (250 ns) between writing the threshold D/A and lowering /DTACK. This

; stupid D/A (AD7226) requires a write pulse of a minimum of 200 ns. DDTACK

; is the data acknowledge from accessing the the data registers,

; while IMDTACK is the data acknowledge generated by the Interrupt

; Module chip. The CYCLE, DCYCLE, etc. registers are cleared by ALATCH

; going invalid.

Bug fixes: added ALATCH to ENDC

modified ENDC to deassert ALATCH immediate after DTACK on

WRITES

CHIP PALPG_DTACK PAL20RAI0

PIN 1 PL LOW ;I

PIN 2 SYSCLK HIGH ;I

PIN 3 BSSTROBE LOW ;I

PIN 4 VMRESET LOW ;I

PIN 5 IMDTACK LOW ;I

PIN 6 THWRITE LOW ;I

PIN 7 DATAIO LOW ;I

PIN 8 IMIO LOW ;I

PIN 9 DS HIGH ;I

PIN i0 AS LOW ;I

PIN ii W LOW ;I

PIN 12 GND

PIN 13 OE LOW ;I
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PIN 14 VRESET REG LOW ;O

PIN 15 ALATCH REG LOW ;O

PIN 16 DTACK LOW ;O

PIN 17 DDTACK LOW ;0

PIN 18 ENDC LOW ;O

PIN 19 CYCLE REG LOW ;O

PIN 20 DCYCLE REG LOW ;O

PIN 21 D2CYCLE REG LOW ;O

PIN 22 D3CYCLE REG LOW ;O

PIN 23 D4CYCLE REG LOW ;O

PIN 24 VCC

EQUATIONS

; VRESET IS A SYNCHRONIZED VERSION OF VME RESET (VMRESET)

VRESET = VMRESET

VRESET.CLKF = SYSCLK

; ADDRESS LATCH IS TRIGGERED BY BSSTROBE AND CLEARED BY ENDC

ALATCH = VCC

ALATCH.CLKF = BSSTROBE

ALATCH.RSTF = ENDC

; DATA ACKNOWLEDGE FROM THE DATA SECTION. IF NOT TO THRESHOLD WRITES, THEN

; ONLY ONE SYSCLK DELAY. IF THRESHOLD WRITE, THEN 4 SYSCLK DELAYS.

DDTACK = DCYCLE * DATAIO * /THWRITE

+ D4CYCLE * THWRITE

; DATA ACKNOWLEDGE TO THE VME BUS IS COMPRISED OF DTACKS FROM BOTH THE DATA

; SECTION AND THE INTERRUPT MODULE CHIP

DTACK = DCYCLE * DATAIO *

+ D4CYCLE * THWRITE

+ IMDTACK

/THWRITE

; END CONDITION FOR A BOARD ACCESS CYCLE IS DS AND AS INVALID ON READ CYCLES,

; DTACK VALID ON WRITE CYCLES, OR VME RESET

ENDC = /DS * /AS * ALATCH * /W

+ DTACK * W

+ VRESET

; CYCLE TIMING IS INITIATED WHEN EITHER THE DATA SECTION OR INTERRUPT MODULE

; IS BEING ACCESSED. BY SYNCHRONIZING TO SYSCLK, DCYCLE IS GUARANTEED TO BE

; ASSERTED A MINIMUM OF ONE SYSCLK CYCLE AND A MAXIMUM OF TWO SYSCLK CYCLES

; AFTER THE BOARD REGISTERS HAVE BEEN ADDRESSED. CYCLE AND DCYCLEARE

; CLEARED WHENALATCH IS INVALID. THE 4 TIMES DELAYED CYCLE SIGNAL, D4CYCLE,

; IS USED BY THE DAC ON WRITES, WHICH NEEDS 200NS. D4CYCLE IS GUARANTEEING

; A MINIMUM OF 250NS.

CYCLE ffiDS * DATAI0 + DS * IMIO

CYCLE.CLKF = SYSCLK

; NOTE THAT DS MUST ALSO BE VALID
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CYCLE.RSTF = /ALATCH

DCYCLE = CYCLE

DCYCLE.CLKF = SYSCLK

DCYCLE.RSTF = /ALATCH

D2CYCLE = DCYCLE

D2CYCLE.CLKF = SYSCLK

D2CYCLE.RSTF = /ALATCH

D3CYCLE = D2CYCLE

D3CYCLE.CLKF = SYSCLK

D3CYCLE.RSTF = /ALATCH

D4CYCLE = D3CYCLE

D4CYCLE.CLKF = SYSCLK

D4CYCLE.RSTF = /ALATCH

SIMULATION

TRACE_ON SYSCLK DS DATAIO IMIO THWRITE IMDTACK

VMRESET VRESET BSSTROBE ALATCH ENDC CYCLE DCYCLE D4CYCLE DDTACK DTACK

SETF /PL OE /SYSCLK /BSSTROBE /DS /DATAIO /IMIO /THWRITE /IMDTACK /VMRESET

PRLDF /ALATCH /CYCLE /DCYCLE /D2CYCLE /D3CYCLE /D4CYCLE /VRESET

; FIRST TRY DATA SECTION ACCESS

SETF SYSCLK

SETF /SYSCLK

;CLOCKF SYSCLK

SETF BSSTROBE

CHECK ALATCH

; RIGHT ACCESS

; CHECK FOR ALATCH VALID

SETF DS ; DATA STROBE

SETF DATAIO ; DATA ACCESS

FOR I := 1 TO 4 DO

BEGIN

SETF SYSCLK

SETF /SYSCLK

; CLOCKF SYSCLK

END

; WAIT 4 CLOCKS

SETF /DS

SETF /DATAIO

SETF /BSSTROBE

SETF SYSCLK

SETF /SYSCLK

;CLOCKF SYSCLK

; NOW TRY THRESHOLD WRITES
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SETF SYSCLK

SETF /SYSCLK

;CLOCKF SYSCLK

SETF BSSTROBE

CHECK ALATCH

SETF DATAIO THWRITE

SETF DS

FOR I := 1 TO 6 DO

BEGIN

SETF SYSCLK

SETF /SYSCLK

; CLOCKF SYSCLK

END

SETF /DS

SETF /DATAIO /THWRITE

SETF /BSSTROBE

SETF SYSCLK

SETF /SYSCLK

;CLOCKF SYSCLK

; NOW TRY IM ACCESS

SETF SYSCLK

SETF /SYSCLK

;CLOCKF SYSCLK

SETF BSSTROBE

CHECK ALATCH

SETF DS

SETF IMIO

FOR I := 1 TO 4 DO

BEGIN

SETF SYSCLK

SETF /SYSCLK

; CLOCKF SYSCLK

END

SETF IMDTACK

SETF SYSCLK

SETF /SYSCLK

;CLOCKF SYSCLK

SETF /BSSTROBE

SETF /DS

SETF /IMIO

SETF SYSCLK

SETF /SYSCLK

;CLOCKF SYSCLK

SETF /IMDTACK

; RIGHT ACCESS

; CHECK FOR ALATCH VALID

; DATA ACCESS

; DATA STROBE

; WAIT 4 CLOCKS

; MAKE CLOCK HIGH

; RIGHT ACCESS

; CHECK FOR ALATCH VALID

; DATA STROBE

; IM ACCESS

; WAIT 4 CLOCKS

; IM'S DTACK



B.4. PALASM Listings 183

; CHECK VRESET

SETF VMRESET

SETF SYSCLK

SETF /SYSCLK

;CLOCKF SYSCLK

SETF SYSCLK

SETF /SYSCLK

;CLOCKF SYSCLK

TRACE_OFF

; RAISE RESET LINE

B.4.2 Buffer Enables and Device Select

TITLE PG BUFFER ENABLES AND DEVICE SELECT

PATTERN 1

REVISION 2.0+

AUTHOR VINCENT CHEN

COMPANY ARL, STANFORD UNIVERSITY

DATE 2-08-90

; This Point Grabber PAL generates enables for the data buffers (/BHEN,

; /BLEN), device selects (/DATAIO, /IMIO, /THWRITE), and the board select

; strobe (/BSSTROBE).

