NASA/CR--1998- 208200

|N-27.CR 151416

Heat Conduction in Ceramic Coatings: Relationship between Microstructure and Effective Thermal Conductivity

<u>Technical report for Task 2 (Second Year)</u> (period of performance: February 7, 1998 - May 6, 1998)

Contract Number: NAS3-97002

Analysis of the effective thermal conductivity of ceramic coatings and its relation to the microstructure continued. Results (obtained in Task 1) for the three-dimensional problem of heat conduction in a solid containing an inclusion (or, in particular, cavity - thermal insulator) of the ellipsoidal shape, were further advanced in the following two directions:

- closed form expressions of H tensor have been derived for special cases of ellipsoidal cavity geometry: spheroid, crack-like spheroidal cavity and needle shaped spheroidal cavity;

- these results for one cavity have been incorporated to contrast heat energy potential for a solid with many spheroidal cavities (in the approximation of non-interacting defects).

This problem constitutes a basic building block for further analyses, since the ellipsoidal shape covers a variety of practically important pore geometries.

The problem is formulated as the determination of the change in thermal conductivity due to inclusion. Namely:

$$\Delta Q = H \cdot G \tag{1}$$

where ΔQ is the heat flux change per reference volume V, G is the far-field temperature gradient and second rank tensor H is a function of the inclusion shape and the inclusion conductivity.

Mathematical considerations based on the analysis of the ellipsoidal shapes in the framework of Eshelby-type theory and on utilization of Green's function for the heat conduction problem in an unbounded medium, show that H has the following form:

$$H = \frac{V^*}{V} (k_* - k_0) (A_1 l l + A_2 m m + A_3 n n)$$
⁽²⁾

where $V^* = \frac{4\pi}{3}a_1a_2a_3$ is the volume of the ellipsoidal inclusion with semi-axes a_1, a_2, a_3 with unit vectors l, m, n; k_* and k_0 are conductivities of the inclusion and of the matrix, correspondingly. Coefficients A_1, A_2, A_3 are given in terms of elliptic integrals (see Report for Task 1).

In the case when the inclusion is a spheroid $(a_1 = a_2 \equiv a)$, tensor H takes the form

$$H = \frac{V^{*}}{V} (k_{*} - k_{0}) \left\{ \left[1 + \frac{k_{*} - k_{0}}{k_{0}} f_{0}(\gamma) \right]^{-1} (I - nn) + \left[1 + \frac{k_{*} - k_{0}}{k_{0}} (1 - 2f_{0}(\gamma)) \right]^{-1} nn \right\}$$
(3)

or, in components:

$$H_{ij} = \frac{V^*}{V} (k_* - k_0) \left\{ \left[1 + \frac{k_* - k_0}{k_0} f_0(\gamma) \right]^{-1} (\delta_{ij} - n_i n_j) + \left[1 + \frac{k_* - k_0}{k_0} (1 - 2f_0(\gamma)) \right]^{-1} n_i n_j \right\}$$
(4)

where it is denoted:

 $\gamma = a/a_3$ - aspect ratio of the spheroidal inclusion,

 $n = n_1 e_1 + n_2 e_2 + n_3 e_3$ - unit vector along the axis of symmetry of spheroid,

 $I = e_1e_1 + e_2e_2 + e_3e_3$ - unit second rank tensor,

$$f_0(\gamma) = \frac{1 - g(\gamma)}{2(1 - \gamma^2)}, \qquad g(\gamma) = \frac{\gamma^2}{\sqrt{\gamma^2 - 1}} \arctan \sqrt{\gamma^2 - 1} \text{ (for oblate shape, } \gamma > 1),$$
$$g(\gamma) = \frac{\gamma^2}{2\sqrt{1 - \gamma^2}} \ln \frac{1 + \sqrt{1 - \gamma^2}}{1 - \sqrt{1 - \gamma^2}} \text{ (for prolate shape, } \gamma < 1).$$

• In the case of spheroidal cavity (insulator, $k_* = 0$) tensor H is as follows:

$$H = -\frac{V^*}{V} k_0 \left\{ \frac{1}{1 + f_0(\gamma)} (I - nn) + \frac{1}{2f_0(\gamma)} nn \right\}$$
(5)

• In the case of thin spheroidal cavity ($\gamma >> 1$):

$$H = -\frac{V^*}{V} k_0 \left\{ \frac{1}{1 + \pi/(4\gamma)} (I - nn) + \frac{2\gamma}{\pi} nn \right\}$$
(6)

