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Directional solidification of eutectic alloys is a promising technique for producing
m-situ composite materials exhibiting a balance of properties. Consequently, the
microstructure, creep strength and fracture toughness of directionally solidified
NiAI NiAITa alloys were investigated. Directional solidification was performed
by containerless processing techniques to minimize alloy contamination• The
eutectic composition was found to be NiAI 15.5 at"/,, Ta and well-aligned micro-
structures were produced at this composition. A near-eutectic alloy of NiAI
14.5Ta was also investigated. Directional solidification of the near-eutectic com-
position resulted in microstructures consisting of NiAI dendrites surrounded by
aligned eutectic regions. The off-eutectic alloy exhibited promising compressive
creep strengths compared to other NiAl-based intermetallics, while preliminary
testing indicated that the eutectic alloy was competitive with Ni-base single
crystal superalloys. The room temperature toughness of these two-phase alloys
was similar to that of polycryslalline NiAI even with the presence of the brittle
Laves phase NiAITa.

Key words: in-situ composites, NiAI NiAITa. directional solidification, creep
resistance, fracture toughness.

I INTRODUCTION

Alloys based on the ordered intermetallic com-

pound NiA1 have the potential to be used in high

temperature structural applications due to their

superior oxidation resistance, high melting point,

and high thermal conductivity. _'2 However, im-

provements in both the room temperature fracture

toughness and elevated temperature strength are

necessary before NiAI alloys can be used in load-

bearing applications. Considerable research has

been aimed at improving the room temperature

ductility and fracture resistance of NiAI _ 4 with

only a few promising results. For example, a ten-

sile ductility of five percent has been measured for

both high purity 5 and iron-doped single crystals of

stoichiometric NiAl. 6 In addition, room tempera-

ture fracture toughness values of the order of 24
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MPax/m have been measured for NiA1 (Cr,Mo)

eutectics that were directionally solidified to pro-

duce in-situ NiAI-based composites containing a

refractory metal phase#

Improving the elevated temperature strength of

NiAI-based alloys may not be considered as chal-

lenging as improving low temperature fracture

properties. Nevertheless, very few attempts to

strengthen NiAI have actually produced materials

that are competitive with the nickel-based superal-

loys. 2 Conventional strengthening techniques such

as precipitation, solid solution, and dispersion

strengthening have all been applied with varying

success, "-,3with strengthening by precipitates of the

Heusler phases NizAITi and Ni=AIHf exhibiting the

most promise. _ 3.8,9 For example, Polvani et al. m

have demonstrated that the creep resistance of a

two-phase NiAI+Ni2AITi alloy is significantly

greater than that of the individual phases and was

comparable to polycrystalline Ni-based superalloys.

While impressive yield strength values have been
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measured for NiAi containing Heusler precipi-

tates, 2'9 the improved strengths of polycrystalline

alloys, due to solid solution and precipitation
strengthening, are diminished at low strain rates

such as those in the creep regime. 2'_
Another approach to strengthening NiAI con-

sists of developing composite materials containing

phases much stronger than the Heusler phase. For

example, Sauthoff has suggested the use of C!4

Laves compounds such as NiAINb and NiA1Ta
for strengthening NiAI. _2_3These phases are very

brittle and have the hexagonal MgZn 2 type crystal

structure. However, compressive yield strengths

surpassing those of advanced nickel-based super-

alloys have been measured for NiAI-Laves
alloys. 13 In general, the improvements in strength

of these two-phase alloys are proportional to the

volume fraction of Laves phase present. 12 ,4

In addition, eutectic microstructures are possible

within the NiAI-NiA1Nb and NiAI NiAITa systems
allowing for in-situ composite studies. Whittenberger

et al. have found that the creep strength of the

NiA1 NiA1Nb eutectic is extremely sensitive to micro-
structure and processing conditions. 14By directional

solidification of this eutectic, an order of magnitude
increase in creep resistance was measured compared

to materials processed using a casting and extrusion

procedure. Unfortunately, the creep strength of the
NiAI NiAINb alloys is still less than that of most

nickel-based superalloys. 14

Phase equilibria in the NiAI NiAITa system are

not very precisely defined. _5_6 Nevertheless, based

on Sauthoff's work 12,13with polycrystalline materi-
als, directionally solidified alloys from this system

may display better strengths than NiAI-NiAINb

alloys. Therefore, the purpose of this study was to

characterize the effects of containerless processing

on the microstructure, the elevated temperature

strength, and the room temperature fracture
toughness of in-situ composites based on the NiA1-

NiA1Ta system.

