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INTRODUCTION

Extensive effort is currently being expended to demonstrate the feasibility of using high-

performance, polymer-matrix composites as engine structural materials over the expected operating

lifetime of the aircraft, which can extend from 18 000 to 30 000 hr. The goal is to develop light-

weight, high-strength, and high-modulus materials for use in higher temperature sections of advanced

21st century aircraft propulsion systems. To accomplish this goal, it is necessary to pursue the

development of thermal and mechanical durability models for graphite-fiber-reinforced, polymer-

matrix composites.

Numerous investigations have been reported regarding the thermo-oxidative stability (TOS) of

the polyimide PMR-15 (1-5). A significant amount of this work has been directed at edge and

geometry effects, reinforcement fiber influences, and empirical modeling of high-temperature weight

loss behavior. It is yet to be determined if the information obtained from the PMR-15 composite tests

is applicable to other polyimide-matrix composites.

The condensation-curing polymer Avimid N is another advanced composite material often

considered for structural applications at high temperatures. Avimid N has better thermo-oxidative

stability than PMR-15 (6), but the latter is more easily processed. The most comprehensive study of

the thermo-oxidative stability of Avimid N neat resin and composites at 371 °C is found in Salin and

Seferis (7). The purposes of the work described herein were to compare the thermal aging behavior of
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these two matrix polymers and to determine the reasons for and the consequences of the difference in

thermal durability. These results might be of some use in improving future polymer development

through the incorporation of the desirable characteristics of both polyimides.

MATERIALS

The materials used in this study were PMR-15 polyimide composites reinforced with T650-

35, 24 by 23, eight-harness satin carbon fiber fabric and Avimid N composites reinforced with the

same carbon fabric. The two matrix polymers (PMR-15 and Avimid N) differ in their processing

characteristics. The Avimid N polymer undergoes curing by a condensation reaction in which volatile

reaction products, such as water and alcohols, are produced (8). During composite processing these

byproducts can cause blistering and void formation. The solvent used to prepare the impregnating

solution is a mixture of n-methyl pyrollidone (NMP) and ethanol (9). NMP has a very low vapor

pressure; and intricate, time-consuming curing schedules must be used to expel the solvent in order to

produce low-void composites. Voids were present in the Avimid composites used in this study.

Addition-curing polymers, such as PMR-15, undergo their final cure without producing these

byproducts. They are cured in a two-step process in which the volatiles are removed in a lower

temperature reaction (200 °C) that produces low-molecular-weight oligomers (8). These oligomers are

then cross-linked at the final cure temperature of 316 °C. The nadic end cap, which controls the

molecular weight, is also why the PMR-15 has a lower TOS than the condensation-curing Avimid N

(8). The cross-linking of PMR-15 also allows a higher glass transition temperature T_ to be attained

more easily for this addition-curing polymer.

The PMR-15 composites were fabricated by autoclave techniques at 316 °C. The cure was

followed by a free-standing postcure in an air-circulating oven at 316 °C for 16 hr. All PMR-15

processing was done at the General Electric Aircraft Engine Plant in Evendale, Ohio. The specimen

designations and nominal dimensions are presented in Table 1. The dimensions were selected to

provide specimens with different ratios of molded surface areas (resin-rich areas adjacent to the

vacuum bag containment materials) to cut surface areas. The percentage of cut surface areas varied

from 2.7 to 89% of the total surface area. The specimen designations reflect the nominal percentage of
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cutareas.ThePMR-15matrixmaterialhadvoid contents less than 2% and was free from

delaminations. A typical photomicrograph of the PMR-15 material prior to aging is shown in Fig. 1.

Some resin-rich areas are present between the tows.

One Avimid N specimen with 27% cut surface areas was aged at each temperature studied

(204, 260, 288, 316, and 343 °C). The dimensions of the specimen, designated as AT-27, are also

included in Table 1. (All the other specimens in Table 1 are PMR-15.) This specimen had nominally

the same dimensions as the T-27 PMR-I 5 plate. The details of the composite processing are not

available, since the work was done at the DuPont facilities. A typical photomicrograph of the Avimid

N material prior to aging is presented in Fig. 2. It contained significant voids in the central portion of

the laminates. The thicknesses at the void-free edges were less than those in the interior.

