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WAVELET FILTERING TO REDUCE

CONSERVATISM IN AEROSERVOELASTIC

ROBUST STABILITY MARGINS
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Abstract OBES

P(s)

Wavelet analysis for filtering and system identification was P(s)

used to improve the estimation of aeroservoelastic stabil- (_

ity margins. The conservatism of the robust stability mar- s

gins was reduced with parametric and nonparametric time- t

frequency analysis of flight data in the model validation pro- u
cess. Nonparametric wavelet processing of data was used to WT

reduce the effects of external disturbances and unmodeled dy- 14_

namics. Parametric estimates of modal stability were also ex- VVad d

tracted using the wavelet transform. Computation of robust Win

stability margins for stability boundary prediction depends l_Zns
on uncertainty descriptions derived from the data for model x(t)

validation. F-18 High Alpha Research Vehicle aeroservoelas- _(t)

tic flight test data demonstrated improved robust stability X(w)

prediction by extension of the stability boundary beyond the )((w)

flight regime. X (T, _)

Y
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Introduction

Envelope expansion of new or modified aircraft often re-

quires structural stability testing to verify safety margins

to prevent against aeroservoelastic (ASE) instability. In-

flight testing allows determination of aeroelastic or ASE
effects as a function of flight parameters. Flight data is

acquired for stability estimation and system identifica-

tion to compare with analytic predictions. Any anoma-

lies are regarded with care for safety of flight.

Excitation systems are often essential to establish stabil-

ity trends from noisy measurements since atmospheric

turbulence is generally insufficient to provide adequate
levels of excitation 3. These systems often generate de-

terministic nonstationary input signals. Wavelet signal

processing has shown promise for system identification

in such environments by application as filter banks for
data enhancement. Improvement in flight data analy-

sis is achieved by discriminating areas of low signal-to-

noise ratio, unmodeled dynamics, and external distur-

bances. Removing aspects of signal responses detrimen-
tal to linear identification methods may improve stability

tracking 2,5,21.

Wavelet transforms have also been applied to parametric

identification of time-varying multiple degree-of-freedom

systems by estimating the impulse response using corre-
lation methods 6'9. Modal frequency and damping pa-

rameters are estimated directly from the data with-

out intermediate model identification schemes. In these

schemes, parameter range approximations are necessary
to discriminate frequency and damping.

A recent method is uses a wavelet transform (WT) on

free response data to directly supply information on

time-dependent modal decay rate and phase variation.

Without any approximation of parameter range, natural

frequencies and damping ratios are extracted from the

response. Damping and frequency trends are useful for

noting changes in system dynamics as a function of flight

condition, thereby helping to reduce conservatism in real

parameter variations of the uncertainty model.

Model validation is a critical procedure in the compu-

tation of robust stability margins. The margins are ad-

versely affected by poor characterizations of the uncer-

tainty size and structure, which are determined by per-

turbation magnitude, location in the system, and type

(real or complex). Wavelet processing of ASE flight test

data improves the robust stability margin estimate by

helping to reduce the conservatism in the uncertainty

description pertaining to both complex (nonparametic)

and real (parametric) perturbations.

This paper augments wavelet filtering with wavelet-
based modal parameter extraction to produce robust

stability margins with reduced-norm uncertainty sets of

both complex-nonparametric and real-parametric petur-
bations. The decrease in conservatism results in a more

practical and valuable robust stability margin.

Transfer functions and modal parameter estimates de-

rived from time-frequency Morlet wavelets are used to es-

timate state space ASE models from F-18 HARV 1 (High

Alpha Research Vehicle, fig. 1) flight data. These mod-
els are used in a robust stability boundary prediction

method based on the structured singular value, # 10,11

Figure 1:F-18 HARV

F-18 HARV and ASE Flight Test

The F-18 HARV aircraft is a two-seat fighter that was

modified to include thrust vectoring paddles on the en-

gines and a research flight control system to ensure sta-
bility at high angle-of-attack flight conditions 17. The

flight system also included an excitation signal generator,

designated as OBES (on-board excitation system), for

aerodynamic parameter identification, closed-loop sta-
bility monitoring, and aeroservoelastic excitation 4. For

ASE stability monitoring, the OBES was configured to

sum programmed digital signals to the control system
actuator commands for structural excitation of the pri-

mary modes (table 1). Inputs from 5 to 20 Hzwere added
to the control surface commands at angles of attack from

5 to 70 deg a at lg.

