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DIRECT HARMONIC LINEAR NAVIER-STOKES METHODS

FOR EFFICIENT SIMULATION OF WAVE PACKETS I

C.L. Streett

NASA Langley Research Center

Hampton, VA, USA

Abstract

Wave packets produced by localized disturbances play

an important role in transition in three-dimensional

boundary layers, such as that on a swept wing. Starting

with the receptivity process, we show the effects of

wave-space energy distribution on the development of

packets and other three-dimensional disturbance
patterns. Nonlinearity in the receptivity process is

specifically addressed, including demonstration of an

effect which can enhance receptivity of traveling

crossflow disturbances. An efficient spatial numerical

simulation method is demonstrated for the computation

of these flows, allowing most of the simulations

presented to be carried out on a workstation.

Introduction

Over the past ten years, technology for the

prediction of transition to turbulence in boundary layers

has progressed well beyond the use of quasi-parallel
linear stability theory, with the recognition that much of

the disagreement between theory and experiment were

the result of physical effects beyond the scope of such

methods. Among these are: receptivity - the process by
which external disturbance energy is internalized into

disturbances which grow in the boundary layer; effects

of nonparallelism and surface curvature; nonlinear

transfer of energy between disturbance modes; and

effects of local inhomogeneities on the growth of
disturbances. While numerical simulation technology

has progressed to the point that full spatial DNS of the

transition process is at least feasible and has been
carried out for a few select cases, examination of the

above effects across a broad parameter range is

impractical due to the expense of such simulations.

Many of these problems of interest may be cast

in a linear or weakly-nonlinear framework, for which

the modest spatial resolution requirements would render

DNS a quite tractable tool for parametric studies. For

the most part, only the steady-state results of such
simulations are of interest; the start-up transients, which

are always present in simulations carried out in the

time-dependent formulation, contain little useful

information regarding the long-time asymptotic state of
transition of a given flow. For instance, if a time-

dependent simulation of a single-frequency wave is
carried out from an impulsive start of the harmonic
"driver", then the transient will be observed as a

leading-wave region which travels downstream; this

region will consist of a broad spectrum of disturbances,

initiated due to the step-function input. Each

component wave will travel downstream at its

characteristic group velocity, the slowest of which for

the most part determines the length of the transient

period. For many problems involving stationary or low-

frequency disturbances, this period may be quite

lengthy, and the simulation correspondingly expensive.

However, if the assumption is made that the

disturbance field is comprised of only a few select

frequencies, then efficient use can be made of many of

the algorithmic elements of full spatial DNS, while

enabling the use of fast direct linear solvers. The

advantage of such a methodology is that solutions may

be obtained rapidly on workstation-level machines,

enabling a researcher to perform the desired parameter
studies of complex transition physics. This paper is an

overview of the use of one such implementation over

the past five years; studies carried out have included the

generation of validation data for engineering transition

prediction methods including receptivity-prediction

methods, the detailed design of hybrid laminar flow
control suction surfaces, studies of linear and weakly-

nonlinear wave packets, and computations of the effects

of streamwise and spanwise inhomogeneities on the
evolution of disturbances.

This paper is declared a work of the U.S. Government
and is not subject to copyright protection in the United States.
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Algorithmic Aspects

What follows is a brief outline of the basic

incompressible harmonic linear Navier-Stokes (HLNS)

solver which was used in various forms to produce the

results discussed below; a more complete description of

the method will appear in a subsequent paper [ 1].

The first step in the formulation is expansion

about a steady base flow:

U "U_+EU'

where e is assumed (for now) to be a small parameter.
After substitution into the three dimensional

incompressible Navier-Stokes equations, equations of

like order are separated. The O(1) equations state that

the base flow must satisfy the steady NS equations;

however, we frequently use approximate solutions (such

as solutions to the boundary-layer equations) for

convenience, and for direct comparison with results
from other methods. The O(e 2) equations contain the

nonlinear terms, and are used to compute weakly-

nonlinear corrections to the HLNS solutions. The O(e)

equations, the linear disturbance equations, are of

primary interest here. The use of a disturbance equation

formulation is well-known to be required in

computations of the initial stages of transition, as the
accurate representation of the evolution of disturbances

several orders of magnitude smaller than the base flow
is essential.