; /DATAIO indicates access to the data section of the Point Grabber.

; /IMIO indicates access to the Interrupt Module.

; /BHEN is the enable for the high byte of data, and it is asserted

; only when access is to the data section on a read cycle.

; /BLEN is the enable for the low byte of data, and it is asserted

; when access is to either the data or IM sections and also during an

; interrupt cycle. When the processor is responding to an interrupt from

; the Point Grabber, the Point Grabber will receive the daisy-chained

; /VMIACKIN signal, but it will not assert /IACKOUT, thus enabling the

; data buffer. The Interrupt module will then send out the interrupt

; vector onto the VME Bus.

; BSSTROBE is the board select strobe. /CMP is the output of the 8-bit

; comparator comparing A08-AI5, and VMAMx are the address modifier bits. The

; board is presently configured to fit in short IO space, occupying a 128 byte

; block. The location of the block is determined by the input to the

; comparator generating /CMP.

CHIP PALPG_EN PAL20L8

PIN 1 CMP LOW ;I

PIN 2 AB07 HIGH ;I

PIN 3 VMAM0 HIGH ;I

PIN 4 VMAMI HIGH ;I

PIN 5 VMAM3 HIGH ;I

PIN 6 VMAM4 HIGH ;I

PIN 7 VMAM5 HIGH ;I

PIN 8 A03 HIGH ;I

PIN 9 A04 HIGH ;I

PIN 10 A05 HIGH ;I
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PIN Ii A06 HIGH ;I

PIN 12 GND

PIN 13 ALATCH LOW ;I

PIN 14 VMIACKIN LOW ;I

PIN 15 BSSTROBE LOW ;O

PIN 16 IACKOUT LOW ;I

PIN 17 D4CYCLE LOW ;I

PIN 18 BHEN LOW ;O

PIN 19 BLEN LOW ;O

PIN 20 DATAIO LOW ;0

PIN 21 IMIO LOW ;0

PIN 22 THWRITE LOW ;0

PIN 23 W LOW ;I

PIN 24 VCC

EQUATIONS

; BOARD SELECT HAS HIGH 128 BYTES OF A 256 BYTE BLOCK IN SHORT IO SPACE

BSSTROBE = CMP * AB07 * VMAM0 * /VMAMI * VMAM3 * /VMAM4 * VMAM5

• A06 * /A05 * A04

+ CMP * AB07 * VMAM0 * /VMAMI * VMAM3 * /VMAM4 * VMAM5

• A06 * A05 * /A04

BHEN = /W * ALATCH * A06 * /A05 * A04

BLEN = /IACKOUT * VMIACKIN

+ ALATCH * A06 * /A05 * A04

+ ALATCH * A06 * A05 * /A04

DATAIO = ALATCH * A06 * /A05 * A04

IMIO = ALATCH * A06 * A05 * /A04

THWRITE = W * ALATCH * A06 * /A05 * A04 * /A03 * /D4CYCLE

SIMULATION

TRACE_ONCMPAB07 VMAM0 VMAMI VMAM3 VMAM4 VMAM5 BSSTROBE

A06 A05 A04 A03 ALATCH W VMIACKIN IACKOUT

BLEN BHEN DATAIO IMIO D4CYCLE THWRITE

SETF /CMP AB07 VMAM0 VMAMI VMAM3 VMAM4 VMAM5

/ALATCH A06 A05 A04 A03 W /VMIACKIN /IACKOUT /D4CYCLE

; TEST BSSTROBE

SETF CMP

SETF /VMAMI

SETF /VMAM4

CHECK /BSSTROBE

SETF /A05

CHECK BSSTROBE
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SETF A05 /A04

CHECK BSSTROBE

SETF A04

SETF /CMPVMAMI VMAM4

; TEST BLEN

SETF VMIACKIN

CHECK BLEN

SETF IACKOUT

CHECK /BLEN

SETF /VMIACKIN /IACKOUT

SETF A06 /A05 A04

SETF ALATCH

CHECK BLEN DATAIO

SETF /ALATCH A05

SETF A06 A05 /A04

SETF ALATCH

CHECK BLEN IMIO

SETF /ALATCH A04

; TEST BHEN

SETF /W

SETF A06 /A05 A04

SETF ALATCH

CHECK BHEN

SETF /ALATCH W A05

; TEST THWRITE

SETF /W

SETF A06 /A05 A04 /A03

SETF W

SETF ALATCH

CHECK THWRITE

SETF /CMP AB07 VMAMI VMAM4

SETF D4CYCLE

CHECK /THWRITE

SETF /ALATCH

SETF A05 A03 /D4CYCLE

SETF /W

TRACE_OFF

; ALSO TEST DATAIO

; ALSO TEST IMIO

; ALSO TEST DATAIO

B.4.3 Pixel Detect

TITLE

PATTERN

REVISION

AUTHOR

PG PIXEL DETECTOR

1

3.0+

Vincent Chen
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COMPANY

DATE

Stanford University, ARL

07-21-90

; This Point Grabber PAL generates the PIXeI_ON signal to trigger FIFO

; writes. It takes as input the ADC output and the Enable signal

; for a camera and generates the PIX_ON signal

CHIP PALPG_PIX PALI6L8

PIN 1 EN HIGH ;I

PIN 2 ADO HIGH ;I

PIN 3 ADI HIGH ;I

PIN 4 AD2 HIGH ;I

PIN 5 AD3 HIGH ;I

PIN 6 AD4 HIGH ;I

PIN 7 AD5 HIGH ;I

PIN 8 AD6 HIGH ;I

PIN 9 AD7 HIGH ;I

PIN 10 GND

PIN ii NC

PIN 12 PIX_ON

PIN 13 NC

PIN 14 NC

PIN 15 NC

PIN 16 NC

PIN 17 NC

PIN 18 NC

PIN 19 NC

PIN 20 VCC

HIGH ;O

EQUATIONS

/PIX_ON = /ADO * /ADI * /AD2 * /AD3 * /AD4 * /AD5 * /AD6 * /AD7

+ /EN ;Need the enable signal

SIMULATION

TRACE_ON EN AD0 ADI AD2 AD3 AD4 AD5 AD6 AD7 PIX_ON

SETF /EN /ADO /ADI /AD2 /AD3 /AD4 /AD5 /AD6 /AD7 ;init

; test PIX_ON signal

SETF ADO

CHECK / PIX_ON

SETF /ADO

SETF EN

SETF ADO

CHECK PIX_ON

SETF /ADO

CHECK / PIX_ON

SETF AD7

CHECK PIX_ON

SETF /AD7

SETF /EN
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TRACE_OFF

B.4.4 Data Strobe and Resets

TITLE PG STROBES AND RESETS

PATTERN 1

REVISION 2.0+

AUTHOR VINCENT CHEN

COMPANY ARL, STANFORD UNIVERSITY

DATE 2-08-90

; This Point Grabber PAL generates the strobe signals for the camera enables

; and reset signals, as well as some auxiliary signals required to

; interface with the VME Bus.

