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CRYSTAL GROWTH FURNACE SYSTEM CONFIGURATION AND PLANNED EXPERIMENTS ON THE
SECOND UNITED STATES MICROGRAVITY LABORATORY MISSION

R. Srinivas*, G. Hambright$, M. Ainsworth_:, M. Fiske§, Teledyne Brown Engineering, Huntsville, Alabama 35807
D. Schaefer1, NASA, Marshal/Space Flight Center, Alabama 35812

Abstract

The Crystal Growth Furnace (CGF) is currently
undergoing modifications and refurbishment and is
manifested to refly on the Second United States Microgravity
Laboratory (USML-2) mission scheduled for launch in
September 1995. The CGF was developed for the National
Aeronautics and Space Administration (NASA) under the
Microgravity Science and Applications Division (MSAD)
programs at NASA Headquarters. The refurbishment and
refiight program is being managed by the Marshall Space
Flight Center (MSFC) in Huntsvil/e, Alabama. Funding and
program support for the CGF project is provided to MSFC by
the office of Life and Microgravity Sciences and Applications
at NASA Headquarters. This paper presents an overview of
the CGF system configuration for the USML-2 mission, and
provides a brief description of the planned on-orbit
experiment operation.

Introduction

The CGF successfully completed its maiden flight in
June/July 1992 on the First United States Microgravity
Laboratory (USML-1) mission. The system performed
successfully in all aspects, and all the mission objectives were
met. Seven samples were successfully processed yielding
valuable results. During the mission, a number of system
capabilities were exercised, including demonstration of the
crew interaction with the experiment hardware using the
Flexible Glovebox (FGBX) for sample insertion and
retrieval. The Principal Investigator (PI) was allowed
interaction with the experiment operation by means of real-
time ground commanding to control the initiation of crystal
growth. The flight hardware was returned to the contractor
facility in September 1992 for postflight checkout which was
completed in December 1992. At the same time, postflight
ground truth science testing in the Ground Control
Experiment Laboratory (GCEL) unit for all the four USML-I
PIs was also performed and concluded in February 1993.
Since then, the CGF system has been undergoing
refurbishment and modification to upgrade the system
capabilities to accommodate additional science requirements
and enhance the system reliability for flight on the USML-2
mission. The key upgrades to the system are as follows:
(1) The addition of the Current Pulse Interface Demarcation
(CPID) capability, (2) the development of a new Sample
Ampoule/Cartridge Assembly (SACA) to provide the
necessary interface for current pulsing through the sample via
the CPID system, and (3) modification to the Control and
Data Acquisition System (CDAS) to incorporate an 80486
Control Processing Unit (CPU) and a new Remote
Acquisition Unit (R.ALI) Interface. The refurbishment and
modification of the GCEL unit has been completed and is
currently supporting the ground-based science development
testing for the reflight of the four USML-2 peer-selected
experiments along with an additional Interface Demarcation
Flight Test (IDFT). The flight unit refurbishment and
modification activities are progressing well to support the
launch schedule of September 1995. The hardware delivery
to the Kennedy Space Center (KSC) for mission integration is
scheduled for September 1994.

In this paper, a brief description of the various
modifications to the CGF system is presented, and an
overview of the system configuration for the USML-2
mission is given. A brief description of the planned on-orbit
experiments is also presented.

•CGF System Configuration

The CGF USML-1 baseline configuration is described in
reference 1. Only modifications/additions to this baseline
system configuration are described here briefly.

CGF System Modifieatior_

Modifications to the CGF system for the USML-2
mission have been based upon the following:
• Lessons learned from USMI.-1

• . PI and mission-specific requirements
• Upgrades to system

The following changes have been incorporated into the
system design as a part of lessons learned from USML-I:

• RAU interface board in the CDAS has been redesigned,
and the flight software has been modified to prevent
"skip" condition and Dedicated Experiment Processor
(DEP) load problems.

• Onboard crew displays on the Spacelab Data Display
System (DDS) have been streamlined and are being
updated to provide additional system data and to include
command protection for certain critical, crew-initiated
commands.

• Onboard-generated error messages have been updated.

Changes resulting from PI and mission-specific science
requirements include the following:

• Addition of the CPID capability to send current pulses
into the sample being processed to mark and locate the
crystal growth interface Coymeans of Peltier effect)

• Development of the SACA to provide interface for CPID

• Upgrades to science data and graphics displays for PI
use on the ground

Upgrades to the system consists of the following:

CPID system
CPID SACA

Modifications and upgrades to the Integrated Furnace
Experiment Assembly (IFEA)
- Modified Ampoule Support Plate Drive Assembly

and Trunnion Assembly to prevent overtravel
Redesigned upper support plate to allow easier
disassembly
C'PID Mate/Demate Wiper Assembly to allow easy
installation of CPID SACAs

Relocation of thermocouple reference junction to
allow more flexibility in SACA location within the
Sample Exchange Mechanism (SEM) and to

accommodate late changes to sample thermocouple
selection

Addition of lights inside the IFEA to enhance
visibility of the SACAs through the viewport
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• CDAS upgrade to incorporate 80486 CPU and
redesigned RAU/communications interface

• Replacement of power module feedthrough capacitors to
increase electrical su_ss margin

• Replacement of the Remote Controlled Circuit Breakers

(RCCBs) in the Power Distribution System (PDS) with
newly designed and fabricated units.