2 PROCESSING AND MATERIALS

2.1 Arc-melted ingots

A series of alloys containing high purity Ni, AI,

and Ta were arc-melted using a non-consumable
tungsten electrode in order to identify promising

microstructures for subsequent in-situ composite

studies. Each button, weighing approximately 12 g,

was melted at least five times and flipped over
between each melting to promote homogeneity.

The arc-melted ingots were then metallographi-
cally examined. From this survey study, a near-

eutectic alloy of NiAI-14.5Ta (in atomic percent)

was chosen for further investigation.

2.2 Directional solidification

Precursor ingots for subsequent directional

solidification were produced by induction melting

of elemental Ni and AI, and a Ni-Ta master alloy.

INGOT IS MOVED
DOWNWARD THROUGH
THE INDUCTION COILS I

INDUCTION COIL

(INDUCED POWER) 0

©
8OTTOM PORTION
IS ROTATED

LIQUID ZONE IS STRETCHED OR
SQUEEZED TO MAINTAIN A

CONSTANT LIQUID DIAMETER.

©
SOLID-LIQUID INTERFACE IS
MAINTAINED AT A CONSTANT

POSITION BY CONTROLLING
THE INDUCED POWER.

_LED

EDDY CURRENT PLATE

COOLING JACKET

Fig. I. Schematic of molten zone during directional solidification.
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The 1-kg charges were chill cast into a copper

mold. After removal of the hot-top, the precursor
ingots were nominally 25 mm in diameter and 300

mm in length. The ingots were then directionally

solidified in the containerless mode by the electro-

magnetically-levitated zone process in ultra-pure

helium atmospheres.
Containerless processing offers the advantage of

enhanced purity by eliminating alloy contamination

from crucible materials while simultaneously zone-

purifying the initial ingot material. The crucible is

eliminated by using induction power to heat, levi-
tate, and constrain the liquid zone. Directional

solidification is then accomplished by moving the

liquid zone through the length of the ingot by phys-

ically traversing the ingot through the induction
coil. A schematic of the levitated molten zone is

shown in Fig. 1. Without crucible containment,

precise dimensional control of the fYeezing ingot re-

quires that the shape and position of the molten
zone within the induction coils be controlled. The

control variables are the position of the solid liquid

interface and the liquid zone diameter (melt diameter).

Current practice allows ingots to be processed

under full computer control independent of any

temperature measurement, tT,_

Computer control is accomplished by using a

digitizing camera to capture an image of the molten
zone. The location of the solid liquid interface is

then found and held to a target position by con-

trolling the induced power. The shape of the zone is
controlled by maintaining a constant melt diameter

by a stretch squeeze action on the liquid, (Fig. 1).

Both the interface position and the melt diameter
are held to their target values by proportional,

integral control loops. While not a control variable,
the temperature near the solid liquid interface is

measured using an infrared pyrometer and
recorded as a function of run time for all melts.

An as-processed NiAI 14.5Ta ingot and the cor-
responding melt record are shown in Fig. 2. The

data in Fig. 2 represents the first attempt to

process this material. Computer control was ini-
tiated at about 3000 s. From Fig. 2, a constant

melt diameter was maintained by a stretch-

squeeze action on the liquid zone. Similarly, the
position of the soliddiquid interface was con-

trolled by varying the induced power. However,

an oscillation in the interface position (Fig. 2(c))

created an unusually rough surface for the

processed ingot, Fig. 2(d)). The oscillation of the

interface position was caused by the target value

for the melt diameter being too large. This created
an unstable situation where the diameter of the

freezing ingot was larger than that of the unpro-
cessed section.

