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ABSTRACT

A recently reported solution for stationary stability of a thermo-

solutal system with Soret diffusion is re-derived and examined using a

symbolic computational package. Symbolic computational languages

are well suited for such an analysis and facilitate a pragmatic approach

that is adaptable to similar problems. Linearization of the equations,

normal mode analysis, and extraction of the final solution are performed

in a Mathematica ® notebook format. An exact solution is obtained for

stationary stability in the limit of zero gravity. A closed form expres-

sion is also obtained for the location of asymptotes in relevant param-

eter, (Smc,Mac), space. The stationary stability behavior is conveniently

examined within the symbolic language environment. An abbreviated

version of the Matheraatica ® notebook is given in the Appendix.t

NOMENCLATURE

C concentration

c disturbance concentration

Din, n diffusivity elements surface tension

DI2 Y1
Dm Dufour coefficient, ----

DI] Y2

d depth of fluid layer
h surface heat transfer coefficient

h s surface mass transfer coefficient
J mass flux from surface

Ma Marangoni number, 71dAT
Dllkt

hd
Nu surface Nusselt number, --

pcpDII
Pr Prandtl number, v/Dll

AP pressure difference

Ap disturbance pressure difference

Q heat flux from surface

Sh surface Sherwood number, hs--_-dsurface tension

D21 T2 D22
Sm Sorer coefficient, __m

022 "/1
T temperature

t time

velocity vector

U x-component velocity

disturbance velocity vector

V y-component velocity

W z-component velocity

w z-component disturbance velocity

x,y,z Cartesian coordinates (see Fig. 1)

Greek Symbols

_t wavenumber

T surface tension variation

0 disturbance temperature

normal mode temperature

_. eigenvalue

kt dynamic viscosity

v kinematic viscosity

p density
a surface tension

"_ diffusivity ratio, D22]DI 1

X normal mode concentration

Subscripts

0 value at z = 0

1 value at z = 1

b basic state

c critical value

oo asymptotic value

"tThe unabridged Mathematica ®notebook is available from the author or on

the internet at http://zeta.lerc.nasa.gov/6712/people/skarda.htm
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INTRODUCTION

This paper is intended to achieve three goals. First the paper and
an associated Mathematica ® notebook document the derivation details

of an exact solution for stationary stability of the Marangoni-Benard

system with Soret diffusion (Skarda et. al., 1998). Second, it is hoped

that the problem described herein might serve as a "hands on learning

tool" to augment teaching or understanding of linear stability. The indi-

vidual steps of a linear stability analysis and their relationship to each

other can effectively be examined within a symbolic computational

environment. Finally, several features of symbolic computational

languages such as Mathematica ® (Wolfram, 1996), are demonstrated

within the notebook that can greatly benefit similar analyses. In fact,

various elements of the notebook are directly, or with minor modifica-

tion, applicable to a wide range of stability problems. For example the

brief linearization function we construct is quite general and can be

applied to linearize systems of nonlinear partial differential equations

(p.d.e.) of arbitrary order and degree, as well as the associated bound-

ary conditions. Similarly, the normal mode substitutions apply to most

autonomous systems, where the boundary conditions can also be satis-

fied by the normal mode solutions.

The physical problem under consideration is that of binary fluid

convection with soret diffusion. Hurle and Jakeman (1969 and 1971)

showed that these binary systems can be quite sensitive to the Soret

effect resulting in either undesirable flows due to trace amounts of im-

purities or desirable mixing by providing a small concentration of

solute. Binary fluid systems are also instructive because they can be

represented as relatively simple fluid-dynamical systems with constant

coefficients (Jacqmin, 1996) and zero base flow. The convection dis-
plays an abundance of interesting phenomena as demonstrated by sev-

eral theoretical and experimental investigations, e.g., Kolodner et. al.

(1989), Bensimon et. al. (1990), Glazier and Kolodner (1991), Cross

(1986), Knobloch and Moore (1988). In these studies, flow is driven

due to density variations. More recent investigations have examined

the Soret effect in systems where surface tension gradients at the free
surface drive flow (Chen and Chen 1994, Castillo and Velarde, 1978,

and Bergeon, et. al., 1994, Skarda, et. al., 1998). Such phenomena is

important to proposed containerless processing applications in

microgravity.