Antisymmetric Mode w (Hz)

Fuselage I st Bending 7.1

Wing 1st Bending 8.8

Wing I et Torsion 12.0

Stabilizer 18t Bending 13.6

Wing Fore-Aft 15.2

Fin I et Bending 15.7

Fuselage 18t Torsion 19.1

Fuselage 2nd Bending 21.4
Exhaust Vane Rotation 22.1

Inboard Flap Rotation 23.2

Fore-Fuselage Torsion 24.2

Table 1:F-18 HARV calculated elastic frequencies.

: 2



AnalyticalpredictionsindicatedpoorASEstabilityro-
bustnessin thelateral-directionalfeedbackloops.Struc-
turedsingularvaluesof complementarysensitivitynear
thefirst antisymmetricwingbendingandwingtorsion
modes(about9 Hz and 12 Hz, respectively) approached

0 dB, and the wing-fore aft mode near 15 Hz was at -6 dB.

Flight envelope limits were 15,000 to 35,0000 It altitude

up to Mach 0.7. Worst-case flight conditions from the

analysis were less than Mach 0.3, greater than 30,000 It
altitude, and above 50 deg a. This paper addresses ro-

bust stability at a representative worst-case flight condi-

tion of 50 deg a at Mach 0.3 and altitude 30,000 ft.

Time-Frequency System Identification

A desirable feature of signal analysis is adaptation to
both transient and stationary characteristics, which im-

plies both time and frequency domain resolution criteria

subject to the uncertainty principle. These competing re-

quirements demand a method that is tunable according

to the local signal dynamics. For general types of input
excitation, constant time-frequency resolution analysis 2'5

may not be applicable.

Redundant continuous wavelet transform methods give

arbtrarily good resolutions, but are cumbersome 7 and
often slow 13 for reconstruction and filtering. Alter-

natively, non-redundant (compact and orthonormal)
wavelet transforms are fast and accurate, but are limited

in frequency resolution even with wavelet packets. Good

frequency resolution is obtained with classical harmonic
wavelets 15, but time resolution is sacrificed. The ob-

jective of adjusting the competing requirements of time
and frequency resolution with fast, accurate processing

is accomplished with a combination of compact orthogo-
nal and harmonic wavelet properties in the compact har-

monic wavelets 7`s.

Nonparametric Estimation- Wavelet Filtering

The multivoice wavelet transform was introduced to ex-

ploit multiresolution analysis using compact harmonic
wavelets 7,2°. Multivoice, or multiscale, refers to redun-

dant representations of signals on multiple frequency
bands 19. Nonorthonormal Morlet wavelets are approx-

imated with (harmonic-like) discretizations on multiple

wavelet scales. These form a nonorthogonal redundant

basis for the signal space, which does not admit a mul-

tiresolution analysis. The discrete wavelet transform

(DWT) needs to be derived from the wavelet basis to

get a multiresolution analysis of the sampled continuous
Morlet transform 2°.

The DWT is implemented as a filter bank covering a pre-

defined range of frequencies with corresponding number

of frequency bands (voices) per octave. Interpolation, or

scaling, filters are introduced to define how the scales re-
late to each other in a dyadic fashion for the multiscale

representation. These scaling filters are compact (finite

impulse response) for fast and accurate reconstruction.

Therefore, multivoice transforms provide practical, fast,
and flexible means for analysis and filtering of nonsta-

tionary data with tunable frequency resolution versus
time localization.

The wavelet transform of signal x(t) over the time-scale

(r, a) plane is represented as

1 fz(t)9, t-_%(,,a) = -_ ( )dt

where scale parameter a is proportional to the duration

and inversely proportional to the peak frequency Wo of

the complex Morlet wavelet

X t 2 .

g(t) = e
Vz_

The spectrum of a dilated and translated Morlet wavelet

Ga,T @) = e-(a_-_o)=ei_T (1)

reaches a maximum value at a = -_. Frequency dis-
ta/

cretization is logarithmic in the frequency range of inter-

est by setting the sequence of scale values to ai = ao"/i,

where (log%_/> 1), is the constant frequency step. In-

tegration step log Ti is chosen small enough so the fre-
lg(t)quency bandwidth of the scaled wavelets gi(t) = _ _.

will appreciably overlap.

A time-scale representation of data is often called a

scalogram 14, which is actually the power spectral density

IWg(r,a)[ 2 of the signal over the (v,a) plane. Example
scalograms of a 5-20 Hz F-18 HARV aileron chirp (linear

frequency sweep) input command and lateral accelera-
tion feedback response at 50 deg a are shown in figure 2

(note log frequency scale).