• In the limit of a *circular crack* :

$$H = -\frac{8a^3}{3V}k_0nn \tag{7}$$

• In the case of *needle-shaped spheroidal cavity* ($\gamma \ll 1$):

$$H = -\frac{V^{*}}{V} k_{0} \left\{ \left[1 - \frac{1}{2} \left(1 + \gamma^{2} - \gamma^{2} \ln \frac{2}{\gamma} \right) \right]^{-1} (I - nn) + \left(1 + \gamma^{2} - \gamma^{2} \ln \frac{2}{\gamma} \right) nn \right\}$$
(8)

In the approximation of non-interacting cavities (each cavity experiences the influence of the same far-field temperature gradient G unperturbed by the presence of other cavities), the *heat energy potential* $\Delta\Omega$ for a solid with many cavities is obtained as follows (in terms of derived tensors $H^{(i)}$ characterizing i – th cavity):

$$\Delta \Omega = \frac{1}{2} G \cdot \left[\sum_{i} H^{(i)} \right] \cdot G \tag{9}$$

For example, in the case of *spherical* cavities we have:

.

$$\sum_{i} H^{(i)} = -\frac{3}{2} k_0 I \left[\frac{1}{V} \sum_{i} V^{*(i)} \right] = -\frac{3}{2} p k_0 I$$
(10)

$$\Delta \Omega = -\frac{3}{4} p k_0 G \cdot G = -\frac{3}{4} p k_0 \left(G_1^2 + G_2^2 + G_3^2 \right)$$
(10a)

where parameter p is the conventional porosity.

In the case of *circular cracks* we have:

•

$$\sum_{i} H^{(i)} = -\frac{8}{3} k_0 \left[\frac{1}{V} \sum_{i} \left(a^3 n n \right)^{(i)} \right] = -\frac{8}{3} k_0 \alpha \tag{11}$$
$$\Delta \Omega = -\frac{4}{3} k_0 G \cdot \alpha \cdot G \tag{11a}$$

where α is the second rank crack density tensor (well known in problems of effective *elastic* properties of cracked media).

REPORT DOCUMENTATION PAGE			Form Approved OMB No. 0704-0188	
Lizilo reporting burden for this collection of im pararing and maintaining the data nation, an preciden of information, maintaing suggestatus bars highway, quas taba, Arivgton, Va	Grinatus & estimated to average (hour bef i d completing and reviewing the collector of p for reducing the londer, to Washington Hand 00-4502, and is one Office of Management and	Ngonas, Induding the Sine for in formation, Band ammanan nag- quarters Services, Cheminala ka d Surger, Faberwork Restaurism	чистий интипа, заятний слато сал зоное албар 745 Билба саблал с ту обые серой оf и г Манитип Орекцона анд Reports, 1215 Jefferson Гларии (Гланотся), Махмеран, DC 20603.	
AGENCY USE ONLY (Lagva Diania)	May 12, 1998		10 DATES COVERED 2/7/98 - 5/6/98	
 4. TITLE AND SUBTITLE CONTRACT NAS3-97002 "Heat Conduction in Ceramic Coatings: Relationship between Microstructure and Effective Thermal Conductivity" 5. AUTHOR(5) 			5. FUNDING NUMBERS	
Prof. Mark Kachanov				
PERFORMING ORGANIZATION NA Tufts University, Gran Attn: Theodore M. Lisz Packard Hall, Room 10 Medford MA 02155	ts and Contracts Administ	ration	2. PERFORMING ORGANIZATION REPORT NUMBER E-	
IVICATORA UZ 133 9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES)			10. SPONSORING/MONITORING	
National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135-3191			AGENCY REPORT NUMBER	
28. DISTRIBUTION/AVA(LABILITY) Unclassified - Unlimited Subject Category	STATEMENT		125. DISTRIBUTION CODE	
3. ABSTRACT (Meximum 200 word	»)			
microstructure continu conduction in a solid c ellipsoidal shape, were - closed form expr cavity geometry: sphere	ed. Results (obtained in Ta containing an inclusion (or further advanced in the for ressions of <i>H</i> tensor have roid, crack-like spheroidal	ask 1) for the three , in particular, cav ollowing two direct e been derived for cavity and needle s	r special cases of ellipsoidal	
solid with many sphere	oidal cavities (in the appro	ximation of non-in	teracting defects).	
This problem cons	titutes a basic building blo	ck for further anal	yses.	
4. SUBJECT TERMS		·	18. NUMBER OF PAGES 5	
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. BECURITY CLASSIFIC OF ABSTRACT Unclassified		

-

NSN 7540-01-280-5500

. •

э Э

ł

Standard Form 295 (Rev. 2-89) Prescribed by ANSI Std. 239-18 298-102

•