We discuss the linear instability of double diffusive convection

with the Soret effect that is driven by surface tension variation along

the free surface. An imposed temperature difference across the layer,

ATt,, induces a concentration difference, AC b. We rescale the problem
in the absence of buoyancy which leads to a concise representation of

neutral stability results in and near the limit of zero gravity. An exact

solution is obtained for stationary stability. One important consequence

of the exact solution is the validation of published numerical results in

the limit of zero gravity. Moreover, the precise location of asymptotes

in relevant parameter, (Smc,Mac), space are computed from exact solu-
tions. Stability behavior is briefly examined using the exact solution.

The process of linearizing the equations, deriving the normal mode

equations, and obtaining an exact solution for neutral stability are illus-
trated in the Appendix in Mathematica ® notebook format.

DEVELOPMENT OF EQUATIONS

We consider the unbounded cross-doubly diffusive fluid layer of

depth d as shown in Fig. 1. Buoyancy is neglected, and onset of con-

z Q j

, f!
TO CO

Figure 1 .--Unbounded double diffusive fluid layer.

x

vection due to surface tension variation is examined. The basic or un-

perturbed state is one of no flow, U b = 0, an imposed temperature pro-

file across the layer, Tb(z)=Tb(0)-ATbd, and an induced

concentration gradient across the layer, AC b = - D21 AT b . Difference
D22

quantities of the form, Ay b, are defined as Ay b = Yb (0)-yb(d).

The governing equations we wish to linearize are:

v.u=0 (l)

0 DU = -VP +btV20 (2)
- Dt

D---T-T= D 11V2T + D12V2C (3)
Dt

D_C_C= D21_2T + D22_2C (4)
Dt

The dynamic viscosity, I t, and diffusivity elements, Dmn, are assumed
constants. The boundary conditions are:

At
z=0,U(0)=0, ' 3y ' 3z

(5a to 5d)

At z=d,O(O)=O, It[t--_x--x +--_z-z J, _.3y o3z J J

=-ylV.T- y2vnc (6a to 6c)

-3 _.b
where Vtl = i--+j--. Surface tension o is approximated as a lin-

3x Oy ' '
earized function of T and C, 6 = 6 o - 71(T - Th) - _/2(C - Ch), where 71
and "/2 are the temperature and concentratibn vffriatioffs with sur-

flux conditions are c,P T,P" Heat and mass
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pCp(_D11_ 3C_=Q"_-Z-DI20z)
(6d)

_T _)C j (6e)
-D21 -_z- D22 3---;=

where the density, p, and specific heat, %, are constants. The surface
heat and mass fluxes, Q and J are expanded as:

Q = Q(Tb' Cb) + bQ T, (T(1)- T, )
(7a)

J = J(Tb,Cb)+ _)J (C(1)-C1)
OClcl

(7b)

Substituting Eq. (Ta) into Eq. (6d), and Eq. (7b) into Eq. (6e) for Q and

J, respectively, facilitates linearization of the flux conditions.

The dependent variables are written in terms of the base flow and

perturbation variables, U = fi, T = T b + 0, C = C b + c, and AP = AP b +

Ap. Substituting these into the governing equations and boundary con-

ditions, and retaining only the first order terms leads to the linearized

system. Exploiting the pattern matching and limit evaluation capabili-
ties of Mathematica ®, a succinct function was constructed to linearize

a nonlinear p.d.e of arbitrary order and degree. This iinearization func-

tion, Linearize [equation], is given in the Appendix. Our problem was

easily iinearized, symbolically, as is illustrated within the notebook in

the Appendix.

As is common practice (Chandrasekhar, 1981) the curl operator is

applied twice to the momentum equation. This operation could also be

performed using the Mathematica ® vector calculus operators.

Following the classical treatment for the Benard type problems,

the linearized equations are now nondimensionalized (Chandrasekhar,

1981). Here, they are nondimensionalized using the reference values of

Skarda et. al. (1998) for length, velocity, time, temperature, and con-

centration which are defined as

d, DII d2 ,ATb,and- D21 AT b.
d ' Dll D22

The resulting nondimensional parameters are the Prandtl number, Pr,

diffusivity ratio, x, Dufour coefficient, Dm, Soret coefficient, Sm,

Marangoni number, Ma, surface Nusselt Number, Nu, and surface

Sherwood number, Sh as defined in the nomenclature. The complete

set of dimensionless disturbance equations are given by Eqs. (A.4) to

(A.8d) in the Appendix.