TEST PROCEDURES

Thermo-oxidative Stability

The composite specimens were aged in air-circulating ovens with a flow rate of 100 cm3/min

at 204, 260, 288, 316 and 343 °C. The specimens were removed from the ovens at regular intervals

and placed in a desiccator where they cooled to room temperature. The specimens were not removed

from the desiccator until they were ready to be weighed. The weights were recorded and the

specimens were returned to the ovens. At scheduled times selected specimens were removed

permanently from the ovens for various tests.

Dynamic Mechanical Analysis

Oxidation and thermal degradation of the graphite-fabric-reinforced PMR-15 composites can

be correlated with changes in the stored shear modulus G" that occurred in the damaged layer located

at the exposed surfaces of the aging specimens. As the layer grew, the G' and Tc values changed to

reflect the chemical and physical changes taking place within the damaged layer. This phenomenon

also occurred in the bulk (core) of the specimens. The glass transition temperature is commonly

related to the degree of cross-linking in a polymer.
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Thedynamicmeasurementsweremadewithrectangulartestpiecesandby usinga

RheometricsRMS-800rheologicalspectrometer.Thetestpieceswerestressedin torsionacrossthe

specimenwidths.Thetestpieceswere60mmlong,10mmwide,and1to6mmthick.Theywere

mountedingripsseparatedto giveagagelengthof45mm.Thetwocomponentsof thecomplexshear

modulusweremeasuredasafunctionoftemperature.A frequencyof 1Hzwithanamplitudeof

0.1% strain and a heating rate of 5 deg C/min were used. All specimens were dried in an air-

circulating oven at 125 °C for 24 hr before testing. This time was sufficient to reduce the moisture

content to very low values (9). The glass transition temperatures were determined by measuring the

intersection of the two tangents to the G" curve where it changed slope as illustrated in Fig. 3.

Compression Tests

The compression testing was done at the Cincinnati Testing Laboratories in Forest Hills,

Ohio, in accordance with the specifications in ASTM D-695M. Two exceptions to these specifications

were made as noted later in the text. The test speed was 1.27 mm/min. Strain measurements were

made with an extensometer. No end tabs were used. All specimens were conditioned at 125 °C for

16 hr before testing. The tests were run at 23.3 °C and a relative humidity of 50%.

Fiber and Void Content

The fiber contents of the composites were measured by acid digestion as described in ASTM

D-3171. The void volume was calculated as the difference between the specific volume of a

composite specimen, measured by the immersion technique as specified in ASTM 792, and the

theoretical specific volume calculated from the acid digestion results. The densities of the PMR-15

polymer and fiber were taken to be 1.32 and 1.78 g/cm 3, respectively. The density of the Avimid N

was taken as 1.4 g/cm 3 (7). The void percentage was the difference between the measured specific

volume and the specific volume calculated from the digestion results divided by the measured

specific volume and then multiplied by 100.
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RESULTS

Thermo-oxidative Stability

Results of aging weight loss tests on some PMR-15 composites at 316 °C are presented in

Fig. 4. The data for three thicknesses of panels with identical widths and lengths are shown to

illustrate the effect of specimen volume (thickness) on the weight loss that results from exposure. The

thickest specimen lost the lowest percentage of its original weight after aging at 316 °C. Therefore,

only specimens of like dimensions can be directly compared on the basis of mass loss. Similar results

were observed at the other temperatures.

The weight loss data for the PMR-15 composite T-27 and the Avimid N composite AT-27 at

the five aging temperatures studied are compared in Fig. 5. During the initial aging period the weight

losses for the PMR-15 composite increased rapidly (origin to point A), and then a linear rate with

time was established for a significant period of time (point A to point B). In contrast, the data for the

Avimid N composite monotonically increased at a slower initial rate (origin to point A) than did the

PMR-15 composite. However, from point A to point B the linear slopes of the weight loss curves for

both composites are similar if not identical. For both composite systems the slopes of the curves

increase at point B, indicating an accelerated weight loss rate.