• Upgrades to the flight software to accommodate new

requirements and provide additional capabilities and
flexibility

• Modification to the Mechanical Ground Support
Equipment (MGSE)

Table I.

New Environmental Control System (ECS) panel to
enable better verification of interfaces and control
functions

A summary of the modifications/enhancements to the
CGF system is given in Table I. In addition, a new flight
RFM has been built to the same cortfiguration as flown on the

USML-1 mission. The USML-1 flight RFM has been
installed in the GCEL IFEA and is currently supporting the
ground-based science development testing. A detailed

description of the CPID system and the CPID SACA is given
below.

Summary of Modifications/Enhancements to the CGF System.

MODIRCATION/ENHANCEMENT BASIS/OBJECTIVE
CPID SYS1--P_.M PROVIDESCONTROLLEDCURRENT PULSETO INTRODUCE

INTERFACEDEMARCATIONIN SAMPLE
CDASUPGRADETO 80846CPU
PELTIERCURRENTDRIVE
MODIREDARCHITECTURETO INCREASEREDUNDANCYIN PCS

CPID SACA PROVIDESCONTAINMENT FOR GaAs:SoANDGe:Ga SAMPLES
ANDSUPPORTSCURRENTDELIVERYTO SAMPLE

IFEA MODS
RFMTRUNNIONASSY
AMPOULESUPPORT PLATE
DRIVEASSY
UPPERSUPPORT PLATE
CPID MATE/DEMATE
T/C REFERENCEJUNCTION
RELOCATION
LIGHTING

RAUCOMMUNICATIONSIN I _-HFACE
POWERMOOULEFEEDTHROUGH
CAPACITORS
RCCB

DESIGN UPGRADE
DESIGN UPGRADE

REDESIGNEDTO ALLOW EASIERDISASSEMBLY
DESIGNEDTO ALLOWEASY INSTALLATIONOF CPID SACAs
ALLOWSMORE FLEXIBILITYIN SAMPLELOCATION,
LATECHANGESTO T/C SELECTION
TO ENHANCEVISIBILITYINSIDETHE IFEATHROUGHTHE
VIEWPORT
& S/W REDE_IGI_TO IMPROVECOMMUNICATIONSINTERFACE

REPLACECOMPONENTSTO INCREASEELECTRICALSTRESS MARGIN

REPLACEEXISTINGRCCBsIN THE PDSWITH NEWLY DESIGNEDAND
FABRICATEDRCCBs

RACK7 HARDWAREFABRICATION HARDWAREFOR VIBRATIONTESTING OFAVIONICS COMPONENTS
MGSE MODIRCATIONS

• AIRSERVICER BLOWER

FLOWMEASUREMENTON
WATERSERVICER
ECS PANELREPLACEMENT

PROPER FLOWBALANCINGIN AVIONICSBOXES DURING
GROUNDTESTING
PROVIDEINFORMATIONON PRESSUREDROPVS FLOWRATE
FORVERIRCATION
BETTERVERIFICATIONOF CGF CONTROLFUNCTIONSAND
INTERFACES

RIM NEWUNITFABRICATED
GRADIENT'ZONE

FLIGHTSOFTWARE

FABRICATIONOF OPTIONALGRADIENTZONESTO ACCOMMODATESCIENCE
RECLIIREMENTS
UPGRADETO ACCOMMODATENEW REQUIREMENTSAND PROVIDEADDITIONAL
CAPABILmES AND FLEXIBILITY

Sample Interface Demarcation System (SIDS) Desigrl

The Sample Interface Demarcation System (SIDS)
provides the capability to mark the shape and location of the

crystal growth interface in the experiment sample during
processing operations. The SIDS capabilities are divided into
two main functions, Mechanical Pulse Interface Demarcation

(MPID) and Electrical Pulse Interface Demarcation (EPID).
The mechanical portion of the SIDS capabilities is available

for all SACAs which meet certain interface definition criteria,
while the CPID functions are available only for those
experiment samples contained in a CPID SACA.

All SIDS functions operate under the control of the
CDAS software. The software controls the SIDS functions in

accordance with a user-defined timeline, where system
• parameters such as the amplitude, width, timing, and polarity

of each pulse may be specLt'ied. The software monitors SIDS

system performance to prevent damage to the hardware and to
reconfigure the system in an effort to continue operations in
the event of a failure.

The major SIDS requirements are defined as follows:

• Mechanical pulsing: Mechanically impact the SACA with

a variable intensity acceleration of up to 1 g.

• Electrical pulsing (CPID): Force a pulse of current to
flow through the CPID SACA.

- Pulse amplitude: 10 to 57 A; the maximum current
available is dependent upon the electrical resistance of
the CPID connections inside the SACA (see

Figure 1); the amplitude is user selectable in I-A
increments, and is accurate to + 3 % of the pulse
amplitude setting.

Pulse width: 25 to 100 msec; the width is user
selectable in l-msec increments and is accurate to

+ 5 % of the pulse width setting.

Pulse period (time between pulses): :> 1 sec; the
period is user selectable in 10-msec increments.

Pulse polarity:. User selectable.

Pulse transition (rise, fall) time: < 5 msec.

Data available to user (CPID only): Peak current and
voltage measurements; accurate to + 1.5 % of full
scede; monitored once per pulse.

A functional block diagram of the CGF SIDS is shown
in Figure 2. The two SIDS functions 0VlPID and EPID) CGF
system to minimize the overhead associated with each.