To allow for volume expansion upon melting, a

gap is left between the upper and lower portions of

the ingot during initial heating. If the spacing of the
gap is too small, a portion of the molten zone may

spill over the edge of the solid liquid interface before

a stable zone can be established creating too large a
base. The tendency for the liquid zone to spill dur-

ing the initial heating was a common problem for

all the NiAI NiAITa alloys processed. However,

good dimensional control was obtained for all the

other directionally solidified NiAI NiAITa ingots by

decreasing the freezing diameter manually before
initiating computer control.

3 EXPERIMENTAL PROCEDURES

3.1 Compression testing

Cylindrical compression specimens were electrical

discharge machined from selected ingots. The sam-
ples were 5 mm in diameter by 10 mm in length,

with the compression axis parallel to the growth di-

rection of the crystal. Mechanical properties were

generated under both constant velocity conditions
in a screw driven universal machine and under con-

stant load conditions in lever-arm creep machines at

temperatures between 1200 and 1400 K. Constant
velocity experiments were used to determine the be-
havior at fast strain rates (> 10 v s t) while constant

load testing was employed for slower rates. Over-

lapping steady state stress strain rate data from the

two techniques indicated excellent correlation be-
tween constant load and constant rate tests. All test-

ing was perfommd in air as a secondary check for
environmental resistance under load.

3.2 Flexure testing

Room temperature fracture toughness was deter-

mined by performing four-point bend tests on
notched samples. The specimen size and test

geometry are shown in Fig. 3. Bend specimens
were electrical discharge machined from the direc-

tionally solidified ingots and notched perpendicu-

lar to the growth direction using a slow speed

diamond impregnated saw. A fatigue pre-crack

was not initiated at the notch tip prior to testing.

Bend tests were performed on a servo-hydraulic

test frame using a displacement rate of 7.6 × 10 4

mm/s. Fracture toughness values were calculated

using the K-calibration for pure bending, m
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Fig. 2. Processing record for a NiAI 14.5Ta ingot: (a) diameter of the molten zone and (b) the corresponding stretch squeeze control, (c) position
of the solid liquid interface and (d) the corresponding power variation, and (e) the as-processed NiAI 14.5Ta ingot

(gd = growth direction).

To examine the effect of thermal exposure and

cooling rate on fracture resistance, a number of

bend specimens were heat treated prior to testing.

i
l I 6.5 mm

I._ 50 mm

SAMPLE SIZE: 4.5 mm x 6.5 mm x 40 mm
NOTCH: 2.00 mm x 0.55 mm

Fig. 3. Geometry of the four-point flexure testing fixture and

bend sample.

The samples were heat treated in air at 1000 K for

7.2 ks (2 h) and either air cooled, oil quenched, or

water quenched. After heat treatment, the samples

were notched and the room temperature fracture

toughness was determined.

3.3 Materials characterization

Light optical microscopy was used to characterize

the general morphology of the NiAI NiA1Ta

alloys. Sections taken from directionally solidified

and arc-melted ingots were metallographically pre-

pared and etched with a solution of 5%HF-

5%HNO3-90% H20 by volume.

Scanning electron microscopy (SEM) was also
used to characterize the material. Backscattered

electron imaging was used to help identify the

phases present in the arc-melted and directionally
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Fig. 4. SEM photomicrographs of arc-melted NiA1 NiAITa alloys having a composition of (a),(b) NiAI 14Ta, and (c),(d)
NiAI 15-5Ta.

solidified ingots. Quantitative X-ray analysis of
the different phases was performed on a scanning

electron microscope equipped with an energy dis-

persive spectrometer (EDS) detector. The 'ZAF'

method, which attempts to correct the data for
Z(atomic number), A(absorption) and F(fluor-

escence) effects, was used to determine the phase

compositions. Finally, the fracture surfaces of the
bend specimens were examined using secondary

electron imaging.

Transmission electron microscopy (TEM) was
used to further characterize the microstructure of

the directionally solidified NiA1 NiA1Ta eutectic.

Thin slices were taken from broken bend speci-

mens using a low speed diamond saw. Thinning

was performed by grinding, followed by twinjet

electropolishing in a solution of 5 vol% perchloric
acid 95 vol% acetic acid at 40 volts and 300 K.