A normal mode analysis is performed by assuming solutions of

the form (u, 0, c) = (w(z), 0(z), X(z))e _'t+i(otxx+%y). In Mathematica ®

this is conveniently done by defining the solutions as the functions,

Eqs. (A.9a) to (A.9c) in the Appendix.

These solutions are substituted into the set of iinearized Eqs. (A.4)

to (A.8d) leading to a 4 th order and two 2 nd order ODE's. The normal

mode equations are easily obtained by evaluating the Mathematica ®

cells for the linearized equations after evaluating the solution forms,

Eqs. (A.9a) to (A.9c). The resulting normal mode equations are also

given in (Skarda et. al., 1998). The energy and species equations are

coupled by their cross diffusive terms which also occur in the flux bound-

ary conditions at z = 1. The momentum equation is coupled with both

energy and species equations through the tangential stress condition,

Eq. (A.8b).

The eigenvalue, _. in Eqs. (9a) to (c) is complex. If the real part of

_. is positive, a disturbance in the system grows, and if the real part is

negative, the disturbance decays. If _, = 0, the disturbance persists un-

changed in time and the system is in a state of neutral stability. By

setting _ = 0, we can decouple the energy and species equations and

directly solve the following normal mode equations for stationary

stability.

0 = Pr(D 2 -Ix2)2 w (8)

(D2 -(z2)t_ = dcMa w (9)

D2 -ot2)Z =dxMa w (10)

where

"r+ SmDm 1+ x
de = and d x =

"r- xSmDm "r- xSmDm

The corresponding normal mode boundary conditions are given

below:

At the lower surface, z = 0,

w(0) = 0 (1 la)

Dw(0) = 0 (l lb)

_(0) =0 (llc)

_(0)=0 (llc)

At the upper surface, z = 1,

w = 0 (12a)

-D2w = Ot2(¢ -- Sm%) (l 2b)

D¢-Sm Dm Dx+Nu,=0 (12c)

-DO+ DX+Sh X =0 (12d)
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STATIONARY SOLUTION

The solution forms of w, ¢, and Z are easily determined from in-

spection of Eqs. (8) to (10) and are given in the Appendix by Eqs. (A.12)

to (A. 14). Determination of the integration constants for this problem

is tedious. Evaluation ofbl and cl from Eqs. (A.21) and (A.22) should

confirm this claim. A highly desirable feature of symbolic languages is

their ability to minimize much of the computational drudgery, verify

results obtained by other means, and often simplify the final expression

to a tractable form. The use of Mathematica ® to solve for integration

coefficients, bl and el, certainly minimizes drudgery, and we will find

below that the final form of the neutral stability solution is simplified

by Mathematica ® to a tractable form. An expression for neutral stabil-

ity is obtained by applying the tangential stress balance, Eq. (12b). This

yields the following exact solution, Eq. (13), for stationary stability of

the double diffusive Soret problem (Skarda et. al., 1998). For general-

ity the Dufour diffusivity term is also retained in the energy equation.

Ma{(Sm(l + l-_Dxm )- l)ctcosha +(_ Sm- Sh]sinha }

l)ct 22t(Sm Dm - (1 + cosh 2a)+ Nu Sh(l- cosh 2a)- (Nu + Sh)a sinh 2a)_

8a 2 - 4asinh 2a
+ = 0 (13)

sinh 3ct - 3sinh 0t-40t 3 cosh 0t

RESULTS

The neutral stability curves shown in Figs. 2 and 3 are computed

directly from Eq. (13). The abscissa and ordinate are the wavenumber

and the Marangoni number, respectively, and the eigenvalue, _., is zero

along each curve. For Ma values above a neutral stability curve (corre-

sponding to given Sm and _ values), infinitesimal disturbances grow in

time and the fluid layer is said to be unstable. The layer is linearly

stable for Ma values below the appropriate neutral stability curve. In

Fig. 2, the curves are shifted upward for increasing values of Sm thus

increasing Sm has a "stabilizing effect." In Fig. 3, decreasing _ values

are destabilizing, shifting the neutral stability curves downward. We

emphasize that these are stationary stability results; however, oscilla-

tory stability will occur before stationary stability (Ma values below

the stationary values) for certain ranges of Sm values (Chert and Chert,

1994, Skarda et. al., 1998).

