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Chapter 1

Introduction and Summary

PROBLEM DEFINITION

The continuing growth of air traffic will place demands on the worldwide Air

Traffic Management (ATM) system that cannot be accommodated without gener-

ating significant delays and economic impacts. To deal with this situation, work

has begun to develop new approaches to providing a safe and economical air

transportation infrastructure. Many of these emerging air transport technologies

will represent radically new approaches to ATM, both for ground and air opera-
tions.

The following are essential questions that must be answered before adopting a

new approach to air traffic management.

Is the new system safe?

4, What are the costs of implementing the new system?

What are the direct economic benefits of the new system in reduced delays
or lower airline costs?

4, What is the optimal transitioning process from the current system to the

new system to ensure safety?

To answer these questions and select a viable ATM concept, analysis will contain

performance models to measure delays, throughput, and aircraft density;

4, safety models to measure aircraft interactions and predict accident staffs-
tics; and

economic models to measure system costs and associated benefits.

As shown in Figure 1-1, each of these three classes of analysis models rely on the

others for some of their inputs. In other words, the design, analysis, and evaluation

of Air Traffic Management concepts must be treated as an interactive process in

which the analyses provide crucial feedback to system developers, as well as the

benefits and safety metrics required to support program advocacy.
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Figure 1-1. Integrated System Analysis and Development
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Thus, the primary focus in developing a methodology for integrated system analy-

sis must be to understand and model the interactions among performance models,

safety models, and economic models. By doing so, the methodology can be used

to

• identify the drivers or weak links in the current system;

• provide guidance in selecting topics for improvement studies;

• measure net improvement in a proposed concept, distinguishing candidate

concepts that represent global gains from those that solve one problem by

creating another; and

• provide a foundation for cost/benefit analyses that can measure true sys-

tem-wide impacts.

Products of this analysis include

• predicted incident (encounter) statistics;

• predicted accident statistics; and

• predicted false alarm statistics, as well as system availability and reliabil-

ity.
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INTEGRATED SYSTEM SAFETY ANALYSIS: CONCEPT,

APPROACH, AND PRODUCTS

We develop and demonstrate an integrated safety analysis methodology, one of

the key elements of an integrated system analysis capability. This methodology is

distinguished by its ability to merge system design/functionality information with

the dynamic parameterization of a system's situation to measure accident statistics

and reliable system operation. The "system" may include both air and ground sub-

systems within this analysis framework. In addition, it can perform sensitivity

analyses to identify weak points in the system's operation and design. This is il-

lustrated in Figure 1-2.

Figure 1-2. Integrated Safety and Reliability Modeling and Evaluation

r •

• Infrastructure filities" metrics

• Operations safety metrics

On the left side of Figure 1-2 are the steps leading from requirements derived for

an operational concept to the development of a Reliability Model of the system

architecture, which has been proposed to meet those requirements. This represents

a traditional reliability/safety modeling process. On the right are the models re-

quired to capture the environment in which the system is to operate, as well as the

interaction of those environmental models with response models representing the

execution of the rules and procedures that have been developed for the candidate

concept. This represents a modeling process for the dynamic analysis of the sys-
tem' s situation.
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Our approachto systemsafetyanalysisresultsfrom the integration of the Reli-

ability Model and the Interaction-Response Model. The Interaction-Response

Model provides information regarding the frequency of encounters and the pre-

dicted outcome of those encounters as a function of the system' s alerting system

and ability to resolve encounters. The Reliability Model provides, as a function of

time, probabilities associated with the critical systems' availability and failure

states. Scaling the operations safety metrics from the Interaction-Response Model

by the system state probabilities from the Reliability Model creates the system-

level safety statistics. This process is illustrated in Figure 1-3.

Figure 1-3. Combining Model Outputs

Probability vector
from Reliability Model

[p(1 ,t), p(2,t)...]

Performance metrics from

Interaction-Response Model
• Correct rejection
• Correct detection

• Unnecessary alert
• Missed detection
• Late alert
• Induced collision

Conditionally scale
metrics by

state probabilities
v

Weighted system
safety statistics

• Reliable operation
• Collisions
• False alarms

Moreover, as the operational concept evolves, the impact of changes in system

architecture, rules and procedures, and operational scenarios can be easily re-

evaluated with this methodology.

Figure 1-2 makes it clear that system safety is being addressed from a variety of

perspectives, each of which affects safety. These include

# system functionality, the analysis of how reliably the system components

perform;

# rules and procedures, the analysis of how the system is designed to re-

spond in both safe and unsafe situations; and

# operational scenario, the analysis of the environment in which the system

is expected to operate.

Integrating models that quantify each one of these three elements creates an analy-

sis capability that is now system-wide and responsive to ongoing changes in the

definition and requirements of the operational concept.
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APPLICATION TO CENTER-TERMINALRADAR

APPROACH CONTROL AUTOMATION SYSTEM AT

DALLAS FORT-WORTH INTERNATIONAL AIRPORT

To illustrate this method, we analyzed the operation of the Center-Terminal Radar

Approach Control (TRACON) Automation System (CTAS) at Dallas-Fort Worth

International Airport (DFW). CTAS is a automation aid that provides suggested

aircraft sequencing and runway assignments to controllers working approach po-

sitions. Recent field tests of the CTAS Passive Final Approach Spacing Tool

(P-FAST) at DFW suggest significant improvements in airport arrival capacity

through the use of this automation aid.

To perform the safety analysis application, we developed functional models of key

components of the Dallas TRACON and tower, along with relevant aircraft func-

tions. With limited time and resources, we were unable to obtain complete data

on all the systems included in the functional models. Consequently, the conclu-

sions of the study do not necessarily represent a complete evaluation of the safety

impacts of CTAS at DFW, or the overall safety of the airport operation. The esti-

mates should only be used to indicate how the method can be used to evaluate

such operations, if complete data become available.

The operational analysis guided the construction of a simulation of airport arrivals

over a two-hour period. We then studied four cases:

Case 1: Current baseline without P-FAST

Case 2: Current baseline with P-FAST

Case 3: Runway outage without P-FAST

4, Case 4: Runway outage with P-FAST

The safety and performance metrics used in the study were total aircraft arrivals,

average arrivals per runway, the standard deviation of arrivals per runway, and the

percentage of separations less than 2.5 nautical miles. The results are shown in
Table 1-1.

As can be seen in Table 1-1, the results showed that in comparing two Baseline

cases, more aircraft landed when P-FAST was in use and the arrivals per runway

were more balanced. The workload, as measured by the standard deviation of arri-

vals per runway, was higher for Case 1, without P-FAST.

1-5



Table 1-1. Su, _mary of Results

Case 1

Case 2

Case 3

Case 4

Average arrivals Standard deviation Percent under
Total arrivals per runway arrivals per runway 2.5nm (%)

97

112

67

76

32.3

37.3

22.3

25.3

8.3

0.5

15.2

13.8

6

5

14

14

In Cases 3 and 4, with a runway outage, fewer aircraft have landed, and there is a

significant increase in controller workload as measured by the standard deviation

of arrivals per runway.

The hazard indicator presented is that of minimum in-trail separation. The per-

centage of aircraft with less than 2.5 nautical mile in-trail separation is the same

with and without P-FAST.

The overall results imply that P-FAST does not increase the likelihood of a spe-

cific hazardous condition, but does reduce controller workload, thus decreasing

the likelihood of a hazardous condition resulting from controller overload.
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Chapter 2

Safety Analysis Methodology

OVERVIEW

This chapter presents a brief overview and perspective of approaches and method-

ologies for performing safety analyses for complex systems. Ensuing chapters

provide the technical details that underlie our methodology for Integrated Safety

Analysis, as applied to CTAS at DFW.

The key feature of our approach is that it aims to provide a comprehensive analy-

sis perspective for all the important aspects of system design and development.

Within this perspective, the safety analysis is part of an overall integrated analysis

that also addresses operational performance and the economic impacts (including

the cost-benefit analysis) of the system under investigation.

As shown in Figure 2-1, the analysis begins with a definition of the system con-

cept under investigation. Concept data are then used as inputs to safety, perform-

ance, and economic models to evaluate the utility of the concept. As shown in

Figure 2-1, we treat the design, analysis, and evaluation of Air Traffic Manage-

ment concepts as part of an interactive process in which the analysis provides cru-

cial feedback to system developers, as well as the benefits and safety metrics

required to support program advocacy.

Figure 2-1. Integrated System Analysis
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Themethodologyincludesinteractionsamong:performancemodels,safetymod-
els (including"ilities"), andeconomicmodels.It canbeusedto identify thedriv-
ersor weaklinks in thecurrentsystem,provideguidancein selectingtopicsfor
improvementstudies,measurenetimprovementin aproposedconcept,distin-
guishcandidateconceptsthatrepresentglobalgainsfrom thosethatsolveone
problemby creatinganother,andprovideafoundationfor cost/benefitanalyses
thatcanmeasuretruesystem-wideimpacts.

SAFETY ANALYSIS: PART OF A SYSTEM CONCEPT

EVALUATION

The integrated safety analysis portion of Figure 2-1 comprises a crucial part of the

comprehensive system evaluation. It can include all aspects (or subsets) of the

system: gate, runway, terminal area, and en route operations.

AVIATION SYSTEM ANALYSIS CAPABILITY

Much of this integrated analysis approach is being implemented in the Aviation

System Analysis Capability (ASAC), a suite of integrated models and databases

designed to analyze the impact of advanced aviation technologies on the air trans-

port system. ASAC is sponsored by NASA through the Technology Integration

element of the Advanced Subsonic Technology (AST) program, and it is being

applied to analyses of AST and Advanced Air Transportation Technologies

(AA'IT) program elements. As shown in Figure 2-2, ASAC contains models of

major components of the aviation system, including a safety analysis component.

Through ASAC, the safety analysis approach developed and applied in this study

can be integrated with the cost-benefit analyses that support the AATT program.

Figure 2-2. Aviation System Analysis Capability

Air Carrier Investment Airline Cost/Benefrl & Ops

Air Carrier Network Cost General Aviation Economic
Flight Segment Cost DOT Databases

Cargo Cost/Demand ____._ Regional/Commuter Economic & Network Cost

/ \
Aircraft Synthesis ._ _ _,_ Functional Analysis
(ACSYNT) _ 1 _ Airport Capacity

f _ _ /" .. _ Airport Delay
Flight Option ( Aircraft ) ..,,,,.-,_--_...., I Alrspece ) Approximate Network Delay
System(FLOPS) _ _''<_f Int=nrntnd \_'_ _ AATT Decision Support Tools

/' -A'_, _'*T,_,- _ _ Airport Databases
Reference Aircraft _ _, "_:'_: ' _" ) ] NARIM
Confi "
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SAFETY ANALYSIS: PERSPECTIVES

A thorough analysis of system safety must address the problem from a variety of

perspectives--each impacting safety in different ways. One perspective relates to

the operational environments or operational scenarios within which the system is

expected to function. Those environments or scenarios that, by their nature, pro-

vide opportunities for unsafe operating conditions, have an adverse impact on

system safety should be identified. Then, approaches to modeling and on under-

standing those impacts must be developed. Another safety perspective relates to

the reliability and availability of the functions performed by the hardware, soft-

ware, and human components of the system. Failures or degradation in the per-

formance of elements of safety-critical system components have an impact on

safety; models of the reliability of those elements must be developed to determine

the impact on system safety. Finally, the rules and procedures under which a sys-

tem operates can have a significant impact on a system's safety; approaches must

be developed to analyze the impact of those rules and procedures on safety for all
modes of operation of the system.