60 i;i ' i I: :: ," i -" : 'i i i _ l IZ i I: i: I::ii Ii ; :: I' i i Ii ii!-.._........L_....,..|..,...<.._._..+.._.._........,.J...:..._......I.i.,.._...................._-,.._.._...+._.............+.._.._-,._.._.....<.................
_ ; : _." ." ,l--i--l-lill i i I i I i i.: ii I I II I I i i IiI i I lj : i I ] i Ii I Iii i | i'j i I i

...................... ' i'i"": ::'T:_,Pt "'? ........... _"_"_'_'T'_i!t ..... t.q -;-:.._[-.... ....... !. P! :|.,!..,:..,,,. ................. Pt..t [,.. ,.z _ i I -'1|_::_'1 it'" !

_::l:t:i'i'l"i"t._.'_ttl:i_tli_ 111t ljlZt_l'ttli'iilllli1"It .]...'. _,

"i',"i7'T'11":"£'l","l"i'i"i"i"l:_-,,'"ll......!" l'l"t"f""l"f"l"l'l":s ,,-m_,Ui_R,,i,_,_liO,_:i

::i i I l! : ' Iii l i | |T_--f':_'i | |l L,_':'832Wit_ | ] || | | " : -_|| ] | I| | | i:._:::i:::::_

t...... '.........'..... ........:tr' , i i"'":"'"i"'lI-!' -, • r i ,,:
1 "'_ ................... i"+ ..........., .iLl:,:f.,.,:.,.................l,ttt ' _'!'.,.-,=,i';"....... +'.... " ....."I,'T" " "Ii..........i r''f'lb.l...P'l!..,,.'i"..El......._..1..[.......+..,.._'........7........•........;........t.......... :..t..|..:........_..i.............l..'t +l., i ,, i.."

"'"t t i i I I t t t !._, i :_:i : ; i t =. _i i i ..!..i...t._, : _, _ Li "_t : i : ' i"i-t"T'f"
O 30- .:i.lt1-j=]illiillltlii!t..: i!il _..]..):.L_ljiltt/,'.l!:ll :l,l..l.._.

"TTYY'{T"f'!"i"rT"[TTT'FITT'TVH"TT 'TTTT" __]"rT"._'T'i"f'f'r.rT"i :i : _ .=

-.:.._ :.....|! .. t..i .... - .i .... i......_. ,.t.t...:... =.t i t" i.-t-_* _._l. .i. t :,.,.._ _ ,,._ t t'., • i t'i I .......,, _ , 1.i .,.'' • """:,.......... ""-"I.','"'"" 'TT'TT'..""
I I II l

......................... ;.........""'"" ................... :" .......'......."'"'" .........:"'"" "- ........ FT'TT'F,o.-,:,.,.,, ,,,,,, , ,: , ,..
"T'."T'i"|" .'" "."l":"i'"_ T':'T'|" "'£' ;"YT"_"f'T':" %';'T'_"I ""_"f"f"_. ..... |" "i"i" :"'."f"Fi" "',"_ " ""i'":' "t'"f'i'T'l".............._...I..................÷....................;............I .......*"_"__'["ZJ" !-r"r'l"--

l i ! t ! 1 t i t i ! I! i ! ! i I i 1: i/ " l/ it : I _ i i i t i Hi i_li

-'-_'_"'"tTT'T""_'"i"t''l"t"'t'_............r"_']......._2""_."t'I'""-r"_r_,_ c_ _,.;_ ......._-_'---t-t'_"t-i'
1: : I . i _ t I . . idl._ . .i..i.lg.j i i I i __ : :_ _ . . I i . . . _ ...... i : Iz; I . . ; | .

10 -i i i i i | t i ;_ii _-'r_* • _. ii . ; i ; i; • i : ii , _t ;.i i;= _ ! t i i i, t " _: , _
______i.__r-__i____`i_______i.___=_____i_.__i__:-___i__`i__i_+J_i__-i______i-__i______:__-__..i,,L..i ......... _...:...f..._..#..i,.t...i...:..,;..._,.._..i ......... l.,.,..l..,i._,.4..,i...i..,...- .,i,,:.

." : i , t, , , ! , " l, , , , ,, , il , , ! l ,, , , , | , ! ,, , , , i ! , , , ,, , i , ii # t ,.i lJ• . ,_ _ • ,..,. •...........-._.........,..,.. .,_"i_. _ i i.... i' tlilli. 1 ,.i i:: ,ill il .... l,,:il .... t..........................................]..L.,..........._.......................i.x........_._.,._..........................!o]• :::::::::::............,.....,........,......,,:,,,,,,:,,
...-.._..,.._.4.,.._..'...,...,._.._..,._._..,..,.._..,.-._..i...:......,.,.._...,..i..-..:...,...<.L,..,.....:..;.._...,..,-.,._..i..q..;.,-._...,.....T! i......"i::'i iI! ii:ll l:: Iiti i l; :1 i i ii t j/tt t il!i ll; :l! Ii: fill i l

0 <

0 0.2 0.4 0.6 0.8 1 1.2

SACA (Ampoule + Cartridge)Rcsisllmcc(_)

Fig. 1. CPID Currenl versus SACA Resislance.

E..)

CDAS

Software

Contn:,_r

CPU

SCS I PDS I POS
I i I
I ! i

I I

Fig. 2.

To Cold Main

Primi'y Heater

IFEA

To Coll Main

Re, du ndtmt Heater

I

I

I

I

I

'1

CGF Sample Interface Demarcation System Block Diagram.