The minimum value of Ma on each curve in Figs. 2 and 3 is called

the critical Marangoni number, Ma c, and is of interest since onset of

instability typically occurs at this value. In Fig. 4, stationary stability

boundaries, the loci of points consisting of Ma c values, are shown in

(Smc,Mac) space for different values of "LThe overall behavior is quite

similar to the Rayleigh-Benard stationary stability results presented in

(Src,Ra c) space by Hurle and Jakeman (1971) where the Soret coeffi-

cient, Sr, and Rayleigh number, Ra, are defined in the usual manner

(Hurle and Jakeman 1971). Asymptotic behavior occurs at a finite Sm c

value and Ma c is driven to zero as ISmcl _ oo. The exact location of the

asymptote observed in Fig. 4 is also determined from our solution,

Eq. (13), and is given in Skarda et. al., (1998). For flux boundary con-

ditions often applied to the Soret problem, Nu = Sh = 0, and Dm = 0 the

location of the asymptote reduces to a simple function of x,

( 1)-l. This result was found to be identical to the asymp-Sm== 1+
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Figure 2.--Neutral stability curves, each curve for constant

Sm values, _r= .05, Dm = 0, Nu = 0, Sh = 0.
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Figure 3.--Neutral stability curves, each curve for constant

_rvalues, Sm = -.02, Dm = 0, Nu = 0, Sh = 0.

tote location expression obtained by Hurle and Jakeman (1971), but in

(Src,Rac) space, for the case of the buoyancy induced Soret problem

with free-free surfaces (Skarda et. al. 1998). As before oscillatory

instability which must be computed numerically, is not considered in

this analysis, but is discussed in the previously mentioned references.

CONCLUSIONS

The exact solution for stationary onset of convection for

Marangoni-Benard instability with Soret effect was successfully

NASA/TM--1998-206634 4
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Figure 4.--Stationary stability boundaries, each curve for

constant • values, e=c = 1.99, Dm = 0, Nu = 0, Sh = 0.

derived using a symbolic computational package, Mathematica ®. The

results agree with the "hand-derived" form of the solution recently

reported in the literature. The associated notebook permits users to

reconstruct the steps leading to the solution. The exact solution is also

provided in a form to allow immediate examination of neutral stability

behavior and exploration of various parametric effects. While exact

solutions are uncommon, various parts of the notebook can be applied

with little modification to assist with aspects of other linear stability

problems.
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APPENDIX

Exact Solution For Stationary Stability Double Diffusive Marangoni Problem With
Soret Diffusion
Cross-Diffusion Terms Are Included in Governing Equations & in the Flux BC's at z--1

A Conductive/Permeable Base Is Considered at z=0

<<Calculus'VectorAllalysis';

SetCoordinates[ Cartesian[x,y,z] ];

(, Define linearization function ,)

Linearize[equation_] := Limit[Expand[(Expand[equation] /. en- -> 0)/e], e -> Infinity]

• Governing Equations - Momentum, Energy, Species

UMomEq = (, A .1 *)

0t U[x, y, z, t] + {U[x, y, z, t], V[x, y, z, t], W[x, y, z, t]} .Grad[U[x, y, z, t]] -

0x P[x, y, z, t] + Laplacian[ U[x, y, z, t] ];

EnergyEq = (, A .2 *)

0t T[x, y, z, t] + {U[x, y, z, t], V[x, y, z, t], W[x, y, z, t]} .Grad[T[x, y, z, t] ] -

D11 Laplacian[ T[x, y, z, t] ] - D12 Laplacian[ S[x, y, z, t] ];

SpeciesEq = (, A.3 *)

0t Six, y, z, t] + {U[x, y, z, t], V[x, y, z, t], W[x, y, z, t]} . Grad[ S[x, y, z, t] ] -

D21 Laplacian[ T[x, y, z, t] ] -D2a Laplacian[ S[x, y, z, t] ] ;

U[x_, i_,

V [x_, i_,

W [x_, y_,

P [x_, y_,

T [x_, y_,

S [x_, y_,

z_, e_] := 0+ eu[x, y, z, t];

z_, t_] := 0 + ev[x, y, z, t];

z_, t_] := 0+ ew[x, y, z, t];

z_, t_] := 0 + ep[x, y, z, t];

z_, t ] := Tb[X, y, z, t] + ee[x, y, z, t];

z_, t_] := Sb[X, y, Z, t] + ex[x, y, z, t];