The following assumptions are then utilized in the linear

disturbance equations:

_u'/_t = -ic0 u' _u'/Oz = i_ u'

the first of which reflects the single-harmonic

assumption, the second being the assumption of

spanwise (z) homogeneity. The latter is directly useful
for oblique disturbances in a two-dimensional base

state, and for disturbances evolving within the infinite-

swept wing framework. For more complex flows, a

Fourier integral method is used to represent the

spanwise dependencies, as will be discussed later.

The above process results in a complex two-

dimensional equation set with two parameters: to -

related to the frequency of the disturbance, and 13- the

spanwise wavenumber. The streamwise (x) and normal

(y) directions are discretized using relatively standard

high-order methods: Chebyshev collocation is used in

y, while fourth-order centered differences are used in x.

These are natural choices given the solution scheme to

be discussed below. Analytic mappings are used in both

discretizations to improve resolution where required.

Surface curvature is accounted for in the present method
using the standard body-conforming thin-layer

assumptions, which result in the simple addition of a

few geometric factors to the Cartesian equation set; the

Cartesian equations are smoothly recovered as the
surface curvature becomes small.

The resulting complex algebraic system of

equations are in the form of a block pentadiagonal

system; the blocks are of size 4Nvx4N Y, and are full

due to the spectral discretization in the y-direction. The

key to the usability of this method is the efficient direct

solution scheme developed for the discretized equation

set; the system is solved using standard recursion, but

the recursion coefficients computed during the forward-

sweep phase are stored on disk. Asynchronous I/O, in
which the actual disk operations are carried out

simultaneously which the computation of the next set of
coefficients, speeds the overall throughput. In an

average computation with N x = 1200 and N v = 51, a
solution can be obtained in about 15 minutes on an SGI

workstation; about 1.5 Gb of temporary disk storage is

required.

Boundary conditions are a sensitive aspect of

this formulation; it was found during the early
development of this method that some boundary

conditions which are commonly used for time-

dependent simulations can result in spectacularly poor

and meaningless results when applied in the harmonic
framework. This is due to two reasons: First, the

condition number of the system is large to begin with,

since the terms on the diagonal are relatively small. A
boundary condition set which would have the effect of

merely limiting the maximum time step allowable in a
time-dependent simulation could render the direct

solution so contaminated by roundoff error as to be

useless. Second, the harmonic solution is long-time

asymptotic; outflow boundary conditions (in particular)

which build spurious error slowly over time result in

solutions dominated by the effect of reflections when

applied to this framework. The buffer-domain method

[2], in which the momentum equations are smoothly

parabolized to convect disturbances through the outflow
boundary, was found to be robust and reliable here.

Disturbance forcing is accomplished in many

ways, depending on the particular physics being

simulated. Regions or distributions of non-zero wall-

normal velocity are used to simulate oscillating
suction/blowing, for instance; formulations for

2
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receptivitysimulationsresultineithernon-zerosurface
tangentialvelocityorfield-forcing,asdiscussedbelow.

Receptivity,theconversionoffarfield
disturbanceenergyintoinstabilitywaves,resultsfrom
thebilinearinteractionbetweentheunsteadysignature
ofthefarfielddisturbanceandashort-scalemeanflow
variation.Inotherwords,afreestreamdisturbanceof
theproperfrequencybutlongwavelengthisscattered
ontotheshort-wavelengthinstabilityspectrumbythe
local(steady)meanflowdistortionofasurface
inhomogeneity,suchasaroughnesselement.See[3]
formoredetails.Theflowfieldmaybeexpandedas:

U(x,y,t) = U_(X,y) + _ U.(x,y) + E=U=(x,y)e _" +

_. E,_U.,._(x,y)e"

The Fourier integral is discretized using a Chebyshev

collocation quadrature formula:
N

= h(z)cos(,&Z)
j=O

This discretization results in a set of {13,} at which the

HLNS solutions are required. The packet is then

constructed in the physical space via the inverse

integral:

U(x,y, z, t) = aS i fl ) (J(x, Y,fl, t) c°s( flz) dz
_l_To

N ^

=
i=0

where the coordinate "X" in Uo(X,y) denotes slow

variation in x. U may bc computed for very small

roughness heights using the HLNS solver with co=0, and

extrapolating the flo_-tangency condition to y=0 to

produce an inhomogcncous boundary condition on the

tangential velocity:

U.(x,O) = 3U_(X,O)/ _)y • h(x)

where h(x) is the normalized roughness shape.