Time-frequency masking of input and output is per-

formed along the sweep. This filtering procedure on the

input and output is shown in figure 3 as processed scalo-

grams. On-board excitation system (OBES) inputs are

relatively clean since they are generated digitally by the

flight system, so time-frequency filtering of the output

will be more significant in this case. Figure 4 shows the

effect of filtering on the responses. Note that effective

signal reconstruction from the processed scalograms is

accomplished from the real wavelet basis.

Parametric Modal Estimation -

Morlet Wavelet Transform

Modal parameters can be estimated with wavelets by

analysis of the system impulse response is (see appendix).

The DWT of a signal using the complex Morlet wavelet
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Figure 2: Scalogram contours of OBES aileron command
input (top) and lateral acceleration response (bottom).
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Figure 3: Scalogram contours of filtered OBES aileron com-
mand input (top) and lateral acceleration response (bottom).
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Figure 4: Responses of original (top) and filtered (bottom)
lateral acceleration from OBES aileron command input.

is a complex-valued matrix whose modulus and phase are
related to impulse response parameters. In the current

application, this procedure is applied at every time point
assuming at each instant that the response is a sum of

multiple degree-of-freedom impulse responses.

An example of response frequency estimation using the

linear phase variation of the WT is illustrated in figure 5
for the filtered lateral acceleration response from aileron

input command at 50 deg a (data from fig. 4). The raw
estimate in figure 5 (top) corresponds to the derivative of

the phase variation of the WT between 20-27 sec. Hence,
this is an estimate of instantaneous frequency from equa-

tion 3. Data spikes are removed by limiting values of the
second derivative below some threshold. The refined es-

timate of figure 5 (bottom) is computed from the data of

figure 5 (top) with spikes removed, and these are used to

derive an approximate response frequency of 11.8+0.3 Hz

over the respective time span. Wavelet modulus decay is

used similarly to derive decay rate.

Some results of wavelet-based modal estimation are illus-

trated in figure 6 using the same data from the wavelet
filtered results of figure 4. Figure 6 (upper left) rep-
resents the mean value of the instantaneous frequency

¢(t), or estimated a_g, as a function of the complex Mor-
let wavelet frequency wo. Similarly, figure 6 (upper right)

plots the estimated decay rate, or frequency _o:n, also as
a function of Wo. From these two parameters are derived

the modal natural frequency w, and modal damping ra-

tio _ as functions of Wo in the lower left and lower right

plots, respectively.

Finally, the bank of Morlet wavelets used for natural

frequency and damping ratio estimation are tagged for
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starting time and duration to get the modal estimates

as functions of time. Time-dependent modal parame-

ter estimates are displayed in figure 7. It is observed

that modal frequency is essentially the tracked input fre-

quency in this case since the cleaned output signal from

figure 4 (bottom) is being used, and this response tends

to track the input frequency. From the scalogram of

figure 3 (bottom), the response lacks definition between

20-25 sec and 32-34 sec. These gaps also correspond to

the lower output signal levels from figure 4 (bottom) at

these time intervals. Lack of observability makes the

modal damping results of figure 7 (right) questionable in

these particular intervals.

An important point to emphasize here is that the Morlet

wavelets are being used to estimate the modal parame-

ters. Therefore, an implicit filtering process is being per-

formed independent of the explicit procedure described

previously. The wavelet basis representation of the sig-

nal is itself a noise-free subspace of the signal function

space, and the modal parameters are derived from this

signal subspace.
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Damped frequency vs. wavelet frequency (upper left), decay

rate vs. wavelet frequency (upper right), natural frequency

vs. wavelet frequency (lower left), and damping ratio vs.

wavelet frequency (lower right).
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p Method

The p framework represents systems as operators with

A method to compute stability margins of aeroservoelas- interconnections known as linear fractional transforma-

tic systems has been formulated based on robust stability

theory _2. This method uses a set of structured opera-

tors A, referred to as uncertainty, to describe errors and

unmodeled dynamics in an analytical model. The struc-

tured singular value, p, is used to compute a stability

margin for this model that is robust, or worst-case, to

the uncertainty operators _.

tions. This paper will use the notation F(P, A) to rep-

resent an feedback interconnection of the plant P and

uncertainty A. Aeroservoelastic systems may have er-

rors affecting different dynamic subsystems so the uncer-

tainty operator A is structured such that the feedback

interconnections ensure each subsystem is affected by the

proper component of A.