From these data three different mechanisms appear to control the TOS of the two composite

systems. The shapes of the curves are similar for all aging temperatures studied. The main difference

between the shapes and magnitudes of the two curves was the initial volume-dependent, rapid weight

loss of the PMR-15 composites.

The magnitude of the initial rapid weight loss (up to point A in Fig. 5) varied with specimen

volume for PMR-15 specimens aged at or above 288 °C as shown graphically in Fig. 6. At aging

temperatures below 260 °C both volume and surface area contributed to initial weight loss.

Dynamic Mechanical Analysis

The types of specimens dynamically tested were the T-5 plate (more than 90% molded

surface), the T-27 plate, the AT-27 plate, and the T-89 plate (almost 90% cut surface). The data for

the 90% molded surface and the 90% cut surface differed significantly. Figure 7 shows typical
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dynamicmechanicalanalysis(DMA) data generated from these two specimen types (T-5 and T-89)

after aging at 316 °C for 1000 hr. The tan 6 peak (where 8 = G"/G') occurred at about the same

temperature (400 °C) for both specimen types. The tan _i peak broadened and decreased only slightly

for T-89. Before Tc both the G' and G" curves were fairly flat for both specimen types but the values

were somewhat lower for the T-89. The significant difference in the materials was the G' and G"

behavior above Tc. The peaking and extreme dropoff exhibited for the T-5 material (Fig. 7(a)) was

absent in the data for the T-89 material (Fig. 7(b)). No decrease in shear modulus occurred at the

higher aging temperatures. The data from an unaged T-89 specimen (Fig. 8) were similar to those for

the T-5 specimen aged at 316 °C (Fig. 7(a)). Therefore, the change in dynamic shear modulus

behavior was probably due to the aging process and not to geometric differences.

The T-89 specimens were narrow (2 mm), and the cut surfaces were sites of crack initiation

as the aging of these specimens proceeded. Therefore, they were tested for crack penetration by a

liquid. A drop of ethanol was placed on one cut surface; complete penetration was indicated by the

presence of ethanol on the opposite surface. The passage of the ethanol from one surface to the other

indicated the presence of open cracks through the width of the material. These cracks and possibly the

resultant oxidative loss of some of the matrix would cause a significant decrease in shear modulus.

The permeability of PMR-15 specimens to ethanol after air aging is given in Table 2.

Stored moduli for PMR-15 and Avimid N composite plates (T-27 and AT-27) are presented

in Fig. 9 and Table 3. The two specimens aged at 3 ! 6 °C for 2090 hr were machined by cutting

1.5-mm-thick slices, progressing inward from one of the cut surfaces and parallel to the length

dimension. DMA G' data for T-27 specimens (Fig. 9(a)) were taken for each slice. The data from the

outer strips (slices 1 and 2) were significantly different from the data from the other strips and similar

to the data shown for the T-89 specimen in Fig. 7(b). However, the data for slice 1 were lower than

the T-89 data by two orders of magnitude. The G' data for slice 1 were also more than two orders of

magnitude lower than values measured for slices 3 and 4, slices cut farther inward from the specimen
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surface.Onlyaslightslopechangeoccurs for slice 1 at what appears to be the TG (470 °C, higher

than the T c for slices 3 and 4 (410 °C)).

An Avimid N composite specimen aged at 316 °C for 2090 hr was also sliced to provide

samples for taking DMA data (Fig. 9(b)).

Only one significant difference explains the superior long-term thermo-oxidative stability

performance of Avimid N composites in relation to other polyimides. For Avimid N (Fig. 9(b)) no

great order-of-magnitude changes in G' occurred with distance from the molded surface as in the

PMR-15 data (Fig. 9(a)). There was a slight increase in G" from slice 1 to slice 4 for Avimid N but

not to the extent observed for the PMR-15. It appears that the outer surfaces of Avimid N were not

degraded as much by oxidation as were the PMR-15 outer surfaces. The reason for this decrease in

the magnitude of G' at the cut surfaces is addressed in the section Density and Void Content.

Glass Transition Temperature

The T_ data for T-5 specimens in Table 4 indicate that for aging temperatures at and below

260 °C the glass transition temperature was not dependent on either the aging temperature or the time

at aging temperature under the conditions investigated. However, TG increased at aging temperatures

above 260 °C and also with aging time at 316 °C, the curing and postcure temperature for PMR-15.