4 MICROSTRUCTURES

Fully coupled microstructures consisting of NiA1 and

NiAITa occurred in arc-melted ingots of NiAI con-

taining 14-16 at% tantalum. These microstructures

consisted entirely of the eutectic NiAI NiA1Ta and

contained no single phase dendrites, Fig. 4. Since

alloy compositions that contain lower percentages of

tantalum are expected to have better oxidation resis-

tance, a NiAl-14.5Ta (at"/,.) alloy was initially chosen

for further study. Large induction melted and drop
cast ingots of this composition were directionally

solidified for mechanical property evaluation.

Typical microstructures of the directionally

solidified NiAI-14.5Ta alloy are shown in Figs

5(a) and (b). The microstructure of this alloy con-

sists of NiAI dendrites surrounded by aligned eu-
tectic regions. Since the directionally solidified

ingot was processed at near-equilibrium condi-

tions, the dendritic microstructure represents an
off-eutectic composition. To bett,_r determine the

eutectic composition, another NiAI-14.5Ta ingot

was directionally solidified with a small amount of
tantalum added to the initial molten zone. The

added tantalum resulted in a well-aligned micro-

structure in the beginning section of the processed

ingot (Figs 5(c) and (d)). A bulk eutectic composition
of NiAI 15.5Ta (at%) was determined for this

region by inductively coupled plasma atomic emis-

sion spectroscopy. Another NiAI 14-5Ta ingot

processed in a similar manner (with additional

tantalum) also resulted in a well-aligned, fully
eutectic microstructure. This ingot was used for

elevated temperature testing.
The NiA1 NiAITa eutectic has a lamellar micro-

structure as shown by the SEM photomicrographs
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Fig. 5. Light optical photomicrographs showing (a),(b) a directionally solidilied NiAI 4.5Ta ingot (19ram/h) and (c),(d) a

directionally soliditied NiAI 15.5Ta ingot (15 ram/h).

Fig. 6. SEM photomicrographs of the directionally solidilied
NiAI NiAITa eutectic (NiAI 15.5Ta).

in Fig. 6. The eutectic temperature was found to be
near 1820 K by differential thermal analysis (DTA).

The volume fractions of the two phases were esti-
mated at 53% NiAI and 47% NiAITa from SEM

photomicrographs at 4000×. The composition of the

individual eutectic constituent for the slowly cooled
directionally, solidified NiAI 15.5Ta ingot was 50.5

AI, 48-5Ni and 1.0Ta for the NiAI phase and 34-0A1,

36.0Ni, 30.0Ta for the NiAITa Laves phase as deter-

mined by quantitative X-ray analysis. A <!00>

growth direction was found for the NiAI phase by

selected area diffraction patterns. No definite crystal-

lographic relationship could be determined for the

NiAITa phase.
The arc-melted versus directionally solidified micro-

structures were different for the NiA! 14.5Ta alloy as

shown by Figs 4 and 5. The microstructure for the

arc-melted ingot was essentially eutectic while the

directionally solidified ingot contained dendrites of

NiAI. However, higher solidification rates and un-

dercoolings are produced by the water cooled

hearth during arc-melting compared to container-

less solidification. Consequently, the difference in

the arc-melted and directionally solidified micro-

structures suggests, that for rapid solidification

rates, the coupled growth region is skewed towards

lower tantalum contents at moderate undercoolings.

In an attempt to produce a more aligned micro-

structure in the NiAI 14.5Ta alloy, a cooling jacket
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Table I. Compositions and processing conditions for NiAI-
NiAITa alloys

Nominal Growth Rotational Number
compositions velocity velocity of
{at'Y.,) (mm.lh) (rpm) passes

NiAI 14.5Ta 19 75 2
NiAI 14.5Ta* 19 75 2
NiAI 15 5Ta** 15 75 1

*Cooling jacket used Ik)r increased thermal gradient.
**NiAI 14.5Taingot with extraTa added to the molten zone
before directional solidilication.

was mounted below the water cooled eddy current

plate (see Fig. 1) during one processing run. This

was an attempt to increase the thermal gradient

through the solid liquid interface. A similar setup

was previously used to produce successfully aligned

microstructures from alloys in the NiAI (Cr, Mo)

eutectic system] However, there was no change in

microstructure for the NiAI 14.5Ta alloy when

processed with the cooling jacket. This indicates

that a much greater thermal gradient may be

needed for coupled growth at this composition.