Flight data can be incorporated into the p method by

formulating an uncertainty description that accounts for
observed variations and errors 11. A model validation

analysis is performed on the plant model to ensure the

range of dynamics admitted by the uncertainty is suffi-
cient to cover the range of dynamics observed with the

flight data. Thus, a robust stability margin is computed

that directly accounts for flight data.

A flowchart for information processing by the tt method

is shown in figure 8.

Data

Ix(t)

FFT ]X(w)

Model l

P(s)

Model [

--[Validation F(P, A)

F

Figure 8: Flowchart of # method for robust stability margin
analysis of ASE dynamics.

An ASE stability margin, F, is determined by comput-

ing # with respect to an uncertainty description, _, that
admits variations in dynamic pressure (q) and an uncer-

tainty description, A, that describes modeling errors l°.

This margin relates the largest change in dynamic pres-
sure that may be considered while guaranteeing the plant

model is robustly stable to all errors described by A.

# Method with Wavelet Processing

The tt method can be coupled with the wavelet filter-

ing processes of parametric and nonparametric estima-
tion discussed previously. This coupling is achieved by

introducing several time-frequency operations based on

wavelet filtering into the basic process. The general infor-
mation flowchart for the p method with wavelet filtering

is sho_m in figure 9.

Wavelet transform operations are introduced to process
the time domain data, x(t), before a frequency domain

representation, ._'(_), is computed. These operations

map the time domain data into a time-frequency domain

scalogram via a wavelet transform and then map a scalo-

gram back into the time domain via an inverse wavelet
transform. A time-frequency filtering process operates

between the WT and inverse WT to remove unwanted

features from the scalogram before the inverse WT com-

putes a time domain signal, _(t).

A modal parameter estimation operation is introduced

using the wavelet algorithm. Properties of the system
dynamics are derived from the filtered scalogram. The

Data

x(t)

] Filter I

t Model I

P(s)

. Modal

Estimation

 (t)

FFT l .- Model [Validation I -'-_
Yc F( P, £)

Figure 9: Flowchart of It method with wavelet filtering for
robust stability margin analysis of ASE dynamics.

elements of a nominal plant model, P, are updated with

these parameter estimates and a new plant model,/5, is

used to represent the aeroservoelastic dynamics.

The final operations of the # method are traditional ro-

bust stability operations that operate on frequency do-

main data. The effect of the wavelet filtering is to use

the filtered versions of the data and plant model for the

modal validation. Thus, a new uncertainty operator, /_,

is associated with the parameter updated plant, P, to
account for errors observed from the filtered data, _(t).

A robust stability margin, F, is computed that describes

the largest change in dynamic pressure for which /5 is

robustly stable to the errors A.

# Method with Parameter Estimation

An implementation of the p method with modal param-
eter estimation is accomplished using the flowchart of

figure 9. The filter operation for this implementation is

ignored so the wavelet map )C(T,w) is equivalent to the

original map X (T, W).

The wavelet based method for parametric estimation is

used to analyze the wavelet map _'(T, W) of the flight

data. This method estimates modal parameters to de-

scribe the system dynamics that generated the flight

data. A plant model, /51, is computed by updating ele-
ments of the nominal plant model, P0, with the modal

parameter estimates. Only a limited subset of dynamics



will beobservablein thedatasoonlyacorrespondingly
limitedsubsetof theplantmodalparameterswillbeup-
dated.

Anuncertaintydescription,/_x,isgeneratedfortheplant
withupdatedmodalparameters,P1, using the model val-

idation procedure. This procedure essentially uses the

original flight data measurements since the WT and in-
verse WT operations will cancel each other except for

numerical inaccuracies. Thus, x(t) _ Fc(t) and an un-

certainty description is computed for the updated plant
which accounts for all variations and anamolies in the

recorded data.

The magnitude of uncertainty associated with the up-

dated plant should be less than (or equal to) the un-

certainty magnitude associated with the nominal plant.
This decrease in uncertainty results from the ability of

the updated plant to account for bias in the nominal

plant estimates. Consider the uncertainty balls needed

to cover parameter values and measurements shown in

figure 10.

Figure 10: Balls of uncertainty covering nominal value (o)
and measurements (x) (left) and parameter estimation value
(5) and measurements (x) (right).

The left plot of figure 10 shows the uncertainty ball as-

sociated with a nominal parameter, indicated by (o), to

account for the measured parameters, indicated by (x).