SampleExchanle

M echantlmCPIDOemateM =lte_

As indicated in Figure 2, the SIDS Software Controller
resides within the CDAS computer on the CPU board. After
retrieving the appropriate SIDS timeline data base, the

software commands an analog output voltage from the CI)AS
which represents the desired current pulse waveform and
timing. This waveform provides the control input to the two
Peltier Current Drive (PCD) modules located in the Power

Conditioning System (PCS). These amplifiers provide an
output current which is proportional to the input control
voltage. Depending upon the configuration of the three relays
in the PCS, this current is routed either to the mechanical

-pulsing solenoid or to the CPID mate/demate mechanism
(both located within the IFEA), where (for CPID operations)
it is transmitted across the SEM and into the SACA. This
mechanism performs a multiplexing function, such that only
the SACA which is located in theprocessing position receives
the electrical or mechanical pulse. A relay in the IFEA,
operated under SIDS software control, enables the system to
reverse the polarity of the CPID current flowing into the
SACA. A switch located in the IFEA allows the crewmember
to inhibit SIDS operations during the manual sample
exchange process to eliminate the possibility of electrical
shock.



Several features have been designed into the CGF SIDS
to improve the system operations and to provide additional
support of the science requirements. These are as follows:

• Real-time commands will be available to enable the user
to modify the existing or any future timeline segments, to
hold and restart the timeline at any point, and to transmit
a "pulse now" command.

• The PCDs are currem sources, where the output current
is the controlled parameter. This results in superior
current amplitude control performance over a wide range
of SACA resistances when compared to the use of
traditional voltage sources.

• The PCDs enable the deIivery of high peak currents into
awide rangeofSACA resistances.Each PCD iscapable
ofprovidinga peakoutputpower ofup to500W, witha
peakcompliancevoltageexceeding26V atfullload.

• The SIDS protectsitselffrom damage due toelcctrical
faults.The PCDs willrecoverfrom operationintoeither
anopen-ora short-circuitwithoutdamage. Inaddition,
thesoftwarecontrollermonitorsthepower providedby
thePCDs. Ifthispower exceedstheratedvalue,the
current pulse is terminated.

• In the event of a CGF hardware failure, the CGF
software may reconfigure the PCS relays to enable the
SIDS PCDs to be used in support of furnace temperature
control SIDS capabilities will be reduced accordingly in
this event.

CPID SACA Dc_ign

The development of a SACA to support the processing of
gallium arsenide (GaAs:Se) and gallium-dopcd germanium
(Ge:Ga) using C-'PID has posed a significant design challenge.
Chemical compatibility among a cartridge material, the sample
material (in the event of an ampoule failure), other internal
SACA components, and the fumace environment is a serious
issue that requires a detailed understanding of the high
temperature reactions involved. The first problem is that a
single cartridge material may not be suitable for all
applications, unless a properly designed coating can be
developed. In addition, thermocouples and CPID conductors
must survive in the internal SACA environment. Choices
with respect to sheathed versus unsheathed thermocouples,
ampoule failure detection sensors, ampoule feedthrough
design for CPID samples, and insulation pre-treatment must
all be addressed to ensure a proper thermochemical balance
within the confines of a SACA at elevated temperatures. This
balance is driven by potential platinum/alumina gas rings that
are driven by low oxygen partial pressures in the gas
environment between platinum and alumina components,
outgassing of various components within the SACA, and
diffusion of thermocouple elemental material, causing
thermocouple decalibration. These requirements become even
more significant when coupled with the geometric constraints
imposed by the CGF system and PIs, including a maximum
cartridge diameter of 1.009 inches on a 24-inch-long tube
closed on one end and with a 0.030-inch wall thickness.

Over the past 3 years, the CGF team has expended
significant effort to develop SACAs for the USML-I and for
the upcoming USML-2 flight of the CGF. Various cartridge
materials have been evaluated including alumina, pyrolytic
boron nitride, graphite, molybdenum, TZM, various
carbides, and rhenium, in addition to the two materials that
flew on USML-I: WC-103 (Nb/Hffri alloy) with silicide
coating and Inconel. For the USML-2 flight of the CGF, the
new design efforts are mainly directed towards the production
of flight SACAs for the GaAs:Se sample, and the IDFT
(Ge:Ga) both of which utilize the CPID capability. This
effort has led to the requirement for the development of new
cartridge material/fabrication methods and/or a coating on the

interior of the cartridge. The coating must not only contain
liquid sample materials and possible decomposition products,
but it must be able to be applied uniformly down the length of
the tube with a large aspect ratio. In addition, it must be
compatible with the cartridge material and all internal SACA
components.

Materials compatibility testing on various cartridge
materials/coatings and possible chemical reactions with Ga,
As, or GaAs have been performed.

The CPID SACA design is essentially similar to the
SACA design flown on USML-1, with the exception of
provisions made to incorporate components required to
support electrical pulsing through the sample material. These
components include both input and output electrical
conductors, means to attach these conductors to the ampoule,
and an additional connector devoted to CPID power delivery.
A typical CPID SACA design configuration is depicted in
Figure 3.

CPID CONNECTOR -__1/_i _- SENSOR CONNECTOR

._._J[_.

ARGON e J,C_-F'IL(.