Although the specimens tested were all of the T-5 type, they were from four different plates fabricated

separately. For the unaged materials T c varied from 330 to 347 °C. The lowest Tc for unaged Avimid

N was measured to be 359 ° C (not shown in table). No significant changes occurred in Avimid N after

aging. For the Avimid N slices Tc remained constant as the distance of the slice from the edge of the

plate increased. Also, Tc for the Avimid N composite was 20 to 40 deg C less than that for the PMR-

15 composite after identical aging temperatures and times.

One might infer from these data that Avimid N undergoes little cross-linking. In comparison,

the PMR-15 composite showed a wide range of Tc values as the material was examined from the

outer surface inward. The brittle nature of PMR-15 composites is well documented, and the brittleness

probably increases with high-temperature aging and increasing T c.
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Fiber Content

The fiber contents of both types of composite aged at 316 °C for 2090 hr were compared after

cutting four slices of composite material from the edges of the two plates and digesting them in

sulfuric acid. The results are presented in Table 5. In contrast to PMR-15 the outer two slices of the

Avimid N laminate contained slightly less fiber than the inner two slices. The total gradient was

somewhat less than 1% for both composite types. Fiber content did not decrease with distance for the

PMR-15 composite.

Density and Void Content

Density measurements were made on similar edge slices of both the PMR-15 and Avimid N

composites. The results are also listed in Table 5. The lower densities measured for the Avimid N

slices reflect as much as 7% void content in the outer surface layer, 2% more than in the interior

slices. The PMR-15 slices showed only slightly higher voids in the outer surface layer. The increase

in porosity along the Avimid N cut surface exposed to the aging environment probably accounts for

the decrease in the magnitude of the G" value in Fig. 9(b).

Mierostruetural Changes

Comparing the molded surfaces of the two types of polyimide composite indicated significant

differences that may contribute to their long-term thermo-oxidative stability and mechanical property

retention behavior. As previously noted and shown in Fig. 9, the outer 2.54-mm slice of the cut edge of

the PMR-15 material had a G" value about two orders of magnitude less than that of the Avimid N

material and the second PMR-15 slice. Slices 3 and 4 of the PMR-15 matrix composite and slices 2,

3, and 4 of the Avimid N composite had G' values of about the same magnitude. The reasons for the

data spread are shown in Fig. l 0. The cracks and absence of matrix material along the cut surface of

the PMR-15 composite are evident. The tows with the fiber ends perpendicular to the plane of the

paper contain cracks running between the fibers and perpendicular to the composite surface. The tows

running parallel to the plane of the paper have regions of depleted matrix that appear as dark areas.

These dark areas are cracks running parallel to the tows. Preparing a metallographic specimen by

cutting the surface to be viewed at a 45 ° angle to both layers of tows gives a clearer picture of the
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damage.Figure11showsthispreparationfor aspecimenagedfor 1730hrat316°C.Thecracks

penetratedbothlayersoftowsin thesurfacepliesof theT650-35fiberfabric.Novoidareasare

visiblein thisfigure.Theinnervolumeof thePMR-15compositewasfreeof voidsandcracks.

Figure12showsthecutsurfaceof theAvimidN compositeagedfor2090hrat316°Catthe

positionwheretheDMAspecimenswerecut.Twogroovesmadebythediamondwheelarevisibleat

thetopof thefigure.Largevoidsareevidentbelowtheouterslice.Theoxidativedegradationprobably

removedmatrixmaterialfromthesurfacesof thevoidsthatwereoriginallyexposedtotheoven

environment.ThisvisualobservationconfirmsthedatainTable5,whichindicateahighervoid

contentin thefirstsliceof theAvimidNDMAspecimens.Also,it is consistentwiththelowerG'

value in the same slice shown in Fig. 10(b).

Figure 13 shows the Avimid N molded surface away from the inner diamond wheel slice

visible at the top of Fig. 12. This surface was not directly exposed to the aging environment and is

representative of the specimens tested in compression. The Avimid N outer molded surface had much

less damage than the PMR-15 composite. In fact, no oxidative depletion of the matrix material, due

to surface cracks, was observed in the outer plies. There were no signs that a distinct surface layer had

formed. The slices were cut to measure about 2.54 mm thick.