Linearize[UMomEq];

Linearize[EnergyEq];

Linearize[SpeciesEq];

• Linearized Disturbance Equations

MDisturbEq = 0t Laplacian[ u[x, y, z, t] ] - PrBiharmonic[u[x, y, z, t]]

EDisturbEq = 0t e[x, y, z, t] - Laplacian[e[x, y, z, t]] +

SmnmLaplacian[c[x, y, z, t]] - Mau[x, y, z, t]

SDisturbEq = 0t c[x, y, z, t] + r Laplacian[e[x, y, z, t]] -

c Laplacian[c[x, y, z, t]] - Mau[x, y, z, t]

• Boundary Conditions

(* A .6 *)

mat z--O

u[x, y, 0, t];

0... u[x, y, 0, t];

e[x, y, 0, t] ;

c[x, y, o, t];

(* A .7,a,b,c,d ,)

NASA/TM--1998-206634 6



• at z=l

u[x, y, 1, t];

0,,z u[x, y, 1, t] + 0x,x u[x, y, 1, t] + 0y,yu[x, y, 1, t];

0. e[x, y, 1, t] +Din0, c[x, y, 1, t] +Nue[x, y, 1, t];

Sm 0, e[x, y, 1, t] +_ 0, c[x, y, 1, t] +Shc[x, y, 1, t];

(, A,8 a,b,c,d ,)

• Assume Normal Mode Solutions of The Form

U Ix__, y__, Z__, t__]

e[x_, y_, z_, t_]
c[x_,y_, z_, t_]

:=w[z] Exp[At + I (a=x + ayy)];

:= _[z] Exp[At + I (ax x + ay y) ] ;

:=X[Z] Exp[At + I (UxX + ayy)];

(, A .9a,b,c .)

• Normal Mode Equations

(D 2 - (1,2)2 w[z] = 0

(D 2 - a,2)_[z] = -d, Ma w[z]

(D 2 - a'2)XIz] = -d x Ma w[z]

(* where .)

d_ = (_ + Sm _ ) / (_ - t Sm Dm ) ; dX = (I+ _) / (r- r SmDm)

(* A.10 *)

(* A.I1 *)

(* A.12 *)

• Solutions For velocity, Temperature, and Concentration Are Expressed As:

w[x ] := al Sinh[u x] + a2 Cosh[a x] +
a3 x Sinh[u x] + a4 x Cosh[a x]

(* A.13 *)

_[x_] := bl Sinh[a x] + b2 Cosh[u x] +

b3 x Sinh[a x] + b4 x Cosh[a x] +

b5 x^2 Sinh[a x] + b6 x^2 Cosh[a x]

(* A.14 *)

X[x_] := cl Sinh[a x] + c2 Cosh[a x] +

c3 x Sinh[a x] + c4 x Cosh[a x] +

c5 x^2 Sinh[a x] + c6 x^2 Cosh[a x]

(* A.15 *)

• Solve for velocity coefficients, a2, a3, and a4 in terms of al

Boundary Condition, w[0] = 0, w'[0], and w[1]=0 Give

a2 = 0; a3 = al (a (Cosh[a]/Sinh[a])-l); a4 = -al a; (* A.16a,b,c)

• Solve for particular temperature & species solutions

Solve for Particular Solution of 4, (temperature),
ie solve for b3, b4, b5, b6 (also c3,c4,c5,and c6 values)

D[b3 al z Sinh[a z] + b4 al z Cosh[a z],{z,2}] -

a^2 (b3 al z Sinh[a z] + b4 al z Cosh[a z])+

D[b5 al z^2 Sinh[a z] + b6 al z^2 Cosh[a z],{z,2}] -
a^2 (b5 al z^2 Sinh[a z] + b6 al z^2 Cosh[a z])

(* A.17 *)