Alternatively. the full distorted steady field

corresponding to U_(X,y) + _:.U.(x,y) may be

computed directly using a Newton-iterated nonlinear-
solver variant of the tlLNS method, where the

roughness geometry is represented exactly using a
shearing transformation. As will be described later, the

local effect on the evolution of the recepted instability
wave of this distorted base flow is the dominant

nonlinear effcct when the roughness height _;wis finite.

U.,(x,y), the signature of the farfield

disturbance, may bc approximated in the case of

acoustic receptivity by a Stokes wave; a more exact

representation may bc obtained through a solution of the
linearized unsteady boundary-layer equations (LUBLE)

[4]. Once U= and U. are computed, their nonlinear
interaction is used on the RHS of the HLNS solver for

solution of the IJ= problem.

Sincc each (t0,[5) component is computed

independently in the linear formulation, wave packets

may also be easily constructed. For instance, the

disturbance produced by an isolated roughness which is

compact in thc z-direction has energy distributed in the

13-plane; the Fourier integral of the bump shape provides

the necessary wall-forcing as a function of 13:

cos,,z,°z

Results

Crossflow Stability

As mentioned in the Introduction, the effects of

streamline curvature and nonparallelism on the

development of disturbances in three-dimensional

boundary layers has been a significant concern in the

development and application of transition prediction

methods, especially for swept wings. Extensive use of

the subject HLNS method has been made in the
evaluation of these effects and in the calibration of

advanced transition prediction tools.

To illustrate these effects, results are presented

for crossflow disturbance growth in the boundary layer

on the wing used in the ASU 45 ° swept-wing

experiment [5], the pressure distribution for which is

presented in Fig. 1. The modest favorable pressure

gradient over the first 70% of the wing gives rise to

consistent growth of crossflow disturbances over a

relatively narrow band of spanwise wavenumbers, and
napthaline surface flow visualization indicated the

presence of strong stationary (e0 = 0) crossflow
disturbances. The effect of surface curvature on the

evolution of one representative spanwise-wavenumber

disturbance in terms of the local growth rate evaluated

using the maximum streamwise disturbance velocity is

shown in Fig. 2; for comparison, the result from a

standard quasi-parallel linear stability theory (LST)
calculation is also shown. Note that the effect of

surface curvature is to significantly reduce the local

growth rate in this region near the leading edge; farther

downstream, the two HLNS results merge as the

curvature decreases. The large increase in growth rate

shown by the HLNS results near the leading edge stem

from the strong nonparallel effect, as the boundary layer

American Institute of Aeronautics and Astronautics



growsrapidlyinthefirst5%-chordarclengthfromthe
attachmentline.ThefactthattheLSTandHLNS
resultsappeartoagreeafteraboutx/c=.07is
completelyfortuitous;resultsforotherflowfieldsshow
significantdisagreementbetweentheveryapproximate
LSTandthevirtuallyexact(forlineardisturbance
evolution)HLNSmethod.Anadditionalresultforthis
flowfieldisshowninFig.3;inthisfigure,acomparison

between HLNS, PSE and LST results is made.

Although the PSE results show some effect due to

boundary-layer nonparallelism, this effect is still

underestimated. Also shown in the figure is the effect

of changing the streamwise placement of the

suction/blowing strip which was used in the HLNS
calculations to initiate the crossflow disturbance.
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Figure 1 Pressure distribution on ASU swept wing Figure 2 Stationary crossflow growth rate
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Figure 3 Stationary crossflow growth rate, comparison of LST, PSE, and HLNS
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Crossflow Receptivity - Packets

Significant use of the HLNS method to predict

the receptivity and evolution of crossflow disturbances

in the presence of localized suction was made during the

design and execution of a NASA / Boeing hybrid

laminar flow control (HLFC) swept-wing experiment

[6]; results from this test are proprietary, but overall

indicated that standard LST transition prediction

methods are quite unsatisfactory for use in swept-wing
flOWS.