Although the outer Avimid N surfaces appeared to have experienced little oxidation damage,

the central volume of this composite had a heavy concentration of voids and cracks. We concluded

from these data that, even though there was more thermal cracking in the Avimid N composite

material than was seen in the PMR-15 material during 2090 hr of aging at 316 °C and the void

content appeared to be excessive, the lack of visible signs of oxidative damage indicated that cracks

and voids did not play a major role in the thermo-oxidative stability performance of Avimid N.

Evidently, the matrix protected the reinforcement and the inner material from damage by the hostile

environment. In addition to the microcracking, void formation and coalescence were observed at the

matrix-fiber tow interfaces. The matrix actually separated from the fiber tows (Fig. 13) and the

interfaces broke down. Coalescence and debonding were not present in the unaged specimen (Fig. 2).

It can be concluded that this was due to thermal damage at the interface. This extreme degradation of
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theAvimidNcompositeshouldbereflectedin itsmechanicalpropertiesafteragingathigh

temperatures.

CompressionTests

One compression test was run on a straight-sided specimen from each of the two aged

composites. These specimens were not machined to ASTM D-695 specifications. The specimens were

cut from the edges of the two composites in the same manner as the dynamic mechanical analysis

specimens. Thus, the two outer edges of the straight-sided specimens were the molded surfaces of the

plate and contained the damaged molded surface layers. The measured strengths for the PMR-15 and

Avimid N materials were 344.3 and 220.9 MPa, respectively. The corresponding moduli were 58.6 and

53.1 GPa. The average values of these two properties for three specimens of an unaged PMR-15

composite were 660.2 MPa and 68.7 GPa. The standard deviations were 13.9 MPa and 3.4 GPa,

respectively (5). The PMR-15 composite lost 6.0% of its original weight and the Avimid N composite

lost only 2.2%. Even though the PMR-15 lost three times as much weight as the Avimid N (since they

both had the same nominal dimensions, they can be compared on a percentage basis), the Avimid N

composite had a significantly lower retained strength than the PMR-15 composite.

Figure 14 [from (5)] shows the change in compression strength and modulus for T-5 PMR-15

specimens reinforced with the same type of fabric as the composites studied in this work. The

specimens were aged at the five temperatures indicated in the figure. Except for the specimens aged

at 204 °C, they all fall on a single curve when the compression strength is plotted as a function of

percent weight loss. The compression strengths from this study are superimposed on the original figure.

The PMR-15 data from this study fall in line with the data from (5), whereas the Avimid N data fall

below the other data, in line with data measured for specimens aged at 204 °C.

Another set of specimens were cut from the T-27 and AT-27 plates aged at 260 and 316 °C

for 20 000 and 2090 hr, respectively. They were machined as specified in ASTM D-695 so that the

width directions were parallel with the molded surfaces of the plates (Fig. 15). The layers were

removed in succession from the surface inward toward the center. Thus, the specimens were

representative of the outer 9.1 mm of the plate material. Each layer was 2.54 mm thick.
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Threeof these T-27 and AT-27 layers oriented parallel to the molded surface were

compression tested at room temperature for each condition (260 and 316 °C). The data are presented

in Table 6. The retained properties were lower for the Avimid N composites than for the PMR-15

composites. The data from these tests are also plotted in Fig. 14 at 6.0 and 10.5% weight loss (PMR-

15) and 0, 2.2, and 10.3% (Avimid N). The extension of the 204 °C curve, indicated by a dashed line,

appears to have the same shape as the higher temperature data, but displaced downward.

It must be acknowledged that the ASTM compression test specimens did not contain two

oxidized surface layers as did the straight-sided specimens described previously. Comparing the

straight-sided specimen strengths with those of the ASTM D-695 specimens showed close agreement

for Avimid N aged at 316 °C for 2090 hr. This result suggested that external oxidation was not a

significant factor in strength retention for the Avimid N during aging. However, the large difference in

strengths for the PMR-15 specimens suggested that the oxidized surface layers were a significant

factor in strength retention for this composite.