Figure 2-3. Perspectives of a System-Level Safety Analysis

The three perspectives are illustrated in Figure 2-3 and can be summarized simply
as follows:

. System element functionality involves the analysis of how well and relia-

bly the system elements work and the attendant impact on safety.

Rules and procedures involve the analysis of how the system rules and

procedures have been designed to respond in both safe and unsafe situa-
tions.

* Operational scenario involves the analysis of the environment in which the

system is expected to operate and its attendant impact on system safety.
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APPROACHES AND TOOLS FOR EVALUATING

SYSTEM SAFETY

Several approaches have been developed to address the three perspectives of sys-

tem safety analysis described in the preceding section. Some of those approaches

are outlined below.

Statistical Analysis of Existing Systems (Descriptive Approaches)

These approaches are based on statistical analyses of data that are collected over

long periods of time. The work of Professor Arnold Barnett of the Massachusetts

Institute of Technology (MIT) is an example of this kind of effort. These ap-

proaches to safety analysis are "after the fact" and useful in identifying shortcom-

ings in existing systems, but they have limited utility in predicting the safety

consequences of proposed system concepts. Since our interest is in evaluation and

analysis of the safety of new system concepts, we will not dwell on these ap-

proaches.

Analysis of Candidate Designs that Model Human, Technical

(Hardware and Software), and Procedural Aspects of the System

(Predictive Approaches)

Evaluation tools here include the following:

, "ility" analytical modeling

These are Markov, Semi-Markov, combinatorial, and fault-tree models

used to determine system reliability, availability, maintainability, etc.

These approaches have matured over time and the Markov reliability

modeling approach is the one that we have chosen and that is elabo-

rated upon in later chapters.

, Simulation

A variety of statistical event simulation approaches--including discrete-

event simulation, importance-sampled Monte Carlo simulation, and hy-

brid simulations with both human operators and hardware in the

loop-have been used to predict the safety of proposed system concepts.

The advantage of simulations is that they typically are easier to design

and implement than the analytical "ility" models just described. The dis-

advantage is that, in order to obtain statistically significant results for

very low-probability events, many simulations must be performed.
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Theapproachthatwehavetakenin this studyis to useaMarkov
modelto determinetheprobabilitiesof beingin potentiallyunsafe
systemstatesandto employadeterministicsimulationof thesystem
operatingin thosestates.Thehazardindicatormetricsgeneratedby the
TRACONsimulationarethenweightedby theMarkovstateprob-
abilitiesto obtainthetotal expectedvaluesof thosemetrics.

• Humanperformancemodeling

Thedevelopmentof modelsto predicttheeffectof workloadandtask
designonhumanerrorratesandhumanresponsetimeswasconsidered
beyondthescopeof theeffort for this task.Indeed,goodmodelsof
humanperformancearecritical to thecompleteanalysisof a system.
Dueto constraintson timeandbudget,wechoseto usesimplemodels
of humanperformanceandto embedthosein our systemMarkov
models.Thus,atthe levelof failure andperformancedegradation,the
functionof thehumanis characterizednodifferently than that of other

system components.

• Formal methods

These are mathematical, logic-based approaches for specifying and im-

plementing safety-critical hardware and software systems and for veri-

fying correctness and completeness of their design and implementation.

Typical of these approaches are those taken by Professor Nancy Lynch

at MIT and Professor Nancy Leveson at the University of Oregon.

• Information security

For safety--critical information exchanges (e.g., ADS-B for local air

traffic status between aircraft when air separation responsibility is

transferred to pilots), the security and integrity of the exchanged in-

formation are clearly critical. One way to view information security is

in terms of protecting the computers and communications assets of the

system. Several protection mechanisms exist: protection against unau-

thorized alterations of the data and protection against denial of ex-

change of data. To date, little has been done in the development of

models of information security and its impact on safety--critical func-

tions. This is an area for research and is not addressed further here.

OBJECTIVE: A UNIFIED FRAMEWORK FOR

INTEGRATED SAFETY ANALYSES

What is the best way to combine the many evaluation approaches into a unified

framework for safety analysis? We seek to draw the three perspectives shown in
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Figure2-3 into aunifying frameworkthatdirectly addressestheinteractionsand
couplingamongthoseperspectives.Our first steptowardsuchaunificationis de-
scribedin thefollowing sectionsandhasbeenappliedin evaluatingtheIAPR
concept.As timeandexperiencein applyingthisunifiedapproachevolve,wean-
ticipatefurtherrefinementswill bemade.

The integrated safety analysis that we employ is distinguished by its ability to

merge system design or functionality information with a parameterization of a

system's situation. This is illustrated in Figure 2-4. The "system" may include

both air and ground subsystems.

Figure 2-4. Integrated Safety and Reliability Modeling and Evaluation

Svlltom

Performance
Analysis

Integrated 1 1

Safety Analysis

Infrastructure "ilities" Metrics
Operations Safety Metrics

The steps leading from requirements derived for an operational concept to the de-

velopment of a reliability model of the system architecture that has been proposed
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to meetthoserequirementsareshownon the(lowerportionof the)left sideof
Figure2-4.Thisrepresentsa traditional reliability/safety modeling process. On

the right are the models required to capture the environment in which the system

will operate as well as the interaction of those environmental models with re-

sponse models that represent the execution of the rules and procedures that have

been developed for the candidate concept. This represents a modeling process for

the dynamic analysis of the system's situation.

Our approach to system safety analysis results from the integration of the Reli-

ability model and the Interaction-Response model. The Interaction-Response

model provides information regarding the frequency of encounters and the pre-

dicted outcome of those encounters as a function of the system's alerting system

and ability to resolve encounters. The Reliability model provides, as a function of

time, probabilities associated with the critical systems' availability and failure

states. Scaling the system safety metrics from the Interaction-Response model by

the system state probabilities from the Reliability model creates system-level

safety statistics. This process is illustrated in Figure 2-5.

Moreover, as the operational concept evolves, the impact of changes in system

architecture, rules and procedures and operational scenarios can be easily re-

evaluated with this methodology.

Figure 2-5. Combining Model Outputs

Probability vector from

reliability model

System safety rrl etric _im.-

Conditionally sca_e

metrics by state

probabilities

System
safety

statistic

From Figure 2-4, we see that system safety is being addressed from several per-

spectives, each of which impacts safety. These include

• system functionality (the analysis of how reliably the system components

perform);

, rules and procedures (the analysis of how the system is designed to re-

spond in both safe and unsafe situations); and

• operational scenario (the analysis of the external environment in which the

system is expected to operate).

The integration of models that quantify each one of these three elements creates

an analysis capability that is now system-wide and responsive to ongoing changes

in the definition and requirements of the operational concept.
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KEY FEATURES OF AN APPROACH TO ANALYZE

SAFETY IMPACTS

The approach we developed focuses on the analyses required to support the sys-

tem design process and concept evaluation. Most significantly, the analytical re-

suits supply feedback throughout design and development and can accommodate

the varying levels of system detail that are available at different stages of the de-

velopment process, from early exploration through production. For example, the

approach can be used to identify deficiencies in the initial high-level analysis and

then progressively provide more detailed information as the design solidifies and

evolves over time. The breadth and depth of the analysis can be readily modified

to meet varying requirements at different stages in development or to support se-

lection of alternative concepts.

Through integration with the performance and economic models, design tradeoffs

can be informed by cost and performance measurement.

DALLAS-FORT WORTH STUDY

For this study, a primary objective is to demonstrate the usefulness of the safety

approach for practical applications of concepts early in the development process.

We meet this objective by analyzing one of the tools under development within

NASA, the Center-TRACON Automation System. While performing that analy-

sis, we also aimed to formulate the model so that it can be enhanced to accommo-

date future system analyses at key NASA test sites. NASA selected Dallas-Fort

Worth International Airport, in particular, to be the primary test-bed for ATM

systems. The model we present in this report provides a significant starting point

for analyses of terminal area technologies.

To meet tight time and resource constraints, we needed to select a portion of

CTAS to analyze. Consequently, we chose the approach phase of flight that uses

the CTAS Passive Final Approach Spacing Tool (P-FAST) to show a useful level
of detail within the limited time and resources available. Within P-FAST, the

study concentrates on aircraft operations from the meter gate through to the run-

way.

SUMMARY OF APPROACH TO SAFETY IMPACTS

Our approach to analyzing the safety impacts of CTAS at DFW is straightforward.

The steps can be categorized into four phases.

1. Build a model framework for approach operations at DFW.
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The first phase focuses on constructing the modeling framework for

analyzing approach operations at DFW. This phase consists of three

steps:

Build functional models of key components.

Construct flow diagrams of system interactions.

Define operational states by function.

2. Develop operational scenarios.

In the second phase, we develop operational scenarios that describe re-

alistic indicators of DFW approach operations. The steps in building

the operational scenarios are as follows:

• Collect operational data.

• Meet with controllers to identify useful problems to analyze.

3. Identify operational differences due to CTAS.

The next step in the analysis requires us to define the operational differ-

ence attributable to the use of CTAS by controllers at DFW. Among the
differences we examine are

• changes in roles and responsibilities,

• changes in system or equipment performance, and

• variations in traffic flows.

4. Develop system safety performance measures.

The final phase of analysis generates the performance measures that can be

used to track system safety. Performed in parallel with the model devel-

opment, this phase aims to ensure that the analysis generates meaningful

measures of system hazards that can be used to compare safety under dif-

ferent systems.

Figure 2-6 summarizes the key components of the analysis. Using the results of

the system descriptions generated in the first phase, we build reliability models of

the basic parts of the system. From these reliability models, we calculate the prob-

ability of being in each state. Depending on the level of detail, the number of
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states can be very large. For each state, we determine what the impact on the sys-

tem will be. For selected states, we build a simulation model to analyze the re-

sponse of the system to specific events. The simulation model produces estimates

of hazard probabilities, which then are weighted by the state probabilities to esti-

mate the overall system probability of the hazards.