The computation of the development and

evolution of a packet of crossflow disturbances behind a

roughness element near the leading edge of a swept

wing will serve as an example of the use of the

spanwise Fourier-integral method described above. A

surface bump, circular in plan and Gaussian in cross-

section, was represented using linear boundary
conditions near the attachment line in a swept-wing

boundary layer. Fig. 4 shows a plan view of isosurfaces

of the streamwise component of disturbance velocity,

red denoting positive and blue negative, with the lateral
boundaries of the displayed computational region being

parallel to the freestream direction and the inflow

boundary (left) parallel to the leading edge of the wing.

A particular pressure distribution was chosen for the

infinite-swept mean flow which results in a rather wide-

band growth of crossflow disturbances, and the small-

scale roughness element which induces the disturbance

packet in the computation creates initial energy in a

range of scales which includes this growth band. The

small variation of wave angle and growth direction

across this band of growing crossflow disturbances is
visible in the downstream evolution of the packet;

disturbances with small spanwise wavelength appear on

the downstream side of the packet, whereas those of

longer wavelength propagate on the windward side.

This effect is more apparent in Fig. 5, in which

disturbance streamwise velocity from cuts at various
chordwise locations is shown.

Similarly, the initiation of stationary crossflow

disturbances by perforated suction surfaces may be

computed. In Fig 6 are shown isosurfaces of positive

and negative disturbance velocity for flow of a swept-

wing boundary layer over a spanwise-periodic array of
suction holes; the 7 rows of holes in the simulation are

evident in the figure. For this case, the spacings and

angles of the rows of holes were chosen to produce near

alignment of the holes along constant disturbance-phase
lines, resulting in constructive interference of the waves

from one row to the next. Simulations of this type have

been used to study the performance sensitivity of

perforate patterns for use in HLFC applications.

!iiL.....
i,,,i,:,,i,i_?_;i'_!,'iiiiiiii....

Figure 4 Isosurfaces of disturbance velocity behind roughness element on swept wing.

5

American Institute of Aeronautics and Astronautics



3O

2O

10

0

-10

-2O

' I ' I ' I ' I ' I '
__ x=.O50g
__ x=.0396

__ x=.0282
,__ x=.0169
__ x=.0064

, l , I , I , I , I

-0.01-0.000.01 0.02 0.03 0.04 0.05
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Figure 6 Disturbance velocity isosurfaces, perforated suction surface.
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Effect of Spanwise Meanflow Distortion

When a stationary crossflow disturbance of a

particular spanwise wavenumber 13, evolves in a

meanflow field that contains a small-amplitude slow

spanwise variation, the disturbance is distorted. This

distortion may be approximated, if the spectrum of

the spanwise variation of the meanflow is confined to

small wavenumbers, by the bilinear scattering of the

13winto sidebands. For instance, if the meanflow

variation possesses only a single spanwise component

[30,then this bilinear interaction forces sideband

disturbances of spanwise wavenumber 13 + 13. If 13o

is sufficiently small, these sideband disturbances will

grow on their own, since their spanwise wavenumbers
will lie in the same unstable range as the original

disturbance. Thus, only a short streamwise region of

meanfiow variation is necessary to produce a

disturbance field with rich spanwise content.

103

102

101

10 o
0.00

._. #= 4814

.... #= 4186

_ #= 4500

..........