Some data in Table 6 need explanation. The strengths and strains for the PMR-15 specimens

aged at 260 °C for 20 000 hr had standard deviations and coefficients of variance much larger than

those for the other specimens. The raw data showed 233.1 MPa for the strength of the outer specimen,

298.0 MPa for the second specimen (the second layer inward), and 264.6 MPa for the specimen

farthest inside the aged plate. The outer specimen contained the thermally damaged molded surface

layer with exposed fibers. This layer had lower values of strength and modulus. The data from test

pieces cut farther in were more constant in magnitude.

A similar first slice was removed from the T-27 PMR-15 plate aged at 316 °C for 2090 hr.

This slice, because of the severe matrix depletion, crumbled as it was being machined. A T-12

specimen was aged for 2090 hr at 316 °C, and the average measured compression strength was

462.9 MPa with a standard deviation of 20.8 MPa. The final thickness, as measured from the

photomicrographs, was 89% of the original thickness. The calculated strength was 423 MPa. No such

extreme differences in properties were evident in the Avimid N data.
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In Fig.16[from(5)]PMR-15materialagedat204°Cfor 10000hrexhibitedonlyslight

signsof surfaceoxidationbutdidshowexcessiveinternalmicrocrackingsimilarto thecracks

observedin theAvimidN composite.ThesurfacedamagetothePMR-15specimensignificantly

affectedits compressionproperties.Althoughthecracksandvoidsin theAvimidNcompositedidnot

adverselyaffectthethermo-oxidativestabilityof thatmaterial,weconcludedthattheydiddegrade

themechanicalproperties.Theextentof damagedueto thevoidsalonewasnotdeterminedin this

study.However,thedifferencesin thepropertiesof thetwomaterialsatzeroagingtimemaybedue

tothepresenceofthevoids.In apreviousstudy(12)it wasshownthattheinterlaminarshearstrength

of unidirectionalPMR-15compositematerialdecreasedto approximately80%of its void-free

strengthwhenit contained5%voids.Therefore,it isnotunreasonabletoexpectthatsimilareffects

couldbeobservedwiththecompressionstrength.

COMPARISON WITH PREVIOUS WORK

Salin and Seferis (7) describe extensive work concerning the isothermal degradation of

Avimid N neat resin and also 20- and 8-ply unidirectional and cross-plied composites reinforced with

T-650, G30-500, and T-300 graphite fibers and aged at 371 °C. They noted the formation of voids

along the exterior surfaces of Avimid N neat resin during aging. Also, they observed a lighter color

along the outer surfaces of cut cross sections of the same specimens. Somewhat similar observations

were made for the PMR-15 specimens in (13). In the present study void growth was observed along

the cut edges of the Avimid N specimen aged at 316 °C for 2090 hr, but no light surface layers were

seen at the temperatures investigated. Such layers may occur only above 343 °C for this material.

Microcracking occurred throughout the core of the aged specimens and not just along the surfaces.

Therefore, the cracking we witnessed probably was not due to voids.
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SalinandSeferis(7)alsocalculated a 0.5 time exponent for weight loss flux during the

initiation of aging (up to 300 hr), an indication that a diffusion-controlled mechanism prevails during

this time. The aging temperature they studied is probably close to the processing temperature and may

cause the release of residual reaction products that did not diffuse out at the lower temperatures.

Avimid N aged at 371 °C may experience the onset of surface oxidation in a similar manner as

PMR-15 aged at 270 °C.

Also, Salin and Seferis (7) observed a reaction zone at the fiber-matrix interface when the

Avimid N composite was reinforced with G30-500 fibers. The zone appeared to be degradation of the

fiber but not the matrix. The resulting weight loss was significantly greater for the G30-500-fiber-

reinforced composite than for a T-300-fiber-reinforced laminate, probably due to the destruction of the

interface in the former by fiber degradation. The degradation behavior of the Avimid N composite was

similar to that of PMR-15 composites, which degrade more rapidly from the surfaces containing fiber

ends (1) than from the molded surfaces. This behavior has been attributed to the breakdown of the

fiber-matrix interface. The observations described in (7) agree with the details of the results reported

herein.