; IACK is the interrupt acknowledge from the bus master. It is also

; asserted, along with CS to reset the interrupt module.

; ENSTB is the strobe for the camera/interrupt enable latch.

; /FFRESET is the reset for the FIFOs.

; /RESET is the reset for the threshold latches.

; DS is the data strobe for the Point Grabber, comprising of VME's

; DSI and DS0.

; /CS is the chip select for the Interrupt Module. It is asserted

; when DCYCLE becomes valid, allowing time for data to stabilize. On write

; cycles, the leading edge of /CS makes the IM latch the data, and on read

; cycles, /CS signals a data acknowledge to the IM. The Interrupt Module can

; be reset by asserting the /IACK and /CS lines, thus VME resets (VRESET) and

; software resets (WRESET) need to assert /CS.

CHIP PALPG_STROBE PALI6L8

PIN 1 AS LOW ;I

PIN 2 VMIACK LOW ;I

PIN 3 DDTACK LOW ;I

PIN 4 WEN LOW ;I

PIN 5 FRESET LOW ;I

PIN 6 WRESET LOW ;I

PIN 7 VRESET LOW ;I

PIN 8 V_IDS0 LOW ;I

PIN 9 VMDSI LOW ;I

PIN i0 GND

PIN ii [9CYCLE LOW ;I

PIN 12 NC

PIN 13 IMIO LOW ;I

PIN 14 IACK LOW ;O

PIN 15 ENSTB HIGH ;O

PIN 16 FFRESET LOW ;0

PIN 17 RESET LOW ;O

PIN 18 DS HIGH ;0

PIN 19 CS LOW ;0

PIN 20 VCC
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EQUATIONS

IACK = VMIACK * AS + VRESET + WRESET

/ENSTB = /WEN + /DDTACK

FFRESET = VRESET + WRESET + FRESET

RESET = VRESET + WRESET

IDS = /VMDS0 * IVMDSI

CS = DCYCLE * IMIO + VRESET + WRESET

S IMULAT I ON

TRACE_ON DDTACK WEN ENSTB AS VMIACK WRESET VRESET FRESET FFRESET RESET IACK

VMDS0 VMDSI DS DCYCLE IMIO CS

SETF /WEN /DDTACK /AS /VMIACK /WRESET /VRESET /FRESET /VMDS0

/VMDSI /DCYCLE /IMIO ; INITIALIZE

SETF WEN

CHECK /ENSTB

SETF DDTACK

CHECK ENSTB

SETF /DDTACK /WEN

CHECK /ENSTB

; WRITE ENABLE REGISTER

; TEST IACK

SETF VMIACK

SETF AS

CHECK IACK

SETF /VMIACK

CHECK /IACK

SETF /AS

; NOW TEST RESETS

CHECK /FFRESET /RESET /CS

SETF VRESET

CHECK FFRESET RESET CS

SETF /VRESET

SETF WRESET

CHECK FFRESET RESET CS

SETF /WRESET

SETF FRESET

CHECK FFRESET /RESET /CS

; VME RESET

; BOARD RESET

; FIFO RESET
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SETF /FRESET

CHECK /DS

SETF VMDS0

CHECK DS

SETF /VMDS0

SETF VMDSI

CHECK DS

SETF /VMDSI

CHECK /DS

SETF IMIO

SETF DCYCLE

CHECK CS

SETF /DCYCLE

CHECK /CS

SETF /IMIO

TRACE_OFF

; TEST DS

; NOW TEST CS

B.4.5 Horizontal and Vertical Syncs

TITLE PG SYNC GENERATOR, INTERRUPT AND FIFO WRITE

PATTERN 1

REVISION 3.0+

AUTHOR VINCENT CHEN

COMPANY ARL, STANFORD UNIVERSITY

DATE 07-21-90

; Requires 20ns PAL, or SEEQ PQ20RAIOZ-35

; This Point Grabber PAL provides the sync signals to the cameras as well

; as the interrupt signals at the end of each frame and the write pulse

; to the FIFOs at each edge and at the end of each frame.

CHIP PALPG_SYNC PAL20RAI0

PIN 1 PL LOW ;I

PIN 2 XCLK HIGH ;I

PIN 3 YCO HIGH ;I

PIN 4 YC02 HIGH ;I

PIN 5 XCO HIGH ;I

PIN 6 XC06 HIGH ;I

PIN 7 XC02 HIGH ;I

PIN 8 IMDTACK LOW ;I

PIN 9 INTEN HIGH ;I

PIN 10 PIX_ON0 HIGH ;I

PIN II PIX_ONI HIGH ;I

PIN 12 GND

PIN 13 OE LOW

PIN 14 HORIZ REG HIGH

PIN 15 HSTB REG LOW

;I

;O

;0
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PIN 16 HRST PEG LOW

PIN 17 VERT REG HIGH

PIN 18 VSTB REG LOW

PIN 19 VRST REG LOW

PIN 20 FRAME REG LOW

PIN 21 FRST HIGH

PIN 22 FWRITE KEG LOW

PIN 23 IRQ REG LOW

PIN 24 VCC

EQUATIONS

HSTB = XCO

HSTB.CLKF = XCLK

HORIZ = VCC

HORIZ.CLKF = HSTB

HORIZ.SETF = HRST

HRST = XC06

HRST.CLKF = XC02

HRST.RSTF = /HORIZ * HRST

VSTB = YCO

VSTB.CLKF = XCLK

VERT = VCC

VERT.CLKF = VSTB

VERT.SETF = VRST

VRST = VCC

VRST.CLKF = YC02

VRST.RSTF = /VERT * VRST

IRQ = INTEN

IRQ.CLKF = VERT

IRQ.RSTF = IMDTACK

FRAME = VCC

FRAME.CLKF = VERT

FKAME.RSTF = FRST

FRST = /INTEN + FWRITE * XCLK

FWRITE = FRAME + PIX_ON0 + PIX_ONI

FWRITE.CLKF = /XCLK

FWRITE.RSTF = FRST

;O

;0

;0

;O

;O

;O

;0

;0

; STROBE TO LATCH HORIZ SYNC

; CLOCKED BY XCLK

; HORIZ SYNC

; LATCHED BY HSTB

; RESET BY HRST

; RESET FOR HORIZ SYNC

; CLOCKED BY XC02 FOLLOWING XC06

; CLEARED BY HRST AND AFTER

; HORIZ SYNC IS CLEARED

; STROBE TO LATCH VERTICAL SYNC

; CLOCKED BY XCLK

; VERTICAL SYNC

; LATCHED BY VSTB

; RESET BY VRST

; RESET FOR VERTICAL SYNC

; CLOCKED BY YC02 (2 LINES)

; CLEARED BY VRST AND AFTER

; VERTICAL SYNC IS CLEARED

; IRQ GENERATED ONLY WHEN ENABLED

; CLOCKED BY VERT

; CLEARED BY IMDTACK

; FRAME MARKER WRITE STROBE

; CLOCKED BY VERT

; CLEARED BY FRST

; FRAME MARKER STROBE RESET WHEN

; INTERRUPTS NOT ENABLED AND AFTER

; WRITE PULSE

; FIFO WRITE PULSE WHEN FRAME OR

; ANY PIXELS ON

; CLOCKED ON /XCLK (DELAY)