The composition and processing conditions of all

the directionally solidified NiAI NiAITa alloys

evaluated in this study are listed in Table I.

5 ELEVATED TEMPERATURE STRENGTH

Most of the compression testing was performed

on an off-eutectic NiA1-14.5Ta directionally solidified

ingot processed at 19 mm/h with a microstructure

typical of that shown in Figs 5(a) and (b).

However, a limited number of tests were per-

formed on an alloy with a fully eutectic mi-

crostructure (NiAI-15.5Ta), similar to that shown

in Figs 5(c) and (d). The flow stress, _r, and strain

rate, _, data for these alloys were fitted to a tem-

perature compensated-power law equation:

(=A_r"exp(Q/RT)

where A is a constant, cr is the steady state creep

strength (MPa), Q is the activation energy for de-

formation (k J/tool), T is the absolute temperature,

R is the gas constant, and n is the stress exponent.

The creep characteristics for the NiAI-NiAITa

alloys are compared to a NiAI NiA1Nb Laves

alloy and single crystal NiAI in Table 2.

The elevated temperature strength of the off-

eutectic NiA1 14.5Ta alloy over the temperature

range of 1200 1400 K is shown in Fig. 7. Except

for the fastest strain rate at 1200 K, where power-

law breakdown behavior has occurred, the NiAI

Table 2. Representative creep behavior for NiAI-Laves alloys
compared to binary NiAI

Nominal composition Representative creep behavior
(at%)

NiAI[001]
(Ni 50AI)

NiA1 NiAINb
(NiAI 16.5Nb
NiAI NiA1Ta
(NiAI 14.5Ta)

NiA1 NiAITa
(NiA1 15.5Ta)

1110 1300K 2°
- (I.48 × 10_)tr63exp( 439/R13

200 1300 K: 14
# (40"0)_r 4 -_exp) 415/Rt)

200 [400 K:
¢ =(4.55 × 10_)_r4%xp(522/R7)
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Fig. 7, 1300 K compressive flow stress strain rate behavior for
the directionally solidified NiA1 14.5Ta alloy as a function

of temperature.
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Fig. 8. 1300 K compressive flow stress strain rate behavior
for directionally solidified NiAI-Laves alloys compared to

NiAI and a single crystal superalloy.

14.5Ta alloy exhibits a very consistent power law

behavior over the strain rates and temperatures

investigated.

In Fig. 8, the 1300 K compressive creep behavior

of the NiA1-Laves alloys are compared to single
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crystal binary NiAI 2° and a nickel-based single crystal

superalloy. 2_ The NiAI-Laves alloys have signifi-

cantly higher strengths compared to binary NiAI.
Moreover, the strengths of the NiA1 NiA1Ta

alloys are greater than that of the NiAI NiA1Nb
eutectic. However, the NiAI-14.5Ta alloy is still

marginally weaker than a single crystal nickel-

based superalloy.

Conversely, the 1300 K compressive strength of

the NiA! 15.5Ta eutectic alloy is comparable to

that of the nickel-based superalloy as shown in

Fig. 8. While the data for the NiA1 15-5Ta alloy
is limited to only 1300 K tests, the data does rep-

resent a modest improvement in creep resistance
due to a modification of the microstructure. The

improvement in strength is likely due to a refine-
ment in microstructure for the fully eutectic alloy

and the elimination of the large NiAI dendrites.

The lamellar spacing of the eutectic microstructure

was measured at 2 3 _m from SEM and TEM

photomicrographs. This is much finer than the
phase distribution found in the NiAI 14.5Ta alloy

(Fig. 5(b)).

6 ROOM TEMPERATURE TOUGHNESS

The NiA! NiAITa alloys exhibit brittle behavior

at room temperature with a fracture toughness of

approximately 5 MPaV_m. However, this is not

considerably different from typical toughness values
reported for single crystal or polycrystalline NiAI

materials/A total of nine fracture toughness spec-

imens were tested. Three fracture specimens were

tested in the as-processed condition. The remain-

ing specimens were heat treated at 1000 K for 7.2
ks (2 h) and then either air cooled, oil quenched,

or water quenched. The results of all these tests
are summarized in Table 3.