Figure 2-6. Analysis Framework
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Chapter 3

Safety Analysis Methodology Applied to
Dallas-Fort Worth Airport

This chapter describes in detail how we applied the safety analysis methodology

to evaluate the safety impacts of CTAS at DF'W.

FUNCTIONAL ANALYSIS AND ELEMENTS

The first step in our analysis was to develop the functional model of operations at

DFW. The functional model represents what must be done to operate DFW, not

how it is done. There were three sources of information for developing the func-

tional model. The first was the extensive work done previously by the team. The

second was general documentation regarding the systems and operations within

the TRACON airspace and the U.S. NAS and more specific documentation relat-

ing to the TRACON at DFW. The third was visits to the TRACON facilities at

DFW and the TRACON and Tower facilities at Logan Airport, Boston, Massa-

chusetts for technical discussions with controllers and traffic management spe-
cialists.

We examined information on DFW layout and approach topology, using the run-

way configuration and comer posts from the time of the CTAS field tests. We also

examined information on equipment at DFW, including navigation aids at the air-

port and in the TRACON, surveillance equipment, communication equipment,

and other equipment controllers utilize. We also examined operational procedures

followed by controllers and pilots, both for normal operations and for contingen-

cies, such as equipment failures at the airport, adverse weather, equipment failures

on aircraft, etc. Traffic patterns in the TRACON, including distribution of routes

and the density of traffic along the routes, were taken from Official Airline Guide

(OAG) and Enhanced Traffic Management System (ETMS) data.

Overall, we found that most important effect of P-FAST is to balance runway

utilization, resulting in higher throughput and fewer changes of runway assign-

ments. A major effect is reduced workload for both controllers and pilots, with

fewer communications needed. P-FAST enables controllers to issue some com-

mands early, eliminating the need to make them later when things may be getting

tight, causing less distraction for controllers and allowing them more time to

spend on the fundamental job of separation. There is a reduction in the likelihood

of hazards that occur from a sequence of events, when controllers and/or pilots

focus on one thing--and then a hazardous situation arises.
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Themajorimpactof Center-TRACONAutomationSystem(CTAS) onoperations
in TRACONis from theimprovedpredictionof incomingtraffic, whichfacilitates
betterdecision-makingby traffic managersandcontrollers.It helpstraffic manag-
ersin decidingwhatpositionsto combineandde-combinesothatthe"fight" num-
berof planesis availablefor acontrollerto handle,sothatthecontrolleris neither
borednoroverloaded.It alsohelpstraffic managersto providethe right number of

planes for a trainee to handle.

Figure 3-1 illustrates the high-level functional elements of the Center, TRACON,

Towers, and Aircraft--that interact with the Airport functional element. At this

high level, Center, TRACON, and Tower have the same functional elements.

Figure 3-1. Functional Elements of Dallas-Fort Worth
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In order to demonstrate the methodology within the constraints of the project, we

examined the subset of functional elements described in Tables 3-1 through 3-3 in

the TRACON aircraft and airport.

The functional elements defined in Table 3-1 differentiate the capabilities of the

TRACON systems that directly impact the inputs of the TRACON simulation de-

scribed later. The TRACON controllers are ultimately responsible for maintaining

the separation of aircraft within the TRACON. However, the controller's concept

of where the aircraft are at any given time depends on the information they re-

ceive. The state of the surveillance function will model the availability of surveil-

lance information to the TRACON controllers. The states of the communication

and control functions will reflect the availability of the information the controllers

would receive through these channels. The status of the communications function
will also model whether or not this channel is available to the controllers to direct

aircraft. The state of the navigation aids function will indicate the availability of

the signals that radiate into the TRACON airspace, which aircraft can use to navi-

gate in the TRACON airspace.
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Safety Analysis Methodology Applied to Dallas-Fort Worth Airport

Table 3-1. Functional Elements for Terminal Radar Approach Control

Surveillance

Communication

Control

The capability of TRACON to detect and interrogate aircraft for sur-
veillance data in TRACON and adjacent airspace and provide this
information to TRACON controllers

The capability of TRACON to allow TRACON controllers to transmit
and receive voice communications with aircraft in or about to enter

TRACON and with controllers in the adjacent tower and the adjacent
center

The capability of TRACON to process surveillance information, flight
plan information, equipment status information and inputs from
TRACON controllers to produce display information to assist
TRACON controllers and pilots in assuring the safe flow of air traffic
through TRACON

Navigation aids The capability of TRACON to provide electronic or visual information
that aircraft may use to navigate within TRACON (The source of the
aid may be outside TRACON)

Controller The capability TRACON controllers provide in the safe operation of
the TRACON

In Table 3-2, the function definitions are the capabilities for a single aircraft. The

level of capability, or accuracy, of these functions can be different for each type of

aircraft. Some aircraft may not have the beacon reply function. When reliability

models are developed, e_rch aircraft type may need a unique reliability model to

capture the reliability of equipment particular to that aircraft type. The impact to

the TRACON simulation may be different for each aircraft type.

Table 3-2. Functional Elements for Aircraft

Navigation The capability of the aircraft to monitor its position and velocity
and its adherence to the desired flight path

Beacon reply The capability of the aircraft to receive and respond to interroga-
tion from TRACON surveillance radar

Communication The capability of the aircraft to allow the pilot (and crew) to trans-
mit and receive voice communications with TRACON controllers

Control The capability of the aircraft to adhere to the flight path desired by
its pilot

Pilot The capability the pilot (and crew) provide in the safe operation
the aircraft

Table 3-3 defines the functional elements for the airport category. The airport,

tower and center airspaces are not part of the TRACON airspace, but failure

events of systems in these facilities can affect the flow of traffic through

TRACON airspace. For this sample study, the failure events in the systems of the

tower and center facilities are ignored. However, the failure events of systems at

the airport are included and the capabilities of interest to the TRACON simulation
are defined in Table 3-3.

3-3



Table 3-3. Functional Elements for Airport

Approachfacilities The capabilityofthe airport to provideelectronicor vis-
ual aidsto guidean approaching aircraftto a runway

Landingfacilities The capabilityofthe airportto provideclearrunwaysto
landapproachingaircraft

OPERATIONAL ANALYSIS

In the remainder of this chapter, we describe the operational interactions between

the various elements of the air traffic control system that are involved in aircraft

approaching and landing at DFW. In particular, this includes the following:

• Center/TRACON interfaces

• TRACON/tower interfaces

• Handover of aircraft from Center, to TRACON, to tower

• Role of navigation aids

• Role of approach clearances, Standard Terminal Arrival Routes (STAR),

and vectoring

• Impact of missed approaches

• Impact of reliability failures, accidents, etc.

• How weather affects operations.

The analysis presented provides the basis for understanding the relative impor-

tance of the functional elements and an overall framework for system simulations,

including the current simulation capability, and future simulations with more fi-

delity in modeling system elements and the dynamic decision-making process.

N 2System Interaction Diagrams

A proper analysis of the operations involved in bringing large volumes of air traf-

fic into a single high-density airport requires consideration of many types of inter-

actions. Although we have deliberately excluded departing traffic in order to

simplify the analysis to a point consistent with the scope of work of this task, the

interactions involved with arriving traffic alone are quite complex. To clarify

these interactions, we have adopted a graphical analysis technique particularly

well-suited for showing interactions among elements of complex systems. This

technique uses specially formatted diagrams known as "N 2 System Interaction

Diagrams," so-called because they arrange the "N" elements of the system under

consideration in a square N x N matrix with the elements themselves occupying
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Safety Analysis Methodology Applied to Dallas-Fort Worth Airport

the diagonal positions in the matrix and the interactions among elements lying in

the off-diagonal positions. Diagrams of this type can potentially show interactions

down to any desired level of detail, while still retaining a system-wide overview.

Figure 3-2 is a top-level N 2 system interaction diagram that shows the major ele-

ments of the air traffic system and its operating environment that are applicable to

the employment of P-FAST in the DFW TRACON. Because it is relatively sim-

ple, this figure also is useful for explaining the syntax of N 2 system interaction

diagrams. At this level, we identified five major elements applicable to the analy-

sis of P-FAST. These elements occupy the diagonal positions (i.e., top left bold

framed flow box to bottom right box), in the flow matrix. In general, the major

drivers of the system are placed near the upper left of the diagram, and the major

impacted elements towards the lower fight (this arrangement is, however, often

altered to avoid too many overly long "reaches" between elements sharing many

interfaces). Such an arrangement allows the Figure 3-2 to be read from left to fight

and top to bottom. When an element can have multiple instances, such as

"arriving aircraft" here, that multiplicity is shown by simply adding an extra hid-
den box behind the main element.

Figure 3-2. Top-Level System Interactions

The off-diagonal elements of an N 2 system interaction diagram identify, in sum-

mary form, how the system element on that row interacts with the system element

in that column. A complete N 2 diagram is accompanied by documentation that

elaborates on each off-diagonal entry in the diagram. Thus, where we show that

the "Environment (Weather)" element interacts with the "Arriving Aircraft" ele-

ment by "Set flight rules, flight conditions, Stress pilot," we could augment that

interaction summary with a separate detailed discussion of Visual Flight Rules
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(VFR) versus Instrument Flight Rules (IFR); how turbulence, storms and icing

conditions affect the flight; and how severe weather causes increased stress in the

flight crew.

The basic syntactical rule for the flow of cause and effect in an N 2 system interac-

tion diagram is shown in the legend of Figure 3-2. When one element is the source

of the influence, then that interaction flows outward horizontally from that ele-

ment. When an element is influenced by another, that influence flows inward ver-

tically to the influenced element. When influence is mutual, then the influence is

show twice in symmetrically located, off-diagonal boxes on the diagram.

The major elements of the system under analyses are

• the Environment (Weather),

• the Center,

• the TRACON,

• the Arriving Aircraft, and

• the Airport.

The diagram indicates that element # 1 (the weather) influences all other elements

as follows. It affects the Center (element # 2) by possibly degrading the perform-

ance of its radar systems and possibly stressing the Center controllers. It affects

the TRACON (element # 3) similarly by possibly degrading the performance of its

radar systems and possibly stressing the TRACON controllers. It affects the ar-

riving aircraft (element # 4) by determining whether or not IFR flight rules are

required, causing the flight conditions of the aircraft (e.g., in the form of turbu-

lence, icing, and lightning). And, partly as a result of the first two effects, it may

cause the flight crew to become stressed. Finally, it affects the airport (element

# 5) by possibly causing one or more runways to be degraded or closed because of

ice or snow on the runway or wind shear in the approach path to the runway. The

weather (being part of nature) is unaffected by any other system element.