The right plot shows the uncertainty ball associated with

an updated parameter estimate, indicated by (5), to ac-
count for the same measured parameters. Clearly the

uncertainty associated with the updated parameter is
less than the uncertainty associated with the nominal

parameter. Thus, {[/_1[{oo _< [IAolloo-

The conservatism in robust stability margins computed

by the /_ method arises from the excessive uncertainty
needed to account for errors in a model. A decrease

in uncertainty from model updating with the parameter

estimation process should decrease this conservatism.

p Method with Wavelet Filtering and
Parameter Estimation

Another implementation of the # method with modal

parameter estimation results from including a nontriv-

ial filtering operation in the flowchart of figure 9. The

wavelet filtering operation, which is a type of nonpara-

metric estimation, is used to generate scalograms to rep-

resent desired features of input and output data in the

time-frequency domain. The filtered scalogram, X (r, _),

may be arbitrarily different than the original scalogram,

X(T,W), depending on the energy of the signal compo-
nents which do not correlate to desired features.

The filtered wavelet map is input to the parametric es-

timation process. Resulting modal parameter estimates

represent the dynamics of the system model that gener-
ates the desired features dominant in the filtered maps.

The elements of the nominal plant model, Po, are re-

placed with the modal parameter estimates to generate
an updated plant model,/52.

The filtered wavelet map is also used to generate an un-
certainty description for the updated plant P2. A time

domain signal, _(t), which represents the filtered mea-

surement data is computed by an inverse wavelet trans-

form on the filtered scalogram. A frequency domain

representation of this filtered signal is computed from

a Fourier transform and is used by the model validation

process. The resulting uncertainty, 42, describes the

variations between the updated plant P2 and the filtered
data.

The uncertainty description associated with /52 should

be less (or equal) when validating the filtered data as

compared to validating the unfiltered data. The filter-

ing process should remove nonlinearities and harmon-

ics along with noise that causes aliasing and errors in
measured transfer functions. This removal of errors may

decrease the variance in modal parameter estimates so

that an updated model can be generated with less un-

certainty. Consider the example balls of uncertainty as-

sociated with a parameter shown in figure 11.

Figure 11: Balls of uncertainty covering parameter esti-
mation value (5) and measurements (x) (left) and parameter
estimation value (6) and filtered measurements (_) (right).

The left plot of figure 11 shows the uncertainty ball as-
sociated with a parameter, indicated by (5), to account

for the measured parameters, indicated by (x). The right

plots shows the uncertainty ball associated with the same

parameter but accounting for parameters obtained from

filtered data, indicated by (_:). The filtered data gener-

ate parameters that are less scattered allowing the un-

certainty ball to be smaller. The filtering process may

actually cause greater scattering; however, it is assumed
data measurements with the least scatter will be used for

model validation so [[h211oo _< [I/_111oo _< []A0[]oo.



Theconservatismin robuststabilitymarginscomputed
by the # method may be decreased by including the

wavelet filtering into the process.

Aircraft Models and Uncertainties

Robust stability margins for the aeroservoelastic dynam-
ics of the F-18 HARV are computed using the # method

with wavelet filtering. Stability margins are computed

for the antisymmetric modes (table 1) of the lateral-
direction aeroservoelastic dynamics for the aircraft at

Mach 0.3 and an altitude of 30,000 ft (_ = 41 Ib/ft 2)

at 50 deg a. A baseline implementation of the p method
indicates these margins may lie within the flight envelope

so any reduction in conservatism could be significant at

this flight condition 12

An uncertainty description is formulated using three op-
erators to describe errors in an F-18 HARV analytical

model. A complex operator, Ain, is a multiplicative un-

certainty in the control inputs to the plant and accounts
for actuator errors and unmodeled dynamics. Another

complex operator, Aadd, relates the control inputs to the
feedback measurements to account for uncertainty in the

magnitude and phase of the computed plant responses.
The remaining uncertainty operator, AA, is a real para-

metric uncertainty affecting the modal parameters of the

open-loop state matrix to describe errors in natural fre-

quency and damping parameters.

The block diagram for robust stability analysis of the

F-18 HARV aeroservoelastic dynamics is shown in fig-

ure 12. This figure includes an operator, (f_, that af-

fects the nominal dynamics to describe changes in flight
condition and is used to interpret /2 as a stability mar-

gin 10. Additional operators, B_da and I_n, are shown

as weightings to normalize the frequency varying uncer-

tainty operators, Aaad and Ai,,. The system model also
contains 2% sensor noise corruption on each measure-

ment.