DISCUSSION AND SUMMARY

The differences between the microcracking resistance and mechanical properties durability of

the two different polyimides were unexpected a priori. The Avimid N composites experienced

extensive microcracking during high-temperature aging. It was probably this microcracking, and not

the internal void content, that was the primary cause of the lower compression properties for this

condensation-curing polymer. This type of microdamage has been observed in PMR-15 composites

with the identical fabric reinforcement when they were aged for more than 10 000 hr at 204 and

260 °C (5). The weight losses at these temperatures were about 0.4 and 4%, respectively. The high

curing and postcure temperatures reported previously (8, 10, 11) may have aged the Avimid N past

point A in Fig. 5. Therefore, the zero-weight-loss point was moved to the right and some compression

strength was lost. These results suggest that all polymer-matrix composites processed at temperatures
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above 316 °C should undergo long-term isothermal testing or suitable accelerated testing to monitor

microstructural and mechanical property changes.

One other significant difference in the microstructures of the two types of composite was in

their surfaces after aging. In Figs. 10 and 11 the molded and cut surfaces of the PMR-15 matrix

specimen aged for 2090 hr at 316 °C contained a number of surface cracks and pronounced voids in

surface layers that penetrated into the composite. However, the central volume showed no indications

of either cracking or void formation. A more extensive description of this PMR-15 composite surface

damage can be found in (5). It describes the high concentration oxygen levels in the surface layer and

at the microcrack surfaces that extend into the composite. In contrast, the Avimid N composite

showed no indications of oxygen concentration at the surfaces or around the microcracks and voids.

The work of Salin and Seferis (7) suggests that such concentrations may occur at aging temperatures

above 343 °C. However, extensive cracking occurred throughout the Avimid N specimen. Although

Avimid N aging-induced dimensional effects were not addressed in this study, because of the

variations in thickness across the specimens, we assumed that this polyimide experienced a minor

size reduction during aging.

When the fiber volume contents and void volume contents were compared at different

distances from the cut surfaces of the two types of specimen, little change due to position was

evident. The data, presented in Table 5, reflect the large amount of void volume in the Avimid N

composite and the absence of a volumetric gradient of fiber content as the distances from the cut

surfaces increased. It is surprising that the Avimid N composite had higher measured fiber content than

the PMR-15 material.

The relatively constant dynamic shear moduli G' and glass transition temperatures T c as the

Avimid N specimens were scanned across the thickness imply that their outer surfaces oxidized much

less than those of the PMR-15 specimens. The surface degradation of the PMR-15 material was

reflected in the changes in T6 and G" values as the specimen thickness was traversed.

NASA TM-107529 14



Thesedataillustratetheunreliabilityof usingthermo-oxidativestabilityresultsto ratethe

extendedthermalbehaviorof polymer-matrixcomposites.Bothphysicalandmechanicalproperty

retentiondataarenecessarytodeterminecompositedurability.Theyalsodemonstratethedetrimental

effectof microcrackingonthecompressionpropertiesofpolymer-matrixcomposites.Microstructural

examinationof all specimensisanimportantpartof anystudyof thermaldurability.It isnotonly

necessarytodeterminewhathappensbecauseof theenvironmentalexposure,butit is moreimportant

tobeabletoreasonwhyit happens.
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TABLE 1.--DIMENSIONS OF PMR-15 AND AVIMID N