Table 3. Room temperature fracture toughness of directionally
solidified NiAI-NiAITa alloys (NiAI-14.5Ta) after various heat

treatments

Material condition

As-processed

Heat treated at 1000K for 7.2 ks.
Air cooled:

Oil quenched:

Water quenched:

K o (M Pa_'m)

4-1

5.4

4-1

5.0

4-9

5.7

6.3

5.1

6.0

Table 4. Room temperature fracture toughness of alloys
containing NiAI and Laves phases

Material Morphology K o (MPak/m)

NiA1 Polycrystalline (HIP) 6>

NiAI [001] Single crystal (DS) 11 s

NiAINb Single phase (HIP) 22s
NiA1 NiAINb Eutectic (cast) 4 2_

NiA1 14.5Ta Near-Eutectic (DS) 5.1 + 0.8

HIP = hot isostatically pressed powder metallurgy

DS - directionally solidified

Hack et al. 22 have shown improvements in the

fracture toughness of NiAI when rapidly cooled

through the temperature range of 673-300 K. Their

results suggest that NiAI may be susceptible to

strain-aging embrittlement. However, the post-pro-

cessing heat treatments used in this study provided

no improvement in toughness of the NiAI NiAITa
alloys and a fracture toughness of approximately 5

MPax/m was measured from all samples.
In Table 4, the fracture toughness of the

NiAI-14.5Ta alloy is compared to NiAI and the

NiA1-NiA1Nb eutectic. The fracture toughness of

the NiAI NiAITa alloy is comparable to that of

polycrystalline NiAI. 23 Hence, the large increase in

creep strength is not gained at the expense of frac-

ture toughness. However, the fracture toughness
of the NiA1 NiA1Ta eutectic is less than that of

single crystal NiA1 having a [001] notch plane.
Assuming that the fracture toughness of the

NiAITa phase is the same as that of NiAINb, i.e.

2 MPax/m, then the fracture toughness of the

NiAI-NiAITa eutectic is very close to that pre-

dicted by the rule of mixtures, 6.5 MPax/m pre-

dicted versus 5.1 + 0.8 MPax/m measured.

Therefore, materials containing a large volume

fraction of the extremely brittle Laves phase can

be reliably produced, handled, and tested by pro-
cessing alloys near the eutectic composition.

Ironically, NiAI is the toughening component in

these two-phase alloys. The fracture surface of a

NiAI NiAITa bend specimen is shown in Fig. 9.
The eutectic microstructure is notably visible from

the fracture surface as a result of partial debonding

between phases during fracture. Further evidence
of this fracture behavior is shown in Fig. 10. A

section of the directionally solidified NiAI 14-5Ta

ingot was polished and then broken with the pol-

ished surface in tension. The resulting fracture

profile reveals a series of microcracks in the Laves

phase with the NiA1 phase bridging the crack

path. In addition, cracking is also visible along the

NiAI/NiAITa phase boundaries.
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Fig. 9. SEM photomicrographs of fracture surfaces from a

NiA1145Tabendspccimen.

| fracture along

Fig. 1O. Light optical photomicrograph of the fracture region

from a directionally solidified NiA114.5Ta alloy.

NiAI

NiAI

t,- J,IP I '

Fig. II. TEM photomicrographs of samples taken near the

fracture surface of a NiA114,5Ta bend specimen.

Figure I I is a TEM micrograph of the NiAl

phase near the fracture surface of a broken bend

specimen. A high dislocation density was found in
the NiAI phase indicating possible plasticity of the

material prior to fracture. The microstructure of

NiAI consists of coarse dislocation tangles with

the dislocation density greatest in the sections
where the NiA1 lamellae are the thinnest. Material

taken away from the fracture surface contained a

much lower dislocation density than that shown in

Fig. 11. These observations suggest that the NiAI

phase provides most of the fracture toughness in

these brittle composite alloys as suggested by the

rule of mixtures analysis. No precipitates were
found in the NiAI phase.