The lateral-directional controller, K, has 29 states. The

feedback measurements and control inputs associated

with this controller are given in table 2.

roll rate

yaw rate

sideslip rate
lateral acceleration

aileron

differential leading edge flap

differential trailing edge flap
differential stabilator

rudder

yaw thrust vectoring

Table 2- Feedback measurements (left) and control com-

mands (right) for the thrust vectoring lateral-directional con-
troller K.

y

noise

_____).,___

Figure 12:F-18 HARV uncertainty block diagram for ro-
bust stability margin analysis.

_t

Baseline Model Validation

A model with an associated uncertainty description was

generated to compute robust stability margins by the p
method. The plant model, Po, is the nominal model gen-

erated by a finite element analysis of the aeroservoelastic

dynamics. The parameters in this model are theoretical
and have not been updated by analysis of flight data.

The model contains seven antisymmetric elastic struc-

tural modes between 5 and 20 Hz (table 1).

An uncertainty description, A0, is generated using the

model validation procedure on a frequency domain rep-
resentation of the unfiltered data as in figure 8. Only the

observed energies from frequencies below 20 Hz are used
for validation because there is considerable energy at fre-

quencies near 20 Hz caused by structura! dynamics as-
sociated with the thrust-vectoring vane system that are

difficult to model. The primary transfer function used
in the derivation of the uncertainty description is the

lateral acceleration response from yaw thrust vectoring.

These data responses demonstrate good observability of

the primary modes up to 20 Hz.

Separate parametric uncertainty levels are chosen for
each mode of the open-loop state matrix to reflect dif-

ferent levels of accuracy. These uncertainty magnitudes

are computed to describe observed variations between
the model transfer function and the flight data measure-

ments. The nominal modal parameters and the amount

of variation admitted by the parametric uncertainty are

given in table 3.

The amount of variation needed to describe modal pa-

rameter errors is fairly significant for all modes, espe-

cially in damping ratio. The fuselage first torsion and



Mode (nz) ¢
Fuselage 1st Bending

Wing 1st Bending
Wing 1st Torsion

Wing Fore-Aft

Fuselage 1`t Torsion

• 6.85.-t- .07 .012 + .006

8.96 ± .18 .006 ± .004

12.84 ± .13 .011 ± .006

15.69 ± .63 .010 ± .007

18.86 ± .76 .010 ± .005

Table 3: Modal parameters and uncertainty variations for
model P0 and A0.

wing fore-aft modes have properties which are particu-
larly poorly modeled so there is up to 4% error in natu-

ral frequency and 70% error in damping. The remaining

modes have only 2% error in natural frequency but still

require at least 50% error in damping.

The weighting functions for the input multiplicative and
additive uncertainties are chosen to account for any er-

rors between the model and the flight data that can not

be covered by the parametric modal uncertainty.

s + 100
W_,, = 10

s + 5000

Wadd = .02

Model Validation with Parameter Estimation

The parametric modal estimation procedure was used to

process the flight data and compute modal parameters

for an analytical model. This procedure uses equation 2

to generate estimates of the modal parameters from the

unfiltered wavelet map X(T,W) and associated proper-
ties.

A plant model, P1, is computed which is the estimated

plant model obtained from the wavelet filtering. This

model is formulated initially as the nominal plant P0
but with certain theoretical modal parameters replaced

by their estimated values. The nominal values of these

parameters are shown in table 4. The natural frequencies

are not changed by more than 1 Hz for any of the esti-
mated modes; however, the estimated damping parame-

ters are significantly higher than the theoretical values.

An uncertainty description, A1, is associated with P1 to
describe the levels of modeling error in this estimated

plant. The magnitudes of the parametric modal un-
certainty in A1 are chosen by comparing flight data
with theoretical transfer functions for P1- The ranges

of modal parameter variations admitted by this uncer-

tainty are given in table 4.

The variations in both natural frequency and damp-

ings are seen to be considerably reduced in table 4 for

F(P1, A1) as compared to the large variations in table 3
for F(Po, A0). The estimated modal parameters used

Mode w (Hz)

Fuselage 1 st Bending

Wing 1_t Bending

Wing 18t Torsion

Wing Fore-Aft
Fuselage 1 st Torsion

6.85 ± .07 .012 ± .006
8.60 ± .10 .040 ± .021

13.31 ± .15 .045 ± .024

16.51 ± .35 .045 ± .023

18.21 ± .37 .030 ± .010

Table 4: Modal parameters and uncertainty variations for
model P1 and A1.

in P1 are much closer to those of the aircraft so the pre-

dicted response of P1 closely matches the flight data mea-

surements. Thus, the natural frequency errors are all less

than 2% while the damping errors are all less than 55%.

The weightings, W,,dd and Win, affecting the remaining
uncertainties in A1 are identical to those of Ao.