; CLEARED IF INTERRUPTS NOT

; ENABLED



B.4. PALASM Listings 191

SIMULATION

TRACE_ON XCLK XCO XC06 XC02 HSTB HORIZ HRST YCO YC02 VSTB VERT VRST

INTEN IMDTACK IRQ PIX_ON0 PIX_ONI FRAME FWRITE FRST

SETF /PL OE /XCLK /YCO /YC02 /XCO /XC06 /XC02 INTEN /IMDTACK /PIX_ON0 /PIX_ONI

PRLDF VSTB /VERT VRST HSTB /HORIZ HRST IRQ FRAME FWRITE

; TEST HORIZ SYNC

SETF XCO

SETF XCLK

SETF /XCLK

CHECK HSTB

SETF /XCO

CHECK HORIZ

SETF XC06

SETF XCLK

SETF /XCLK

SETF XC02

SETF XCLK

SETF /XCLK

CHECK /HORIZ

SETF /XC06 /XC02

SETF XCLK

SETF /XCLK

; TEST VERTICAL SYNC AND IRQ

SETF INTEN

SETF XCLK

SETF /XCLK

SETF YCO

SETF XCLK

CHECK VSTB

SETF /YCO

CHECK VERT

CHECK IRQ FRAME

SETF /XCLK

CHECK FWRITE

SETF XCLK

SETF /XCLK

CHECK /FRAME

SETF YC02

SETF XCLK

SETF /XCLK

CHECK /VERT

SETF XCLK

SETF /XCLK

SETF /YC02

SETF XCLK

SETF /XCLK

SETF IMDTACK
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CHECK /IRQ

SETF XCLK

SETF /XCLK

SETF /IMDTACK

; TEST INTEN ON VERTICAL SYNC

SETF /INTEN

SETF YCO

SETF XCLK

CHECK VSTB

CHECK VERT

CHECK /IRQ /FRAME

SETF /YCO

SETF XCLK

SETF /XCLK

; TEST PIX_ON0 WRITES

SETF INTEN

SETF XCLK

SETF PIX_ON0

CHECK /FWRITE

SETF /XCLK

CHECK FWRITE

SETF /PIX_ON0

SETF XCLK

CHECK /FWRITE

SETF /XCLK

SETF /INTEN

SETF XCLK

SETF PIX_ON0

SETF /XCLK

CHECK /FWRITE

SETF /PIX_ON0

; TEST PIX_ONI WRITES

SETF INTEN

SETF XCLK

SETF PIX_ONI

CHECK /FWRITE

SETF /XCLK

CHECK FWRITE

SETF /PIX_ONI

SETF XCLK

CHECK /FWRITE

SETF /XCLK

SETF /INTEN
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SETF XCLK

SETF PIX_ONI

SETF /XCLK

CHECK /FWRITE

SETF /PIX_ONI

TRACE_OFF
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Calibration

All sensor and actuator signals are sampled by the Analog-to-Digital (A/D) and Digital-to-Analog (D/A)

circuitry before being passed to the controller. The analog signals from the sensors and to the actuators

are adjusted such that full-scale readings on the A/D's and D/As correspond with the maximum outputs

and inputs of the sensors and actuators, respectively. The controller, therefore, must provide at least a

gain and an offset for each sensor and actuator signal to transform them into the proper units.

Nonlinearities in the sensors or actuators, however, can make a single gain and offset for each

device inadequate. Calibration with a polynomial correction function can often reduce the effects of

the nonlinearities. Three areas where polynomial fits made a significant improvement in the Multi-

Manipulator Free-Flying Space Robot experiment are the camera-lens-distortion correction, the RVDT

joint-angle nonlinearity compensation, and the motor-torque-curve compensation. Accordingly, this

appendix is divided into three sections to show the improvement of a polynomial fit in each case.

C.1 Camera-Lens-Distortion Correction

The camera lens used in the global vision system is a 6mm wide-angle lens. There are, therefore, some

barrel-distortion effects around the edges. Since the lens is circularly symmetric, this distortion is a

function of the radius. To correct for this distortion, the calibration procedure performs a polynomial

fit as a function of both the x and y coordinates. That is:

= (c.1)

194
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where Xm and Y,n represent the measured x and y coordinates of a point, xe and Yc are the corrected

values, and fx and f_ are the polynomial correction functions. This correction is equivalent to

performing the correction as a function of the radius, since the radius is itself a function ofx and y:

r., = + (¢.2)

Moreover, performing this calibration also reduces errors caused by camera tilt and rotation.

A large plate containing a grid of 8 x 16 evenly-space LED's is used for calibration 1. The LED's are

spaced at 6 inches and a complete grid of 12 x 16 LED's is needed to cover the field of view of a camera.

The calibration plate can be shifted to provide the full set of data, and the overlapping rows are used

to accurately align the two calibration plate positions. The calibration routines find the coefficients of

polynomials that minimize the errors between measured LED locations and the actual known locations

of the LED's on the calibration plate.

The functions of a third-order polynomial fit, for example, have the form:

2 2
x_ = C_oX_ + c_x,_ + c_:,.,., + c_3y _ + c_.,y,.,., + c_sy,,-,

+c_6x_y,-,, + c_:,.,.,y 2 + c_:my,-, + co:9

2 3 2
Yc _ Cyo x3 "q- CytXm + Cy2Xrn -]- Cy_Ym -[- Cy4Ym "q- CysYm

X 2 2+C'y6 myra + CyzXmYm + CysXmYm + CY9

(C.3)

(cA)

Given the polynomial order n, the number of coefficients is M = (n + 1) (n + 2)/2, thus the third-order

fit has ten coefficients for each coordinate.

The coefficients are determined by solving a least-squares problem. Each row i of the regressor

matrix A is formed using a measured data pair (x,m, Ym,) as:

Denoting the actual location of the ith LED as (xa,, Ya, ), the least-squares problem for a collection of
N measured data sets is then formed as:

2 2

x A

cx 0 Cy 0 ]

cx M cy M

c

1The calibration plate is built by Kurt Zimmerman.
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Solving the least-squares problem for C gives both sets of coefficients to use for lens-distortion

correction. This can be performed easily with a single command in MATLAB: C = A\X.

Figure C. 1 shows the effects of first-order, second-order, and third-order polynomial fits. The left

column shows the actual LED locations as 'o's and the corrected locations as 'q-'s for each order fit.

The right plots show, qualitatively, the errors in each fit in a three-dimensional view 2. The error plots

for the first- and second-order fits show dearly the circularly-symmetric effect of the lens distortion.

The plots for the third-order fit show the dramatic improvement. Using even higher order fits does

not significantly improve the fit, and has the disadvantage of having too many coefficients, slowing the

computation.

The MATLAB code for performing the polynomial fits follow.

ZThe upper left data point in each error plot is a dummy value to preserve the scaling throughout the three plots.
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Figure C. 1: Lens-Distortion Calibration

These are the lens-distortion correction results for three clifferent polynomial fits. The left plots

show the actual LED locations as the 'o's and the corrected measured locations as '+ _. h can

be seen that there is significant improvement with the third-order polynomial. The righr plots

show the errors in a three-dimensional view. The upper-right corner of each error plot contains

a dummy data point, used as a reference to preserve the scaling throughout all three plots.
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C. 1.1 Polynomial Fit to Two Variables

function p = polyfit2(x,y,n)

% POLYFIT2 POLYFIT2(x,y,n) finds the coefficients of

% two-variable polynomials formed from the data in

% matrix x of degree n that fits the data in matrix y in

% a least-squares sense. Each column of x represents a

% variable, and a polynomial is fit to each column of y.