Element # 2 (the Center) interacts with TRACON (element # 3). It affects

TRACON by handing over control responsibility for arriving aircraft to it. It also

is affected by TRACON by receiving status information on the overall state of the

TRACON environment and the airport. This interaction is dynamic. If TRACON

or the airport becomes saturated, appropriate status messages might cause the

Center to hold aircraft outside the TRACON area and/or meter them into the area

at a slower rate. The weather (element # 1) can affect Center operations as de-

scribed above. As far as the system being analyzed is concerned (P-FAST at

DFW), the Center has no direct interactions with any other system element. Its

direct interaction with the arriving aircraft, for example, occurs prior to their
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entering the P-FAST environment and need not be addressed explicitly within the

TRACON system.

Element # 3 (TRACON) interacts with the Center (element # 2) by issuing status

information to it. It affects the arriving aircraft (element # 4) by issuing approach

clearances to them, and it affects the airport (element # 5) by handing over control

responsibility for landing aircraft to it. It is affected by the arriving aircraft

(element # 4) by receiving clearance acknowledgments and status information

from them, and it is affected by the airport (element # 5) by receiving status in-

formation from it. It is affected by the weather (element # 1) as described above.

Element # 4 (Arriving Aircraft) affect TRACON (element # 3) by issuing clear-

ance acknowledgments and status information to it. It affects the airport (element

# 5) by approaching it and landing thereon. It is affected by TRACON (element #

3) by receiving approach clearances from it and by the airport (element # 5, more

specifically the tower, which is part of the airport) by receiving landing clearances

from it. It is also affected by the weather (element # 1) as described above.

Element #5 (Airport) affects the arriving aircraft (element # 4) by issuing landing

clearances to them and the TRACON (element #3) by issuing status information.

It is affected by the arriving aircraft (element # 4) by having them approach and

land upon it, and by the TRACON (element # 5) by receiving aircraft handovers

from it. It also is affected by the weather (element # 1) as described above.

At this level, the interactions described above are rather basic. As we expand the
interactions to lower levels we will see each interaction shown on this chart be-

come, in general, several interactions with specific subelements of the major ele-
ments shown here.

Note again that throughout this discussion, departure air traffic is ignored. Since

the main purpose of the present effort has been to demonstrate our analysis meth-

odology, this simplification appears justified. Obviously a more thorough analysis

of this problem will require departure aircraft to be included in the overall system

interaction diagrams as important entities that could interact with arriving aircraft

and require accommodation by TRACON controllers.

This analysis approach serves three purposes. First, a complete N 2 system interac-

tion diagram shows the entire system, all of its critical parts, and all of the critical

interactions among those parts as a single entity. The collection of these interac-

tions is the "big picture" view of the system (i.e., the "forest") while the interac-

tions themselves provide detailed knowledge about how each part of the system

works with the other parts (i.e., the "trees"). A complete N 2 system interaction

diagram can become quite large. In most cases, however, such a diagram can

"capture" the essence of a complex system down to a fairly low level on a single

(large) sheet of paper. Such a large diagram is not suited for inclusion in a report

such as this one, however, and the charts that follow only show selected parts of
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suchadiagramexpandedandenlargedfor clarity. (A miniaturizedversionof the
entirediagramfor thissystemis shown,for comparisonpurposesonly, attheend
of this section.)

Thesecondpurposeservedby thisapproachis to establisha systematicanalytic
methodfor definingandunderstandingverycomplexsystemssuchasthatconsid-
eredhere.Theprocessof creatingsuchdiagramsforcestheanalystto addressall
systemissues,oftenexposinginitial gapsin understandingthatmustbe filled in

for logical completeness. Each interaction between any two elements becomes

unambiguously isolated and must be understood and rigorously defined for logical

completeness. All loose ends should be tied down.

The third purpose served by this approach is to provide a logical qualitative basis

for quantitative analysis. The components and interactions of the computer mod-

els and simulations used in the analysis are identified and linked to the highest

system level. Our current simulation, described below, incorporates many of the

elements and interactions described in this section. The reliability modeling de-

scribed in the Reliability Modeling and Analysis section draws upon the interac-

tions described in this section. The N 2 format is readily adaptable to the definition

of Markov Process states and transitions used in our reliability model. Future

higher fidelity models and simulations could incorporate more of the system ele-
ments and element-to-element interactions described here.

Major Operational Interactions Affecting P-FAST

The following three subsections expand upon three of the major system elements

discussed above. These include (1) the TRACON and some of its subelements, (2)

the Arriving Aircraft, and (3) the Airport.

INTERACTIONS WITHIN THE TRACON

We have identified five major subelements within the TRACON. These are

shown in Figure 3-3 (diagonally in the grey area, top left to bottom right) and in-

clude (1) the Surveillance system, (2) the Navigation Aids for which the

TRACON has responsibility, (3) the various Computers and Displays within the

TRACON, (4) the TRACON air traffic Controllers themselves, and (5) the Com-

munications systems used by the TRACON.
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Figure 3-3. TRACON

As an indication of the greater level of detail depicted on Figure 3-3 when com-

pared with Figure 3-2, note that the input interactions from the Weather, the Cen-

ter, the Arriving Aircraft, and the Airport are broken down into more detail.

The weather, for example, affects surveillance by possibly degrading sensor per-

formance, and the controllers by possibly adding stress. All communications between

the controllers and either the Aircraft, the Tower, or Center pass through the com-

munications system (which will be broken down into more detail in a later chart).

Notice also that the controllers interact exclusively with the computer and display

system and the communications system. Operationally, we are now beginning to

see detail where hardware reliability or human error could begin to affect overall

operations. Interactions shown at this level show that the controller can only act

upon the information presented to him by the display and communicated to him

by the communications system. The display, in turn, is fed by the surveillance

system and the computers. The controller interacts with the computers and dis-

plays by setting them up for her particular needs and querying them for informa-

tion. Lack of data, hardware or software errors, equipment failure, or human error

in any of these interacting elements could affect the controller's decision-making

process. In addition, the intangible effects of stress, whether induced by dense

traffic dynamics, the advent of severe weather, or some other factor, could likely

affect his decision-making process as well. Less than perfect decision-making on

the controller's part, however, is not necessarily adverse to the overall operation

of the system. While, in the worst case, poor decisions could lead to hazardous

conditions; more typically, they merely lead to less than maximally efficient traf-

fic flow. The specific influence of P-FAST functionality occurs primarily in this
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portionof theoverallsystem.As a decision-makingaid,P-FASTmayhelpthe
controllerin manyways.It maydelayor avoidtheonsetof stressin densetraffic
or adverseweatherconditions;it mayreducethecontroller'sneedto inputnew
queriesinto thecomputer/displaysystem;and,finally, it mayreducehisneedto
communicatewith inboundaircraftor thetower.TheNzdiagramformatof this
figure showstraceabilityupwardfrom thesespecificsubelementinteractionsto
overalloperationof thesystem.

Thenext threesubsectionscarry theanalysisdownto still anotherlevelof detail
for threeof themajorTRACONelements.

TRACON Surveillance

Figure3-4expandstheTRACON surveillanceelement.It consistsof twoele-
ments:a radarsystem(in thecaseof DFW therearemultipleinstancesof this
system)andabackupcapabilitysuppliedby theCenterradar.Theradaritself con-
sistsof two parts,theprimaryradarandthebeaconsystem.Notethatwecannow
isolateon thechart-specificinteractionsamongequipmentitemsandshowtheir
impactonotherelements.For example,theprimaryradarsuppliesrangeinforma-
tiononly to thecontrollerviaa skin trackof theaircraft.Thebeaconsystem
(interactingwith ModeC transpondersin thearrivingaircraft)suppliesaltitude
andID information.Thebackupsystem,whenrequired,cansupplysimilardata
obtainedfrom theCenterradar(althoughpossiblymissingcoverageof somepor-
tion of theairspace).

3-10



Figure 3-4. TRACON Surveillance

E

TRACON Computers and Displays

Skipping over the Navigation Aids element (which consists of the Very High Fre-

quency Omni Range/Tactical Air Navigation (VORTACS) and other navigation

aids within the jurisdiction of the TRACON), Figure 3-5 expands the interactions

involving the computer and display subelements of the TRACON. The computer

element is actually composed of a basic capability and the additional capability

supplied by the P-FAST system. At this level, we have chosen to break the com-

puter system down into its major functional elements. By splitting the functional-

ity of the computer system this way, when we compare scenarios with and without

P-FAST functionality, this diagram helps us recognize the appropriate interactions
for both cases.

Note, also, that there are multiple instances of displays, just as there are multiple
controllers. Another level of detail would enable us to look at the interactions

between individual controllers within the TRACON.
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Figure 3-5. TRACON Computers and Displays
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TRACON Communications

Figure 3-6 breaks the Communications system into its landline and ground-to-air

components. This determines the paths that different types of communication will

take and enables us to isolate the effect of, for example, failure of transceivers,

frequency congestion, and radio-out aircraft.
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Figure 3-6. TRACON Communications

ARRIVING AIRCRAFT

As indicated in Figure 3-7, each aircraft is a complex system in itself. Further-

more, most aircraft in the system will differ from one another in many respects. In

addition to size and speed differences, some may have larger or smaller crews,

some may have more or less navigation equipment, and some may be more capa-

ble in bad weather than others. Appropriate expansion of the major aircraft ele-
ments shown here allows for accommodation of these differences.

The major elements of an aircraft are identified here as

communications (shown in the upper left to conform to the "readability"

rule described earlier--the major driver of the aircraft' s interaction with

the rest of the system comes via clearance from ground controllers, which

comes through the communications system--an indication of how critical

communications failure can be);

• the aircraft beacon or transponder (which interacts exclusively with the

TRACON secondary radar);

• the navigation and approach equipment;

• the pilot (and other crew members, if any);
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theflight controlsystem(includingautopilot,engineandenginecontrols,
flight controlsurfacesandtheircontrols,etc.);and

• theairframeitself.

Figure 3-7. Aircraft

AIRPORT

The airframe is included here as the physical "container" in which everything else

in the "Arriving Aircraft" system element resides. It is this "container" that moves

through the sky in response to pilot actions which, in turn, are in response to con-

troller-issued clearances and navigation and approach equipment indications. It is

also this "container" that must ultimately land successfully on an airport runway.

The final expansion of system elements considered here is the airport. As shown

in Figure 3-8 the airport consists of

• Precision Approach Systems (i.e., ILS systems) in multiple instances;

• Nonprecision Approach Systems, also in multiple instances;

• the Tower; and

• the Runways (in multiple instances).

This breakdown of the airport enables us to isolate weather effects--bad weather

can preclude the use of nonprecision approaches while allowing precision
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approaches, for example. We also can isolate the functionality of the approach

systems as they affect the arriving aircraft. Failure of a glideslope, for example,

denies independent descent path information to the pilot, converting a precision

approach system into a nonprecision approach system. Depending on current

ceiling and visibility, this may effectively eliminate one runway for arrivals.

Figure 3-8. Airport
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ANALYSIS FRAMEWORK

We implemented the analysis framework illustrated in Figure 3-9 and described in

this chapter. We discussed the overall methodology earlier under Objective: A

Unified Framework for Safety Analysis.