O-EING SIAL

PLATINUM ALLOY
CURRENT INPUT

CONDUCTORS

uOL YBO£NUM WIRE
FEEOTHROUGN

_N NITRID£AMPOUt.£
UPPORT

WC-I03 CARTR]OGE WiTH

SAMPLE MATERI4L IN INTER/OR 4,NO EXTERIOR

$r_4.r0 QUARTZ AMPOUI.._ CO*_TING

8C_ON I_ITRIOE

LOWER AMPOULE SUPPORT

PLAT]NClM ALLOY
CURRENT RETURN
CONDUCTORS

Fig. 3. Typical CPID SACA Design
Configuration.

The Pl-providedCPID ampoule is deliveredwith
molybdenum feedthroughsattachedon each end. These
feedthroughsterminateinwireloopswhich areattachedto
platinumlugsusinga platinumscrew/nut/washercombination
on eachend. At thetopoftheampoule,sixplatinumwires
areweldedtothelugsand alsowelded toa platinuminput
electrodewhich islocatedinthe centeroftheSACA and

terminatesatthetop oftheSACA ina leadwire.The six
wiresallowfordifferentialthermalexpansionof intcrnal
SACA componentsduringthcrmalcycling.At thebottomof

4



the ampoule, the same configuration is used, but the six
return conductors are enclosed in single-hole alumina

insulators, Iocate.d circumferentiaUy around the ampoule, and
routed back up to the top of the SACA where they axe welded
to a common bus which also terminates in a lead wire. Six
bare wire S-type thermocouples are provided for active

temperature monitoring of sample temperatures. These
thermocouples are housed in double-hole alumina insulators

which are also located circumferentially around the ampoule
but spaced between the return conductor insulators. Lastly, a
two-pin connector has been added to the CPID SACA to
transfer electrical pulses from the CGF SEM to the SACA.

CGF USML-2 Confi_curation

The CGF system configuration layout and the Spacelab-
CGF interfaces for the USML-2 mission are shown in
Figures 4 through 6.

The IFEA is mounted in a special CGF support structure
provided as Mission-Peculiar Equipment (MPE). The special

support structure replaces a standard Spacelab double rack
(rack 9) and interfaces with the Spacelab module using the
same hard point locations as the double rack. The interface of
the IFEA to the special support structure is by means of an

interface adapter plate to which the IFEA base ring attaches.
To provide a better operational envelope, the IFEA is canted
forward by 12 degrees. All resource interfaces are at the base

of the IFEA. Argon is provided as a standard resource from a
special onboard MPE storage tank. A bleed accumulator in

the water cooling loop is also provided as MPE. Both the
argon tank and the accumulator are mounted under the module
floor directly beneath the IFEA. Some of the ECS

components are mounted underfloor and some on the support
structure.

_1_ Powr :

ENVIRONMENTA

CONTROl SYSTEM _'

C_IL_
Jua -C

LtX_

UNDER FLOOR/
IFEA BASERING/

CGF SUPPORT STRUCTURE

VERTICAL MOUNT ON SPECIAL CGF SUPPORT
STRUCTURE AT RACK _'_ LOCATION

OOUBLE RACK----
_7

Fig. 4. CGF System Configuration for USML-2.

AluminumSkln _ Pl_)l_tsertl°n

IFEA----...._ _'_ _ _\\ // B_t, Cloth III \_[| g I" _ IFEA
ECS Control._._ ::::_-_ _ _\ _._f"" Panel {Rear)_IL,(" \_\_ /J/ IPanel

BaN Ring Base Ring

MPE Support

Front VIew Structure Rear View

Note: Olowbox, selected aluminum aldn panda,

and mar uoaabraee not shown for ©larRy.

Fig. 5. IFEA Mounting in CGF Support Structure.



Fig. 6. CGF System Layou! in the Spacelab Module.

The avionics boxes are mounted in a standard Spacelab
double rack (rack 7), which is located next to the special
IFEA support structure (rack 9).

To accommodate the processing requirements of the four

multidiscipline crystal growth experiments and an IDFT
experiment, the following RFM configuration is used for the
USML-2 mission:

• 2.O-era-thick gradient zone

• 0.025-cm-thick Ptl0%R.h heat extraction plate

• S-type thermocouples for heater control.

Table II summarizes the system capabilities.

Table II. CGF System Capabilities.

Reconllgurable Furnace Module

Hot Zone Temperat'm_

Cold Zone Tempenttu_

Booster Heater Temperature

Gradient Zone Length

Sample Size

Heatin[[ Rite

Absoh_te Control Set Point Accuracy]Stability

Pumace Translation Rate

Induced Aoeeleratio_t in the Sample

Sample Interface Demltreafion

Processln_] Atmosphere

Number of Sample Thermocouples

Sample Exchange M_chanlam

Crew Inter_elion for Manual Exchm_e o( Samples

Safety I:"eamre)

Real-Time Intencfion Via POCC

150-1600 _C 25.0 cm

150-1300 *C 16.0 cm
150-1700 *C 1.0 cm

0.5-7.0 cm (Inside diameter may v_ry.)