%

% Vincent Chen 1-4-90

% Revised 7-31-90 for only 2 variables w/ cross terms

% Copyright (c) 1990

% the regression problem is formulated in matrix format as:

%

or% y = A*P

%

% 3

% y = [xl

%

%

%

%

%

%

%

%

%

%

2 3 2 2 2

xl xl x2 x2 x2 xl x2 xlx2 xlx2 I] [p13

p12

pll

p23

p22

p21

p0 ]

% where the matrix P contains the coefficients to be found. Each column

% of P contains the coefficients for a fit to the corresponding column

% of y. NOTE that there is only one constant term coefficient, p0.

% For a 7th order polynomial of a single variable, matrix A would be:

%

% A = [x.^7 x.^6 x.^5 x.^4 x.^3 x.^2 x ones(x)];

%

% See also polyval2

xs = size(x);

ys = size(y);

if (xs(1) -= ys(1) )

error('X and Y must have the same number of rows')

end

if ((xs(2) -= 2) I (ys(2) ~= 2) )

error('X and Y must have exactly 2 columns')

end

% A must have same number of rows as x and each column must be

% repeated n times

Ancol = 0;

for i = 0:n

Ancol = Ancol + i + i;
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end

if (xs(1) < Ancol )

error('Not enough data to perform the fit, decrease n')

end

A = ones(xs(1), Ancol);

% Construct Vandermonde matrix

for i = 1:2

for j=l:n

A(:,n*(i-l)+j) = x(:,i).^(n+l-j);

end

end

Aindex = 2*n + i;

for i = l:n-i

for j = 2*n-(i-l):2*n

A(:,Aindex) = A(:,i+I).*A(:,j);

Aindex = Aindex + i;

end

end

p = (A\y) ;

C. 1.2 Evaluation of Polynomial of Two Variables

function y = polyval2(c,x)

% POLYVAL2 Polynomial evaluation.

% If C is a matrix whose column elements are the coefficients of a

% polynomial, then POLYVAL2(C,X) is the value of the

% polynomials evaluated at X. If X is a vector,

% the polynomial is evaluated at all points in X.

% If X is a matrix, then each column of X represents a variable

% in a two-variable polynomial, and each column of C contains

% the coefficients of the variables in succession. For a two

% variable, 3rd order polynomial, a column of C looks like:

C ---- [c13

c12

cll

c23

c22

c21

c021

c012

c011

cO]

and if X is [xl x2], then

3
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y = C13 * xl + C12 * xl

3 2

+ C23 * x2 + C22 * x2

2

+ cll* xl

+ C21 * x2

2

+ C021 * xl * x2 + C012 * xl * x2

+ c011 * x2 * x2

+ cO

% Polynomial evaluation c(x) using Horner's method

% Vincent Chen 1-5-90

% Revised

% Copyright 1990

% See also polyfit2

[m,n] = size(x);

[mc, nc] = size(c);

order = 0;

ocount = i;

while ocount < mc,

order = order + i;

ocount = ocount + order + I;

end

if ( ocount ~= mc )

error('column size of C does not match any order of polynomials')

end

if (m+n) == 2

% Make it scream for scalar X. Polynomial evaluation can be

% implemented as a recursive digital filter.

y = zeros(l,nc);

for i = l:nc

yy = filter(l,[l -x],c(:,i));

y(l,i) = yy(nc);

end

return

end

% Do general case where X is an array

y = zeros(m,nc);

for j=l:n

yy=zeros(m, nc);

for i=l:order

yy = (x(:,j) * ones(l,nc)) .* yy...

+ ones(m,l) * c(((j-l)*order)+i,:);

end

y = y + (x(:,j) * ones(l,nc)) .* yy;
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end

cindex=2*order+l;

for i = order-l:-l:l

for j = order-i:-l:l

y = y + ((x(: ,i) * ones(l,

(ones(m, i) * c(cindex,:));

cindex = cindex + I;

end

end

y = y + ones(m,l) * c(mc,:);

nc)). ^ i).* ((x(:,2) * ones(l, nc)). ^ j).*...

C.2 Joint-Angle Calibration

The RVDT's used to measure joint angles also contain some nonlinearity. A simple third-order

polynomial as a function of the a single variablemthe measured joint-angle--is used for each joint

RVDT.

A calibration jig, containing holes in know locations, is bolted to the robot base. The end effector

of each manipulator is place in each of the holes for RVDT readings. These are matched with the joint

angles derived from exact inverse-kinematics equations.

Figure C.2 shows the errors of using a linear fit vs. a third-order fit for each joint. In all cases, there

is noticeable improvement.

C.3 Torque-Curve Calibration

The Aeroflex brushless DC motors used to actuate the space robot manipulators deliver smooth torques

with very low friction. The motors are, however, limited-angle torquers, and the delivered torques for

a given input current drop as the motors rotates away from zero angle. This effect is symmetric around

the zero angle of each motor, and can be minimized by introducing a scaling function that is dependent

on the motor angle. A scaling function essentially boosts the motor current to achieve the requested

output torque for all motor angles.

The torque curve, i.e., scaling function, can be modelled as a fourth-order polynomial, restricted to

having a single infection point at the central motor angle. Since the controller has direct access to the

joint-angles rather than motor angles, the calibration curves are derived as functions of the joint-angles.
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1.2 . . Right Shoulder Calibration
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Figure C.2: Joint-Angle Calibration Errors

These plots show the calibration errors for a linear tit vs. a third-order tit for each joint. They

dearly show the improvement with the third-order fits.

They have the form:

scalei = c4i (qi- qoeeti) 4 + c2i (qi- qoffseti)2 +1 (C.6)

where qo_, is the angle of joint i that corresponds to the zero angle of motor i, and c4i and c2i are

the coefficients to be derived from least-squares fits 3. The requested torques from the control laws are

multiplied by these scale factors before sending them to the motor drivers.

Figures C.3 and C.4 show typical calibration curves. The data was taken by measuring the requested

torques necessary to cancel the effects of a known applied torques at different joint angles. The 'o's

SStdcdy speaking, c2_should be zero to force a single inflection point in the torque curve, but its presence can improve

the fit.
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indicate the values of the applied torques, the '+'s indicate the torques that the control law requests, and

the 'x's indicate the requested torques after fourth-order fit. For a perfect fit, the 'o's and the 'x's should

overlap. The plots show that the fit is very reasonable.

Z
o
-i
E
o
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0.6

0.5

0.4
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"', +

Right-Shoulder Torque Calibration
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.......... i .............. t ................ 8 ..............

-100 -80 -60 -40 -20 0 20

Shoulder Angle (deg)

Figure C.3: Right Shoulder Motor Calibration Curves

The lines in Figures C.3 and C.4 plot the torque curve as a continuous function of the joint angle for

the three values of applied torques. Ideally, these torque curves should intersect the '+' marks, and the

figures show that the torque curves the torque curves do fit the measured values, indicating again that

the fourth-order calibration polynomial is a good model for the behavior of the manipulator motors.