Figure 3-9. The Analysis Framework
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Reliability

RELIABILITY

Modeling and Analysis

In this section, we discuss several reliability modeling techniques and present

Markov reliability models of two critical components of the DFW TRACON:

(1) a surveillance radar system and (2) an ILS approach system.

MODELING TECHNIQUES

Three classes of standard reliability modeling techniques are simulation, combi-

natorial models, and Markov modeling.

Using simulation (e.g., Monte Carlo simulation), system reliability is determined

by generating failure and repair events at times distributed according to the com-

ponent failure and repair rates. Simulations are repeated until statistically signifi-

cant reliability measures are accumulated. A major strength is the ability to

analyze complicated repair and reconflguration scenarios. A disadvantage is that

for highly reliable systems, the failure rate is so low that a very large number of

simulations must be run to accumulate a statistically meaningful number of

events.

Combinatorial models (e.g., Fault-Tree Analysis) are based on a system architec-

ture and redundancy management approach, in which component failure prob-

abilities are combined to determine system reliability. Limitations include

difficulty including events that have order dependencies, such as repairs and ex-

plicit modeling of reconfiguration strategies. Also, because all combinations of

events for the entire time period must be included, for complex systems this re-

suits in a complicated fault tree that is difficult to construct and validate.

Markov modeling techniques calculate the probability of the system being in its

various states as a function of time. A state represents the system status with re-

spect to component failures and the behavior of the system' s redundancy man-

agement strategy. Transitions from one state to another occur at given transition

rates that reflect component failure and repair rates and redundancy management

performance. Advantages of Markov modeling include these (1) model construc-

tion does not require explicit generation of all possible combinations of events

that can occur over the entire time period; 2) order dependent events are included

naturally; and 3) the model is solved analytically (or numerically), avoiding

simulation. A disadvantage is that the state space can grow exponentially with the

number of components. However, in many situations of interest techniques have

been developed to render this problem tractable, including model truncation, state

aggregation, and behavioral decomposition.

Figure 3-10 summarizes the steps required to reduce a complex real-world system

into an analyzable scientific abstraction from which its reliability can be calcu-
lated.
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Figure 3-10. Markov Modeling

j Understand the system
Must understand both the "forest" and the "trees"

j Identify groups of system components at the same level of aggregation
At any level of detail, must be sure that we are comparing "apples" with
"apples"

Define failure modes
Which components are "critical"?
Which "trees" or "groups of trees" are essential to the survival of the
"forest"

Define Markov states
Cast our understanding of the system in terms of well-defined "states" that
interact with one another by well-defined "transitions"

Create state transition matrix
Create a transition diagram showing paths that lead from one state to
another state

Associate the paths in the diagram with the off-diagonal elements in the
Markov transition matrix

Obtain failure rate (or MTBF) data
Beware of GIGO

Identify levels of functionality
Associate selected Markov states with common levels of overall system

functionality

Calculate functionality probability state vector

• Straightforward mathematical exercise

In the case of the components at DFW for which we constructed reliability mod-

els, the first bullet in the figure means that we must understand the complete envi-

ronment-both the natural environment and the larger Air Traffic Control System

within which the DFW TRACON is imbedded. The Operational Analysis meth-

odology described in this chapter is directly applicable to this process.

From a reliability point of view, the real-world radar and ILS systems to be ana-

lyzed are far too complex to be simulated in detail within the scope of this task.

Instead, in order to illustrate the methodology involved, we selectively grouped

entire areas of detail into single aggregates that can be characterized in our models

as single objects. In doing so, care must be taken not to overemphasize some areas

(just because they are better understood) while "glossing over" others (because of

an initial lack of understanding). Again, the methodology ensures that the correct
balance is achieved.

Having aggregated the details into manageable groups, we must define exactly

what happens to the overall system when one or more of those aggregated groups

fail, either totally, or partially. These are the formal "failure modes" of the system.
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The next step is to define the failure modes as Markov states. This is the first

point in the process where mathematical rigor must be strictly imposed. Some

general comments of Markov Processes are in order before proceeding.

Complex systems often can be characterized as always being is some specific

"state." All possible states of the system must be well-defined and complete, in

the sense that the system must be in one of the defined states. If the system can

change states at random intervals, then there is some probability that, at some ar-

bitrary time, it will be in one of the states. The sum of the probabilities that it is in

each of its possible states must always equal 1.0 (another way of saying that the

set of states is complete). When the system changes from one state to another, we

say that it "transitions" from the previous state to the new state. To satisfy the

mathematical requirements of a Markov process, the probability that the system

can transition from any one of its states to any other state must not depend on past

history, but only on the two states involved (the previous state and the new state).

Finally, a "stationary" Markov process is one in which the transition probabilities

do not change with time.

Discrete Markov processes only can make transitions from one state to another at

discretely specified intervals. They are completely defined if all of the transition

probabilities are defined. Differential Markov processes can change states at any

time. For these, instead of defining a transition probability, we define a transition

"rate." Its units are "transitions per unit time" (whereas transition probabilities are

just dimensionless numbers).

Reliability models of complex systems can be fit into the mathematical mold of

differential Markov processes. In such models, each state of the system represents

one of the ways in which some aggregated set of its components can fail. In re-

dundant systems, some failures will not change the overall functionality of the

system, some failures will result in degraded functionality, and some failures will

result in no functionality or overall system failure. One of the states is the "no

failures" state. We can think of the system as starting out in its "no failures" state.

The rate at which it will transition from this state to another state is simply the

failure rate of the aggregated components that define the new state.

Reliability models also include repairs. Given that the system is in one of its failed

states, it can return to the "no failures" state at a rate equal to the repair rate (in

units of repairs per unit time) for the aggregated components.

Given the states, the next logical step in the process is to define precisely exactly

what can happen in the real world to force the system to transition from one state

into another. This step is complete when a well-defined Markov transition matrix

can be defined, at least symbolically.

Data specifying the quantitative failure rates or mean times between failures for

each aggregate of components must be obtained, by actual observation, by

3-18



...............................................................................................Safety AnalysisMethodologY App!iedto Dal!as-Fort Worth Ai_ort

experiment, by off-line simulation, or by exercising good engineering judgment.

We must avoid "garbage in, garbage out!"

Since we are interested in levels of operational functionality, there will be, in gen-

eral, several Markov states that, collectively, result in the same level of function-

ality (to the level of detail that is important to our problem). These must be

identified so that we can sum their probabilities of occurrence to determine the

desired probabilities of having a given level of functionality.

SURVEILLANCE RADAR RELIABILITY MODEL

Figure 3-11 is a simplified top-level diagram of a surveillance radar sys-

tem similar to those typically used in a TRACON (DFW actually had two

[now four] of these radars at the time that the P-FAST experiments were

conducted, either one of which would have been sufficient to conduct full

TRACON operations). This is a generic diagram representing a system

with dual redundant----critical components (as are the DFW radars). The

system includes both a primary radar that can track the skin return from

any target in its coverage area and a secondary radar, or beacon system,

which sends out interrogations that trigger transponder responses in all

transponder-equipped aircraft. The primary radar has dual redundant

transmitters and receivers, and the secondary radar has dual redundant in-

terrogators and receivers.

Figure 3-11. Surveillance Radar Reliability Model

f

R_ar P.a_r
I.terromdor • Functionally

The primary and secondary antennas are rigidly connected, and share a common

rotating antenna mount. Secondary (beacon) radar interrogations are synchronized

to the pulses transmitted by the primary radar. The system is assumed to have both

primary and backup power sources.
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For this system, it is assumed that a single failure in any transmitter, interrogator,

or receiver leaves the overall system functional. A second failure in one of those

components, however, results in the loss of the associated functionality (i.e., either

the primary or secondary radar functionality is lost). Either power source can fall

without bringing the system down; however, if both fail, the entire system is lost.

If the common antenna mount fails, the antennas cannot rotate and the entire sys-

tem is lost. Finally, if the secondary radar synchronizer fails, secondary radar

functionality is lost.

Figure 3-12 shows the state transition diagram for the TRACON surveillance ra-

dar system described in the previous figure. It provides for up to two consecutive

failures leading to total loss of system functionality. Although more failures are

theoretically possible, the probability that they might all occur while some func-

tionality remains is very small compared with the probabilities that the system

might be in one of the states that are defined here. This is a common assumption

in reliability models of this type, and it serves as a bound to keep the number of

states that must be considered manageable.

Figure 3-12. Surveillance Radar State Transition Diagram
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The "no failures" state, state #1, is at the left of the diagram. The arrows leading

away from state 1 show the various types of In'st failures considered. Of these first

failure states, only state 2, "common antenna mount," results in total loss of the

surveillance system. States 6 through 9 and 12 through 15 leave the system fully

functional. Because all of these states contribute to the probabilities of having

certain common levels of functionality, they are "summed" by defining "pseudo
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states" that strictly speaking, are not part of the Markov process, but are conven-

ient to calculate along with the probabilities of being in the "true" Markov states.

The transitions to these pseudo states are shown by dashed lines.

The second failure states (16 through 22) are arranged in a column down the cen-

ter of the chart. These states also are linked with the summary pseudo states,

which indicate the level of overall functionality represented by their failure.

A Microsoft Excel spreadsheet was used to implement this reliability model. Fig-

ure 3-13 shows the input/output interface for this model. The user enters mean

time between failures (MTBF) and mean time to repair (MT'I'R) values (in hours)

and the model calculates and indicates the steady-state probabilities that the sys-

tem is in any one of the indicated levels of functionality. The numerical data

shown hear are purely arbitrary and fictitious. They were selected solely for the

purpose of illustrating the methodology, and they provide output values that,

while not representing any actual system reliabilities, can be interpreted as if they
did.

Figure 3-13. Input/Output for Surveillance Model

IK_KIT INPUT

k 11m _ Time
Betwmm Failunm To Ftop_r Functionality State Probability

MI"BF MI"I'R Vector
In houm In houm

con._ An..na _nt ls0o 4 F._on_
Primary Power Source 3000 2 Prlmmy Secon-

F,_I None

Backup Power Source 2OOO 4 Only dory Only

Pdmary RadarAntonna 1000 4 0.99064 0.(_.86 0.00390 0.(]1(]_)60

Primary Padar T_ Channel A 750 2

Primary Radar T_ Channel B 750 2

Primmy Radar Flloceivor Channel A 750 2 -

Primary Radar FIBcetver Channel B 750 2

Secondary Radar Antonna 2500 4

Secondary Radar Synchronizor 1500 2

Secondary Radar IntmTogalor Channel A 1000 2

Secondary Radar Intoffogalor Chann_ B 1000 2

Secondary Radar Ftocel_r Channel A 2000 2

Secondary Radar Flecetver Channel B 2000 2

Figure 3-14 shows the dynamic response of the reliability model as it approaches

steady state. This figure shows the probability of being fully functional as a func-

tion of time, given that the system started in a state of full functionality.
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Figure 3-14. Probability of Full Capability Over Time

FULL SURVEILLANCE CAPABILITY
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Figure 3-15 shows the probabilities of being in the other possible functional states

as functions of time, given that the system started in a state of full functionality

(note: this figure uses a logarithmic scale for its ordinate).