Optional heat extraction plate or thermal corttro[ plate

Up to 2-cm diameter, 20..cm length

Up to 300*C/h
4-4 o 9 *C (depending on the )elected tetaperature range)
• 0.5 °C

0.0024 - 8.30 ram/rain (directional solldificadon) 1200

ram/rain (rapid tnmdation)

<10 -4 g

Mechanical Pulsing: Up to 1.0 g

! Current Pulsing':

I " In accordance with the capability defined in Figure 1
- Both 4- polarity

Ar_[on

,Up to six per utmple (type B, K, 9 r S; can b¢ mixed)

Capsbilit}, to hold up to six sample,
Provision of Flexible Glovebox

Sufficient levels of containment provided to be able to

process toxic samples

By means of upllnk commands

?!armed Experiments for USML-2

All the four USML-I experiments (reference I) have
been chosen for reflight on the USML-2 mission. In
addition, an IDFT will be performed to assess the feasibility

of interface demarcation in a p.g environment and to identify

the effects on interface shape which may be caused by low-
level accelerations. The experiment tides and the Investigator
teams for the respective experiment are given in Table m.

For USML-2, the experiment processing time will
require approximately 360 hours, and the maximum

processing temperature will be 1260 °C.



Table HI.

INVESTIGATORS

Prof. Hedbert Wiedemeler (PI)
Rensselaer Polytechnic Institute Troy, NY

Dr. Sander L. Lehoczky (PI)
Dr. Frank R. Szofran (Co-I)
Dr. Ching-Hua Su (Co-I, USRA)
NASA Mamhall Space Flight Center
Huntsville, AL

Prof. Rosalia N. Andrews (Co-I)
Universityof Alabama at Birmlngham
Birmingham, AL

Ms. Lucia Bubulac (Industrial Guest
Investigator)
Rockwell International Science Center
Thousand Oaks r CA

Dr. DavidJ. I.arson, Jr. (PI)
Dr. Alvin Levy (Co-I)
Grumman Corporate Rese_ch Center
Bethpage, NY

Dr, Donald C. Gillies (Co-I)
NASA Marshall Space Flight Center
Huntsville, AL

Dr. R. R. Neugaonkar (Co-I)
Rockwell International Science Center
Thousand Oaks, CA

Dr. Fred Carlson(Co-I)
Clark,sonUniversity
Potsdam, NY

Dr. IwenJ. D. Alexander (Co-I)
Univem_ of Alabama in Huntsville
Huntsviller AL

Dr. David H. Matthiesen (PI)
Case Western Reserve University
MicrogravityMaterials Science Laboratory
NASA Lewis Research Center
Cleveland, OH

Mr. Dale Warring(Co-I)
NASA Marshall Space Flight Center
Huntsville, AL

Mr. James KafaJas(Co-I)
Viable Systems, Inc.

_Medsfield I MA

CGF USML-2 Investigator Teams and Experiments.

EXPERIMENT

Epitaxlal Growth of Hg0.sCd0.2Te on <I00>
Oriented CdTe Substrate

Unseeded Melt-Growth of (Hg,Zn)To by
Directional Solidification

Seeded Bridgman Growth of Zinc-Doped
CdTe by Using Bridgman-Stockbarger
Method

The Study of Dopant Segregation Behavior
During the Growth of Selenium-Doped GaAs
In Microgravity

Interface Demarcation Flight Test

INVESTIGATION COORDINATORS EXPERIMENT

Dr. Manfred Uchtensteiger (USRA) i Interface Demarcation FlightTest (IDFT) -

Dr. FrankSzofran (MSFC) Single Crystal Growth of Gallium-Doped
CGF Project Scientist Germanium (Ge:Ga) by DirectionalSolidification

A brief description of the planned experiments is given
below:

Epitaxial Growth of H_ ..q_.__d_gTe on <100> 0riented CdTe
Subs_ate

The experiment is designed to study the transient
phenomenon that occurs following the initial nucleation

throu.gh the attainment of steady state. Such transient
expermlents are of fundamental scientific importance for
crystal growth. The expected results of this experiment,
which would be a direct follow-up of the USML-1
experiments, include the following:

• Quantitative determination of the effects of microgravity
on the growth rate and the composition prof'de of the

layers as a function of time and average composition of
the surface.

• Observation of the effects of microgravity on the surface

morphology during the initial growth periods as a
function of time.

• Observation of the degree of "mis-orientation" of the
epitaxial layer (as a result of lattice mismatch relative to

the substrate) as a function of transport time (layer
thickness).

• Information on the influence of "off-orientation" of the

substrate (e.g., from <100>) on surface morphology

(waviness) as a function of layer thickness could be
obtained.
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As indicatedabove,theproposedtransportexperimentis
verybasicand isexpectedtoprovidevaluableinformationfor
the time dependence of mass transportand growth
phenomena duringtheearlystagesofgrowth.A quantitative
comparisonofseveralof theabove propertiesforground
controland spacecrystalswilldelineatetheeffectsofresidual
convecfivccontributionson theseproperties.Combined with
theUSML-I experimentsforgrowthtimesof6 and 8 hours,
theresultsoftheplannedUSMI¢-2 experimentfor2 to4
hours'growth periodwillyieldfunctionalrelationships
(trends)foralltheaboveproperties.Thiswillconsiderably
enhancethereliabilityoftheseobservations.

SACA Configuration:The ampouleismade offusedsilica
(quartz).The sampleconsistsofHgCdTe sourcematerial,
and the substratesis<100> orientedCdTe singlecrystal
wafer.Mercury iodide(HgI2)isusedasthetransportagent.
There aresixK-typethermocouplesplacedtomonitorthe
temperatureofthesource,thesubstrate,and thetemperature
atotherpointsalongtheampoule. The ampoule isplaced
insideanInconclcartridge,md thecartridgeissealed.