C.3.1 Torque Calibration File

% Name :

% torquecal.m - motor torque calibration

%

%

%

%

%

!rm *.met

Description:

The first section lists

the calibration.

the measured data and the rest performs

if arm == 0 % Right Shoulder

% Data

t0=-[-.06 -.015 .01 .03 .05];
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Figure C.4: Left Shoulder Motor Calibration Curves

ti=-[.22 .19 .21 .23 .27];

t2=-[.46 .375 .385 .42 .48];

t3=-[.70 .555 .56 .61 .69];

% The angles at which the data were taken

ang0=[-l.75 -1.25 -.78 -.25 .25];

% Gain for the motor

sc = -0.8272;

% Joint angle corresponding to motor's zero angle

q0 = -.65;

% Plotting axes and title text

axis([-2*180/pi .5"180/pi 0 .7]);

tl='Right';

else % Left Shoulder

% Data

t0=-[-.05 -.04 .0 .04 .i];

ti=-[-.28 -.25 -.23 -.18 -.21];

t2=-[-.5 -.43 -.395 -.38 -.47];

t3=-[-.725 -.625 -.58 -.55 -.73];

% The angles at which the data were taken

ang0=[-.25 .25 .78 1.25 1.75];

% Gain for the motor

sc = .7872;

% Joint angle corresponding to motor's zero angle

q0 = .65;

% Plotting axes and title text

axis([-.5*180/pi 2"180/pi 0 .7]);

tl='Left';

end
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% Set up data stream, subtracting the effects of the spring forces.

t=[tl-t0 t2-t0 t3-t0]'*sc;

tu=[tl t2 t3]'*sc;

% Set up the ideal data set.

ideal0=[0 0 0 0 0];

ideall=.165*ones(l,5);

ideal2=.314*ones(l,5);

idea13=.464*ones(l,5);

ideal=[ideall ideal2 ideal3]';

ang=[ang0 ang0 ang0]';

% Perform the fit using either:

% c4 x^4 + c2 x^2 + cO

% or

% c4 x^4 + cO

%

if fourth == 0

c=polyfit((ang-ones(ang)*q0) .^2, ideal./t, 2) ;

cl=[c(1) 0 c(2) 0 c(3)];

cor=t.*polyval(cl, (ang-ones(ang)*q0)) ;

coru=tu.*polyval(cl, (ang-ones(ang)*q0)) ;

else

c=polyfit((ang-ones(ang)*q0) .^4, ideal./t, i) ;

cl=[c(1) 0 0 0 c(2)];

cor=t.*polyval(cl, (ang-ones(ang)*q0)) ;

coru=tu.*polyval(cl, (ang-ones(ang)*q0)) ;

end

% Setting up for plots

names=[ 'Actual '

'Measured'

'Fit '];

itypes=[ 'o'

,+,

'x'];

plot(ang*lS0/pi, t, '+b'); hold on; grid;

plot(ang*180/pi, cor, 'xr');

plot(ang*lS0/pi, ideal, 'ow');

err=cor-ideal;

maxerr=max(err);

a=[-4:.01:4];

s=polyval(cl,a);

plot([a;a;a]'*180/pi, ([.165;.314;.464]*(ones(a)./polyval(cl, a-ones(a)*q0)))');

hold off

title([tl '-Shoulder Torque Calibration'])

xlabel('Shoulder Angle (deg)'),ylabel('Torque (N-m)')

c=legndbig(names,0,0,1000,1,1types);

pause
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State Transition Diagrams

This appendix contains the state-transition graphs for the Multi-Manipulator Free-Flying Space Robot

experiment. Implementing the transition graphs allows the robot to complete complicated tasks

autonomously. Although not explicitly indicated, all control is performed utilizing the adaptive task-

space control structure.

The graphs depict the states as ovals, and the state transitions as arrows. A stimulus-and-transition-

routine pair is labeled at the base of each arrow; the pair is separated by a "/" character. If a transition

routine returns more than one value, causing a branch in the transition, the return values are labeled

near the arrow heads.

The state-transition graphs are separated into six (6) main functions: "initialization", "payload

capture", _rendezvous with object", "deliver object", "object motion", and "robot motion". Whenever

the robot is enabled, it executes the initialization sequence, checking the health of the system. The

robot carries out a payload capture in response to user request; if the payload object is not in range, the

robot first performs a rendezvous with the object. If the user requests the movement of the payload, the

robot executes the delivery of the object. It must also execute the "object motion" transitions to check

the final orientation of the payload; if the orientation is not achievable with the current manipulator

grasp, a swap is performed. Finally, if the user requests a base movement, the robot executes the "robot

motion" transitions.
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Abort/

Singularity/
abort()

SamplingStopped/
abortO

Init

Check
Error Gas and

ScarchTmleOm/

errMsgO

Looking

NotOK
Always/
checkSensors0

SafetyOFF

Checking
Safety

Timer1

activateSafetyO

OK

_Alwayq

RightHome AND LeftHome_
activaleEndp_ensorsO

JointSensorsActive/ BaseFound/activateJomtSensors// 0

_homeA_rmsO

Figure D. 1: Initialization Transition Graph

The robot system starts in the "Init" stare and checks the safety switch, gas pressure, and

electrical voltage when sampling is started. When everything checks our, the grippers are raised

and the system makes sure that the robot base is being tracked. The motors and joint controller

are then enabled to bring the arms into a known "home" location. The local vision system must

tind the endpoinrs before entering the "Ready" stare. I£an error occurs, the robot enters the
"Error" stare, which transitions back into the "lnir _ state, and the process repeats. Addirlonally,

three global stimuli--Abort, Singulari_ and SamplingStoppedmbrings the system to "Ink"

fi'om any other state.
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Ready

Starting
Capture

ObjectInView/
slewToObjecK)

"Capture"/
startCaptmO

ObjectFonnd/

Slewing
to Object*

Slewing

Rendezvous

Waiting
Noangange for In Range'

Moving _

N<_I_Re_h_

RightAtObj AND LeftAtObj/

NotlnRea_

Error

Track

Tracking
Object*

Trm:kTLmed

checkGraspO

Raising
Grippers

"Release"/
release(_ject0

. Holding

NdlO

ToleranceExceeded

ToleranceUnmet

Using
Endpt PID*

TrackTuner/
checkC,raspO

GdpFailed/

Stopping
Object

ToleranceMet

Lowering
Grippers*

ToleranceMet

RightDown AND LeftDown/
stopObject0

* States matl_ with an asterisk transition to the "Error" state in response to the
"ObjectoutOIVlew AND ObjectLost" stimulus. The transition routine is lostObject().

Figure D.2: Payload-Capture Transition Graph

The robot awaits tile "Capture"or *Deliver" command in the "Ready" state, tither of which
initiates the payload-capture transition routines. If the object is not in reach, the robot
branches to the "Rendezvous"set of transitions. Otherwise, the robot slews the arms to the

object--tracking the grip ports using PID control until the tolerance is met--before lowering
the grippers. The object is stopped smoothly, ending in the "Holding Object" state. If
the command was "Deliver; the robot proceeds with the "Object Delivery" transitions. A

"Release" command forces the transition from "Holding Object" to "Raising Grippers; which
is part of the "Initialization" transition graph.
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Object in View Waiting
Not in Reach _a_ay_ ObmtFound/ for In Rat

rendezvousO _ndezvousO

Moving

Moving
to Object

Moving

NotlnRange

RecomputeBaseTraj/

Error updateBaseTraj0 Slewing
to Object*

NotlnRange

/

RecomputeBaseTraj/ NotlnReach /
upcla_BmeTmjO

Wait NotlnReach Waiting for Object_ViewAND Tm_er/
Before Abort Object in Reach*

NotlnRcach

* States marked with an asterisk transition to the "Error" state in response to the
"ObjectOutOf_ew AND ObjectLost" stimulus. The transition routine is lostObjectO.