Figure 3-15. Probability of Failures Over Time
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PRECISION APPROACH SYSTEM INSTRUMENT LANDING SYSTEM RELIABILITY

MODEL

Figure 3-16 is a simplified top-level diagram of a precision approach system. It is

modeled after a standard system, but it is sufficiently generic to represent any

system that provides independent guidance in both the vertical and horizontal

planes to aircraft approaching land. The system consists of two major subsystems,

the ground track system (or, in the case of an ILS system, the localizer) and the
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glidepathsystem(orglideslope).In addition, it is supported by independent outer

and middle markers (for systems utilizing an inner marker it would also be in-

cluded in the support systems) and approach and threshold lighting systems.

For this system, it is assumed that failure of the localizer would result in total loss

of approach functionality. If only the glideslope failed, non-precision localizer ap-

proach functionality would remain (requiring higher weather minimums for use).

If any of the support systems failed, precision approach capability would remain

with degraded support, probably requiring slightly higher weather minimums than

with all systems functioning. (Since this particular model excludes two simultane-

ous failures as being of insignificantly low probability of occurrence, this logic

diagram only requires that all support systems not be available to force the result

into the degraded mode. If all support systems are available, full precision ap-

proach functionality is available.)

Figure 3-16. Instrument Landing System Reliability Model
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This reliability model incorporates the ability to alter the repair strategy. If, for

example, the glideslope were to fail, TRACON could elect to shut down the ap-

proach and have it repaired immediately, thereby taking the associated runway out

of service in weather good enough for nonprecision approaches. Alternatively,

they could continue to operate with the localizer only, delaying the repair until a

future time when traffic could be expected to be lighter. This reliability model en-

ables a user to select repair strategies for all components except the localizer.
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Figure 3-17 is the state transition diagram for this model. While the model only

allows for a single simultaneous failure, it enables the user to select repair strate-

gies. It is assumed that the probability of two failures is sufficiently low to be in-

significant. (Recognize, however, that two or more simultaneous failures could be

accommodated by modeling the ILS as a system with more states than used here.)

When a failure occurs (in any subsystem other than the localizer) the strategy

could be to repair it immediately or to delay initiation of the repair until a later

time. In the In'st case, it is assumed that the entire approach system would have to

be shut down while the repair was in process. In the second, the system could

continue to operate with degraded functionality while awaiting start of the repair.

To accommodate the Variable repair strategies two states are assigned to each fail-

ure (other than the localizer). These are "wait to start repair" and "start repair im-

mediately." If the "wait" strategy is selected, then a mean wait time is introduced

and an additional transition required before the repair can begin. If the "repair

immediately" strategy is selected, the waiting state is skipped and the system goes

directly into repair.

Figure 3-17. Instrument Landing System Transition Diagram
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Figure 3-18 is the input/output interface for the ILS reliability model. In addition

to the MTTF and MTTR inputs, the user has another set of inputs. He can select

the repair strategy for each type of failure and, if "wait" is selected, enter the mean

wait time (MWT). The output shows precision and nonprecision capabilities and

breaks the precision capability down into fully supported or partially supported
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(meaning that one of the support systems--OM, MM, approach lights or threshold

lights--has failed).

Figure 3-18. Input Output for Instrument Landing System Model

INPUT
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Figure 3-19 shows the dynamic response of the reliability model as it approaches

steady state. The probability of having precision approach capability (with full or

partial support) is shown here.

Figure 3-19. Probability of Failures Over Time
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(Note that the transient behavior on this chart differs from that for the surveillance

system. Here, the probability of full functionality drops to a low value, then
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Impact

gradually increases to its steady-state value. This is because of the repair strategy.

Because the glideslope and some of the support items are not repaired as soon as

they fail, the system is actually in a lower state of functionality for a brief period

while waiting for repairs to begin. Eventually, the repairs are made, however, and

the final state of functionality is attained. By way of comparison, when the same

MTBF and MTTR values were used with an immediate repair strategy for all

components, the steady-state value of full functionality rises from 0.9925 to

0.9972, but the value of having some functionality, even nonprecision functional-

ity, drops from 0.9988 to 0.9968. Presumably, the wait to repair strategy would be

adopted because of the favorable trade-off of having at least some functionality

during critical traffic situations rather than having full functionality at all times.)

Finally, Figure 3-20 shows the transient state probabilities for the other levels of

system functionality: nonprecision functionality (i.e., no glideslope) and no ap-

proach functionality.

Figure 3-20. Probability of Degraded Capability Over Time
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The Impact model shown in Figure 3-9 takes the unique and exhaustive listing of

the failure configurations differentiated in the Reliability Model and provides, for

each failure configuration, the input parameters to the TRACON simulation,

which are determined by each failure configuration. To reduce the complexity, the

states of the reliability model for each functional element def'med in Tables 3-1

and 3-3 are each mapped to a limited number of operational states, which

uniquely and exhaustively define the impact to the TRACON Simulation. Ta-

bles 3-4 and 3-5 present the operational states and impacts defined for the

TRACON surveillance and airport approach facilities functions, respectively.

Similar tables would need to be developed for each function in the system for a

complete analysis.
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Table 3-4. Terminal Radar Approach Control Surveillance Operational States

State of function State definition System impact Simulation impact

Fulloperational

Primary only

Secondary only

Failed

Primary radar indica-
tion of all aircraft in

TRACON; secondary
radar data available
for all aircraft

equipped with func-
tioning transponders

Loss of secondary
radar

Loss of primary radar

Primary and secon-
dary radar not func-
tioning

Position estimate of all

aircraft in TRACON pre-
sented to controller is
sufficient to control nor-

mal approach

Position estimate of all

aircraft in TRACON pre-
sented to controller is

limited to accuracy pro-
vided by primary radar

Position estimate avail-

able for only aircraft with
functioning transponders

Aircraft permitted to land
but under contingency
procedures

Normal position errors and
flight paths for all aircraft

Vertical position error of all
aircraft with functioning
transponders increased
from normal to reflect loss

of secondary radar infor-
mation

Position error of all aircraft

without functioning
transponder increased
from normal to reflect loss

of primary radar

Position error of all aircraft
increased from normal to

reflect loss of primary and
secondary radar informa-
tion

Table 3-5. Airport Approach Operational States

State of function State definition System impact Simulation impact

Fully operational

Degraded-loss of
markers or light-
ing systems

Degraded-loss of
descent path

Failed

Full functionality is
available for precision
approach of aircraft to
runway

Failure of a marker or

light; descent path
available with de-

graded support

Loss of descent path
(glideslope)

Loss of Iocalizer;
groundtrack not avail-

able for navigation to
runway

Approaches permitted
under Instrument Flight
Rules (IFR) for lowest
allowable minimum

ceiling and visibility
requirements

Increased minimum

ceiling and visibility
requirements to conduct
IFR approach and in-
creased stress on pilot

Increased minimum

ceiling and visibility
requirements to conduct
IFR approach and in-
creased stress on pilot
(increases are greater
than those for other

degraded state)

Approaches to runway
are no longer permitted
under IFR

Aircraft follow normal flight
paths to runway

Assuming low ceiling under
IFR, aircraft precluded
from approaching runway;
desired flight paths
changed to remaining
available runways

Assuming low ceiling under
IFR, aircraft precluded
from approaching runway;
desired flight paths
changed to remaining
available runways

Assuming IFR, aircraft
precluded from approach-
ing runway; desired flight
paths changed to remain-
ing available runways
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Tables 3-4 and 3-5 both define four operational states for the TRACON surveil-

lance function and the airport approach facilities function. Both include a fully

operational state, which represents the state of the respective function when the

systems that produce the function are performing as they were designed to, and a

failed state, which represents the respective function when component fail failures

prevent the function from being available. The operational states defined for both

functions include two degraded states that will allow the safety implications of

these degrade states to be explored. The system impact column in each table de-

scribes the impact each operational state will have on the TRACON system af-

fecting safety. The simulation impact column indicates how inputs to the

TRACON simulation are altered to account for the respective system impact.

TRACON Simulation

The TRACON simulation simulates aircraft flying through TRACON-controlled

airspace, while calculating hazard metrics. The TRACON area simulated is based

on the four comer posts at DFW in effect at the time of the CTAS field tests in 1996.

INPUT AND OUTPUT

The input to the simulation includes flight information for a specified time inter-

val for each arriving aircraft in the scenario. It includes the plane ID; time of en-

tering TRACON airspace; and a set of M waypoints, including the aircraft's entry

point into TRACON-controlled airspace at a comer post.

Each waypoint contains the following information:

# Position (x, y, and z)

# Heading (heading, pitch, and velocity)

# Flight path ID

# Aircraft nominal and degraded position uncertainty.

Position uncertainty can be used to approximate faults within the reliability.

Weather is not captured explicitly in the simulation, but is modeled implicitly in
the scenario data.

Simulation outputs include hazard indicators in the form of separation and work-

load metrics. Separation metrics include

¢, minimum absolute distance between aircraft,

# minimum in-trail distances between aircraft on a common flight path, and

# minimum altitude separation between crossing aircraft.
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Safety Analysis Methodology Applied to Dallas-Fort Worth Airport

Workload factors include

number of aircraft in an airspace sector and

average and variance in number of aircraft per runway.

Most of the significant entities of the TRACON airspace are modeled, although

the fidelity of each entity varies. The entities modeled include the Center,

TRACON, the tower, the controller, and the aircraft. The pilot is not modeled in-

dependently from the aircraft. The functionality of each entity follows:

• Center, controls airplanes entering into TRACON airspace.

• TRACON

• accepts airplanes into TRACON airspace;

• assigns controller to track each airplane (later hand-off between con-

trollers is not implemented);

• tracks location of each airplane with respect to the airport; and

• sets flight path by reading waypoints.

• Tower, includes runways.

• Controller

• uses radar to determine location of airplanes;

• tracks location of airplanes with respect to each other;

• removes planes from airspace when land or crash;

• determines flight path between waypoints;

• sends airplane the next waypoint position, heading, velocity; and

• sends airplane the command to fly straight or turn left or right.

• Aircraft (and pilot)

• flies between waypoints;

• determines acceleration to arrive at next waypoint with desired velocity;

• determines when arrived, near, or past desired waypoint; and
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_. tracks own position uncertainty and hazard indicators.

HAZARD INDICATORS

The simulation evaluates hazard indicators for each aircraft at each time step.