I. a1->1 I. d_->l

NASA/TM--1998-206634 7



Values of b3, b4, b5, b6 (or c3, c4, c5, or c6) Determined by comparison
with Cosh, Sinh, etc Terms of ODE le w[z] Terms

b3 = al d_ Ma (a Coth[u]-l)/(4 u^2); b4 = -3 al d_ Ma /

b5 = al d_ Ma / 4; b6 = -al d_ Ma (a Coth[a]-l)/(4 a);

c3 = al dx Ma (a Coth[a]-l)/(4 a^2); c4 = -3 al dx Ma /

c5 = al dz Ma / 4; c6 = -al dx IEa (a Coth[a]-l)/(4 a);

(4 a);

(4 a);

(* A.18a, b *)

(* A.18c,d *)

(* A.19a,b *)
(* A.19c,d *)

• Solve For Homogenous Coefficients - Energy & Species Equations

(, Bottom surface, z=O, is conductive and permeable, therefore: ,)
b2 = 0; c2 = 0;

Now apply the flux conditions at the top, z=l and solve for bl and cl

(* A .20a,b ,)

_fluxbc = _'[1] + Nu _[1] +
-Sm D= X'[1] ;

xfluxbc = - _'[1] +

X'[1] + Sh X[1];

Solve For bl & cl simultaneously from flux conditons

bl = .; Cl = .;

blcl = Flatten[

{bl,cl}

bl = blc1[[1]];

/. Solve[{_fluxbc==0,xfluxbc==0},{bl,cl}] ];

cl = blc1[[2]];

(* A.23 *)

• Substitute w, #, and X into tangential stress boundary condition and obtain
stationary stability solution

(* The remaining coefficient, al will cancel out in boundary condition so we'll set it to 1 *)
_1 = ¢[1] /. a1->Z;xZ = X[1] /. a1->1;
d2wl = Simplify[Expand[w'" [I]] /. al->l ];

Substitute above into Tangential stress condition at z=l

tstress = a^2 _i - Sm a^2 X1 + d2wl; (* A.24 *)

Resolve _ Term of Tangential Stress Equation - Multiply by 4 Sinh[cr] to be Consistent With Literature

_coef = 4 Simplify[a^2 _1] Sinh[=]

Ma (a (DmSm+ _) Cosh[a] + Sh_Sinh[a]) (a 3 Cosh[a] -Sinh[u]3)

((-I +_nSm) a 2 Cosh[a]2 _ (Nu+ Sh) aCosh[a] SixLh[a] -NuShSinh[a]2)

_Term = _coef/_coef[[5]]

Ma (a (DmSm+ c) Cosh[a] + ShcSinh[a])

((-i +DBSm) a 2 Cosh[a] 2 - (Nu+Sh) aCosh[a] Sinh[a] -NuShSinh[a] 2)

(. A .25 .)

(* A .26 *)
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Resolve X Term of Tangential Stress Equation - Multiply by 4 Sinh[e] to be Consistent With Literature

xcoef = 4 Simplify[u^2 X1] Sinh[a]

Ma (u (I + r) Cosh[a] +NuSinh[a]) (a 3 Cosh[a] -Sinh[a]3)

r ((-l+_Sm) u 2 Cosh[a]2 _ (Nu+Sh) aCosh[a] Sinh[a] -NuShSinh[=]2)

xTerm = -Sm xcoef/xcoef [ [5] ]

MaSm (a (I+ r) Cosh[a] +NuSinh[a])

r ((-i +DmSm) =2 Cosh[a] = - (Nu+Sh) aCosh[a] Sinh[a] -NuShSinh[a]2)

d2wcoef = Expand[ 4 Sinh[a] d2wl ]/_coef[[5]]

8a 2 -4aSinh[2a]

a3Cosh[a] -Sinh[=]3

(* A .27 *)

(* A .28 *)

(* A .29 *)

• Collect the _ and X Terms into one term containing the soret coefficient Sm. Then with
d2wcoef, generate Neutral Stability Solution.

NeutralSoln = Simplify[(Numerator[_Term] + Numerator[xTerm])] /

Denominator[_Term] + Numerator[d2wcoef]/Denominator[d2wcoef]

(* A.30*)

Ma (= (Sm (-I +Din- ¢) +_) Cosh[a] + (-NuSm+ Shr) Sinh[u])

r ((-l+DmSm) u 2 Cosh[a] _ - (Nu+ Sh) =Cosh[a] Sinh[=] -NuShSinh[u] =)

8a 2 -4aSinh[2u]

u 3 Cosh[a] - Sinh[u] 3
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