Model Validation with Wavelet Filtering and

Parameter Estimation

Modal parameters for model estimate t52 are extracted

from the time-frequency domain representation of the

wavelet-filtered flight data )((r, ,_). This is the procedure

outlined in figure 9. As seen in table 5, the modal esti-
mates from the filtered data are similar to the unfiltered

estimates of table 4. Parameter variations, however, re-

sulting from validated model F(P2,/_2) are reduced in

modal frequency to 1% and in modal damping to 10%.

Mode w (Hz) ¢

Fuselage 1"t Bending

Wing 1"t Bending

Wing 1st Torsion

Wing Fore-Aft

Fuselage 1st Torsion

6.85 ± .07 ,012 ± .001

8.70 ± .09 .035 ± .003

13.31 ± .14 .045 ± .004

16.61 ± .17 .045 ± .004

18.21 ± .18 .040 ± .004

Table 5: Modal parameters and uncertainty variations for
model P_ and As.

ASE Stability Margins

Nominal stability margins are computed for the plant

model using the original theoretical modal parameters

and the updated models using parameters estimated
from wavelet filtering. These margins are computed from

a # analysis with respect to the variation in dynamic

pressure, _, but ignoring the modal and complex uncer-
tainty operators. The nominal stability margins, F, are

given in table 6 and demonstrate the largest decrease rel-
ative to the nominal dynamic pressure of (1 = 41 Ib/lt 2

that may be considered before the models incur an ASE

instability. Therefore, a larger negative margin indicates

a greater margin of robust stability.

The original theoretical model has a nominal stability



Model F w

F(Po, 0) -268 lb/ff e 14.8 Hz

F(P1,0) -368 lb//ft 2 14.8 Hz

F(P2, 0) -379 lb//ft 2 14.8 Hz

Table 6: Nominal stability margins for models.

margin of F = -268 Ib//ft 2 resulting from a critical insta-

bility of the wing fore-aft mode at 14.8 Hz. The margins

are increased by updating the models with modal param-
eters estimates; however the wing fore-aft mode remains

the critical mode for these updated models. This increase

in stability margin associated with wavelet filtering is

not guaranteed to occur for all applications; rather, the

filtering is designed to make the nominal model more
accurate, The nominal model for the F-18 HARV has

excessively low damping values compared to the damp-

ing levels resulting from the wavelet filtering. Increasing

damping ratio estimates make the plant effectively more
stable and increase the stability margins.

These nominal margins are all greater in absolute value

than the nominal dynamic pressure so they demonstrate

the nearest instability to the flight envelope occurs at

a negative dynamic pressure, which is physically unre-

alizable. Thus, the nominal dynamics are free of ASE
instabilities within the research flight envelope.

Robust stability margins are computed with respect to
the uncertainty description of figure 12 and given in ta-

ble 7. Model F(Po,A0) describes the original model

with parameter variations as in table 3. The model with

modal parameter estimates, F(P1, A1), has the reduced

uncertainty levels leading to the variations in table 4.

The remaining model, F(P2,A2), describes the model

formulated by combining wavelet filtering with parame-
ter estimation and introducing uncertainty to allow the

variations in table 5.

Model F w

F(Po, A0) -4 lb//ff "_ 15.4 Hz

F(Px, A1) -222 Ib/ft 2 7.0 Hz

F(P2, A2) -239 lb/ft 2 7.0 Hz

Table 7: Robust stability margins for models with respect
to uncertainty descriptions.

The stability margin of the original model is strongly

affected by considering uncertainty. This margin is re-

duced from F --- -268 Ib/ft 2 for the nominal dynamics

to F = -4 Ib/ft 2 for the dynamics with respect to uncer-

tainty. The critical mode remains the wing fore-aft mode

despite the uncertainty; however, the dynamic pressure
at which this mode becomes unstable is quite different.

This robust stability margin demonstrates the nominal

model may be misleading and the nearest unstable flight

condition may" actually lie within the flight envelope.

The robust stability margin for the model F(P1,A1),

using modal parameter estimates, is significantly larger

than the margin of the original system. The wavelet pro-

cessing is able to identify a more accurate model with less

associated uncertainty so the conservatism in the margin
is reduced. The robust stability margin for this model

is F = -222 lb/ft 2 and indicates the nearest instability

for the updated model. Despite the range of dynamics
incurred by uncertainty, the margin is at a negative dy-

namic pressure and so the flight envelope is free of ASE

instabilities.