COMPOSITE SPECIMENS

Specimen Length, Width, Thickness, Weight, Percentage

cm cm cm _ of edges
T-3 8.94 10.83 0.13 19.9 2.6

T-5 8.94 10.83 25 40.7 5.4

T-12 8.94 10.83 .75 103.4 11.9

T-27 8.90 10.14 1.74 245.5 26.8

AT-27 9.44 9.46 1.79 225.6 27.5

T-89 10.13 .21 1.56 5.8 88.5

TABLE 2.--PERMEABILITY OF PMR-15 COMPOSITE SPECIMENS TO ETHANOL AFTER
AIR AGING

Specimen Aging time, Aging Weight loss, Ethanol permeability

tr temperature, percent
°C

T-3 1510 316 10.00 None

T-9 1510 316 10.00 None

T-89 240 316 2.08 None

T-89 500 316 6.82 Full

T-89 860 316 13.19 Full

T-89 2000 260 2.46

T-89 20OO 288 4.28
Isolated wet spots on back surface

Permeable with some isolated dr_ spots

TABLE 3.--GLASS TRANSITION TEMPERATURE AND

STORED MODULUS OF PMR-I 5 AND AVIMID N

COMPOSITE SPECIMENS

Specimen Slice

T-27

AT-27

Glass transition

temperature,

TG,

465

400

409

417

374

374

370

369

Stored modulus,

G',

dyne/cm 2

1.3xl_

7.6x1_

22×10 l°

3Dxl0 l°

1.OxlO _°

2.0×101°
2.0×101°

2.0×10 I°
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TABLE 4.----GLASS TRANSITION TEMPERATURES

OF T-5 SPECIMENS AT DIFFERENT AGING TIMES

AND TEMPERATURES

Aging
time,

IT

Aging temperature, °C

Room 204 260 288 316

0 330 ......

0 342 ......

0 347 ......

500 ...... 358

1 000 .... 349 364

2 000 - - 328 330 352 391

5 000 - - 323 346 - -

10 000 - - 322 349.5 ....

TABLE 5.--FIBER CONTENT, VOID CONTENT, AND

COMPOSITE DENSITY OF PMR-15 AND AVIMID N

STRAIGHT- SIDED COMPRESSION TEST SPECIMENS

Matrix Slice Fiber content, Void content, Density,

PMR-15

Avimid N

vol.% vol.%

57.6 0.8

59.6 -1.1

57.5 -.8

58.6 -1.0

61.3 7.2

61.4 5.0

61.6 5.0

62.2 5.4

_/em 3
1.5850

1.5944

1.5843

1.5898

1.5314

1.5523

1.5554

1.5554

TABLE 6.--COMPRESSION STRENGTH OF THREE OUTER LAYERS OF

PMR-15 AND AVIMID N COMPOSITES

Characteristic T-27 specimen AT-27 specimen

Aging temperature, °C Room 316 260 Room 316 260

A[in[ time, ha" 2090 20 000 - - - 2090 20 000

Strength, MPa 660.2 478.9 233.1 476.2 254.9 127.4
Standard deviation, MPa 13.9 7.0 84.6 28.6 32.1 24.4

Coefficient of variance, percent --- 1.5 36.6 6.0 12.6 19.1
Modulus, GPa 68.7 60.3 58.8 54.3 36.0 31.0

Standard deviation, GPa 3.4 1.4 2.2 2.8 2.2 3_5

Coefficient of variance, percent 2.3 3_5 5.2 8.9 7.1

Strain, percent 0.92 0.47 0.99 0.65 0.4

Standard deviation, percent --- 0.08 0.14 0.04 0.06 0.1

Coefficient of variance, percent 8.7 29.8 4.0 9.2 24.4
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• .-y.

Figure 1 ._4Jnaged T650-35-fabric-reinforced

PMR-15 composite.

Figure 2.--Unaged T650-35-fabric-reinforced Avimid N

composite.
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Figure 3._lope intersection as method for

determining glass transition temperature. (Stored
modulus G' curve is used for the measurement.)
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Second cut,

Exposed cut surface J

Figure 10.m T-27 PMR-15 composite aged at 316 °C
for 2090 hr.

Figure 11.-- PMR-15 specimen aged at 316 °C for
1730 hr and cut at 45° to show all fiber ends and

cracking in both warp and fill tows.
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_-\Diamond wheel cuts _7

Figure 12.---Avimid N composite aged at 316 °C for
2090 hr. (Right surface is the cut edge exposed to
the oven environment. Enlarged voids are indicated
by arrows.)
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Figure 13.wAvimid N composite aged at 316 °C for 2090 hr, showing molded surface.
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Figure 15.---Schematic for machining ASTM 13-695
specimens for compression property tests.
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Figure 16.---Oxygen distribution in PMR-15 compos-
ite aged at 204 °C for 10 000 hr. (White areas are
high oxygen concentration.) (a) Magnification, 20X.
(b) Magnification, IOOX.
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