7 DISCUSSION

The directionally solidified NiA1 NiA1Ta alloys

exhibit good creep resistance. In fact the 1300 K
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compressive strength of the fully eutectic NiAI-
15.5Ta alloy approaches that of a single crystal

nickel-based superalloy (Fig. 12). The modest im-

provement in strength of the NiA1-NiAITa eutectic

alloy compared to the NiAI-14.5Ta alloy is prob-

ably due to a refinement of the microstructure.

Sauthoff has shown that the strength of NiA1-
Laves alloys follows a simple rule of mixtures be-

havior except for very fine phase distributions. _3'24

Additional strengthening is provided once the

lamellar spacing becomes less than a critical value
corresponding to the mean free dislocation path. 24
K16wer and Sauthoff have studied the effects of

lamellar spacing on the creep behavior of Ni--AI-Fe

alloys and have calculated a critical lamellar spacing

of 8 /_m to benefit from additional contributions

in strength due to phase boundary strengthening. 2s

The preliminary results for the creep resistance of

the NiAI NiAITa eutectic with a lamellar spacing
of 2---3/zm are consistent with their argument.

However, the directionally solidified NiA1

15.5Ta alloy has a coarse eutectic spacing when

compared to NiAI refractory metal eutectics such

as a NiA! Cr and NiA1 (Cr, Mo), which exhibit

eutectic spacings of less than 1 /._m. 7 As the eutectic

spacing was relatively coarse even for the quickly
cooled, arc-melted NiAI NiAITa alloy (Fig. 4),

lamellar spacing is probably not a strong function

of processing conditions. Hence further significant

strengthening of the NiAI NiAITa eutectic alloy is

not expected at greater solidification rates.

One method to further improve the strength

of the NiA1 NiAITa alloys may simply be to

improve the strength of the NiAI phase. Promising

strengths have been found for two phase material

consisting of NiAl and the Heusler precipitate
Ni_AITa. g Hence, alloys heat treated in the three

phase region shown in Fig. 13 may show improved

strengths. For example, an arc-melted ingot with

the composition near-the NiAI-NiAITa liquidus

trough (indicated by the x in Fig. 13) lies well
within the NiAI-Ni2AITa-NiAITa region on the
1753 K isotherm. The cast microstructure of this

alloy (Fig. 14) consists mainly of NiA1 NiA1Ta

dendrites surrounded by an interdendritic Heusler

phase, Ni2AITa. Post-processing heat treatments

of this alloy should produce precipitates of the

Heusler phase within the NiA1 phase. Alloys with
compositions closer to the NiAI NiAITa eutectic

should contain smaller percentages of the inter-
dendritic Heusler phase. Hence, it may by possible

to produce aligned NiA1-NiA1Ta microstructures

with NiAI strengthened by the precipitates of the

Ni2AITa phase.

While the NiA! NiAITa alloys show promising

creep strengths, the room temperature fracture

toughness of these alloys is poor. One scheme for

improving the toughness is to include a metallic

phase within the NiA! NiAITa microstructure.

From Fig. 12, it is evident that the NiAI-Cr and

the NiAI-(Cr,Mo) alloys have a much higher frac-
ture toughness than the NiAI-Laves phase alloys. 7

Furthermore, a ternary eutectic exits between the

NiA1, NiAITa, and Cr phases[ 6 as shown in Fig.

15. Fracture toughness and elevated temperature

strength data for this ternary eutectic fall some-

where in between those of the separate binary
eutectics. :v Since NiAI NiAITa, and Cr are all
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Fig. 14. SEM backscattered electron photomicrographs of an
arc-melted Ni 34A1 19Ta allo> in the as-cast condition.

thermodynamically compatible, composite materi-

als formed by combining the NiAI NiAITa and

the NiAI Cr eutectics may be possible.

8 CONCLUSIONS

Promising creep strengths approaching that of a

single crystal nickel-based superalloy were ob-
tained in a directionally solidified NiAI NiA1Ta

eutectic alloy. While the Laves phase NiAITa is

extremely brittle, materials that could be reliably

handled and tested were produced by directional
solidification of the NiAI NiAITa eutectic. Through

an empirical alloy design approach it may be

possible to produce materials with even better
creep resistance and fracture toughness by the

generation of multi-phase alloys.
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