Figure D.3: Object-Rendezvous Transition Graph

The robot must rendezvous with the object if it is out of teach. The robot plots an imercept
trajectory, and moves toward the object. The robot continues m update the base trajectory
until the object comes into view of the local vision system. If at any time, the robot decides
that it cannot reach the object, the robot aborts into the "Error"state. When the object comes
into view, the robot waits for the the object to come into reach and slews the manipulators to
the object and enters the "Payload-Capture"transition graph. An "Error _ occurs if the object
is lost by the vision systems.
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Holding
'_'_'/ Object _omeOb_VcheckRange0

Object Motion

Check Grip

DutOIReach
-___ "Deliver"/

stowObjcctO

"_ Object

Stowing
Object

NullO NuUO

DeliverTrajComplet_
Nun()

RocomputeBascTraj/
updatclDeliveryTrajO

Error

DefiveryOutOfRange

Transiting xMoving

"Deliver"/
startDelivery0

Raising
Grippers

Object
Stowed

!
releaseObject0

Figure D.4: Object-Delivery Transition Graph

//'the robot is to de//rer the payload and the destination is in the reach of the manipulators,
the robot goes directly to the "Object-Motion" set of transitions. Otherwise, it must stow the
object before plotting a base trajectory toward the destination. The robot continues to update
the base trajectory until it reaches the destination. If at any time, the robot determines that the
destination is out of range, it aborts with an "Error" condition. After reaching the destination
of the robot base, the robot proceeds With the "Object-Motion" transitions.
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Check Grip
Orientation

'_)eliver'7

checkGripOrientation0

Move Object
Into Position

"Deliver'7

moveObjectIntoPosition0

Move
Before

Moving
Object

'_TrajComplewJ

moveObjectIntoS wapPosition0
Swap
Grip

"Deliver"/

raiseGrippersO

_V

RightUp AND LeftUp/[

°meArms0II_.ghtAtHome ANDLeftAtHomc/h_

Figure D.5: Object-Motion Transition Graph

The//rst step in moving the payload object into its 6nal position is to check the grip orientation.
If it is achievable, the robot direcdy moves the payload into position and returns to the "Holding

Object"state. Otherwise, the robot either swaps the grip directly, or tirst moses the payload into
a Favorable position before performing the swap. The swap is performed by releasing the object,

homing the arms, and recapturing the payload by looping back to the "Starting Capture'state.

Because the _Deliver" command is still in effect, the complete caprure-and-delivery procedure

is repeated.
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Ready "MoveRobot"/
startBaseMotionO

Starting
Base Motion

TrajCompletel
NullO

Moving Moving
Base

moveBaseO

Figure D.6: Robot-Motion Transition Graph

This is the simplest transition of all.//'the destination is reachable, the trajectory is computed,
and the robot base is moved. Otherwise, the command is ignored. The robot ends up in the
"Ready" state.



Appendix E

Setup Files

This appendix provides a sampling of the setup files used by the Multi-Manipulator Free-Flying Space

Robot during initialization. These files contain, for instance, the nominal physical parameters for the

robot, the adaptive update gains, and the controller gains for each control mode. Many more data files

are required to provide the full capabilities of the space robot.

E.1 Physical Parameters

# N&me :

# properties.dat

#

# Description:

# physical properties of the robot

#

# Written by: Vincent Chen

#

November 1990

signalSet Masses

BaseMass kg 62.265

RAUpperLinkMass kg 1.9231

RALowerLinkMass kg 0.3382

LAUpperLinkMass kg 1.9231

LALowerLinkMass kg 0.3382

PayloadMass kg 1.01

LargePayloadMass kg 8.87

signalSet Inertias

BaseInertia kg-m^2

RAUpperLinkInertia kg-m^2

RALowerLinkInertia kg-m^2

LAUpperLinkInertia kg-m^2

LALowerLinkInertia kg-m^2

3.29218

0.02379

0.00416

0.02379

0.00416
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PayloadInertia kg-m^2 0.007

LargePayloadInertia kg-m^2 0.108

signalSet Lengths

L_Clx m 0.184095

L_Cly m -0.184095

L_C2x m 0.184095

L C2y m 0.184095

L_11 m 0.3048

L12 m 0.2959

L_21 m 0.3048

L_22 m 0.2959

L_C0x m 0

L_C0y m 0

L_llx m 0.0594

L_lly m -0.002

L_12x m 0.1058

L_12y m 0

L_21x m 0.0594

L_21y m 0.002

L_22x m 0.1058

L_22y m 0

L_OBJx m 0

L_OBJy m 0

L_GRIPrx m 0.111

L__GRIPry m 0

L_GRIPIx m -0.iii

L_GRIPIy m 0

signalSet SpringConstants

RS_SpringK N-m/rad 0

RE_SpringK N-m/rad 0

LS_SpringK N-m/rad 0

LE SpringK N-m/rad 0

RS_SpringOffset rad -.78

RE_SpringOffset rad 1.57

LS_SpringOffset rad .78

LE SpringOffset rad -1.57

E.2 Adaptive Control Gains

# Name:

# BTAdaptSigset.dat

#

# Description:

# Adaptive Controller parameter vector and gains.

#

# Written by: Vincent Chen 26 October 1990

#

signalSet Parameters

Theta_0

Theta_l

28
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Theta_2

Theta_3

Theta_4

Theta_5

Theta_6

Theta_7

Theta_8

Theta_9

Theta_10

Theta_ll

Theta_12

Theta_13

Theta_14

Theta_15

Theta_16

Theta_17

Theta_18

Theta_19

Theta_20

Theta_21

Theta_22

Theta_23

Theta_24

Theta_25

Theta_26

Theta_27

signalSet ParametersMax 28

ThetaMax_0 100

ThetaMax_l 2

ThetaMax_2 2

ThetaMax_3 1

ThetaMax_4 .I

ThetaMax_5 1

ThetaMax_6 .I

ThetaMax_7 1

ThetaMax_8 .i

ThetaMax_9 1

ThetaMax_10 .i

ThetaMax_ll 10

ThetaMax_12 1

ThetaMax_13 .i

ThetaMax_14 1

ThetaMax_15 .i

ThetaMax_16 20

ThetaMax_17 .i

ThetaMax_18 .i

ThetaMax_19 1

ThetaMax_20 .05

ThetaMax_21 05

ThetaMax_22 05

ThetaMax_23 05

ThetaMax_24 05

ThetaMax_25 05

ThetaMax_26 05
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ThetaMax_27 . 05