0.02 0.04 0.06 0.08 0.10 0.12

s/c

Figure 7 Disturbance amplitude, effect of spanwise
meanflow distortion on stationary crossflow
disturbance

The simple bilinear interaction is

demonstrated by the example of a single crossflow

disturbance, initiated by a roughness strip, evolving

into an unstable mean boundary layer on which a 1%-

amplitude distortion with small spanwise

wavenumber is imposed. In Fig. 7 is plotted the

growth of the streamwise component of disturbance

velocity; the initiation of the original wave (13w=4500)

is apparent near the leading edge. The spanwise
distortion of the meanflow occurs over the region .01

< s/c; note that the scattered sideband disturbances

grow rapidly to nearly comparable amplitude of the

original disturbance. However, since the continued

forcing of these waves is at a slightly different
streamwise wavenumber than the disturbances which

grow at the sideband spanwise wavenumbers (13 =

4186 & 4814), constructive and destructive
interference occurs in the evolution of these waves.

The reconstructed disturbance flowfield shows the

expected spanwise variation in amplitude, as seen in

Fig. 8.

Figure 8 Contours of disturbance velocity,

corresponding to Fig. 7
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Nonlinear Receptivity

The HLNS method has also been used

extensively in the calibration of receptivity-prediction

methods and theories, to be used in engineering

amplitude-prediction tools for transition prediction. As

described above, both linear and weakly nonlinear

acoustic receptivity predictions are possible using

HLNS methods. Two examples of receptivity of two-
dimensional TS waves are shown here, the first

resulting from a roughness strip, the second from a
suction slot. The fnrst case, shown in Fig. 9 in terms of

receptivity coefficient against roughness height,

Roughness Receptivity

80

60

o 40

20

-e. Saric, et al
.... linear quasi-parallel
._. fully nonlinear

linear NS

.6
./

i.,

it[.."
i:

0 50 100 150 200 250 300 350

h (g.rn)

Figure 9 Roughness receptivity coefficient

indicates that the finite-Reynolds number local method

of Choudhari, et al [7], is in complete agreement with

the purely linear simulation result; however, significant
deviation is seen between these results and the

experimental results of Saric, et al [8]. The weakly

nonlinear results, in which the effect of the roughness

distortion on the local stability of the disturbance is

taken account, shows much better agreement.

Similarly, the local and HLNS results agree well for the

suction-slot case shown in Fig. 10; however, the local-

stability modification effect is even stronger for this

case, and the weakly-nonlinear results deviate from the

linear results significantly even for small suction rates

Suction-Strip Receptivity

o2

0

0.0

/
,J

J t

i/ ..... fully nonlinear NS
..... linear quasi-parallel
__ linear NS

, I , l , I , I

0.5 1.0 1.5 2.0 xlO -3

Figure 10 Suction receptivity coefficient

Distributed Receptivity_

Since the surface roughness distribution may

be specified arbitrarily in the HLNS predictions,

distributed roughness receptivity effects are easily

simulated. Shown in Fig. 11 is the disturbance

amplitude maxy{LIw.,,(x,y)} (without roughness height
and acoustic amplitude parameters _ and e,,),

corresponding to the experiment of Wiegel and Wlezien
[9] in which a series of tape strips were placed at

spacings corresponding to the wavelength of the TS

wave excited at the acoustic-driver frequency in a flat-

plate boundary layer. The receptivity saturation

observed in that experiment, and predicted by an

extension of the local receptivity theory [10], is

apparent.

When the relative phases of waves induced by

individual roughness elements in a distributed-

receptivity situation do not precisely correspond, the

receptivity is "detuned" and significantly weaker. Of

course, for true distributed roughness on an aircraft

surface, detuning would always be present and must be

predicted, at least in the mean. An example of this

detuning is shown in Fig. 12, in which the TS

disturbance amplitude for acoustic receptivity at a
particular frequency over a wavy wall is shown, first for

the case in which the acoustic frequency corresponds to

the wavelength of the wall, and second for the case in

which the wavelength of the wall is 10% shorter.
Evident is the destructive interference between the

waves produced in the leading part of the wavy-wall

region (denoted by the filled triangles) with the waves

8
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produced later in the region. Work in this area of

distributed-roughness receptivity, especially for the case

of stationary crossflow receptivity, is continuing using

105

103

Rt_

Figure 11 Disturbance amplitude, distributed

roughness receptivity

Nonlinear Crossflow Receptivity

In the case of traveling (i.e. non-zero

frequency) crossflow disturbances, it was noted that the

full distorted steady field corresponding to Ub(X,y ) +

£,U,(x,y) in the above formulation should also include

the finite-amplitude stationary crossflow disturbance

recepted by the roughness, as well as the nonlinear local

distortion produced directly by the roughness. Since the
streamwise wavenumber of the stationary disturbance is