Hazard indicators for each aircraft can be output in two ways: (1) at each time step

and (2) the worst violation. The hazard indicators include separation and workload

metrics.

Separation metrics include

• absolute distance between each airplane in the airspace,

• in-trail separation distance between airplanes on common flight paths, and

• altitude separation between planes within the same cylinder of airspace.

Workload metrics include

• number of aircraft in an airspace sector and

• average and variance in the number of aircraft per runway.

FLIGHT PATH BETWEEN WAYPOINTS

The airplanes fly between waypoints following simple trigonometry, as illustrated

in Figure 3-21. Each waypoint includes the position, velocity, and heading con-

straints. The simulation determines the shortest path between waypoints while ob-

serving these constraints. The airplane can turn left or right with the given velocity

and fixed turn rate. The airplane flies the tangent connecting the two closest cir-

cles. The airplane accelerates or decelerates between circles to arrive with desired

velocity and then ascends or descends between circles to arrive with desired alti-

tude.

Figure 3-21. Flight Path Between Waypoints

_ Waypoint N+I
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Safety Model

OBJECTIVE SAFETY DATA

Figure 3-22, derived from recently published data (Aviation Week, 8/18/97),

shows worldwide and U.S. airline fatalities data for a 10-year period ending in

1996. ] The data are for commercial jet transports over 60,000 pounds maximum

gross weight and are categorized by type of accident. As can be seen, fatalities re-

sulting from controlled flight into terrain (CFIT) are most common worldwide,

with 25 percent of these occurring during approach. Several accident categories

involve natural or human-caused failure of the aircraft in some form that cannot

be prevented by either the pilot or controller (e.g., in-flight fire, sabotage and hi-

jacking). These types of accidents are not directly pertinent to the analysis of

P-FAST (although secondary effects, or hazards caused to other aircraft attribut-

able to this type of accident, are of concern).

Categories that are directly applicable to the present task, however, include midair

collisions, some instances of loss of control in flight, ice and snow, landing, wind

shear, fuel exhaustion and runway incursion---collectively accounting for over

3,000 fatalities during the 10-year period. It is, primarily, these types of accidents

that may be prevented, in part, by improved air traffic procedures such as those

provided by P-FAST.

Figure 3-22. Worldwide and United States Airline Fatalities
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]Data exclude the former USSR due to their unreliability.
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SAFETYMETHODOLOGY

At least two approaches are available for predicting the likelihood of occurrence

of accidents of the type mention above (1) explicit, based on dynamic modeling of

aircraft flight trajectories and (2) inferential, based on modeling of generic causal

situations. Our approach for this task has been the latter. Our simulation of air

traffic arriving at a high-density TRACON, identifies "hazardous incidents" that

could logically precede the types of accidents cited above and whose avoidance

would preclude such accidents. While this approach does not predict actual acci-

dent probabilities, it does provide a direct measure of system safety appropriate to

both the objectives and scope of this task.

Our simulation keeps track of a nominal position for each arriving aircraft. Be-

cause these positions are generated by kinematic rather than dynamic algorithms,

the position data estimate, rather than simulate, true positions. This is appropriate

for our methodology because, in reality, the only data available to either the pilot

or the controller are estimates. Each acts to control the aircraft for which he is re-

sponsible by trying to adjust his estimate of its position to conform with some de-

sired position. In each case, the individual's estimate of the position of the aircraft

is based solely upon indirect evidence derived from navigation instruments, radar

data, or verbal reports from each other or third parties. The notion that each has of
where he or she wants the aircraft to be is likewise based on an indirect notion of

true position. The pilot, for example, wants to reposition his aircraft, not to some

specific point in space, but so as to cause an instrument indication on his panel to

read a certain way. The controller, likewise, issues clearances to the pilot, not to

move the aircraft to a specific point in space, but to cause one "volume" of re-

served airspace to move toward a position where he can hand the aircraft over to

the tower (or another controller) without having it conflict with other "volumes"

or reserved airspace associated with other aircraft. The notion of position, for both

pilot and controller, is an abstraction of the truth. They both believe that they are

successfully carrying out their duties if their notions of desired position are met

within acceptable limits-limits based on experience. If the navigation instruments

give acceptable readings and if the "volumes" or reserved airspace seem to move

in acceptable ways-based on experience-then both pilot and controller believe

that the aircraft for which they are responsible is truly moving in a safe manner. In

other words, they do not experience any "hazardous" incidents.

Whether or not hazardous conditions occur that do not result in accidents, but of

which neither the pilot nor the controller are aware, is, to a certain extent, moot.

On the other hand, preventable accidents can occur with apparent spontaneity--

without either pilot or controller being aware of a preexisting hazardous condition.

The types of accidents with which we are concerned in this study, however, can

only occur from situations which, theoretically, given fully functioning support

systems and error-free human performance, would be recognized as hazardous.

We can, therefore, define, for the purposes of our analysis, the term "hazardous

condition" as follows: "A hazardous condition is a state of the overall TRACON
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system (which includes all hardware, software, aircraft, and people involved in

primary TRACON operations) distinguishable from normal TRACON operations,

which is necessary (but not sufficient) for the occurrence of a preventable acci-

dent." In Markovian terms, we can describe the overall system as being in one of

three states: (1) normal; (2) hazardous or (3) accident (see Figure 3-23). For pre-

ventable accidents, the system must transition from state #1, to state #2, to state

#3. Unpreventable accidents involve a transition directly from state #1 to state #3.

Also, of course, state #2 can transition back to state #1 without the occurrence of

an accident. This definition allows some latitude in defining the conditions that

distinguish a "hazardous" condition from a "normal" condition. However, a pre-

liminary distinction can be made based on experience and current FAA proce-
dures.

Figure 3-23. TRACON Hazard States

Normal Hazardous
operation condition Accident

p   eo,ab,e0,0-'@.,

Unpreventable J

At the present stage we have identified several preliminary "hazardous condi-
tions". These include

• aircraft operating too close together in trail;

• aircraft at different altitudes crossing with insufficient vertical separation;

• any aircraft getting too close to other aircraft in flight; and

• aircraft getting too close to the ground before transitioning to the landing
phase of flight.

The potential accidents to which these conditions can lead are

• loss of control due to wake turbulence;

• midair collision; and

• CFIT.
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SIMULATION OF HAZARDOUS CRITERIA

We developed a probabilistic approach to identifying hazardous incidents in our

model, although this was not used in developing the earlier results, because we

did not have time to acquire the data necessary to support the approach.

Centered on the current position of each aircraft, a 3-dimensional normal prob-

ability distribution is defined by keeping track of its Ox, Oy, and Oz values as the

orthogonal axes of (ellipsoid [see Figure 3-24]).

The coordinates of this ellipsoid are maintained in alignment with the aircraft, Ox

and Oy in the horizontal plane, while oz is vertical. The values of these os, or stan-

dard deviations, are based upon the concepts described above. They represent the

values relative to the nominal aircraft position in the simulation (which, as noted

above, only approximates its true position) within which the presence of a

"potentially hazardous object" would create a hazardous incident. This

"potentially hazardous object" could be another aircraft, the wake of another air-

craft, or the ground. The magnitude of the os depends upon the flight conditions

of the aircraft with respect to independent position-fixing sources. Thus, the oz

value for an aircraft on an ILS glidepath or using a radar altimeter (within radar

altimeter range of the ground) would be smaller than it would be with no source
of altitude information other than its barometric altimeter. Whenever the aircraft is

able to obtain a relatively accurate independent position fix, the Ox, and Oy values

would be reduced to represent the accuracy of that fix (plus safety margin) but

would, thereafter, grow steadily until another position fix could be obtained.

Figure 3-24. Aircraft Position Uncertainty Ellipsoid

Z

y

To determine if a hazardous incident has occurred, it is possible to calculate met-

tics based upon the (values, e.g., the number of standard deviations by which the

nominal in-trail separation between the two aircraft exceeds the minimum safe

value. This number could be compared with some predefined minimum required

threshold and, if exceeded, causes a "hazardous condition" flag to be set. Similar
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calculations could be made to determine if vertical separation at crossing or ab-

solute proximity are dangerously low, or by comparing _z with actual altitude

above the ground, to determine the potential CFIT hazard.

= Si,j -- Snfi n

Nni j _ x/0"2i + 217x j

[Eq. 3-11

Using the similar criteria, many other potential hazards could be flagged. For ex-

ample, suppose an aircraft is close to touching down on its designated landing

runway. If the aircraft's altitude were low compared with _z, one might declare a

potential for a hazardous undershoot. Likewise, if the altitude were too large, an

overshoot condition might exist. Conflict on the runway with a previous landing

that might not have cleared the runway would be indicated by both aircraft having

values that might indicate that one landed late while the next landed early. These,
and other hazard indicators could be added to future versions of the simulation.

For the current study, we used a deterministic hazard indicator, in-trail separation,

and a deterministic controller workload metric, standard deviation of arrival air-

craft (across arrival runways) to demonstrate the methodology.

SAFETY MODEL

The safety model takes hazard indicators from the simulation and produces a sys-

tem safety metric (Figure 3-25).

Figure 3-25. Safety Model

Hazard indicators from

interaction response
(Simulation) model

System
Safety
Metric

The safety model could be developed at different levels of fidelity. In the next sec-

tion, the hazard indicator presented is the percentage of aircraft violating minimum

in-trail separation standards. The safety model could be a statistical model, based on

historical records of accidents that occur when in-trail separation standards were

violated. Or, it could be a high-fidelity physical model based on wake vortex trans-

port, aircraft dynamics, etc. The overall system safety statistic can be calculated as

shown in Figure 3-26. Figure 3-27 shows ETMS arrivals into DFW.
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Figure 3-26. System Safety Statistic

System Safety Statistic(t) = _ Pr(Safety Metric I State) x Pr(State)(t)
Stams

Probability vector
from Reliability Model

System Safety Metric

Operational and

Functional Analysis

1
ImNM_

Analysis Framework

System
satiny

Statistic

Figure 3-27. ETMS Data--Arrivals into DFW 14:00-15:00, April 6, 1996

/
///
/

DFW TRACON
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Case 1: Baseline Without P-FAST

Figure 3-28 displays the simulated flight paths in TRACON airspace used in

Case 1. Four cases of a scenario were run using the TRACON simulation pro-

gram. The basic scenario is an 80-minute period that includes a "rush" from the

east, with TRACON airspace empty at the beginning of the scenario. Two base-

line cases were established; one baseline case without P-FAST and a second

baseline case with P-FAST. A third and fourth case consisted of a runway outage

20 minutes into the scenario, with and without P-FAST. Any aircraft that are se-

quenced to land after the runway outage are diverted to another runway. Aircraft

are metered into the TRACON corner posts 2 approximately every 2 minutes. Air-

craft were assumed to be identical, with 2.5 nautical mile in-trail separation

minimum requirements. Arrivals land on three runways, 13R, 18R, and 17L. 3

Figure 3-28. Baseline Without P-FAST Flight Paths

Bridgeport Blue Ridge

13 aircraft to 18R 11 aircraft to 17L

19 aircraft to 18R

The simulated arrival pattern at the corner posts was derived from the OAG and

ETMS flight data (see Figure 3-27) into DFW. Flight paths were taken from data

gathered at a site visit to DFW TRACON on August 27, 1997. We present one of

the hazard indicators (percentage of aircraft violating minimum in-trail separation

standards of 2.5 nautical miles) generated by the TRACON simulation program. In

addition, based on discussions with controllers, the standard deviation of the num-

ber of aircraft arriving on each runway is calculated as a controller workload met-

ZThe four comer posts defined for all of our cases are the comer posts that were defined dur-
ing 1996 when P-FAST was tested at DFW. In 1997, due to the addition of a fourth arrival runway,
the DFW TRACON airspace was increased.