Unseeded Melt-Growth of (Hg.Zn_Te by Directional
Solidification

Objectives:The plannedexperimentisnearlyidenticaltothe
cxperimcntthatwas prematurelyterminatedon USML-I.
Some oftheexperimentalparamctcrsarebeingfree-tuned
basedon thepartialresultsfromtheUSMI.,-Iexperimentand
additionalground-based optimizationstudies. The
cxpcrimcntconsistsofmeltingHg0.g4Zn0.16Tealloyand
growing a portionofthetotallengthofthesample on the
ground(eitherintheGCEL unitoratMSFC facilities)bythe
Bridgman method and quenching the sample. This
prcproccssedsamplewillbecome theflightsample tobe
processedinthegg environment.On orbit,thesamplewill
be back-meltedtotheoriginalinterface,and thenextportion
ofthecrystalwillbe grown fora durationallocatedforthe
on-orbitexperiment.The specificobjectivesfortheUSML-2
phaseoftheinvestigationareasfollows:

• To back-melta preprocessedHg0.84Zn0.t6Tesolid
solutionalloyingotand grow a 2.0-cm alloycrystal
under nearlydiffusion-limitedand stabilizinggravity
conditionsusingamodifiedBridgmangrowthmethod.

• To rcaffn'mthatpmprocessedHgZnTe alloycrystalscan
be successfullyquenched,back-melted,and regrown
maintainingnearlysteady-statecompositions.

• To freezein the diffusionboundary layer under
controlledsolidificationconditionsand firomanalysisof
theboundarylayercompositionverifythevalueforthe
HgTe-ZnTe interdiffusioncoefficientforthex = 0.16
alloycomposition.

• To usethequenchedinterfaceshapedata,themeasured
radialvariationsin composition,and the measured
diffusioncoefficienttoassesstheextentofresidualfluid
floweffects.

• To perform detailedmicrostructural,electrical,and
opticalcharacterizationon boththeground-grownand
space-grown portionsof the crystal,and obtain
assessmentofreducedgravityeffectsfortheUSML-2
crystalgrowthconditions.

• To performdetailedcharacterizationoftherapidlyfrozen
portions of the ingot to assess the Potential benefits of the
reduced gravity environment for obtaining homogeneous
alloycastings.

SACA Configuration:The ampouleismade offusedsilica
(quartz).The samplematerial,Hg0.g4Zn0.16Te,isenclosed
insidetheampoule and supportedatthebottomby quartz
wool. Six K-typethermocouplesareused tomonitorthe
sample temperatures.The ampoule isplacedinan Inconel
cartridgeand sealed.

Seeded Growthof(Cd,Zn)Te by Directional Solidification

Objectives:The plannedexperimentisnearlyidenticaltothe
experiments that were performed on USML-1. Two different
ampoule configurations will be used for the USML-2
experiment development. The specific objectives for the
USML-2 phase of the investigation are as follows:
• To quantify the effects of the gg environment on the

mechanical suain and defect distribution within the
(Cd,Zn)Te crystal. The approach involves the
development of a model of the quasi-steady-state
thermomechanical stress field and the comparison of the
predicted stress fields with quantitative measurements
from well-characterized one-g and gg samples.

• To empirically and analytically investigate the dislocation
and defect content of one-g and _tg processed crystals
and to relate the defects to growth conditions.

• To quantitatively examine the transport conditions using
numerical models. These models focus on the prediction
of the Ixg transport conditions in order to assess the
sensitivity of the experiment to the acceleration
environment and the effect of thermal and gravitational
asymmetry on one-g and _tg tzansport.

SACA C0nfigurati0n: The (Cd, Zn)Te sample consists of a
high quality (111) _ crystal which is in contact with a (Cd,
Zn)Te bulk. The sample (seed and bulk material) is enclosed
in an evacuated, fused silica ampoule that has internal carbon
nonwettingcoating.The ampoule is instrumented with sixK-
typethcrmocouplesand integratedintoa WC-I03 cartridge
coatedinsideand outsidewith chrome-ironsilicideand
sealed.

Seed_ Crystal Growth of Selenium-doped G_llium Ar_cnid_
(GaA_:Se) by Direetiorlal Sglidificatign

Objectives: The experiment is designed to specifically
characterize and controUably modify the melt-solid interface
shape during the growth to achieve uniform radial segregation
of the dopant in the solid. This experiment will be a direct
follow-up of the USML-1 experiments which focused on
obtaining axial dopant uniformity. In the planned
experiments, the booster heater and the gradient zone
configuration of the RFM will be used to achieve a planar or
near-planar interface shape in order to minimize radial dopant
variation. Since control of the interface shape during the
growth is the principal goal of the USML-2 experiments, it is
necessary to measure the interface shape during growth. The
technique of interface demarcation by current pulsing (Peltier
pulsing) will be extensively used, This technique has been
used successfitIly to determine the segregation behavior of
semiconductorson arnicroscale.Thus, theseexperimentsare
expectedtoprovidenew and importantexperimentaldatafor
thecontinuationandupgradingofheattransferandfluid-flow
models on a commercially important semiconductor material
system. The current requirement for the pulses will be based
on obtaining the necessary current density in a 1.50-cm
diameter sample to establish the interface demarcation.