signalSet ParametersMin 28

ThetaMin_0

ThetaMin_l

ThetaMin_2

ThetaMin_3

ThetaMin_4

ThetaMin_5

ThetaMin_6

ThetaMin_7

ThetaMin_8

ThetaMin_9

ThetaMin_10

ThetaMin_ll

ThetaMin_12

ThetaMin_13

ThetaMin_14

ThetaMin_15

ThetaMin_16

ThetaMin_17

ThetaMin_18

ThetaMin_19

ThetaMin_20

ThetaMin_21

ThetaMin_22

ThetaMin_23

ThetaMin_24

ThetaMin_25

ThetaMin_26

ThetaMin_27

0

-2

-2

0

0

--.i

0

--.i

0

--.I

0

0

0

0

0

0

--.i

--.1

0

- 05

- 05

- 05

- 05

- 05

- 05

- 05

- 05

signalSet ParameterAdaptiveGains 28

Gamma_0 0

Gamma_l 0

Gamma_2 0

Gamma_3 0

Gamma_4 0

Gamma_5 0

Gamma_6 0

Gamma_7 0

Gamma_8 0

Gamma_9 0

Ganm__l 0 0

Gamma 11 0

Gamma 12 0

Gamma_13 0

Gamma_14 0

Ga/mm%_l 5 0

Ganm_ 16 250

Gamma_l 7 .01

Gamma_l 8 .01

Gam_m_l 9 .06

Gamma_20 0

Gamma_21 0
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Gamma_22 0

Gamma_23 0

Gamma_24 0

Gamma_25 0

Gamma_26 0

Gamma_27 0

signalSet SpringUpdateGains

RSK 0

RSO 0

REK 0

REO 0

LSK 0

LSO 0

LEK 0

LEO 0

signalSet BTNumParmsUpdate

nParmsUpdate 28

# trailing was 1

adaptiveDataSet BTRobotParms 28 Sample

nUpdate: BTNumParmsUpdate

trailing: 1

params: Parameters

maxParams: ParametersMax

minParams: ParametersMin

gains: ParameterAdaptiveGains

errors: JinvFilteredErrors

regressor: Yy

transpose: 1

E.3 Base-Relative Object-Control Gains

# Name:

# objectControlBR.dat

#

# Description:

# Base-relative object control signals and gains.

#

# Written by: Vincent Chen May 1991

#

signalSet DesObjectPosBR

desObjectPosXBR meters

desObjectPosYBR meters

signalSet DesObjectOrientBR

desObjectOrientBR radians

signalSet DesObjectVelBR

desObjectVelXBR m/sec

desObjectVelYBR m/sec



218 Appendix E. Setup Files

signalSet DesObjectAngVelBR

desObjectAngVelBR rad/sec

signalSet DesObjectAccBR

desObjectAccXBR m/sec^2

desObjectAccYBR m/sec^2

signalSet DesObjectAngAccBR

desObjectAngAccBR rad/sec^2

signalSet ObjectPosGainsBR

objectPosGainXBR 55

objectPosGainYBR 55

# Note velocity gain selected for critical damping: Kv = 2 * sqrt(Kp)

signalSet ObjectVelGainsBR 2

objectVelGainXBR 15

objectVelGainYBR 15

# Note: These gains for the object are unstable if you use the 2Hz estimator

# and vision-based velocity feedback. A 5Hz estimator works fine.

signalSet ObjectOrientGainsBR 1

objectOrientGainBR .55

# Note velocity gain selected for critical damping: Kv = 2 * sqrt(Kp)

signalSet ObjectAngVelGainsBR 1

objectAngVelGainBR .15

signalSet ObjectPosFeedbackBR

objectPosFeedbackXBR

objectPosFeedbackYBR

signalSet ObjectOrientFeedbackBR 1

objectOrientFeedbackBR

signalSet ObjectPosControlBR

objectPosControlXBR m/sec^2

objectPosControlYBR m/sec^2

signalSet ObjectOrientControlBR 1

objectOrientControlBR i/sec^2

signalSet ObjectDestBRPos

objectDestBRPosX meters 0

objectDestBRPosY meters 0

signal_et ObjectWorkSpaceCenter

objBaseX meters 0.48

objBaseY meters 0.0
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E.4 Endpoint-Control Gains

Name :

endptControl, dat

Description:

Endpoint control gains and signals.

sl_nalSet RAdesEndptPos

RAdesEndptxPos meters 0

RAdesEndptYPos meters 0.2

slgnalSet RAdesEndptVel

RAdesEndptXVel m/sec

RAdesEndptYVel m/sec

slgnalSet RAdesEndptAcc

RAdesEndptXAcc m/sec^2

RAdesEndptYAcc m/sec^2

slgnalSet LAdesEndptPos

LAdesEndptXPos meters 0

LAdesEndptYPos meters -0.2

slgnalSet LAdesEndptVel

LAdesEndptXVel m/sec

LAdesEndptYVel m/sec

slgnalSet LAdesEndptAcc

LAdesEndptXAcc m/sec^2

LAdesEndptYAcc m/sec^2

slgnalSet RAendptPosGains

RAendptPosXGain

RAendptPosYGain

20

20

slgnalSet RAendptVelGains

RAendptVelXGain

RAendptVelYGain

slgnalSet RAendptIntGains

RAendptIntXGain

RAendptIntYGain

4O

4O

slgnalSet LAendptPosGains

LAendptPosXGain

LAendptPosYGain

20

20

slgnalSet LAendptVelGains

LAendptVelXGain

LAendptVelYGain

slgnalSet LAendptIntGains 2
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LAendptIntXGain 40

LAendptIntYGain 40

signalSet RAendptFeedback

RAendptXfeedback

RAendptYfeedback

signalSet LAendptFeedback

LAendptXfeedback

LAendptYfeedback

signalSet RAendptControl

RAendptXcontrol m/sec^2

RAendptYcontrol m/sec^2

signalSet LAendptControl

LAendptXcontrol m/sec^2

LAendptYcontrol m/sec^2

E.5 Joint-Control Gains

# Name :

# jointPDcontrol.dat

#

# Description:

#

# Written by: Vincent Chen

# Revised: Vincent Chen

# Modified for BTController.

#

#.

November 1990

May 1991

slgnalSet RAJointAngleGains

RAShlderPosGain

RAElbowPosGain

slgnalSet LAJointAngleGains

LAShlderPosGain

LAElbowPosGain

slgnalSet RAJointRateGains

RAShlderVelGain

RAElbowVelGain

slgnalSet LAJointRateGains

LAShlderVelGain

LAElbowVelGain

slgnalSet RAdesJointAngles

RAdesRtShlderPos rad

RAdesRtElbowPos rad

2

0.7

0.5

2

0.7

0.5

2

-i

1

slgnalSet LAdesJointAngles 2
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LAdesRtShlderPos rad 1

LAdesRtElbowPos rad -i

signalSet RAdesJointRates 2

RAdesRtShlderVel rad/sec 0

RAdesRtElbowVel rad/sec 0

signalSet LAdesJointRates 2

LAdesRtShlderVel rad/sec 0

LAdesRtElbowVel rad/sec 0

signalSet RAdesJointAccel

RAdesShlderAcc rad/sec^2

RAdesElbowAcc rad/sec^2

signalSet LAdesJointAccel

LAdesShlderAcc rad/sec^2

LAdesElbowAcc rad/sec^2

PDdataSet RAJointPDcontroller

pos: RAJointAngles

vel: RAJointRates

output: RAJointTorques

Kp: RAJointAngleGains

Kv: RAJointRateGains

desPos: RAdesJointAngles

desVel: RAdesJointRates

orientation: 0

PDdataSet LAJointPDcontroller

pos: LAJointAngles

vel: LAJointRates

output: LAJointTorques

Kp: LAJointAngleGains

Kv: LAJointRateGains

desPos: LAdesJointAngles

desVel: LAdesJointRates

orientation: 0

Sample

Sample

E.6 Base-Control Gains

Name :

baseControl.dat

Revised: Vincent Chen

Modified for own use.

signalSet DesBasePos

desBasePosX meters

desBasePosY meters

May 1991
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signalSet DesBaseOrient

desBaseOrient radians

signalSet DesBaseVel 2

desBaseVelX m/sec

desBaseVelY m/sec

signalSet DesBaseAngVel 1

desBaseAngVel rad/sec

signalSet DesBaseAcc 2

desBaseAccX m/sec^2

desBaseAccY m/sec^2

signalSet DesBaseAngAcc 1

desBaseAngAcc rad/sec^2

signalSet BasePosGains

basePosGainX 31

basePosGainY 31

signalSet BaseVelGains

baseVelGainX 90

baseVelGainY 90

signalSet BaseOrientGains 1

baseOrientGain 0.6

signalSet BaseAngVelGains 1

baseAngVelGain 2.0

signalSet BasePosFeedback 2

basePosFeedbackX

basePosFeedbackY

signalSet BaseOrientFeedback

baseOrientFeedback

signalSet BasePosControl 2

basePosControlX m/sec^2

basePosControlY m/sec^2

signalSet BaseOrientControl

baseOrientControl i/sec^2
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