3The three arrivals runways are defined as the original three runways used during the testing of
P-FAST during 1996. In 1997, a fourth arrival runway was added. Runway 17L was renamed 17C
and a new runway was named 17L.
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tic. That is, if the runways are balanced so that the same number of aircraft land on

each runway, then the controller workload is less than if the runways are not bal-

anced when there is not an equal number landing on each runway.

A total of 97 aircraft landed in the scenario. The distribution of arrivals on runways

was 25 aircraft to runway 13R, 28 aircraft to runway 18R, and 44 aircraft to runway

17L.

In Figure 3-29, we see the aircraft in-trail minimum separation distances displayed

in nautical miles. These are compared with the distribution from radar data. 4 The

results show approximately 40 percent of the aircraft had a minimum separation

of 3.0 to 4.0 nautical miles. Six percent of the separations were less than 2.5 nau-

tical miles in both the radar data distribution and the simulated case.
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Figure 3-29. Baseline Without P-FAST Minimum Separations

Case 1 - Minimum Separations

l• Radar Data
• Simulation I

1 2 3 4 5 6 7

Nautical Miles

Case 2: Baseline with P-FAST

The second baseline case is similar to Case 1, above, except that P-FAST is now

in use. Figure 3-30 displays the flight paths used for the simulation.

4 The distribution from radardata was obtained from: "An Analysis of Landing Rates and

Separations at the Dallas/Fort Worth International Airport," July, 1996, by Mark Ballin and Heinz
Erzberger.
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Figure 3-30. Baseline With P-FAST Flight Paths

Bridgeport Blue Ridge

17 aircraft to 18R 15 aircraft to 17L

22 aircraft to 18R

For the baseline with P-FAST case, 112 aircraft landed. There was a rather even

distribution of aircraft over the three runways (13R, 18R, and 17L) of 38, 37, and

37 aircraft landing, respectively.

Figure 3-31 shows the distribution of minimum in-trail separations. Five percent

of the separations were less than 2.5 nautical miles.
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Figure 3-31. Baseline with P-FAST Minimum In-Trail Separations

Case 2 - Minimum Separations

1 2 3 4 5 6

Nautical Miles

Case 3: Runway Outage Without P-FAST

For the third case, runway 13R becomes unavailable 20 minutes into the scenario.

This could result from ILS failure when aircraft are operating under IFR or if the

3-39



runwaywasblockedby aircraftmechanicalproblems,amongothercauses.Re-
mainingaircraftwithin theTRACON airspacethatwerescheduledto landon
runway13Rmustnowexecuteamissedapproachandberevectoredto oneof the
two remainingrunways,18R,usingtheflight pathsillustratedin Figure3-32.The
remainingaircraftscheduledto landon runway13Rmustberesequencedbycon-
trollersto oneof thetwo remainingrunwaysavailablefor landing.

Figure 3-32. Runway Outage: Flight Paths Without P-FAST

Figure 3-33 shows the minimum in-trail separation distribution. Fourteen percent

of the separations were less than 2.5 nautical miles due to the complexity of the

re-sequencing controllers performed in compensating for the loss of a runway.

Figure 3-33. Runway Outage: Without P-FAST Minimum In-Trail Separations
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Case 3 - Minimum Separations
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Naullcal Miles

Case 4: Runway Outage with P-FAST

Case 4 is similar to Case 3 except that P-FAST is in use; hence, more aircraft are

in the TRACON airspace. Figure 3-34 displays the flight paths used for this case.
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Figure 3-34. Runway Outage: Flight Paths with P-FAST

Bridgeport Blue Ridge

A ©ton- "_curry

In this case, 76 aircraft landed, with a decrease from Case 2 due to the loss of a

runway and revectoring of aircraft in flight. Only 6 aircraft could land on runway

13R prior to the outage, with 37 aircraft landing on runway 18R, and 33 aircraft

landing on 17L. Figure 3-35 shows the minimum in-trail separation distribution.

Fourteen percent of the separations were less than 2.5 nautical miles due to the

complexity of the re-sequencing controllers performed in compensating for the

loss of a runway.

Figure 3-35. Runway Outage: Minimum Separations with P-FAST
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Results Summary

As can be seen in Table 3-6 the results showed that in comparing two baseline

cases, more aircraft landed when P-FAST was in use, and the arrivals per runway

were more balanced. The workload, as measured by the standard deviation of arri-

vals per runway, was higher for Case 1, without P-FAST.
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Table 3-6. Summary of Results

Average arrivals per Standard deviation Percent under
Cases Total arrivals runway arrivals per runway 2.5nm (%)

Case 1

Case 2

Case 3

Case 4

97

112

67

76

32.3

37.3

22.3

25.3

8.3

0.5

15.2

13.8

6

5

14

14

In Cases 3 and 4, with a runway outage, fewer aircraft have landed, and there is a

significant increase in controller workload as measured by the standard deviation

of arrivals per runway.

The hazard indicator presented is that of minimum in-trail separation. The per-

centage of aircraft with less than 2.5 nautical mile in-trail separation is the same
with and without P-FAST.

Conclusion

The overall implication of the results is that P-FAST does not increase the likeli-

hood of a specific hazardous condition, but it does reduce controller workload,

thus decreasing the likelihood of a hazardous condition resulting from controller
overload.
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Chapter 4

Application of Safety Methodology to National
Airspace System

In addition to the P-FAST analysis presented in this report, the essential elements

of the safety methodology presented here also were previously applied to safety

analyses of independent approaches to parallel runways, rail traffic flow control

safety issues, and Space Station Freedom. This wide range of applications is evi-

dence of the capability to use this methodology for analyzing other air traffic sys-

tems and the National Airspace System (NAS) as a whole.

The particular features of the methodology that make it a valuable tool are analyti-

cal flexibility and ability to model hierarchical systems.

Analytical flexibility is provided by the Impact Model concept. In the Impact

Model, the states of the subsystems are defined in terms of their operational im-

pact on the larger system. For hardware systems, some type of reliability analysis

can be used to evaluate the probability of being in the fully operational or some

degraded state. The specific technique used does not affect the Impact Model, and

the best technique for each subsystem can be chosen independently. For systems

where there is a human in the loop, the probability associated with the human's

performance state must be generated by expert judgment or a human factors
model.

In order to capture the effects of complex interactions among subsystems and their

varying states of performance, a modelling technique more sophisticated than tra-

ditional reliability analysis may be required. This is the Response-Interaction

Model. In our approach, we use a simulation model to capture these interactions;

however, the framework is general, and any modelling technique may be used. It

is quite possible to simulate some systems, while analyzing others with a determi-

nistic technique.

A Response-Interaction simulation analysis can capitalize on the Impact Model

state probabilities previously determined. Rather than run a full simulation of the

system, a time-consuming process, the simulation can be constructed to introduce

degraded states and see their impact. While such a simulation would not capture

the long-run likelihood of such a failure occurring, in our approach this is not nee-

essary, because the outcome of the simulation can be weighted by the previously

determined Impact Model state probabilities to obtain the required likelihood.

For analysis of a system in isolation, the Response-Interaction model results,

weighted by the probability of state occurrence, will provide the hazard factor
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probabilities needed to compute a safety metric. For analysis of a system that is

itself a component of a larger system, the weighted Response-Interaction model

results can be used to determine the state probabilities for the Impact Model re-

lating this system to the whole under consideration.

It is the generality of the Impact Model concept that allows our method to be used

fruitfully in a hierarchical analysis. The Impact Model specifies how a subsystem

performs in relation to the whole. The analysis of the whole can be built up from

detailed analyses of the subsystems comprising that whole; each subsystem in turn

has an Impact Model relating its components. Alternatively, the analysis approach

may be from the whole to the components. Interaction-Response models of the

state interactions among the gross-level subsystems may be used to identify those

subsystems whose performance is most critical in the overall system's perform-

ance. The next stage of analysis would be to consider those subsystems in detail,

by utilizing their Impact Models and Interaction-Response Models to determine

the critical aspects at a finer level.

The system considered by our methodology can have components, described by

Impact Models, that are as gross as TRACON's and ARTCC's, or as fine as

hardware components of an electrical system.

Although the method offers great promise for hierarchical analysis, we must cau-

tion that it does not offer a turnkey solution to NAS safety analysis. Determination

of appropriate system interactions is a task that requires strong engineering judg-

ment. The N 2 system interaction diagrams are of great assistance in codifying this

knowledge.
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[1] VFR Terminal Area Chart Dallas-Fort Worth, 49th edition, March 27, 1997.

[2] IFR Area Chart - Dallas-Fort Worth, July 17, 1997.

[3] IFR Enroute Low Altitude Chart - Dallas-Fort Worth, July 17, 1997.
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Appendix B

Abbreviations

AATT

ARTCC

ASAC

AST

ATM

CFIT

CTAS

DFW

ETMS

FAA

FAST

IAPR

IFR

ILS

MIT

MM

MTBF

MTTF

MTTR

MWT

NAS

NASA

OAG

OM

P-FAST

STAR

TRACON

VFR

VORTAC

Advanced Air Transportation Technologies

Air Route Traffic Control Center

Aviation Systems Analysis Capability

Advanced Subsonic Technology

Air Traffic Management

controlled flight into terrain

Center-TRACON Automation System

Dallas-Fort Worth International Airport

Enhanced Traffic Management System

Federal Aeronautics Administration

Final Approach Spacing Tool

independent approaches on parallel runways

Instrument Flight Rules

Instrument Landing System

Massachusetts Institute of Technology

middle marker

mean time between failures

mean time to failure

mean time to repair

mean wait time

National Airspace System

National Aeronautics and Space Administration

Official Airline Guide

outer marker

Passive Final Approach Spacing Tool

Standard Terminal Arrival Route

Terminal Radar Approach Control

Visual Flight Rules

VOR/Tactical Air Navigation
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