SACA Confimtratign; The ampoule is made of fused silica
(quartz). The growth boule (sample material), selenium-
doped gallium arsenide, is enclosed inside a pyrolytic boron
nitride (PBN) sleeve. The PBN sleeve is closed at one end
by means of a graphite pedestal, and the other end has a
graphite chamber in which a graphiteplunger is provided to
support a PBN leaf spring to allow expansion of the boule
volume. The graphite contacts have molybdenum wire
contacts attached to them. This assembly is hermetically
sealed by seaIing the ampoule around the molybdenum foil of
the feedthrough. These feedthroughs terminate in a loop
where the interface demarcation current leads are attached.
The sample ampoule is integrated into the specially configured
CPID SACA. The SACA is backfilled with argon to a
desired pressure and sealed. Six S-type thermocouples are
located inside the SACA to monitor experiment processing.



IDFT: Growth of Ge:Ga by Directional Solidification

Objectives: This flight test is designed to assess the feasibility
of interface demarcation in a microgravity environment and to
identify the effects on interface shape which may be caused
by low-level accelerations. Since control of the interface
shape during growth is a significant goal of three of the
USML-2 experiments, it is necessary to measure the interface
shape during growth. This test is designed to characterize the
melt-solid interface shape during the growth process. For the
USML-2 mission, current pulsing (Peltier pulsing) will be the
technique of interface demarcation. The current requirement
for the pulses will be based on obtaining the required current
density in a 1.40-cm diameter sample.

SACA Configuration: The ampoule is made of Ge#214 fused
silica (quartz). The growth boule (sample material), Ge:Ga,
is enclosed inside this ampoule between two graphite cups.
These cups serve as current contacts for interface
demarcation. The graphite cups have platinum wire contacts
which are spot-welded to molybdenum foil. Each
molybdenum foil forms a hermetic seal where it passes
through the end of the quartz ampoule. Spot-welded to the
molybdenum foil outside the ampoule is another platinum
wire which terminates in a loop where the interface
demarcation current leads are attached. The sample ampoule
is integrated into the specially configured CPID SAC#. and
sealed. Six S-type thermocouples are located inside the
SACA to monitor experiment processing.

E.xt)eriment Processing Scenario for USML-1

The experiment processing scenario for the USML-2
mission is defined below:

• Twelve (SACAs) samples will be carried on board as
stowed items.

• Six selected samples will be manually loaded into the
SEM by a crcwmember following CGF activation and
preparation for manual sample exchange.

• Processing of the samples in the predef'med sequence
will then be performed automatically, and five samples
will be nominally processed.

• Upon completion of processing, the processed SACAs
will be retrieved by a crewmembcr and restowed for the
remm flight.

Summary

The Crystal Growth Furnace was designed and
developed to support the United States Microgravity
Laboratory (USML) and Microgravity Science Laboratory
(MSL) flight opportunities for microgravity research and
performed flawlessly on its maiden flight on the USML-I
mission. The flight and prototype ground systems have
undergone extensive modifications and enhancements in order
to provide better operational flexibility in achieving scientific
objectives and to increase programmatic confidence. The
CGF has demonstrated the capability for supporting needed
research and development in a microgravity environment on
various important electronic and photonic materials of
interest. This sophisticated second generation high
temperature processing facility is providing the means for
furthering the understanding of the complex phenomena
inherent with both diffusion controlled and vapor transport
growth and will lead to significant improvement of pr0cesses
and materials for future applications.

The important CPID upgrade for the USML-2 mission
will enable the investigator to mark the growth interface
during processing in order to determine more precisely
growth rates and interface shape within the melt, and will
mcrease the science yield from the flight. In addition, the
information provided by the CPID experiment and flight test

will not only serve to characterize the melt-solid interface
shape during the growth process, but will also denote the
effects on interface shape caused by low level accelerations
imposed by various Orbiter attitudes during processing.

The four reflight experiments are proposed from both
private industry and leading research institutions. They wero
selected from a peer review process and represent the leading
flight research programs in this country. The experiment and
investigation teams have been working diligently and
tirelessly in analyzing the previous flight results and in
conducting ground-based testing in an attempt to carry their
scientific investigations to the highest level.

The requirements of materials technology development
continues to provide the impetus for the continually
improving furnace facilities to be utilized in a mierogravity
environment. The evolution of furnace facilities such as the
CGF with its current enhancements and upgrades, while
currently an R&D development, offers new and expanded
options for the characterization, development, and
exploitation of new materials to meet future commercial and
industrial needs. Understanding these processes that occur in
microgravity will greatly enhance the technology base for the
development of important electronic and photonic
semiconductor materials.

Significant research findings have resulted from
directional solidification growth experiments conducted in a
microgravity environment and compared to terrestrially grown
crystals. Crystals grown by chemical vapor transport in a
microgravity environment have also demonstrated improved
crystal morphology, lower defect densities, and higher
growth rates than demonstrated in ground-based processing.

The planned series of USML and MSL flights require the
transportation of the processing facility into Earth orbit on
each mission. With the concept of free-flyers or Space
Station furnace facilities, longer processing time will be
available which will greatly expand the technology base for
accommodating materials research. This will afford the
opportunity for processing a greater number of different
samples and for processing new materials requiring much
slower growth rates with more precisely controlled timelines.

The CGF furnace, as it has evolved, is currently
manifested as a primary payload on the USML-2 mission
scheduled for launch in mid-September 1995. In addition,
the facility has also been recently manifested as part of the
payload complement on the MSL-1 flight now scheduled for
launch in early 1997. A derivative of this design capability is
currently being developed to fly on the Space Station and will
provide a valuable resource and a long-term and continuing
capability for the United States for materials research and
development well into the next century.
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