slightly different than that of the traveling disturbance,

the interaction of the stationary disturbance with the

Stokes' wave produces an additional receptivity

mechanism that is detuned. This detuning results in an

oscillatory amplitude increment over what would result
from the interaction of the Stokes' wave with the local

roughness flowfield distortion. An example of this

additional receptivity is shown in Fig. 13, for the case of
a roughness strip with a particular spanwise wavelength,

positioned near the leading edge of the ASU swept

wing• Note that there are regions in which this

additional receptivity mechanism adds an order of

magnitude to the amplitude of the traveling crossflow
disturbance, and that this increment is not a function of

either Iz. or E_.

statistical models of roughness measured directly from
surfaces of various levels of finish.

106

105

10 3

- o /..... 10X detune

10 2 I I , I , I • , I , I , I

0.4 0.5 0.6 0.7 0,8 0.9 1.0 1.1 xlO 3

alp

Figure 12 Disturbance amplitude, tuned and

detuned wavy-wall receptivity

ASU wing

,8= 900, co= 50

104 I local'" forced

x 103 1

lo \

.,
101 ........

100
000

, I , I I I

0.05 0.10 0.15

Figure 13 Disturbance amplitude, nonlinear

traveling crossflow receptivity

I

0.20
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Harmonic Point Source

In 1995, Watmuff [ 11 ] published results from

very high resolution hot-wire measurements of the wave

packet produced by oscillatory suction and blowing

through a small hole in the surface under a fiat-plate

boundary layer. Ostensibly for studying the effect of
discrete suction used for laminar flow control, the data

provides an excellent test for approximate simulation

methods. Initial comparisons with wave packets

generated by summation of modes from linear stability
theory, and with packets computed using the linear

parabolized stability equations (PSE), showed that even

for the small amplitude used in the experiment, some

nonlinearity was present. This may be seen by

comparing the isosurfaces of streamwise disturbance

velocity from the experiment (Fig. 14) with those from

the summation of 17 (symmetric) spanwise modes

computed using the HLNS method (Fig. 15). Although

the general wave pattern is captured by the linear
computation, the experiment shows some detail on the

centerline which is missing in the linear results;

additionally, the experimental wave fronts are

somewhat flatter than seen in the linear computation.

Based on the conjecture that the disagreement

was due to stabilizing meanflow distortion near the

centerline of the packet, a nonlinear harmonic Navier-

Stokes computation was carried out, in which only the

primary, zero-frequency, and first harmonic temporal

modes were included. The computation was done in a
brute-force iterative manner, with the values of the

nonlinear terms for each spanwise and temporal

harmonic mode calculated from the previous global

iteration and carried as forcing functions. These forcing

functions were computed by exact decomposition for

the temporal terms, and by reconstructing the total

flowfield in successive streamwise planes, computing

the nonlinear terms, and performing a spanwise FVF;

the spanwise grid used for reconstruction used twice the

number of spanwise modes, to dealias the computation.

The results of this ongoing computation are shown in
Fig. 16; the results near the centerline agree far better

with the experiment, demonstrating the stabilization by

the zero-frequency component; the computation does,

however, suffer from lack of spanwise resolution.

Conclusions

A number of example applications of the

HLNS method have been presented. It should be

recalled that all of the results shown were computed on

workstation-level hardware, and that broad parameter

studies for many of the physical aspects of transition on

swept wings discussed here have been carried out using
a suite of codes developed around this method.

Additionally, weakly nonlinear effects on disturbance

growth, secondary instability, and disturbance scattering

by meanflow distortions have also been computed using

this method; these will be described in subsequent

papers.
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Figure 14 Isosurfaces of disturbance velocity, Watmuff HPS experiment

Figure 15 lsosurfaces of disturbance velocity, linear HLNS computation

Figure 16 Isosurfaces of disturbance velocity, nonlinear harmonic N-S computation
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