The critical mode associated with the robust stability

margin for the updated model is the first fuselage bend-

ing mode. This differs from the critical wing fore-aft
mode associated with the nominal margin. This shift in

critical mode is a result of modal parameter updates and

corresponding reduced uncertainty sets.

The model formulated from parameter estimation cou-

pled with wavelet filtering, F(P_, A2), has a robust sta-

bility margin which is similar to the margin of F(P1, A1).

The magnitude of this margin is slightly higher as a result
of the reduced uncertainty levels needed to validate the

filtered flight data; however, the critical mode remains

the fuselage bending mode.

Reduction in parameter variations from nonparametric

wavelet filtering did not have as much an effect on robust

stability as the updated parameter estimates. Nonpara-

metric filtering has more impact on parameter variance

which was a less significant factor than parameter bias.

To summarize, comparison between the nominal results

in table 6 and the robust margins of table 7, shows that

the decrease in margin from uncertainty is clearly evi-
dent. The decrease is most substantial for plant model

Po, which has the greatest amount of modal uncertainty

in A0, yet the frequency of instability is consistent with
the nominal cases. When updated modal parameter es-

timates are incorporated in P1 and P2, the decrease in

margins compared to the nominal models are somewhat
less because of the smaller uncertainty sets (A1, As) com-

pared to A0.

The main difference between nominal and robust results

is in modal frequency of instability. Wing fore-aft modal

frequency increased about 1 Hz from its theoretical value

to the updated value, and thereby became a less signifi-
cant factor in the stability margin calculation compared

with first fuselage bending. This result confirms that

the effect of parameter estimation, and essentially data

quality, in model validation becomes a critical factor in

robust stability boundary prediction.

- 10



Conclusions

Improvements in aeroservoelastic flight data analysis

and stability prediction estimation have been addressed.

Wavelet approaches to system identification were ap-

plied by combining both filtering and parametric time

frequency identification algorithms with Morlet wavelets.
The combination of these estimation schemes extracted

modal estimates and system uncertainty representations

for less conservative model validation. Uncertainty
ranges validated by F-18 HARV ASE data were shown

to decrease by incorporating modal estimates based on
the wavelet-processed data.

With the model parameter and uncertainty description

updates, the critical aeroservoelastic instability changed

in modal frequency and flight condition. A predicted

instability within the flight envelope using an uncertain
baseline model was found to be too conservative. Model

updates pushed the instability much beyond the flight

regime. The ultimate objective of predicting stability

boundaries from flight data was enhanced by a reduction

in conservatism of the stability margin estimates.

Appendix

Given a general harmonic signal

x(t) = k(t) cos(¢(t)t)

the WT of x(t) is

W(a, r) = v_k(t)e-(a¢(t)-_°)2ei¢(t)r.

For fixed dilation parameter ai (equivalently fixed fre-

quency w), the modulus and phase of the WT of x(t)
are

IW(a,.T)I = v_k(t)e -(a'¢(')-_°)_

L[W(ai,r)] = ¢(t)r (2)

Instantaneous frequency of a signal in this case can be

expressed asls

This shows that a general time-varying envelope k(t) or

phase ¢(t) of the signal can be determined from the mod-

ulus and phase of the WT for each fixed wavelet fre-

quency.

More specifically, from the impulse response of a single

degree-of-freedom viscous damper

x(t) = Ae -(_"t COS(Wdt + ¢o)

we have from equation 2,

IW(a,,T)l _ Ae-(W. t
k(t) = ,/aTe__.,..__.._=

¢(t)t = L[W(a.r)] = _vdt + ¢o

For a constant wavelet frequency line corresponding to ai

over time 7- in the (a, T) plane, estimation of the WT lin-

ear phase variation (or mean value of the instantaneous

frequency over time, from eq. 3) gives ¢(t) _ Wd, and the

envelope decay rate is (wn. Natural frequency wn and

modal damping ratio ( are therefore derived. The WT

becomes a complex representation of the original real

signal from which the signal eigenvalues are computed

without any approximation of their range.

Multiple degree-of-freedom systems are analyzed simi-

larly by noting that the dilated Morlet wavelet is a band-
pass filter (eq. 1). With sufficient resolution of dilation

ai, damped modal frequencies wd_ = _ can be discrim-a_
inated. To recap, the decay rate of the envelope of each

mode is calculated from the log-slope of the wavelet mod-

ulus decay, and damped modal frequency is estimated

as the linear phase variation of the WT as a function

of time. Adequate frequency resolution can be enforced

with the multiscaled compact harmonic Morlet wavelets.
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